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Korteweg-de Vries and Benjamin-Ono equations
on Zhidkov spaces

Clément Gallo
UMR de Mathématiques, Bat. 425
Université Paris-Sud
91405 Orsay, France.

Abstract. Motivated by the study of the Cauchy problem with bore-like ini-
tial data, we show the “well-posedness” for Korteweg-de Vries and Benjamin-
Ono equations with initial data in Zhidkov spaces X*®, with respectively s > 1
and s > 5/4. Here, “well-posedness” includes local (global in some cases) ex-
istence, uniqueness under a supplementary assumption and continuity with re-
spect to the initial data.
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1 Introduction

In [9], the authors considered the Cauchy problems for Korteweg-de Vries (KdV)
and Benjamin-Ono (BO) equations with bore-like initial data, namely

Ou+2u+ud,u=0, z€R, teR (1)
u(z,0) = g(x)

and
Ou+ HPu+ud,u=0, 2R, teR
2)
u(z,0) = g(x)
where H denotes the Hilbert transform, and g satisfies

i) g(x) > Ct asx — Fo00 .
i) g€ H*"! where s > 1. (3)
7’“) g - C—i— € LQ([O,OO)), g— C_ € LQ((_OOaO]) .

They showed the local well-posedness of (1) and (2) with initial data g satisfying
(3) , under the assumption s > 3/2. Global well-posedness was obtained for
s = 2.



Our aim here is to improve this result by weakening the assumptions on the
initial data g: we replace (3) by

geXx® (4)

where X* denotes the Zhidkov space we introduced in [7] (see also [22]) for
integer values of s:

X*:={fecDR), feL>®, f cH R)}. (5)

Moreover (and that is probably the most interesting improvement), we assume
only that s > 1 in the KdV case, and s > 5/4 in the BO case, instead of s > 3/2.

We first consider the KAV equation (1). Our strategy is as follows. Thanks
to Lemma 2.1 below, for ¢ € X*, there exists a function ¢y € C*°(R) with
Y’ € H* such that ¢ = g — ¢ € H® (remark that it implies that ¢ is bounded,
since s > 1). Similarly to [9], we write a solution u of (1) as u = v + %, and we
study the Cauchy problem associated with v, namely

{ 0w + O30 + 00,0 + O (V) = —(O3p +Y)') , T ER, tER (©)
v(z,0) = ¢(x) = g(x) — ¥(x)

Our main result is as follows:

Theorem 1.1 Let ¢ € Cy°(R) such that ' € H®, s > 1 and ¢ € H*(R).
Then there exists T = T (¢, s,||d||lg=) > 0 and a unique v € C([-T,T], H*) N
CH([~T,T), H*=3) solving (6), and such that v, € L*([-T,T], L*°).

Moreover, for any R > 0, the map ¢ — v is continuous from the ball of radius
R in H*(R) to C([-T(R),T(R)], H®).

From this local well-posedness result for (6) we deduce a local well-posedness
result for (1):

Theorem 1.2 Let s > 1, g € X°.

Then there exists T =1T(s, llg9l[x<) > 0 and a unique solution u of (1) such that
we CO([-T,T),X%), u—g € C([-T,T),H®) and u, € L*([-T,T], L*>).
Moreover, for any R > 0, the map g — u is continuous from the ball of radius
R in X* to C([-T(R),T(R)], X®).

Equation (6) is just KdV equation perturbed by some terms. In the case
of KdV, Kenig, Ponce and Vega ([16]) showed the local well-posedness in H*,
with s > —3/4, by the contraction principle. As it was mentionned in [9], this
method fails here. Indeed, it does not seem to be possible to get an appropriate
estimate on the H*® norm of the term ¥0, v, because 1 does not vanish at infinity.
Bourgain’s method (see [8]) fails for the same reason, as well as the method used
by Kenig and Koenig in [12]. Torio, Linares and Scialom ([9]) used a parabolic
regularization and the Bona-Smith approximation. To improve their result, we
use here the method that was employed by Koch and Tzetvkov in [17] to show
the local well-posedness of BO in H®, s > 5/4. Namely, we show Strichartz



estimates for a linearized version of (6). Next we derive the crucial non-linear
estimate, using the Littlewood-Paley decomposition. To get an a priori estimate
on the H® norm of a solution of (6), a commutator lemma due to Kato ([10])
was used in [9]. This lemma fails for s < 3/2. We use and prove here a new
commutator lemma (Lemma 2.4 below), which is a variant of a lemma due to
Kato and Ponce (see Lemma 2.3 below or [11]).

Our method gives similar results for the BO equation:

Theorem 1.3 Let ¢ € Cp°(R) such that ¢ € H>®, s > 5/4 and ¢ € H*(R).
Then there exists T = T(1, s, ||0||gs) and an unique solution v of

{ O + HO?*v + v0,v + 0, (vy)) = —(HO2Yp +y)') , z €R, t€R 7
v(z,0) = ¢(z) = g(z) — (z) ’

such that v € C([-T,T), H*) N CY([-T,T), H*~?) and v, € L*([-T,T], L>).
Moreover, for any R > 0, the map ¢ — v is continuous from the ball of radius
R in H*(R) to C([-T(R),T(R)], H®).

Theorem 1.4 Let s >5/4, g € X°.

Then there exists T = T(s,||g||x+) > 0 and a unique solution u of (2) such that
we O([-T,T),X*®), u—g € C([-T,T), H*) and u, € L*([-T,T), L>).
Moreover, for any R > 0, the map g — u is continuous from the ball of radius
R in X* to C([-T(R),T(R)], X*).

In fact, it also works for all the dispersions between BO and KdV. Namely,
for a € [1, 2], the problem

0y — DY0v + v0,v + Oy (V1)) = DOt — )’ , x €R, t €R (8)
v(0)=¢ € H® ’

where D = (—92)'/? is locally well posed in H*® for s > 3/2 — a/4.

In [9], a global well-posedness result was obtained for (7) in H® for s > 2.
Since our local well-posedness result goes underneath 3/2, using the invariant
of the Benjamin-Ono equation associated with the H3/2 norm, we improve this
result:

Theorem 1.5 Let ¢ € H*, s > 3/2. Then the solution of (7) obtained in
Theorem 1.3 can be extended to R.

Corollary 1.1 Let g € X*®, s > 3/2. Then the solution of (2) obtained in
Theorem 1.3 can be extended to R.

Note that if Theorem 1.1 was true for s = 1, we would have a global well-
posedness result. We failed to show this for general ¥ € C° with ¢ € H.
However, if ) = a is a constant, a change of variables shows that v solves (6)
if and only if w(z,t) := v(x + at,t) solves the classical KdV equation, which
is known to be globally well-posed in H!. For other dispersions, if we assume



that 1 is constant, the results of Kenig and Koenig similarly ensure that (8) is
locally well-posed in H®, s > 3/2 — 3a/8.

The proof of Theorem 1.3 (resp. 1.4) is similar and simpler to that of The-
orem 1.1 (resp. 1.2), so that we will omit it.

This paper is organized as follows. In section 2, we state some prelimi-
nary results, including the crucial commutator lemmas. In section 3, we prove
Strichartz estimates for a linearized version of (6). In section 4, we prove a
non-linear estimate. The proof is based on the Littlewood-Paley theory. In the
last two sections, the main ideas are these of Koch and Tzvetkov explained in
[17]. In section 5 and 6, we prove Theorem 1.1. In section 7, we derive Theorem
1.2. In section 8, we prove Theorem 1.5. Finally, we prove Lemma 2.4 in the
appendix. The proof of this commutator lemma is inspired by that of Lemma
2.3 given in [11].

Notations. Throughout this paper, the notation A < B means that there

exists an harmless constant ¢ > 0 such that A < ¢B.

We denote by H> the space H® = QOHS, Cp° the space of C'*° bounded
s2

functions and S the space of Schwartz functions.
If X is a Banach space, T" a positive number and I C R an interval, we define
LA X :=LP([-T,T],X) and LY X := LP(I, X) equipped with their natural norms.

We denote LFH™ := QOL%OHS.

For o > 0, we denote J7 := (1 — 02)7/2, D7 := (—02)7/2.
The letters A and p will design dyadic integers. The notation ), f(\) should
be understood as Y=, f(2F).
We call (q,p) € R? an admissible pair if

(0.0) = (G, og), (0.0) € [0,1] x [0,1/2]

Q7p - 9(5 + 1)) 1 _ 0 ) ) 3 3 N
Note that to prove theorems 1.3 and 1.4 dealing with the BO equation, we
should replace this definition by:

2 1 1

- +-==,q€ (4,0), pe (2,0) .
=5 1€ (40), pe (2,%)

We recall that the solution of the initial value problem

Ov+dv=0,tzeR (9)
v(z,0) = vo(x)

is given by the unitary Airy group which will be denoted by {W(t)}icr, i.e.
v(.,t) = W(t)vg = St * v9 where for t > 0

Sy =t V3K (713

and -
K(z) = c/ ei(fg"’m&)d{, reR.



2 Preliminary results

We now state a result that gives a decomposition of the initial data g, which is
used to reduce the study of (1) (resp. (2)) to that of (6) (resp. (7)).

Lemma 2.1 Let g € X®, s > 1. Then there exists v € C®(R), ¢ € H*(R)
such that

i) ¢ e H*(R).
i) g=1v+¢.
Moreover, the maps g — ¢ and g — ¢ can be defined as linear maps such

that for every s1 > 1, g — ¥ is continuous from X* into X*' and g — ¢ is
continuous from X° into H*.

Proof. Let k(z) = (47r)’1/26’3”2/4, v i=k*g.
Then 1) € C°(R), ¢ = kg’ € H*, therefore g — ¢ € L™ C &' and

o . . _ o€
906 = (@ —D)©) = (- hygle) = 1= gl
——
ELVOQ clL?

Hence g — ¢ € L? and g — ¢ € H®.
Moreover, |||~ < ||g||r~ and

01 = [ €)1 gl < sup (14 €)% 1) g
£ER

which shows the continuity of g — ¢ from X*® into X*. Similarly,

2
1—e¢
[EI3S sup (1+¢€%) <T> lg'l17re
gives the continuity of ¢ — ¢ from X°* into H®. O

Lemma 2.2 Let (ay)x, (d))x two sequences indexed on dyadic integers A\ =
27, j€N. Let s > 0. Then

1/2 1/2
DN audy <Z A%i) <Zd§> :
A A A

H=A/8

and hence by duality

2
Z)\QS Z a, | S Z)\Qsai )
A A

n=1/8



Proof. Using the Cauchy-Schwarz inequality, we get

SN audy = D N D agada= > 277 Y (28X)%agenda
A A

/1'2)\/8 k}i;3 k=-3 A2k
2kx>1

1/2 1/2

> &

k=—3 A>2-k A>2—k

A
"
&
»
—~
—~
[N}
>
N
S
[\V)
>
>
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Commutator and Bilinear Estimates

We will use in the sequel two commutator lemmas. The first one is due to Kato
and Ponce and is proved in [11].

Lemma 2.3 Ifs >0,
117°, flgllze SN0 flle=l1T*" gllrz + 1175 Fll2llgll = - (10)

The second commutator lemma is proved in the appendix.

Lemma 2.4 Let s > 0, let sop > max(0,3 —s). Then

117%, A gllee S 110 flleellT* " gllzz + (|77 0, fll 2 lgl| o - (11)
Next lemmas (see [21]) will be used in the proof of Theorem 1.5.

Lemma 2.5 Leta,b,c € R suchthata > ¢, b>c, a+b >0 anda+b—c > n/2.
Then the map (f,g) — fg is a continuous bilinear form from H*(R™)x H®(R™)
into H°(R™).

Lemma 2.6 If s > 1, then there is a constant C such that for all f € S(R™),
g € H*H(R"),

7% f1gllee < CNF sllgll -1 -
We will need a generalized version of Lemma 2.6.

Lemma 2.7 Let n = 1. In Lemma 2.6 above, the assumption f € S can be

replaced by f € X*° := gr;lXS.

Proof. Let f € X*°. Fore > 0, f(z) := e*5m2f(x) belongs to S, therefore
we can apply Lemma 2.6 to f.. Passing to the limit, we obtain Lemma 2.7. O

In sections 3 to 6 below, we are interested in solving (6) where the functions
1 and ¢ are fixed.



3 The linear estimate

We first recall the Strichartz estimate with smoothing for the Airy group (see

[15]).

Lemma 3.1 For any admissible pair (q,p) = (6/(60(8 + 1)),2/(1 — 0)) with
parameters (0,3) € [0,1] x [0,1/2], we have

0B
[[D2 W (t)uol|Lsr,zry < lluollzz() -

As in [17], we deduce next from Lemma 3.1 a Strichartz inequality for a
linearized version of (6).

Lemma 3.2 Let A\ > 1, T >0, 0 >1/2. Let u: [-T,T] x R be a solution of
Ou + O3u + Vidpu + Vadyu + Vau = f (12)

where Vi € L H, Vo € LL>®, V3 € LYH™ and f € LY.L
We assume moreover that there exists a constant C > 0 such that

Supp(a(.,t)) C C[=A\, N, t € [-T,T].

Then for every admissible pair (q,p) with parameter 8 = 1/2 fized, for any
interval I C [=T,T) such that |I| < A7,

1D ullpgro S (14 197 Villegre + IVallig oo + 1Vallzy o)
< (Ilullsprz +11fllzyz2) - (13)
Moreover,
1D 4ull g 10 S (L4 TYVY (14117l pge e + IVallog 2o + Vol g 1 )

x (1ullig o2 + /112y 22 )- (14)

Proof. The solution v of the Cauchy problem

O+ 03v="he L'L?
v(0) = vo

is given by

v(t) = W (t)vg + /0 W (t — s)h(s)ds.

Applying D?/* to this equation, we obtain that for any ¢ € [-T,T],

T
1D 0 ()l 2 < IIDYAW (t)vol| s +/T||D0/4W(t)W(_5)h(5)||L£d57



hence Lemma 3.1 yields
1D 0|2 1o S [lvoll2 + 1Pl 22
We apply this to u:
1D *ul[pare < Nullogerz + (IVillogre + Vol bz po)[|0zul| 1 22
H[Vallprpellullpsere + (| fllzazz-
Now, as in [KT], using the Sobolev embedding, we have
[VillLse e ST VillLge r2,

Next using the assumptions on the support of (., t) and on the length of T and
Plancherel’s theorem, we get

||8mu||L}L2 = ||§@||L}L2 S )\|I|||ﬂ||L;>°L2 S ||U||L;°L2,

which completes the proof of (13). The proof of (14) is the same that in [17]: we
write [T, T] = k@1Ik where |Ix| < A™'. We may assume that n < 1+ 2T <

2A(14+T), and hence using (13) applied to I and summing over k, we get (14).
g

4 The nonlinear estimate

Notations. We use the same notations that in [17] about the Littlewood-Paley
decomposition. Namely,
u = Z (75N
A

where u)y := A)u, and the Fourier multiplier A) is defined by

[ sE/Nae) A=2k>1
Aauld) '_{ X©a©) A=1 :

where y and ¢ are nonnegative, C2° functions on R satisfying
X(©) + Y o(/)) =1
A>1

and
0 if €] <5/8or [£] > 2

¢(5):{ 1 if1<|¢ <5/4

For a dyadic integer A, we also define

A, A)\/2+A)\+A2>\ ifA>1
AT AL A, if A=1



Let u be a regular solution of

{ Opu + O2u + udpu + POyu + Y'u = —(03p + ') , r €R, t€R (15)

u(0) = ug € H*®

By “regular solution” we mean that u € QOC(R, H?). Theorem 1.2 in [9] en-

sures that such a solution does exist (throughout [9], the assumption (3) can be
replaced by “g € X*7 for free).

Our aim in this section is to prove the following estimate on w.
Theorem 4.1 Let 0 > 1/2, 0 < T < 1, (¢,p) an admissible pair with pa-
rameters 6 € [0,1), B = 1/2, s = 0 + 1/q and u a reqular solution of (15).
Then
1D 477 ul| g 1o S (1417l g £2) (L4 [l |1 o) 2 (L4 |10l 70 12) /2 (16)

We split the proof in several lemmas.

Lemma 4.1 Let (q,p) be an admissible pair with parameter 6 € [0,1) (i.e.
p<o0), let 0 >1/2. Then

1/2
1D T ul| g 1o S <Z /\QUIIDG/“UAlIQLqTLp) : (17)
A

Proof. A similar lemma was stated in [17]. We recall the proof. We define
v := D%*y. We have

1/q
1770l g e = ( / ||2Jffm<t)||zgdt>
too

1/2 1/q
< / ||<Z|J”m<t>|2> 14, dt (18)
t A
/2 a/p 1/
- //(Zu”m(m?) de | dt
t x A
2/p\ 9/2 Ha
< | J7ux ()| 2P/ 2 dx ) dt (19)
[ (oo



1/q

N

17| Lg. e

/(Z]u%mmﬁgwiﬁ
LEANIBY
( (f1menizar) >/ (20)

1/2
(Z || J7vA(t ||L3L?;> : (21)
X

Here we have used the square functions theorem for the Littlewood-Paley de-
composition (see [20]) to obtain (18) (1 < p < 00), and the Minkowski inequality
(see [18]) to get (19) and (20) (it works because p/2 > 1 and ¢/2 > 1, respec-
tively). Next, using the Mikhlin-Hrmander theorem (or more precisely Lemma
6.2.1 in [4]), we get, for all ¢,

1T7ox@)l]zr S A7 [[oa@)]]zs - (22)
(21) and (22) complete the proof of Lemma 4.1. O

N

Lemma 4.2 There ezists a constant C > 0 such that for allw € L* andv € C§°
such that v, € H*>,

HAX; v0:] wll 2 < Cllvg| Lo [Jw][ L2

Proof. By density of S in L?, it suffices to show it for w € S. As in the proof
of Lemma 2 in [17], we write for A > 2

[Ay, v9,] w / K(z,y)w(y)dy ,
where
K(z,y)=c /_ T g [iX*n(v(y) — v(x)) — Ava(y)] dn -

Therefore, using the mean value theorem,

K (2, y)| < eAl[va]|L=g(A(y — )
where g is in L. Hence
(o) o0
swp [ K (e lde+sup [ 1K p)ldy S [l
y J—oo T J—oo

and the Schur lemma completes the proof of the lemma in the case A > 2. The
proof is similar in the case A\ = 1. ([

Lemma 4.3 There exists a constant C > 0 such that for all v € Cp° and
w € L?,
[[[AX, v]w]|z2 < Cllv][Lee||w]| L.

10



Proof. The proof is similar and easier to that of Lemma 4.2:
Batue) = o [ d0 - o)) - o))y

< 2ol [ "N — ) llw(y)dy,

and the Schur lemma completes the proof similarly to Lemma 4.2. (I

Lemma 4.4 Let 0 > 1/2, (q,p) an admissible pair, T > 0 and u a regular
solution of (15). Then

o o 2
> XD unlFe pe S (LT (L4 (1Tl g2 + [l L + T 2=)
A

X

(1ol 2y e+ T2 ) 30 X220 ] e 2+ 0 o a3
A

T2y + | fgorsa + TQIIJ”U||2LoT0L2|I¢'II§Ia+uq] -

Proof. We apply Ay to (15):

Oruy 4 O3uy + (u + V)dpuy + ¢ uy
= A2 +P') — [Ax, (u+ )] u — [Ax, ] u. (23)

Therefore we can apply Lemma 3.2 to uy, with Vi = u, Vo = ¢, V3 = ¢/,
f= =203 + ) — [Ax, (u+ )] u — [Ax, '] u. Hence

g o 2
> AD M ullZe po S LTV (L4 1177ul| g2 + [[¢]| e + T )
A

X Z \+2la (||U/\||L%°L2 + T AN + 059) L2 + || [Ax, udy] |y 12
A
2
I TAx, 60T ullig 2 + 1A% ¥l r2) - (24)

We give now a bound for each term in the right hand side parenthesis of (24).
Like in the Lemma 3 in [17], we write

[Ax, v0,] = [Ax, v02] Ay + Ayvd, (1 — Ay)
where v = u or ¥. Therefore, thanks to Lemma 4.2, we get
185, uda) ull s 12 S el oo [|Axul| 12 + [|Axuda(1 = Ay)ul [y 2 (25)
and

1 [Ax, 0] ullpy e S T oo || Axul| g z2 + A0 (1 — Ay)ul[ s 2 . (26)

11



Forv=wor¢and A > 3
f{AA (v@w(l - &)u)}
SO (e

H,_/
Supp C{¢,5<|€|<2A}

2€ §

)+ 8(5)+ o5

Supp CR\{£,5<[¢|<3}

where F denotes the Fourier transform. If p < A\/16, Supp 9, C [-A/8, /8],
and

A A A
R\{E, 5 <16l < )+ [-/8,1/8] CR\[E, > < 6] < 24},
Therefore

F {8 (v0.0 - B} = olen 3 w60 05+ 0l$) + o500
u>A/8
and
Ay (Ua (1-Ay) ) 3 An(0ude(1 - A3)u) . (27)

n=A/8

This equality trivially remains true in the cases A =1 or 2.
In the case v = u, using the fact that Ay defines an operator on L*°, with a
norm uniformly bounded in A (see Lemma I1.1.1.2 in [2]), we get

185 (w0 (1 = B0)u) lyze <D0 Mgl el = Ax)uallpy
n=A/8

S Muallpyre Y lupllzgre. (28)
n=\/8

The case v = 9 is a bit more difficult, because ¥; ¢ L?. Nevertheless, if
= 2, hence
¢(€/ 1)

Du(€) = $(&/ )b (€) = £d(€) € L?

because ¢ = 0 near 0 and v’ € L2. Therefore Y, € L? for pp > 2, and if A >
we get

185 (0.0 = Bu) g ze S llelliyze 0 [Wlles (29)

n=1/8
If A€ {1,2,4,8}, we write
Y1 =T+ (1 =T)¢,

where TF(€) = ¥(€)f(€), 0 < ¥ < 1, ¥ = 1 on [-1/4,1/4] and Supp¥ C
[—1/2,1/2]. Proceeding the same way as to obtain (27), we have

A (Te18.(1 = By)u) =0,

12



and (1 — Ty € L?, with ||(1 — T)v1||z2 < 4/[¢'||p2. Therefore, like for (29),
we have

185 (00:(1 = B)u) llogre S Mtallzy o (1912 + D [Wullez | (30)
n=2
Similarly, we write
[Ax, 9] = [Ax, 0] Ax + Axt' (1 — AY)
and the Lemma 4.3 yields
AN ullpre S 10 |pe 1Aul [y 22 + [[Ax0 (1= Ax)ul|Ly Lo

Using the same arguments that for stating (28) and Sobolev embedding (o >
1/2), we get

AN/ (1= BN ullpyre S Tllullzgz= > [1(8)alle2

n=A/8

S T ullpgre Yo 16 )ullee. (31)

n=A/8

Now, using (24), (25), (26), (28), (29), (30), (31), we obtain

g g 2
Y NP unl[fa e S (L+T) (L4 [[J7ullpgere + [l + T11|[2)
A

x oA [||U/\||%%°L2 + T2 (0 + 3zl 7z
A

2

Hlual 7y oo | 18Ul ez + | D luullogre + T2 [ oo [ Anul [T e 12

n=\/8
2 2
Pl oo |30 Wl e | Linsaop+{ 1901 + 32 1ullee | Lpeacny
n=X/8 n=2
2

S IFT P I SO I (32)

n=/8

We will now majorize each term of the sum in the right hand side of (32).
We first clearly have

Z/\20+2/q||AAu||%%°L2 < Z/\20+2/(1||u)\||%%0L2, (33)
X A

13



Using the fact that ¢ vanishes near 0, if A > 2

[al122 = / 5%¢<§/A>252|¢<§>|2d5 AW S @I . (34)

We also use the properties of the support of ¢ to obtain that if v € H®, s € R,

Y A lallze S Mol - (35)
A
The lemma easily follows from (32), (33), (34), (35) and Lemma 2.2. O

To complete the proof of Theorem 4.1, it remains to control the quantity

Z >\20+2/q||u>\||%;%2 .
A

That is what we do in the following lemma.

Lemma 4.5 Let u be a regular solution of (15), let s > 1/2. Then, noting
(ux)x the Littlewood-Paley decomposition of u,

Sl e S Il 1 (14 ol + T1 )
A

HI Tl g 2 (T + ([0 + |7 ) + [[0]

He® Um||L1TL°°) ‘ (36)

Proof. During the proof of Lemma 4.4, we saw that uy solves (23). We
multiply now (23) by @y, we take the real part and we sum in  and ¢ variables,
taking into account the fact that u and v are real-valued:

lux(@®)l[Z2 = |lux(0)][Z2 —/ /oo {(u+ ) (Opunx + Ouxun) + 29 |un(s)[”
+2Re (A (W' 4+ 03¢)ux(s) + [Ax, (u+ ¢)0,Juttx + [Ax, Op]utiy)) }dads. (37)

Therefore, integrating by parts, multipliying by A%, taking the supremum in
the ¢ variable and summing over A, we get

D NNuallfgre S D A lua(0)]17a

A A

T
+/_T(|Ium(t)||m 19 1leee) Y N ua(®)] |72t

A
T
o S ANY + 020zl
/ Z}\Zs
/ Z}\Qs

dt

/ [Ax, (u + )0 Jutixdx

dt . (38)

/ A, o Ju(t) s (1) da

14



We will now control each term in the right hand side of (38). We first use (35)
to get the following inequalities:

T
| S A+ 020 sl ()
- A

1 [T ux(®)|I2,
5/ 2 <||J8u||m2||m<ww/+a;°;w>||%z+7” Ul )dt

|[J5ul| Lso 2

< /T 1 ull e gl + 02 2. + LBl g
-T r |[J5ul|pger2

< TNl s (1 + 0 + Ol (39)
SOl £ WOk < e 60

and

T
/_T ([Jua (@)l + [19'][22) D A Ju(6)][Z2dt

A
S (lual g o + Tl oo ) 170l 12 (41)

Like in the proof of Lemma 4.4, we write
(A, (u+ )0 Jult) = [An, (u+ )2 Bxu(t) + Ax ((u+ )0 (1= Au(?))
Then, Lemma 4.2 and a simplified version of (28) yield

HIAN, (u+ )0 Ju®)]L2 < (Ilur( Mzo + 19| 2o )| Axu ()2
Hluellze D M@l + 18200 (1 = Ax)u(®))]zz-

n=r/8

Next, we bound up the last term in the right hand side of the above inequality
like in (29) and (30)

1A (1 — Ax)u(t))]| 2

S uallpe ( Y ullzelasis + (IWIILz Y IIWIILz) 1A<8) :

n=/8 n=2

15



Therefore
j/ ZE:AZS

/TZAQSMI%@)HL& 11l At
- A

dt

/ [Ax, (u+ )0y Jutndx

H[ua ()] Lo ( Do Ma@®llze + Y Nz lrsie

n=A/8 n=A/8

+ (||¢/||L2 +) ||¢/L||L2> 1A<8)] lua(@)[|z2dt . (42)

p=2

Using again (35), it is easy to see that

Do ANu@) e llua®llze S Hu®)lFe - (43)
A
Lemma 2.2 with a, = ||uu(t)||r2, dx = X°||ua(t)||z2 and (35) yield
ZAQS Yo Nua®llzzllux@®llze S Jlu(t)]

n=A/8

He (44)

Using once again Lemma 2.2, (35) and (34),

DN D Il asas + (19112 + D llllee)ags | Hua(®)llre

A n=1/8 n=2
1/2
Sllu@la | DoNlallze |+ [ 19112 + D 11l | ()]l
A>2 n=>2
S )]s (45)

Thanks to (42), (43), (44), (45), we have

dt

[

S (||ux||L1TLw + Tl l|zo<) 17" ulld e 2+ 1)

/ [Ay, (u+ )0, Jutndx

#e [y, poo |70 Lge 2 (46)

As in the proof of Lemma 4.4,

AN a2 S 1 el Bxu@®llze + lu®llze Y @)l

n=\/8

16



and therefore, using also the Sobolev embedding (s > 1/2),

[

< T e T ull e o+ 10 Lzl g o 77l e 2
S T el 1Tl e - (47)

/ [Ax, ¢ u(t)ux(t)dx| dt

Concatenating (38), (39), (40), (41), (46) and (47), we finally obtain the an-
nounced inequality. O

Theorem 4.1 directly follows from Lemmas 4.1, 4.4, 4.5.

5 The proof of Theorem 1.1 (existence and unique-
ness)

We begin the proof of Theorem 1.1 with a lemma that gives an a priori estimate
on the H® norm of a regular solution of (6).

Lemma 5.1 Letug € H*®, s > 1/2 and v € C([-T,T], H>) a regular solution
of (15). Then there exists C = C(v)) > 0 such that

|lu(t)

B < (ol +1) exp (COT + ual g 1))

Proof. We apply J*® to (15), we multiply the obtained equation by J*u and
we sum over R:

Syl [CEDo (rup s [
= [+ o) / s k)0t [0
After an integration by parts, we get
Sl = [ouw—wra -2 [+ o
2 / 7%, (u + )]0 ud*u — 2 / LJ°, "
We use Lemma 2.3 to estimate the L2 norms of [J*, u]0,u and [J*, ' |u. We get

IIJ°, uldzullzz S {1 T°ul| L2 [[ual Lo

and
%, ¢ Tl 2 S 9" el |°  ulle + (1779 |2 [ Jul e -

17



Since v does not belong to L2, it does not work to estimate the L? norms of
[J®,9]0,u. Lemma 2.4 (note that Lemma 2.7 could also have been used) yields

IL7°, 10zull L2 S 119" || o |ful

Using the Cauchy Schwarz inequality and Sobolev embedding (s > 1/2), we
obtain

d
Sl S Nlullze (lualles + 111l + 1+ (19
+Hlwy' + 03yl

which can be rewritten as

i+ |0 || geo+a—1]|ta|| Lo

ae A+ |9 L)

#ro + ualleo |9 Fresen

%(1 Hu®llF) < @A+ |lua(®)l|L) X + [u®)]F-), t € (T, T) . (48)

Next, the Gronwall’s lemma concludes the proof of the lemma. O

We are now ready to begin the proof of Theorem 1.1 itself. Let s > 1,
0 € (0,1) such that (1 -6)/2<s—1,p:=2/(1—-0) and 0 :=s—0/4 > 3/4.
We also define ¢ :=4/60 > 4 and o :== (1 —1/¢)/2 < 2. For T > 0, and u a
regular solution of (15), we define

F(T) := [Jua||Lypoe + T[T ul| Lo L2

Our choice of p and Sobolev embedding ensure that Wo—(1=0/4:» ¢ [ with
continuous embedding, because o — (1 —6/4) = s —1 > 1/p. Hence, using also
the continuity of the Hilbert transform on LP and Holder inequality in the ¢
variable,

||“m||L1TLoo N ||D1_9/4HD9/4U||L1TW07<179/4>41 < ||HD9/4JGU||L1TLP
SID 77|l 1o S TV DT 70| g 1o -
Thanks to Theorem 4.1, for T' < 1,
ltollpr e S (TVI4TYOR(T))(1+ F(T)* (14 |Jul g me) -
Therefore, since o < s,
F(T) S T+ FT)*(1+ ||ullezw) -
We control the quantity ||u|[zee g+ by Lemma 5.1:
lullgers < (1 |[uollm=) exp(CF(T)) .

Finally, we obtain that there exists a constant C’ > 0 (which only depends on
) such that

F(T) < C'T(1+F(T))*?1 +||uo|

=) exp(CF(T)), T € [0,1] . (49)
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We define g : Ry — R by
x
1+ 2)%/2 exp(Cx)

Let T(||uo|| =) € [0,1] small enough such that
C"T(||uol

, x€R.

g(w) == (

#2)* (L [uolls) < lglloo -

Then by continuity of g(F'(T)), since g(F(0)) = ¢(0) = 0, there exists some
A > 0, which does not depend on ug, such that

F(t) < A, t € [0,T(l[uol|m2)] -

In particular, ||uz||:

T < A. Therefore, thanks to Lemma 5.1,
uQ HS

llullzg #e < A(lJuo||r+) < 00 . (50)

T(luollms)

Let now ug € H®, and ug, — uo in H®, where ug ,, is regular (ug, € H*).
We denote by u,, the solution of (15) with initial data u,(0) = ug . The results
in [9] ensure that w, is global. Thanks to (50), we can extract a subsequence
(that we also denote by w,,) such that w, converges for the weak % topology of
LT ol +) H

Now, if v and w are two solutions of (15), then

Lo+ [0 w0 [0 wros ] fo-uv -
0= 0+ [ -wrow— 3 [w-wows [o-wv =0,
Therefore

d
Zl = )OIl S1Iw = w) B2 (loe@llze + lwe @)l +[1¢']l2)
and the Gronwall lemma yields

(o = w) @113
< = w)©)13: exp (Clloa®)llzy 2 + llwa(@)lly e+ 1112=)) - (51

Applying this to v = u,, w = u,,, we get that for n and m large enough,
1t < T(fuol |- +1),

[lun(t) = um ()72 S |luomn — uoml[Z2 exp (CE(T(|Juollms + 1)) + [[¢'llz=))

which shows that (uy,), is a Cauchy sequence, and hence converges to u strongly
in the Banach space L3°L?, because ug, — u in L?. We deduce that the map
t — u(t) is weakly continuous from [T, T] into H®. Indeed, if we choose some
e > 0,if ¢ € H®, let ¢ € H? such that |[¢ — ¢||ns < ¢/(2ul|Lsems). For
t,7 e [-T,T],

t) = u(r),0) .| < 2+ |(wl) —u(r), 753)

< e+ 2lun — ullpge 216l e + [Jun(t) = wn ()|l L2101 2
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Choosing n large enough, and ¢ — 7 small enough, we have

(u(®) = u(7), d) g

In order to show that u is continuous with value in H®, we define the norm

1/2
oll] == (Z/\QSHUAH%?) ,
A

which is equivalent to the H® norm (indeed, (35) gives one of the inequalities, the
proof of the other one is similar). It suffices to show that |||v(¢)]|| pa— [l|o(m)]]]-
—T

< 2e.

That is what we do in the following lemma.

Lemma 5.2 Let u be as above the weak % limit in LF H® of u, and (uyx)x its
Littlewood-Paley decomposition, t, T € [=T,T|. Then

> @3 < exp (Clluallyz ) DA Nun(®l2 + gt 7)
A A
where I = [1,t] or [t, 7], depending on the sign of t — T, and g(t,7) — 0.

t—17—0

Proof. We first remark that u solves (6), since u,, solves (15). We assume for
instance that 7 < t. Like in the proof of Lemma 4.5, we show

Doz < YN [Jua(n)lffe + C(t = 7) + Clluall 1 1~
A A

+c/ (1 [ ()] 2) S A Jun (o) 22l
T A

We conclude by Gronwall lemma that

YN ua@lz: < (Z N ux(r)l[2 + C(t — T))

A A
x[l +C (||um||L}Lw rio T) exp (c<||um||L}Lw o 7))}

= oxp (Cllusllpyre ) Yo A= ua(lE +, o (1) -
A

Coming back to te proof of Theorem 1.1, since |[uz|1 S 0, using

t—
Lemma 5.2 and exchanging ¢ and 7, we get that

2s 2 2s 2
SN flua )]s = S X s (3 + o (1)
A A
To complete the first part of the proof of Theorem 1.1, it remains to show the
uniqueness result. It is a straightforward consequence of (51). (]
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6 The proof of Theorem 1.1 (continuous depen-
dence on the initial data).
We want now to prove the part of Theorem 1.1 about the continuous dependence

on the initial data of a solution of (6). We use the method presented in [17].
We begin with two lemmas.

Lemma 6.1 Let u be a solution of (6) in D'. Let 1 < § < Kk, and (wa)x @
sequence of positive numbers such that for every dyadic integer X\, dwy < way <
kwx. Then for all t,7 € [-T,T],

S wRllua®lFe < (14 Clluallzyze + 1t =) exp (Cllunlly o + 1t = 7))
A

x <ZW§IIUA(T)II%2 +Clt—TI> 7
A

where I = [1,t] or [t, 7], depending on the sign of t — T.

Proof. The proof is identical to this of Lemma 5.2. The slight difference is
that we use a variant version of Lemma 2.2 which is obtained by replacing the
sequence (A\*) by (wy). This works because >, w; ' is finite. O

The second lemma is proved in [17].

Lemma 6.2 Assume that v, — v in H°. Then there exists a sequence (wy) of
positive numbers which satisfies

2%wy < way < 25+1LL))\ ,VA

and
wx/A* — o0

such that
sup g Wi |(vn)al2e < o0 .
n
A

Let ug, be a sequence such that ug, — ug in H*. Let u,,u € C([0,T], H®)
be the associated solutions of (6). Then

u, — u in C([~T(R),T(R)],L?) , (52)

because of (51) and ||(wn)z|| 12

T(R)
We define a sequence (wy)x like in Lemma 6.2, with v,, = ug,. Lemma 6.1 with
7 =0 yields

oo < A, where R is such that R > sup||unol|g--
n

sup Y Wi ([[(wn) (172 + [[u(t)]|72) < oo (53)
n,t \
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Let

UA = E Uy-

A<A

We first have
l|un — ullpse s < lun — (un)allLse s + [|(un)a — uallrse e + [lua — ul|Lse .
Let ¢ > 0.

sup {[(un)a (t) — un(®)[ms + [lua(t) — w(®)||a:}

n,t
1/2
< sup(bup( ))(E:w ) ||L2+||ux<>||%2>> ,
n,t A>A
—_————

A>A

—0
A— oo

hence, because of (53), we can choose A large enough such that
sup || (un)a(t) = un ()|l + |lua(t) —u®)l|a} < e/2.

Next, thanks to (52), we can choose ng large enough such that for n > ny,
te [_T(R)7T(R)]a

(un)a(t) = ua(@)lms < CA®[[(un)a(t) —ua(t)l[2 <e/2.

This completes the proof of Theorem 1.1. O

7 The proof of Theorem 1.2

Existence. We first remark that in Theorem 1.1 above,

T(, s, [|0llme) = T([¢llx=1, 8, [0l <)

where s; > 1 is large, and T can be assumed to be non-increasing with respect
to [[Y]|x=1 and ||@||m=. Hence, if we define

T(llgllx+) = T(Cs, llgllx+, 5, Cllgllx-)

where Cy, (resp. C') is the norm of the bounded linear map g — 1 (resp. g — ¢)
from X* into X! (resp H®) defined in Lemma 2.1, we have

T(llgllx=) < T([$ll x5, 10]+) = T (@, 5, [|d]lm=) -
Let v € C([-T ] ®) be the solution of (6) given in Theorem 1.1. Then
=v+Y € C([ ,T1, X*) solves (1). Moreover, since ¢) — g € H®, u— g €
([ T,T),H®). u L1 L because v, does.
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Uniqueness. We choose ¢ and T as above. Let u be a solution of (1) as
required. Let 0 = u — 1. It is easy to see that ¥ solves (6), and the uniqueness
in Theorem 1.1 yields ¥ = v, where v is the solution of (6) we obtained in
Theorem 1.1.

Continuity with respect to the initial data. Let R > 0 and g € X* with
[lgl|xs < R. Let (gn)n be a sequence in X*® such that g, — ¢ in X*. We assume
that for all n, ||gn||x: < R.

As in Lemma 2.1, we define k(z) = (47)"Y2e=%"/4 o = kx g, ¥ = k * gn,
¢=9—, on=9— Vn. o

Let v € C([-T,T], H®) be the solution of (6), and v, € C([-T,T], H?) solving

{ dyw + 3w + wdpw + Oy (WPy) = — (O3 + Pnt),) , T €R, t€R
w(x,0) = ¢n(x)

Lemma 6.2 applied to the sequence ¢, — ¢ in H® and Lemma 6.1 yield

sugzwi (1@a)A®O72 + [loa(®)]]72) < o0,
nit Ty

and we conclude as in section 6 that w,, ;== v, —v — 0 in C([—T, T], H*). Since
s> 1 and ¥, — ¥ in X*, we deduce that

Up —u=(Uy +¢p) — (v+1) =0 in X°.

8 Global well-posedness of (7) in H*, s > 3/2.

The Benjamin-Ono equation possesses infinitely many invariants (see for in-
stance [1]). There is an invariant associated with each H® norm, s € N/2. Here
are the first ones.

I1(u) = —/oo [%3 +uH(8mu)} dz

L(u) := /oo [u{ + quH(amu) + 2(@&)2] dr

Is(u) == /00 {—%5 - §U3H(8mu) — u?H (udyu) — 2uH (d,u)?

—6u(0u)® + 4uH8§u] dzx .

The first two following lemmas are proved in [9].
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Lemma 8.1 Let ¢ € H*® where sg is large. Let u € C(R, H*°) be the solution
of (7) given in [9]. Then for allt € R,

a7 < h(w,t, 116l Le)- (54)

Lemma 8.2 Under the same assumptions that in Lemma 8.1, for allt € R,

lu®lFn < k@t llgllm). (55)

Here, h and k are valued in R;. They are even, non-decreasing functions of
t on R, and continuous with respect to ¢ and ||¢||z2 or ||¢|| 5.

Our aim is now to prove a similar lemma, where the L? and H' norm are
replaced by the H3/2 norm.

Lemma 8.3 Under the same assumptions that in Lemma 8.1 and 8.2,
It]
—Is(u(t)) < —I3(¢)+C(¢)/O (L +h(@, 5, ]|¢l|22) + k¥, 5, (18] 1)) ds
It|
+C(¢)/O (14 h(@, 5, 119]|2) + k(, 5, 0] 1)) |[u(s)|[7s/2ds - (56)

Proof. We will prove the lemma only for ¢ > 0. We remark as in [9] that (7)
can be rewritten as

O — 0.1} (u) + D) + (HY" + ) =0
o | o

For convenience, we will denote in the sequel p := ¢’ + Hvy"”. Using the
properties of the invariants of the Benjamin-Ono equation (see [1]), we compute

GEn) = (100,501 + 0,00 + )
= (I3(w), 0:(¥u)) + (I5(u), p) - (58)
We note that
Lw) = —u'—4W?H(0pu) + uH (udyu) + H(u?0pu)) — 2H (0yu)?
—4HO, (uH (9,u)) + 6(dpu)? + 12002u + 8HIu (59)

Using (59), the Cauchy-Schwarz inequality, Sobolev inequalities and integra-
tion by parts, we first show that

(I3(u),p) < Ml llpllzoe + ullinllollze + [ullFo ol 2 + [l 1o || 2
HlullF llpllzee + Hullm (o' z< llullz + llpll Lo ul 1)
Hllull2 110" || 2 (60)
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Next, we control the quantity (I%(u), 05(vbu)). We will majorize separately
each term that we obtain as we substitute (59) into (I5(u), 95 (¢bu)). Our argu-
ments are again the Cauchy-Schwarz inequality, Sobolev inequalities, integration
by parts and the continuity of the Hilbert transform on LP, 1 < p < oc.

(~ut 0uw)) = —5 (&%) S 19l (61)

—4 (W H (0yu) + uH (udyu) + H (u?0,u), 05 (Yu))
S Ml (19l lullzz + 9]z ul[m) | (62)

(—2H (9pu)? + 6(dpu)?, 9z (Yu))
S Nullssa (1| zee lull 2 + [l pos |ful| 1) (63)

and

(ud2u, 0, (Yu)) = — (Fpu, 0o(YW'u?)) — % ((05u)?, 05 (Yu))
S Mullz (1" ez + 119 [zee) + Hull /s (19 zoe [lull 22 + [12]| po [Jul | 1) (64)
It is a bit more delicate to estimate the two remaining terms, which are
(HOp(uH (9u)), 05 (¢u)) and (HO3u,d,(¢u)). We begin with the last one.

Using the properties of the Hilbert transform, the fact that D = HQ, and an
integration by parts,

(Hagu, du(Yu)) = ((%D?’/?u, D3/? (¢u)>
1
_ 3/2 3/2(,1.1 1 3/2,8\2 1\ 3/2 3/2
- (D u, D (¢u))+2((D u),w) (D u,[D ,w}amu).
Using Lemma 2.5, we have
— (D20, D2 )) S Nl Nz (65)

and it is easy to see that

N | =

(0202, 07) S el s (66)
Next,

[D3/2,¢} Bpu = [J3/2,¢} Byt — [R, 9] Dy
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where R is defined by

~

F7(6) = [(1+ €%/~ 692] Fle) = 2 (1 + ¥ -1) Fee)
In particular, R is bounded on L?, and

[ [R, V] Opul|r2 S [|9]|Lol|ul|m -

Using finally Lemma 2.7, we obtain

(HOGu, 8z () S (1" lzoe + 119" lszsr2 )l a2 + [0l [Jul L [[ul [ s/ - (67)
We now control the last term.
(HO, (uH (9,1)), 9, (wu)) = (D/*(ubu), D'/%0, (bu)) -
Lemma 2.5 yields
102 (D)l 2 S Ml [[ull o2 (68)

and with Lemma 2.7, we obtain that

D20, (u)llze S 152w s
S 0T 2ullga + || [772, 6] wllrs
S leeellul oo + 11 ol ullgrz - (69)

Bringing together (58) and the estimates (60-64), (67), (68) and (69), we get

d
Z(BW) S CW)[A+h+k)+ A +h+E)|ulfse.] . (70)
Integrating with respect to time, we obtain the announced result. O

Lemma 8.4 Under the same assumptions that in Lemma 8.3,

w(t)]| a2 < m(,t, ||l[37) (71)

where m is an even positive function which growth with t on Ry, and which is

continuous with respect to t and ||¢||%2 m can be expressed in function of h
and k, but we will omit this expression, which is of low interest.
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Proof. Using the conservation law I3, Lemma 8.3 and the Cauchy-Schwarz
inequality,
t

@)l S C(I|¢I|%2+(1+k)5)+0(¢)/()(1+h+k)5d8

) [ (bt Bl fule) s

The result follows by applying the Gronwall’s lemma. (]

Passing to the proof of Theorem 1.5, take now ¢ € H?/2. Since (7) has
been shown to be locally well-posed in H3/2, there exists T* > 0 and a solution
u € C([0,T*[, H3/?) of (7). Moreover, either T* = oo or T* is finite and
[|w()|| z3/2 e +00. We assume by contradiction that T* is finite. Let (¢;);en

be a sequence of H*' functions such that ¢; — ¢ in H>/2, where s is large.
We denote by u; € C(R, H*°) the solution of (7) with initial data ¢;, which is
given by the results of [9]. Then, using Theorem 1.3, it is easy to see that for
all T < T*, uj — w in C([0,T], H*?). In particular,

ull Lo prase < Niminf [|uj]| poe oz < Hmm(, ¢, |[@]| ga/2) = m(, ¢, [|9][gs/2) -

Letting T — T*, we obtain a contradiction with the fact that ||u(t)||zs/2 blows
up ast T T*.

We have shown that (7) is globally well-posed in H3/2. We next prove that
it is globally well-posed in H?®, where s € (3/2,2).

Inequality (48) was shown for a regular solution of (6), but it clearly remains
true for a regular solution of (7).

Like in [19], we use the following inequality due to Brezis and Gallout (see
[3]): if f € H*(R™) with a > n/2, then

Fllzoe < Can (L4 [[fl1rn/2 v/ 10g(2 + || f|[ ) - (72)
Since s — 1 > 1/2, it follows that

|OullLe S 14 [|ullpa2v/10g(2 + [[ullae)) - (73)
Thanks to (73) and (48), we obtain that there is C' > 0 such that for all

up € H*, T >0, t € [-T,T],
d
EH“@)H%S < C(L A+ [u(®)]|rs/2) log(3 + [[u(®)][7+) (3 + [[u(®)][71-) -

using Lemma 8.4, we get
()| [F: < 3+ [Juol|Fe) expexp(C(L+m (v, T, [fuo|| gs/2))t) -
By continuity with respect to the initial data, this inequality remains true

for up € H*. This shows that (7) is globally well-posed in H*, and the proof of
Theorem 1.5 is complete.
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9 Appendix

The proof of Lemma 2.4 is similar and simpler to that of Lemma 2.3 which was
done in [11]. It is based on the following result due to Coifman and Meyer (see

[5], [6]).
Theorem 9.1 Let o(n, &) € C((R™)* x R"\(0,0)) satisfy
07a(n, &) < Cu(lél+ )™, (74)
where v = (vo, ..., ), v; € N”, and
vl = vl + ..+ |vg] S N:=nk+1)+1.

Then
lo(D)(ar...ak, fl|> S llaallzes - |lar|[z=[|fl|z>
where o(D)(a, f) = o(D)(a1...ax, f) is defined by

o(D)(a. f)i= [ [ e Datn, it f(€)nds
a(z) = a1(z1)...ax(xk) , ©; € R™,
T=m++0, 1= 01,n0k) -
In our case, n =k =1, hence N = 3.

Proof of Lemma 2.4. We begin as in the proof of Lemma 2.3 in [11]. We
write

o fla@) = e [ [ e [ e m) - ()72 f@anande
= CZUJ(D)(f,g)(w)
where

7ien) = [+ €+ w72 = (140972 0,

and the ¢; are positive even functions on R such that ¢; + ¢2 = 1 on R and

Suppgy C [~1/3,1/3], Suppg, C R\[-1/4,1/4].
It was shown in [11] that

lor(D)(f,9)lle < 10ufllpe|lT* gl e (75)

Next, we define

a2(D)(f, 9) ()

) 2\s/2 _ 2\s/2 sots—1 A
-/ einterm L @AV — (R ) &)y ey 252 ey o () e
c1+e) n

= 5’2(D)(JSO+57189:f7 g)(fE) :
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It suffices to prove that o satisfies the assumptions of Theorem 9.1 to obtain
that

lo2(D)(f, 2 < 1T 00 fll2llgl = (76)

which will complete the proof of Lemma 2.4, combined with (75).

It is clear that 6o € C*°(R?\(0,0)) (because it vanishes if |¢| < |n|/4). In
fact, 2 € C°(R?). Indeed, if |¢| < 1/8 and 52(£,7) # 0, then |n| < 4[¢] < 1/2,
and |€ 4+ n| < 5/8. Therefore, using integer series, for |¢] < 1/8, we can write

1 oo 2r _ . 2r
&2(5”0) = (1 +§2)so+s—1 ZCT (£+n)£ 1 ¢2(%) >
2 r=0

which is clearly of class C*° on {(£,7n), |¢| < 1/8}, thanks to the mean value
theorem and because the ray of convergence of > ¢, X" is 1, and 1/8+1/2 < 1.
Therefore &2 is bounded on the compact set K := {(&,n), [£] < 1, |n| < 4},
hence on the set {(&,7n), || < 1}, because it vanishes on {(£,7), |¢] < 1}\K,
and we have a similar result for the derivates of 5.

It remains to see that the derivates of &, of order less or equal to 3 are
bounded on {(£,7n), || > 1}. That is what we will do now.

Let v be a multiindex such that |v| < 3. Then by the Leibniz formula,

o= Y capmad® (14 €+ = (149772
a+pB+y+i=v

35137 1 §

n

—“186
5 (1 +£2)b0+2b7 ¢2(

). (77)

We estimate now each derivate in the right hand side of (77).

s—|af s—|al

o (14 €+ = L+ 1)72)| S A+ E+mD) H + L +7D)

1 1
B -
‘8 5} S g

and
1

sots—1

(L+e)™ |7 (1+¢2)
If 6 = 0, 9°p2(£/n) = ¢h2(&/n) is bounded and vanishes on the set {(&,7), [£/n] <
1/4). Blse, 9%g(E/n) vanishes on {(€.n). ¢/n] < 1/4 or |¢/n] > 1/3}, and

1

sots—1+[vl °
2

o7

Therefore, on the set {(&,7n), |£] > 1},

026 mI (6] + D™ S | Max Quans - (78)
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where

(gl + D (0 (6 + ) = + (1472 =)

afys = sg+s—1+]v|
2

[P + £2)

To control Qups~s, we distinguish two cases:
o if s —|a| >0,

||

Qapys 1€+ |5|2)S—2
T gt (1 4 g2)

< a5
because sg = 0.
o if s —|a| <0,
€]
Qapys S |1 4 g3y
S (gl g

because || < 3 and 3 —sp — s < 0.

The proof of Lemma 2.4 is complete. O
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