
HAL Id: hal-01960979
https://hal.science/hal-01960979v1

Submitted on 8 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KORTEWEG-DE VRIES AND BENJAMIN-ONO
EQUATIONS ON ZHIDKOV SPACES

Clément Gallo

To cite this version:
Clément Gallo. KORTEWEG-DE VRIES AND BENJAMIN-ONO EQUATIONS ON ZHIDKOV
SPACES. Advances in Differential Equations, 2005, 10, pp.277 - 308. �hal-01960979�

https://hal.science/hal-01960979v1
https://hal.archives-ouvertes.fr


Korteweg-de Vries and Benjamin-Ono equations

on Zhidkov spaces

Clément Gallo
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Abstract. Motivated by the study of the Cauchy problem with bore-like ini-
tial data, we show the “well-posedness” for Korteweg-de Vries and Benjamin-
Ono equations with initial data in Zhidkov spaces Xs, with respectively s > 1
and s > 5/4. Here, “well-posedness” includes local (global in some cases) ex-
istence, uniqueness under a supplementary assumption and continuity with re-
spect to the initial data.
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1 Introduction

In [9], the authors considered the Cauchy problems for Korteweg-de Vries (KdV)
and Benjamin-Ono (BO) equations with bore-like initial data, namely

{
∂tu+ ∂3

xu+ u∂xu = 0 , x ∈ R, t ∈ R

u(x, 0) = g(x)
(1)

and
{
∂tu+H∂2

xu+ u∂xu = 0 , x ∈ R, t ∈ R

u(x, 0) = g(x)
(2)

where H denotes the Hilbert transform, and g satisfies




i) g(x) → C± as x→ ±∞ .
ii) g′ ∈ Hs−1 where s > 1 .
iii) g − C+ ∈ L2([0,∞)), g − C− ∈ L2((−∞, 0]) .

(3)

They showed the local well-posedness of (1) and (2) with initial data g satisfying
(3) , under the assumption s > 3/2. Global well-posedness was obtained for
s > 2.
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Our aim here is to improve this result by weakening the assumptions on the
initial data g: we replace (3) by

g ∈ Xs (4)

where Xs denotes the Zhidkov space we introduced in [7] (see also [22]) for
integer values of s:

Xs := {f ∈ D′(R), f ∈ L∞, f ′ ∈ Hs−1(R)}. (5)

Moreover (and that is probably the most interesting improvement), we assume
only that s > 1 in the KdV case, and s > 5/4 in the BO case, instead of s > 3/2.

We first consider the KdV equation (1). Our strategy is as follows. Thanks
to Lemma 2.1 below, for g ∈ Xs, there exists a function ψ ∈ C∞(R) with
ψ′ ∈ H∞ such that φ = g − ψ ∈ Hs (remark that it implies that ψ is bounded,
since s > 1). Similarly to [9], we write a solution u of (1) as u = v + ψ, and we
study the Cauchy problem associated with v, namely

{
∂tv + ∂3

xv + v∂xv + ∂x(vψ) = −(∂3
xψ + ψψ′) , x ∈ R, t ∈ R

v(x, 0) = φ(x) = g(x) − ψ(x)
(6)

Our main result is as follows:

Theorem 1.1 Let ψ ∈ C∞
b (R) such that ψ′ ∈ H∞, s > 1 and φ ∈ Hs(R).

Then there exists T = T (ψ, s, ||φ||Hs) > 0 and a unique v ∈ C([−T, T ], Hs) ∩
C1([−T, T ], Hs−3) solving (6), and such that vx ∈ L1([−T, T ], L∞).
Moreover, for any R > 0, the map φ → v is continuous from the ball of radius
R in Hs(R) to C([−T (R), T (R)], Hs).

From this local well-posedness result for (6) we deduce a local well-posedness
result for (1):

Theorem 1.2 Let s > 1, g ∈ Xs.
Then there exists T̃ = T̃ (s, ||g||Xs) > 0 and a unique solution u of (1) such that
u∈ C([−T̃ , T̃ ], Xs), u− g ∈ C([−T̃ , T̃ ], Hs) and ux ∈ L1([−T̃ , T̃ ], L∞).
Moreover, for any R > 0, the map g → u is continuous from the ball of radius
R in Xs to C([−T̃ (R), T̃ (R)], Xs).

Equation (6) is just KdV equation perturbed by some terms. In the case
of KdV, Kenig, Ponce and Vega ([16]) showed the local well-posedness in Hs,
with s > −3/4, by the contraction principle. As it was mentionned in [9], this
method fails here. Indeed, it does not seem to be possible to get an appropriate
estimate on theHs norm of the term ψ∂xv, because ψ does not vanish at infinity.
Bourgain’s method (see [8]) fails for the same reason, as well as the method used
by Kenig and Koenig in [12]. Iorio, Linares and Scialom ([9]) used a parabolic
regularization and the Bona-Smith approximation. To improve their result, we
use here the method that was employed by Koch and Tzetvkov in [17] to show
the local well-posedness of BO in Hs, s > 5/4. Namely, we show Strichartz
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estimates for a linearized version of (6). Next we derive the crucial non-linear
estimate, using the Littlewood-Paley decomposition. To get an a priori estimate
on the Hs norm of a solution of (6), a commutator lemma due to Kato ([10])
was used in [9]. This lemma fails for s 6 3/2. We use and prove here a new
commutator lemma (Lemma 2.4 below), which is a variant of a lemma due to
Kato and Ponce (see Lemma 2.3 below or [11]).

Our method gives similar results for the BO equation:

Theorem 1.3 Let ψ ∈ C∞
b (R) such that ψ′ ∈ H∞, s > 5/4 and φ ∈ Hs(R).

Then there exists T = T (ψ, s, ||φ||Hs) and an unique solution v of

{
∂tv +H∂2

xv + v∂xv + ∂x(vψ) = −(H∂2
xψ + ψψ′) , x ∈ R, t ∈ R

v(x, 0) = φ(x) = g(x) − ψ(x)
, (7)

such that v ∈ C([−T, T ], Hs) ∩C1([−T, T ], Hs−2) and vx ∈ L1([−T, T ], L∞).
Moreover, for any R > 0, the map φ → v is continuous from the ball of radius
R in Hs(R) to C([−T (R), T (R)], Hs).

Theorem 1.4 Let s > 5/4, g ∈ Xs.
Then there exists T̃ = T̃ (s, ||g||Xs) > 0 and a unique solution u of (2) such that
u∈ C([−T̃ , T̃ ], Xs), u− g ∈ C([−T̃ , T̃ ], Hs) and ux ∈ L1([−T̃ , T̃ ], L∞).
Moreover, for any R > 0, the map g → u is continuous from the ball of radius
R in Xs to C([−T̃ (R), T̃ (R)], Xs).

In fact, it also works for all the dispersions between BO and KdV. Namely,
for α ∈ [1, 2], the problem

{
∂tv −Dα∂xv + v∂xv + ∂x(vψ) = Dα∂xψ − ψψ′ , x ∈ R, t ∈ R

v(0) = φ ∈ Hs , (8)

where D = (−∂2
x)1/2 is locally well posed in Hs for s > 3/2 − α/4.

In [9], a global well-posedness result was obtained for (7) in Hs for s > 2.
Since our local well-posedness result goes underneath 3/2, using the invariant
of the Benjamin-Ono equation associated with the H3/2 norm, we improve this
result:

Theorem 1.5 Let φ ∈ Hs, s > 3/2. Then the solution of (7) obtained in
Theorem 1.3 can be extended to R.

Corollary 1.1 Let g ∈ Xs, s > 3/2. Then the solution of (2) obtained in
Theorem 1.3 can be extended to R.

Note that if Theorem 1.1 was true for s = 1, we would have a global well-
posedness result. We failed to show this for general ψ ∈ C∞

b with ψ′ ∈ H∞.
However, if ψ ≡ a is a constant, a change of variables shows that v solves (6)
if and only if w(x, t) := v(x + at, t) solves the classical KdV equation, which
is known to be globally well-posed in H1. For other dispersions, if we assume
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that ψ is constant, the results of Kenig and Koenig similarly ensure that (8) is
locally well-posed in Hs, s > 3/2 − 3α/8.

The proof of Theorem 1.3 (resp. 1.4) is similar and simpler to that of The-
orem 1.1 (resp. 1.2), so that we will omit it.

This paper is organized as follows. In section 2, we state some prelimi-
nary results, including the crucial commutator lemmas. In section 3, we prove
Strichartz estimates for a linearized version of (6). In section 4, we prove a
non-linear estimate. The proof is based on the Littlewood-Paley theory. In the
last two sections, the main ideas are these of Koch and Tzvetkov explained in
[17]. In section 5 and 6, we prove Theorem 1.1. In section 7, we derive Theorem
1.2. In section 8, we prove Theorem 1.5. Finally, we prove Lemma 2.4 in the
appendix. The proof of this commutator lemma is inspired by that of Lemma
2.3 given in [11].

Notations. Throughout this paper, the notation A . B means that there
exists an harmless constant c > 0 such that A 6 cB.
We denote by H∞ the space H∞ = ∩

s>0
Hs, C∞

b the space of C∞ bounded

functions and S the space of Schwartz functions.
If X is a Banach space, T a positive number and I ⊂ R an interval, we define
Lp

TX :=Lp([−T, T ], X) and Lp
IX := Lp(I,X) equipped with their natural norms.

We denote L∞
T H

∞ := ∩
s>0

L∞
T H

s.

For σ > 0, we denote Jσ := (1 − ∂2
x)σ/2, Dσ := (−∂2

x)σ/2.
The letters λ and µ will design dyadic integers. The notation

∑
λ f(λ) should

be understood as
∑∞

k=0 f(2k).
We call (q, p) ∈ R2 an admissible pair if

(q, p) = (
6

θ(β + 1)
,

2

1 − θ
), (θ, β) ∈ [0, 1] × [0, 1/2] .

Note that to prove theorems 1.3 and 1.4 dealing with the BO equation, we
should replace this definition by:

2

q
+

1

p
=

1

2
, q ∈ (4,∞), p ∈ (2,∞) .

We recall that the solution of the initial value problem
{
∂tv + ∂3

xv = 0 , t, x ∈ R

v(x, 0) = v0(x)
(9)

is given by the unitary Airy group which will be denoted by {W (t)}t∈R, i.e.
v(., t) = W (t)v0 = St ⋆ v0 where for t > 0

St = t−1/3K(t−1/3.)

and

K(x) = c

∫ ∞

−∞

ei(ξ3+xξ)dξ, x ∈ R .
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2 Preliminary results

We now state a result that gives a decomposition of the initial data g, which is
used to reduce the study of (1) (resp. (2)) to that of (6) (resp. (7)).

Lemma 2.1 Let g ∈ Xs, s > 1. Then there exists ψ ∈ C∞(R), φ ∈ Hs(R)
such that

i) ψ′ ∈ H∞(R).
ii) g = ψ + φ.

Moreover, the maps g → ψ and g → φ can be defined as linear maps such
that for every s1 > 1, g → ψ is continuous from Xs into Xs1 and g → φ is
continuous from Xs into Hs.

Proof. Let k(x) = (4π)−1/2e−x2/4, ψ := k ⋆ g.
Then ψ ∈ C∞

b (R), ψ′ = k ⋆ g′ ∈ H∞, therefore g − ψ ∈ L∞ ⊂ S′ and

ĝ − ψ(ξ) = (ĝ − ψ̂)(ξ) = (1 − k̂)ĝ(ξ) =
1 − e−ξ2

ξ︸ ︷︷ ︸
∈L∞

ξĝ(ξ)︸ ︷︷ ︸
∈L2

.

Hence g − ψ ∈ L2, and g − ψ ∈ Hs.
Moreover, ||ψ||L∞ 6 ||g||L∞ and

||ψ′||2Hs1−1 =

∫
(1 + ξ2)s1−1e−2ξ2

|ξĝ(ξ)|2dξ 6 sup
ξ∈R

(
(1 + ξ2)s1−1e−2ξ2

)
||g′||2L2 ,

which shows the continuity of g → ψ from Xs into Xs1 . Similarly,

||φ||2Hs 6 sup
ξ∈R


(1 + ξ2)

(
1 − e−ξ2

ξ

)2

 ||g′||2Hs−1

gives the continuity of g → φ from Xs into Hs. �

Lemma 2.2 Let (aλ)λ, (dλ)λ two sequences indexed on dyadic integers λ =
2j, j ∈ N. Let s > 0. Then

∑

λ

λs
∑

µ>λ/8

aµdλ .

(∑

λ

λ2sa2
λ

)1/2(∑

λ

d2
λ

)1/2

,

and hence by duality

∑

λ

λ2s


 ∑

µ>λ/8

aµ




2

.
∑

λ

λ2sa2
λ .

5



Proof. Using the Cauchy-Schwarz inequality, we get

∑

λ

λs
∑

µ>λ/8

aµdλ =
∑

λ

λs
∞∑

k=−3
2kλ>1

a2kλdλ =

∞∑

k=−3

2−ks
∑

λ>2−k

(2kλ)sa2kλdλ

6

∞∑

k=−3

2−ks


 ∑

λ>2−k

(
(2kλ)sa2kλ

)2



1/2
 ∑

λ>2−k

d2
λ




1/2

6
23s

1 − 2−s

(∑

λ

λ2sa2
λ

)1/2(∑

λ

d2
λ

)1/2

.

�

Commutator and Bilinear Estimates

We will use in the sequel two commutator lemmas. The first one is due to Kato
and Ponce and is proved in [11].

Lemma 2.3 If s > 0,

|| [Js, f ] g||L2 . ||∂xf ||L∞ ||Js−1g||L2 + ||Jsf ||L2 ||g||L∞ . (10)

The second commutator lemma is proved in the appendix.

Lemma 2.4 Let s > 0, let s0 > max(0, 3 − s). Then

|| [Js, f ] g||L2 . ||∂xf ||L∞ ||Js−1g||L2 + ||Js0+s−1∂xf ||L2 ||g||L∞ . (11)

Next lemmas (see [21]) will be used in the proof of Theorem 1.5.

Lemma 2.5 Let a, b, c ∈ R such that a > c, b > c, a+b > 0 and a+b−c > n/2.
Then the map (f, g) −→ fg is a continuous bilinear form from Ha(Rn)×Hb(Rn)
into Hc(Rn).

Lemma 2.6 If s > 1, then there is a constant C such that for all f ∈ S(Rn),
g ∈ Hs−1(Rn),

|| [Js, f ] g||L2 6 C||f ′||Hs ||g||Hs−1 .

We will need a generalized version of Lemma 2.6.

Lemma 2.7 Let n = 1. In Lemma 2.6 above, the assumption f ∈ S can be
replaced by f ∈ X∞ := ∩

s>1
Xs.

Proof. Let f ∈ X∞. For ε > 0, fε(x) := e−εx2

f(x) belongs to S, therefore
we can apply Lemma 2.6 to fε. Passing to the limit, we obtain Lemma 2.7. �

In sections 3 to 6 below, we are interested in solving (6) where the functions
ψ and φ are fixed.
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3 The linear estimate

We first recall the Strichartz estimate with smoothing for the Airy group (see
[15]).

Lemma 3.1 For any admissible pair (q, p) = (6/(θ(β + 1)), 2/(1 − θ)) with
parameters (θ, β) ∈ [0, 1]× [0, 1/2], we have

||D
θβ
2 W (t)u0||Lq

t (R,Lp) . ||u0||L2(R) .

As in [17], we deduce next from Lemma 3.1 a Strichartz inequality for a
linearized version of (6).

Lemma 3.2 Let λ > 1, T > 0, σ > 1/2. Let u : [−T, T ]× R be a solution of

∂tu+ ∂3
xu+ V1∂xu+ V2∂xu+ V3u = f (12)

where V1 ∈ L∞
T H

σ, V2 ∈ L∞
T L

∞, V3 ∈ L∞
T H

∞ and f ∈ L1
TL

2.
We assume moreover that there exists a constant C > 0 such that

Supp(û(., t)) ⊂ C[−λ, λ], t ∈ [−T, T ].

Then for every admissible pair (q, p) with parameter β = 1/2 fixed, for any
interval I ⊂ [−T, T ] such that |I| . λ−1,

||Dθ/4u||Lq
ILp .

(
1 + ||JσV1||L∞

T L2 + ||V2||L∞
T L∞ + ||V3||L1

T L∞

)

×
(
||u||L∞

I L2 + ||f ||L1
IL2

)
. (13)

Moreover,

||Dθ/4u||Lq
T Lp . (1 + T )1/qλ1/q

(
1 + ||JσV1||L∞

T L2 + ||V2||L∞
T L∞ + ||V3||L1

T L∞

)

×
(
||u||L∞

T L2 + ||f ||L1
T L2

)
. (14)

Proof. The solution v of the Cauchy problem

{
∂tv + ∂3

xv = h ∈ L1L2

v(0) = v0

is given by

v(t) = W (t)v0 +

∫ t

0

W (t− s)h(s)ds.

Applying Dθ/4 to this equation, we obtain that for any t ∈ [−T, T ],

||Dθ/4v(t)||Lp
x

6 ||Dθ/4W (t)v0||Lp
x

+

∫ T

−T

||Dθ/4W (t)W (−s)h(s)||Lp
x
ds,
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hence Lemma 3.1 yields

||Dθ/4v||Lq
T Lp . ||v0||L2 + ||h||L1

T L2 .

We apply this to u:

||Dθ/4u||Lq
ILp 6 ||u||L∞

I L2 + (||V1||L∞
I L∞ + ||V2||L∞

I L∞)||∂xu||L1
IL2

+||V3||L1
IL∞ ||u||L∞

I L2 + ||f ||L1
IL2 .

Now, as in [KT], using the Sobolev embedding, we have

||V1||L∞
I L∞ . ||JσV1||L∞

I L2 ,

Next using the assumptions on the support of û(., t) and on the length of I and
Plancherel’s theorem, we get

||∂xu||L1
IL2 = ||ξû||L1

IL2 . λ|I|||û||L∞
I L2 . ||u||L∞

I L2 ,

which completes the proof of (13). The proof of (14) is the same that in [17]: we

write [−T, T ] =
n
∪

k=1
Ik where |Ik| 6 λ−1. We may assume that n < 1 + 2λT 6

2λ(1+T ), and hence using (13) applied to Ik and summing over k, we get (14).
�

4 The nonlinear estimate

Notations. We use the same notations that in [17] about the Littlewood-Paley
decomposition. Namely,

u =
∑

λ

uλ

where uλ := ∆λu, and the Fourier multiplier ∆λ is defined by

∆̂λu(ξ) :=

{
φ(ξ/λ)û(ξ) λ = 2k, k > 1
χ(ξ)û(ξ) λ = 1

,

where χ and φ are nonnegative, C∞
c functions on R satisfying

χ(ξ) +
∑

λ>1

φ(ξ/λ) = 1

and

φ(ξ) =

{
0 if |ξ| < 5/8 or |ξ| > 2
1 if 1 < |ξ| < 5/4

.

For a dyadic integer λ, we also define

∆̃λ :=

{
∆λ/2 + ∆λ + ∆2λ if λ > 1
∆1 + ∆2 if λ = 1

.
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Let u be a regular solution of

{
∂tu+ ∂3

xu+ u∂xu+ ψ∂xu+ ψ′u = −(∂3
xψ + ψψ′) , x ∈ R, t ∈ R

u(0) = u0 ∈ H∞ . (15)

By “regular solution” we mean that u ∈ ∩
s>0

C(R, Hs). Theorem 1.2 in [9] en-

sures that such a solution does exist (throughout [9], the assumption (3) can be
replaced by “g ∈ Xs” for free).

Our aim in this section is to prove the following estimate on u.

Theorem 4.1 Let σ > 1/2, 0 < T 6 1, (q, p) an admissible pair with pa-
rameters θ ∈ [0, 1), β = 1/2, s = σ + 1/q and u a regular solution of (15).
Then

||Dθ/4Jσu||Lq
T Lp . (1+||Jσu||L∞

T L2)(1+||ux||L1
T L∞)3/2(1+||Jsu||2L∞

T L2)1/2. (16)

We split the proof in several lemmas.

Lemma 4.1 Let (q, p) be an admissible pair with parameter θ ∈ [0, 1) (i.e.
p <∞), let σ > 1/2. Then

||Dθ/4Jσu||Lq
T Lp .

(∑

λ

λ2σ||Dθ/4uλ||
2
Lq

T Lp

)1/2

. (17)

Proof. A similar lemma was stated in [17]. We recall the proof. We define
v := Dθ/4u. We have

||Jσv||Lq
T Lp =

(∫

t

||
∑

λ

Jσvλ(t)||q
Lp

x
dt

)1/q

6



∫

t

||

(∑

λ

|Jσvλ(t)|2

)1/2

||q
Lp

x
dt




1/q

(18)

=



∫

t



∫

x

(∑

λ

|Jσvλ(t)|2

)p/2

dx




q/p

dt




1/q

6



∫

t

(∑

λ

(∫

x

|Jσvλ(t)|2.p/2dx

)2/p
)q/2

dt




1/q

(19)
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||Jσv||Lq
T Lp 6



∫

t

(∑

λ

||Jσvλ(t)||2Lp
x

)q/2

dt




1/q

6

(∑

λ

(∫

t

||Jσvλ(t)||
2.q/2

Lp
x

dt

)2/q
)1/2

(20)

=

(∑

λ

||Jσvλ(t)||2Lq
t Lp

x

)1/2

. (21)

Here we have used the square functions theorem for the Littlewood-Paley de-
composition (see [20]) to obtain (18) (1 < p <∞), and the Minkowski inequality
(see [18]) to get (19) and (20) (it works because p/2 > 1 and q/2 > 1, respec-
tively). Next, using the Mikhlin-Hrmander theorem (or more precisely Lemma
6.2.1 in [4]), we get, for all t,

||Jσvλ(t)||Lp . λσ||vλ(t)||Lp . (22)

(21) and (22) complete the proof of Lemma 4.1. �

Lemma 4.2 There exists a constant C > 0 such that for all w ∈ L2 and v ∈ C∞
b

such that vx ∈ H∞,

|| [∆λ, v∂x]w||L2 6 C||vx||L∞ ||w||L2 .

Proof. By density of S in L2, it suffices to show it for w ∈ S. As in the proof
of Lemma 2 in [17], we write for λ > 2

[∆λ, v∂x]w(x) =

∫ ∞

−∞

K(x, y)w(y)dy ,

where

K(x, y) = c

∫ ∞

−∞

eiλ(x−y)ηφ(η)
[
iλ2η(v(y) − v(x)) − λvx(y)

]
dη .

Therefore, using the mean value theorem,

|K(x, y)| 6 cλ||vx||L∞g(λ(y − x))

where g is in L1. Hence

sup
y

∫ ∞

−∞

|K(x, y)|dx+ sup
x

∫ ∞

−∞

|K(x, y)|dy . ||vx||L∞ ,

and the Schur lemma completes the proof of the lemma in the case λ > 2. The
proof is similar in the case λ = 1. �

Lemma 4.3 There exists a constant C > 0 such that for all v ∈ C∞
b and

w ∈ L2,
|| [∆λ, v]w||L2 6 C||v||L∞ ||w||L2 .
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Proof. The proof is similar and easier to that of Lemma 4.2:

[∆λ, v]w(x) = cλ

∫ ∞

−∞

φ̂(λ(y − x))(v(y) − v(x))w(y)dy

6 2c||v||L∞

∫ ∞

−∞

λ|φ̂(λ(y − x))||w(y)|dy,

and the Schur lemma completes the proof similarly to Lemma 4.2. �

Lemma 4.4 Let σ > 1/2, (q, p) an admissible pair, T > 0 and u a regular
solution of (15). Then

∑

λ

λ2σ ||Dθ/4uλ||
2
Lq

T Lp . (1 + T )2/q
(
1 + ||Jσu||L∞

T L2 + ||ψ||L∞ + T ||ψ′||L∞

)2

×

[(
1+||ux||

2
L1

T L∞ +T 2||ψ′||2L∞

)∑

λ

λ2σ+2/q ||uλ||
2
L∞

T L2 + ||ψ′||2Hσ+1/q ||ux||
2
L1

T L∞

+T 2||ψψ′ + ∂3
xψ||

2
Hσ+1/q + T 2||Jσu||2L∞

T L2 ||ψ′||2Hσ+1/q].
Proof. We apply ∆λ to (15):

∂tuλ + ∂3
xuλ + (u+ ψ)∂xuλ + ψ′uλ

= −∆λ(∂3
xψ + ψψ′) − [∆λ, (u+ ψ)∂x]u− [∆λ, ψ

′]u. (23)

Therefore we can apply Lemma 3.2 to uλ, with V1 = u, V2 = ψ, V3 = ψ′,
f = −∆λ(∂3

xψ + ψψ′) − [∆λ, (u+ ψ)∂x]u− [∆λ, ψ
′]u. Hence

∑

λ

λ2σ||Dθ/4uλ||
2
Lq

T Lp . (1 + T )2/q
(
1 + ||Jσu||L∞

T L2 + ||ψ||L∞ + T ||ψ′||L∞

)2

×
∑

λ

λ2σ+2/q
(
||uλ||L∞

T L2 + T ||∆λ(ψψ′ + ∂3
xψ)||L2 + || [∆λ, u∂x]u||L1

T L2

+|| [∆λ, ψ∂x]u||L1
T L2 + || [∆λ, ψ

′]u||L1
T L2

)2

. (24)

We give now a bound for each term in the right hand side parenthesis of (24).
Like in the Lemma 3 in [17], we write

[∆λ, v∂x] = [∆λ, v∂x] ∆̃λ + ∆λv∂x(1 − ∆̃λ)

where v = u or ψ. Therefore, thanks to Lemma 4.2, we get

|| [∆λ, u∂x]u||L1
T L2 . ||ux||L1

T L∞ ||∆̃λu||L∞
T L2 + ||∆λu∂x(1 − ∆̃λ)u||L1

T L2 (25)

and

|| [∆λ, ψ∂x]u||L1
T L2 . T ||ψ′||L∞ ||∆̃λu||L∞

T L2 + ||∆λψ∂x(1 − ∆̃λ)u||L1
T L2 . (26)
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For v = u or ψ and λ > 3,

F
{
∆λ

(
v∂x(1 − ∆̃λ)u

)}

= φ(ξ/λ)︸ ︷︷ ︸
Supp ⊂{ξ, 5λ

8 6|ξ|62λ}

v̂ ⋆

(
iξ(1 − (φ(

2ξ

λ
) + φ(

ξ

λ
) + φ(

ξ

2λ
)))û

)

︸ ︷︷ ︸
Supp ⊂R\{ξ, λ

2 6|ξ|6 5λ
2 }

,

where F denotes the Fourier transform. If µ 6 λ/16, Supp v̂µ ⊂ [−λ/8, λ/8],
and

R\{ξ,
λ

2
6 |ξ| 6

5λ

2
} + [−λ/8, λ/8] ⊂ R\{ξ,

5λ

8
6 |ξ| 6 2λ}.

Therefore

F
{
∆λ

(
v∂x(1 − ∆̃λ)u

)}
= φ(ξ/λ)

∑

µ>λ/8

v̂µ ⋆

(
iξ(1 − (φ(

2ξ

λ
) + φ(

ξ

λ
) + φ(

ξ

2λ
)))û

)

and

∆λ

(
v∂x(1 − ∆̃λ)u

)
=
∑

µ>λ/8

∆λ(vµ∂x(1 − ∆̃λ)u) . (27)

This equality trivially remains true in the cases λ = 1 or 2.
In the case v = u, using the fact that ∆λ defines an operator on L∞, with a

norm uniformly bounded in λ (see Lemma II.1.1.2 in [2]), we get

||∆λ

(
u∂x(1 − ∆̃λ)u

)
||L1

T L2 6
∑

µ>λ/8

||uµ||L∞
T L2 ||(1 − ∆̃λ)ux||L1

T L∞

. ||ux||L1
T L∞

∑

µ>λ/8

||uµ||L∞
T L2 . (28)

The case v = ψ is a bit more difficult, because ψ1 6∈ L2. Nevertheless, if
µ > 2, hence

ψ̂µ(ξ) = φ(ξ/µ)ψ̂(ξ) =
φ(ξ/µ)

ξ
ξψ̂(ξ) ∈ L2

because φ ≡ 0 near 0 and ψ′ ∈ L2. Therefore ψµ ∈ L2 for µ > 2, and if λ > 16,
we get

||∆λ

(
ψ∂x(1 − ∆̃λ)u

)
||L1

T L2 . ||ux||L1
T L∞

∑

µ>λ/8

||ψµ||L2 . (29)

If λ ∈ {1, 2, 4, 8}, we write

ψ1 = Tψ1 + (1 − T )ψ1,

where T̂ f(ξ) = χ̃(ξ)f̂ (ξ), 0 6 χ̃ 6 1, χ̃ ≡ 1 on [−1/4, 1/4] and Suppχ̃ ⊂
[−1/2, 1/2]. Proceeding the same way as to obtain (27), we have

∆λ

(
Tψ1∂x(1 − ∆̃λ)u

)
= 0,

12



and (1 − T )ψ1 ∈ L2, with ||(1 − T )ψ1||L2 6 4||ψ′||L2 . Therefore, like for (29),
we have

||∆λ

(
ψ∂x(1 − ∆̃λ)u

)
||L1

T L2 . ||ux||L1
T L∞


||ψ′||L2 +

∑

µ>2

||ψµ||L2


 .(30)

Similarly, we write

[∆λ, ψ
′] = [∆λ, ψ

′] ∆̃λ + ∆λψ
′(1 − ∆̃λ)

and the Lemma 4.3 yields

|| [∆λ, ψ
′]u||L1

T L2 . ||ψ′||L∞ ||∆̃λu||L1
T L2 + ||∆λψ

′(1 − ∆̃λ)u||L1
T L2 .

Using the same arguments that for stating (28) and Sobolev embedding (σ >
1/2), we get

||∆λψ
′(1 − ∆̃λ)u||L1

T L2 . T ||u||L∞
T L∞

∑

µ>λ/8

||(ψ′)µ||L2

. T ||Jσu||L∞
T L2

∑

µ>λ/8

||(ψ′)µ||L2 . (31)

Now, using (24), (25), (26), (28), (29), (30), (31), we obtain

∑

λ

λ2σ ||Dθ/4uλ||
2
Lq

T Lp . (1 + T )2/q
(
1 + ||Jσu||L∞

T L2 + ||ψ||L∞ + T ||ψ′||L∞

)2

×
∑

λ

λ2σ+2/q [||uλ||
2
L∞

T L2 + T 2||(ψψ′ + ∂3
xψ)λ||

2
L2

+||ux||
2
L1

T L∞


||∆̃λu||

2
L∞

T L2 +


 ∑

µ>λ/8

||uµ||L∞
T L2




2

+ T 2||ψ′||2L∞ ||∆̃λu||

2
L∞

T L2

+||ux||
2
L1

T L∞





 ∑

µ>λ/8

||ψµ||L∞
T L2




2

1{λ>16}+


||ψ′||L2 +

∑

µ>2

||ψµ||L2




2

1{16λ<16}




+T 2||Jσu||2L∞
T L2


 ∑

µ>λ/8

||(ψ′)µ||L∞
T L2




2

 . (32)

We will now majorize each term of the sum in the right hand side of (32).
We first clearly have

∑

λ

λ2σ+2/q ||∆̃λu||
2
L∞

T L2 .
∑

λ

λ2σ+2/q ||uλ||
2
L∞

T L2 . (33)
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Using the fact that φ vanishes near 0, if λ > 2,

||ψλ||
2
L2 =

∫
1

ξ2
φ(ξ/λ)2ξ2|ψ̂(ξ)|2dξ . λ−2||(ψ′)λ||

2
L2 . ||(ψ′)λ||

2
L2 . (34)

We also use the properties of the support of φ to obtain that if v ∈ Hs, s ∈ R,
∑

λ

λ2s||vλ||
2
L2 . ||v||2Hs . (35)

The lemma easily follows from (32), (33), (34), (35) and Lemma 2.2. �

To complete the proof of Theorem 4.1, it remains to control the quantity
∑

λ

λ2σ+2/q ||uλ||
2
L∞

T L2 .

That is what we do in the following lemma.

Lemma 4.5 Let u be a regular solution of (15), let s > 1/2. Then, noting
(uλ)λ the Littlewood-Paley decomposition of u,

∑

λ

λ2s||uλ||
2
L∞

T L2 . ||Jsu||2L∞
T L2

(
1 + ||ux||L1

T L∞ + T ||ψ′||Hs

)

+||Jsu||L∞
T L2(T (1 + ||ψψ′ + ∂3

xψ||
2
Hs ) + ||ψ′||Hs ||ux||L1

T L∞) . (36)

Proof. During the proof of Lemma 4.4, we saw that uλ solves (23). We
multiply now (23) by uλ, we take the real part and we sum in x and t variables,
taking into account the fact that u and ψ are real-valued:

||uλ(t)||2L2 = ||uλ(0)||2L2 −

∫ t

0

∫ ∞

−∞

{
(u+ ψ)(∂xuλuλ + ∂xuλuλ) + 2ψ′|uλ(s)|2

+2Re
(
∆λ(ψψ′ + ∂3

xψ)uλ(s) + [∆λ, (u+ ψ)∂x]uuλ + [∆λ, ∂xψ]uuλ)
)}
dxds. (37)

Therefore, integrating by parts, multipliying by λ2s, taking the supremum in
the t variable and summing over λ, we get
∑

λ

λ2s||uλ||
2
L∞

T L2 .
∑

λ

λ2s||uλ(0)||2L2

+

∫ T

−T

(||ux(t)||L∞ + ||ψ′||L∞)
∑

λ

λ2s||uλ(t)||2L2dt

+

∫ T

−T

∑

λ

λ2s||∆λ(ψψ′ + ∂3
xψ)||L2 ||uλ(t)||L2dt

+

∫ T

−T

∑

λ

λ2s

∣∣∣∣
∫ ∞

−∞

[∆λ, (u + ψ)∂x]uuλdx

∣∣∣∣ dt

+

∫ T

−T

∑

λ

λ2s

∣∣∣∣
∫ ∞

−∞

[∆λ, ψ
′]u(t)uλ(t)dx

∣∣∣∣ dt . (38)
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We will now control each term in the right hand side of (38). We first use (35)
to get the following inequalities:

∫ T

−T

∑

λ

λ2s||∆λ(ψψ′ + ∂3
xψ)||L2 ||uλ(t)||L2dt

6
1

2

∫ T

−T

∑

λ

λ2s

(
||Jsu||L∞

T L2 ||∆λ(ψψ′ + ∂3
xψ)||2L2 +

||uλ(t)||2L2

||Jsu||L∞
T L2

)
dt

.

∫ T

−T

(
||Jsu||L∞

T L2 ||ψψ′ + ∂3
xψ||

2
Hs +

||u(t)||2Hs

||Jsu||L∞
T L2

)
dt

. T ||Jsu||L∞
T L2(1 + ||ψψ′ + ∂3

xψ||
2
Hs) , (39)

∑

λ

λ2s||uλ(0)||2L2 . ||Jsu(0)||2L2 6 ||Jsu||2L∞
T L2 (40)

and

∫ T

−T

(||ux(t)||L∞ + ||ψ′||L∞)
∑

λ

λ2s||uλ(t)||2L2dt

.
(
||ux||L1

T L∞ + T ||ψ′||L∞

)
||Jsu||2L∞

T L2 . (41)

Like in the proof of Lemma 4.4, we write

[∆λ, (u+ ψ)∂x]u(t) = [∆λ, (u+ ψ)∂x]∆̃λu(t) + ∆λ

(
(u+ ψ)∂x(1 − ∆̃λ)u(t)

)
.

Then, Lemma 4.2 and a simplified version of (28) yield

||[∆λ, (u+ ψ)∂x]u(t)||L2 . (||ux(t)||L∞ + ||ψ′||L∞)||∆̃λu(t)||L2

+||ux(t)||L∞

∑

µ>λ/8

||uµ(t)||L2 + ||∆λ(ψ∂x(1 − ∆̃λ)u(t))||L2 .

Next, we bound up the last term in the right hand side of the above inequality
like in (29) and (30)

||∆λ(ψ∂x(1 − ∆̃λ)u(t))||L2

. ||ux||L∞


 ∑

µ>λ/8

||ψµ||L21λ>16 +


||ψ′||L2 +

∑

µ>2

||ψµ||L2


1λ68


 .
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Therefore

∫ T

−T

∑

λ

λ2s

∣∣∣∣
∫ ∞

−∞

[∆λ, (u+ ψ)∂x]uuλdx

∣∣∣∣ dt

.

∫ T

−T

∑

λ

λ2s

[
(||ux(t)||L∞ + ||ψ′||L∞)||∆̃λu(t)||L2

+||ux(t)||L∞


 ∑

µ>λ/8

||uµ(t)||L2 +
∑

µ>λ/8

||ψµ||L21λ>16

+


||ψ′||L2 +

∑

µ>2

||ψµ||L2


 1λ68




 ||uλ(t)||L2dt . (42)

Using again (35), it is easy to see that

∑

λ

λ2s||∆̃λu(t)||L2 ||uλ(t)||L2 . ||u(t)||2Hs . (43)

Lemma 2.2 with aµ = ||uµ(t)||L2 , dλ = λs||uλ(t)||L2 and (35) yield

∑

λ

λ2s
∑

µ>λ/8

||uµ(t)||L2 ||uλ(t)||L2 . ||u(t)||2Hs . (44)

Using once again Lemma 2.2, (35) and (34),

∑

λ

λ2s


 ∑

µ>λ/8

||ψµ||L21λ>16 + (||ψ′||L2 +
∑

µ>2

||ψµ||L2)1λ68


 ||uλ(t)||L2

. ||u(t)||Hs


∑

λ>2

λ2s||ψλ||
2
L2




1/2

+


||ψ′||L2 +

∑

µ>2

||ψµ||L2


 ||u(t)||L2

. ||u(t)||Hs ||ψ′||Hs (45)

Thanks to (42), (43), (44), (45), we have

∫ T

−T

∑

λ

λ2s

∣∣∣∣
∫ ∞

−∞

[∆λ, (u+ ψ)∂x]uuλdx

∣∣∣∣ dt

.
(
||ux||L1

T L∞ + T ||ψ′||L∞

)
||Jsu||2L∞

T L2 + ||ψ′||Hs ||ux||L1
T L∞ ||Jsu||L∞

T L2 (46)

As in the proof of Lemma 4.4,

|| [∆λ, ψ
′]u(t)||L2 . ||ψ′||L∞ ||∆̃λu(t)||L2 + ||u(t)||L∞

∑

µ>λ/8

||(ψ′)µ||L2
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and therefore, using also the Sobolev embedding (s > 1/2),

∫ T

−T

∑

λ

λ2s

∣∣∣∣
∫ ∞

−∞

[∆λ, ψ
′]u(t)uλ(t)dx

∣∣∣∣ dt

. T ||ψ′||L∞ ||Jsu||2L∞
T L2 + ||ψ′||Hs ||u||L1

T L∞ ||Jsu||L∞
T L2

. T ||ψ′||Hs ||Jsu||2L∞
T L2 . (47)

Concatenating (38), (39), (40), (41), (46) and (47), we finally obtain the an-
nounced inequality. �

Theorem 4.1 directly follows from Lemmas 4.1, 4.4, 4.5.

5 The proof of Theorem 1.1 (existence and unique-

ness)

We begin the proof of Theorem 1.1 with a lemma that gives an a priori estimate
on the Hs norm of a regular solution of (6).

Lemma 5.1 Let u0 ∈ H∞, s > 1/2 and u ∈ C([−T, T ], H∞) a regular solution
of (15). Then there exists C = C(ψ) > 0 such that

||u(t)||2Hs 6
(
||u0||

2
Hs + 1

)
exp

(
C(T + ||ux||L1

T L∞)
)

Proof. We apply Js to (15), we multiply the obtained equation by Jsu and
we sum over R:

d

dt

1

2
||Jsu||2L2 +

∫
(u+ ψ)

2
∂x(Jsu)2 +

∫
ψ′(Jsu)2

= −

∫
Js(ψψ′ + ∂3

xψ)Jsu−

∫
[Js, (u + ψ)]∂xuJ

su−

∫
[Js, ψ′]uJsu

After an integration by parts, we get

d

dt
||Jsu||2L2 =

∫
∂x(u− ψ)(Jsu)2 − 2

∫
Js(ψψ′ + ∂3

xψ)Jsu

−2

∫
[Js, (u + ψ)]∂xuJ

su− 2

∫
[Js, ψ′]uJsu

We use Lemma 2.3 to estimate the L2 norms of [Js, u]∂xu and [Js, ψ′]u. We get

||[Js, u]∂xu||L2 . ||Jsu||L2 ||ux||L∞

and
||[Js, ψ′]u||L2 . ||ψ′′||L∞ ||Js−1u||L2 + ||Jsψ′||L2 ||u||L∞ .
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Since ψ does not belong to L2, it does not work to estimate the L2 norms of
[Js, ψ]∂xu. Lemma 2.4 (note that Lemma 2.7 could also have been used) yields

||[Js, ψ]∂xu||L2 . ||ψ′||L∞ ||u||Hs + ||ψ′||Hs0+s−1 ||ux||L∞ .

Using the Cauchy Schwarz inequality and Sobolev embedding (s > 1/2), we
obtain

d

dt
||u||2Hs . ||u||2Hs (||ux||L∞ + ||ψ′||L∞ + 1 + ||ψ′||Hs + ||ψ′′||L∞)

+||ψψ′ + ∂3
xψ||

2
Hs + ||ux||L∞ ||ψ′||2Hs0+s−1 ,

which can be rewritten as

d

dt
(1 + ||u(t)||2Hs) 6 C(ψ)(1 + ||ux(t)||L∞)(1 + ||u(t)||2Hs ), t ∈ (−T, T ) . (48)

Next, the Gronwall’s lemma concludes the proof of the lemma. �

We are now ready to begin the proof of Theorem 1.1 itself. Let s > 1,
θ ∈ (0, 1) such that (1 − θ)/2 < s − 1, p := 2/(1 − θ) and σ := s− θ/4 > 3/4.
We also define q := 4/θ > 4 and α := (1 − 1/q)/2 < 2. For T > 0, and u a
regular solution of (15), we define

F (T ) := ||ux||L1
T L∞ + Tα||Jσu||L∞

T L2 .

Our choice of p and Sobolev embedding ensure that W σ−(1−θ/4),p ⊂ L∞ with
continuous embedding, because σ − (1 − θ/4) = s− 1 > 1/p. Hence, using also
the continuity of the Hilbert transform on Lp and Hölder inequality in the t
variable,

||ux||L1
T L∞ . ||D1−θ/4HDθ/4u||L1

T W σ−(1−θ/4),p . ||HDθ/4Jσu||L1
T Lp

. ||Dθ/4Jσu||L1
T Lp . T 1−1/q||Dθ/4Jσu||Lq

T Lp .

Thanks to Theorem 4.1, for T 6 1,

||ux||L1
T L∞ . (T 1−1/q + T 1−1/q−αF (T ))(1 + F (T ))3/2(1 + ||u||L∞

T Hs) .

Therefore, since σ < s,

F (T ) . Tα(1 + F (T ))5/2(1 + ||u||L∞
T Hs) .

We control the quantity ||u||L∞
T Hs by Lemma 5.1:

||u||L∞
T Hs . (1 + ||u0||Hs) exp(CF (T )) .

Finally, we obtain that there exists a constant C′ > 0 (which only depends on
ψ) such that

F (T ) 6 C′Tα(1 + F (T ))5/2(1 + ||u0||Hs) exp(CF (T )), T ∈ [0, 1] . (49)
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We define g : R+ → R by

g(x) :=
x

(1 + x)5/2 exp(Cx)
, x ∈ R .

Let T (||u0||Hs) ∈ [0, 1] small enough such that

C′T (||u0||Hs)α(1 + ||u0||Hs) < ||g||∞ .

Then by continuity of g(F (T )), since g(F (0)) = g(0) = 0, there exists some
A > 0, which does not depend on u0, such that

F (t) 6 A, t ∈ [0, T (||u0||Hs)] .

In particular, ||ux||L1
T (||u0||Hs )

L∞ 6 A. Therefore, thanks to Lemma 5.1,

||u||L∞
T(||u0||Hs )

Hs 6 Ã(||u0||Hs) <∞ . (50)

Let now u0 ∈ Hs, and u0,n → u0 in Hs, where u0,n is regular (u0,n ∈ H∞).
We denote by un the solution of (15) with initial data un(0) = u0,n. The results
in [9] ensure that un is global. Thanks to (50), we can extract a subsequence
(that we also denote by un) such that un converges for the weak ⋆ topology of
L∞

T (||u0||Hs+1)H
s.

Now, if v and w are two solutions of (15), then

1

2

d

dt
||(v −w)(t)||2L2 +

∫
(v −w)2∂xv −

1

2

∫
(v −w)2∂xw +

1

2

∫
(v −w)2ψ′ = 0 .

Therefore

d

dt
||(v − w)(t)||2L2 . ||(v − w)(t)||2L2 (||vx(t)||L∞ + ||wx(t)||L∞ + ||ψ′||L∞) ,

and the Gronwall lemma yields

||(v − w)(t)||2L2

. ||(v − w)(0)||2L2 exp
(
C(||vx(t)||L1

T L∞ + ||wx(t)||L1
T L∞ + ||ψ′||L∞)

)
. (51)

Applying this to v = un, w = um, we get that for n and m large enough,
|t| 6 T (||u0||Hs + 1),

||un(t)− um(t)||2L2 . ||u0,n − u0,m||2L2 exp (C(2F (T (||u0||Hs + 1)) + ||ψ′||L∞)) ,

which shows that (un)n is a Cauchy sequence, and hence converges to u strongly
in the Banach space L∞

T L
2, because u0,n → u in L2. We deduce that the map

t→ u(t) is weakly continuous from [−T, T ] into Hs. Indeed, if we choose some
ε > 0, if φ ∈ Hs, let φ̃ ∈ H2s such that ||φ − φ̃||Hs < ε/(2||u||L∞

T Hs). For
t, τ ∈ [−T, T ],

|(u(t) − u(τ), φ)Hs | 6 ε+
∣∣∣
(
u(t) − u(τ), J2sφ̃

)
L2

∣∣∣

6 ε+ 2||un − u||L∞
T L2 ||φ̃||H2s + ||un(t) − un(τ)||L2 ||φ̃||H2s .
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Choosing n large enough, and t− τ small enough, we have

|(u(t) − u(τ), φ)Hs | 6 2ε.

In order to show that u is continuous with value in Hs, we define the norm

|||v||| :=

(∑

λ

λ2s||vλ||
2
L2

)1/2

,

which is equivalent to theHs norm (indeed, (35) gives one of the inequalities, the
proof of the other one is similar). It suffices to show that |||v(t)||| −→

t→τ
|||v(τ)|||.

That is what we do in the following lemma.

Lemma 5.2 Let u be as above the weak ⋆ limit in L∞
T H

s of un and (uλ)λ its
Littlewood-Paley decomposition, t, τ ∈ [−T, T ]. Then

∑

λ

λ2s||uλ(t)||2L2 6 exp
(
C||ux||L1

IL∞

)∑

λ

λ2s||uλ(τ)||2L2 + g(t, τ) ,

where I = [τ, t] or [t, τ ], depending on the sign of t− τ , and g(t, τ) → 0
t−τ→0

.

Proof. We first remark that u solves (6), since un solves (15). We assume for
instance that τ 6 t. Like in the proof of Lemma 4.5, we show

∑

λ

λ2s||uλ(t)||2L2 6
∑

λ

λ2s||uλ(τ)||2L2 + C(t− τ) + C||ux||L1
IL∞

+C

∫ t

τ

(1 + ||ux(σ)||L∞)
∑

λ

λ2s||uλ(σ)||2L2dσ .

We conclude by Gronwall lemma that

∑

λ

λ2s||uλ(t)||2L2 6

(∑

λ

λ2s||uλ(τ)||2L2 + C(t− τ)

)

×
[
1 + C

(
||ux||L1

IL∞ + t− τ
)

exp
(
C(||ux||L1

IL∞ + t− τ)
)]

= exp
(
C||ux||L1

IL∞

)∑

λ

λ2s||uλ(τ)||2L2 + o
t−τ→0

(1) .

�

Coming back to te proof of Theorem 1.1, since ||ux||L1
IL∞ −→

t−τ→0
0, using

Lemma 5.2 and exchanging t and τ , we get that
∑

λ

λ2s||uλ(t)||2L2 =
∑

λ

λ2s||uλ(τ)||2L2 + o
t−τ→0

(1) .

To complete the first part of the proof of Theorem 1.1, it remains to show the
uniqueness result. It is a straightforward consequence of (51). �
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6 The proof of Theorem 1.1 (continuous depen-
dence on the initial data).

We want now to prove the part of Theorem 1.1 about the continuous dependence
on the initial data of a solution of (6). We use the method presented in [17].
We begin with two lemmas.

Lemma 6.1 Let u be a solution of (6) in D′. Let 1 < δ 6 κ, and (ωλ)λ a
sequence of positive numbers such that for every dyadic integer λ, δωλ 6 ω2λ 6

κωλ. Then for all t, τ ∈ [−T, T ],

∑

λ

ω2
λ||uλ(t)||2L2 6

(
1 + C(||ux||L1

IL∞ + |t− τ |)
)

exp
(
C(||ux||L1

IL∞ + |t− τ |)
)

×

(∑

λ

ω2
λ||uλ(τ)||2L2 + C|t− τ |

)
,

where I = [τ, t] or [t, τ ], depending on the sign of t− τ .

Proof. The proof is identical to this of Lemma 5.2. The slight difference is
that we use a variant version of Lemma 2.2 which is obtained by replacing the
sequence (λs) by (ωλ). This works because

∑
λ ω

−1
λ is finite. �

The second lemma is proved in [17].

Lemma 6.2 Assume that vn → v in Hs. Then there exists a sequence (ωλ) of
positive numbers which satisfies

2sωλ 6 ω2λ 6 2s+1ωλ , ∀λ

and
ωλ/λ

s → ∞

such that
sup

n

∑

λ

ω2
λ||(vn)λ||

2
L2 <∞ .

Let u0n be a sequence such that u0n → u0 in Hs. Let un, u ∈ C([0, T ], Hs)
be the associated solutions of (6). Then

un → u in C([−T (R), T (R)], L2) , (52)

because of (51) and ||(un)x||L1
T (R)

L∞ 6 A, whereR is such thatR > sup
n
||un0||Hs .

We define a sequence (ωλ)λ like in Lemma 6.2, with vn = u0n. Lemma 6.1 with
τ = 0 yields

sup
n,t

∑

λ

ω2
λ(||(un)λ(t)||2L2 + ||uλ(t)||2L2) <∞ (53)
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Let
uΛ :=

∑

λ6Λ

uλ.

We first have

||un − u||L∞
T Hs 6 ||un − (un)Λ||L∞

T Hs + ||(un)Λ − uΛ||L∞
T Hs + ||uΛ − u||L∞

T Hs .

Let ε > 0.

sup
n,t

{||(un)Λ(t) − un(t)||Hs + ||uΛ(t) − u(t)||Hs}

6 sup
n,t

(
sup
λ>Λ

(
λs

ωλ

))

︸ ︷︷ ︸
−→0
Λ→∞

(∑

λ>Λ

ω2
λ(||(un)λ(t)||2L2 + ||uλ(t)||2L2)

)1/2

,

hence, because of (53), we can choose Λ large enough such that

sup
n,t

{||(un)Λ(t) − un(t)||Hs + ||uΛ(t) − u(t)||Hs} 6 ε/2 .

Next, thanks to (52), we can choose n0 large enough such that for n > n0,
t ∈ [−T (R), T (R)],

||(un)Λ(t) − uΛ(t)||Hs 6 CΛs||(un)Λ(t) − uΛ(t)||L2 6 ε/2 .

This completes the proof of Theorem 1.1. �

7 The proof of Theorem 1.2

Existence. We first remark that in Theorem 1.1 above,

T (ψ, s, ||φ||Hs) = T (||ψ||Xs1 , s, ||φ||Hs) ,

where s1 > 1 is large, and T can be assumed to be non-increasing with respect
to ||ψ||Xs1 and ||φ||Hs . Hence, if we define

T̃ (||g||Xs) := T (Cs1 ||g||Xs , s, C̃||g||Xs)

where Cs1 (resp. C̃) is the norm of the bounded linear map g → ψ (resp. g → φ)
from Xs into Xs1 (resp Hs) defined in Lemma 2.1, we have

T̃ (||g||Xs) 6 T (||ψ||Xs1 , s, ||φ||Hs) = T (ψ, s, ||φ||Hs) .

Let v ∈ C([−T, T ], Hs) be the solution of (6) given in Theorem 1.1. Then
u := v + ψ ∈ C([−T̃ , T̃ ], Xs) solves (1). Moreover, since ψ − g ∈ Hs, u − g ∈
C([−T̃ , T̃ ], Hs). ux ∈ L1

T̃
L∞ because vx does.
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Uniqueness. We choose ψ and T̃ as above. Let u be a solution of (1) as
required. Let ṽ = u− ψ. It is easy to see that ṽ solves (6), and the uniqueness
in Theorem 1.1 yields ṽ = v, where v is the solution of (6) we obtained in
Theorem 1.1.

Continuity with respect to the initial data. Let R > 0 and g ∈ Xs with
||g||Xs < R. Let (gn)n be a sequence in Xs such that gn → g in Xs. We assume
that for all n, ||gn||Xs 6 R.

As in Lemma 2.1, we define k(x) = (4π)−1/2e−x2/4, ψ = k ⋆ g, ψn = k ⋆ gn,
φ = g − ψ, φn = g − ψn.
Let v ∈ C([−T̃ , T̃ ], Hs) be the solution of (6), and vn ∈ C([−T̃ , T̃ ], Hs) solving

{
∂tw + ∂3

xw + w∂xw + ∂x(wψn) = −(∂3
xψn + ψnψ

′
n) , x ∈ R, t ∈ R

w(x, 0) = φn(x)

Lemma 6.2 applied to the sequence φn → φ in Hs and Lemma 6.1 yield

sup
n,t

∑

λ

ω2
λ

(
||(vn)λ(t)||2L2 + ||vλ(t)||2L2

)
<∞ ,

and we conclude as in section 6 that wn := vn − v → 0 in C([−T̃ , T̃ ], Hs). Since
s > 1 and ψn → ψ in Xs, we deduce that

un − u = (vn + ψn) − (v + ψ) → 0 in Xs.

�

8 Global well-posedness of (7) in Hs, s > 3/2.

The Benjamin-Ono equation possesses infinitely many invariants (see for in-
stance [1]). There is an invariant associated with each Hs norm, s ∈ N/2. Here
are the first ones.

I0(u) :=
1

2

∫ ∞

−∞

u2dx ,

I1(u) := −

∫ ∞

−∞

[
u3

3
+ uH(∂xu)

]
dx ,

I2(u) :=

∫ ∞

−∞

[
u4

4
+

3

2
u2H(∂xu) + 2(∂xu)

2

]
dx ,

I3(u) :=

∫ ∞

−∞

[
−
u5

5
−

4

3
u3H(∂xu) − u2H(u∂xu) − 2uH(∂xu)

2

−6u(∂xu)
2 + 4uH∂3

xu]dx .
The first two following lemmas are proved in [9].
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Lemma 8.1 Let φ ∈ Hs0 where s0 is large. Let u ∈ C(R, Hs0) be the solution
of (7) given in [9]. Then for all t ∈ R,

||u(t)||2L2 6 h(ψ, t, ||φ||L2). (54)

Lemma 8.2 Under the same assumptions that in Lemma 8.1, for all t ∈ R,

||u(t)||2H1 6 k(ψ, t, ||φ||H1 ). (55)

Here, h and k are valued in R+. They are even, non-decreasing functions of
t on R+, and continuous with respect to t and ||φ||L2 or ||φ||H1 .

Our aim is now to prove a similar lemma, where the L2 and H1 norm are
replaced by the H3/2 norm.

Lemma 8.3 Under the same assumptions that in Lemma 8.1 and 8.2,

−I3(u(t)) 6 −I3(φ) + C(ψ)

∫ |t|

0

(1 + h(ψ, s, ||φ||L2) + k(ψ, s, ||φ||H1 ))5ds

+C(ψ)

∫ |t|

0

(1 + h(ψ, s, ||φ||L2) + k(ψ, s, ||φ||H1 ))||u(s)||2H3/2ds . (56)

Proof. We will prove the lemma only for t > 0. We remark as in [9] that (7)
can be rewritten as

{
∂tu− 1

2∂xI
′
1(u) + ∂x(ψu) + (Hψ′′ + ψψ′) = 0

u(0) = φ
. (57)

For convenience, we will denote in the sequel ρ := ψψ′ + Hψ′′. Using the
properties of the invariants of the Benjamin-Ono equation (see [1]), we compute

d

dt
(−I3(u)) =

(
I ′3(u),−

1

2
∂xI

′
1(u) + ∂x(ψu) + ρ

)

= (I ′3(u), ∂x(ψu)) + (I ′3(u), ρ) . (58)

We note that

I ′3(u) = −u4 − 4(u2H(∂xu) + uH(u∂xu) +H(u2∂xu)) − 2H(∂xu)
2

−4H∂x(uH(∂xu)) + 6(∂xu)
2 + 12u∂2

xu+ 8H∂3
xu (59)

Using (59), the Cauchy-Schwarz inequality, Sobolev inequalities and integra-
tion by parts, we first show that

(I ′3(u), ρ) . ||u||4H1 ||ρ||L∞ + ||u||3H1 ||ρ||L2 + ||u||2H3/2 ||ρ||L2 + ||u||2H1 ||ρ′||L2

+||u||2H1 ||ρ||L∞ + ||u||H1(||ρ′||L∞ ||u||L2 + ||ρ||L∞ ||u||H1)

+||u||L2 ||ρ′′′||L2 (60)

24



Next, we control the quantity (I ′3(u), ∂x(ψu)). We will majorize separately
each term that we obtain as we substitute (59) into (I ′3(u), ∂x(ψu)). Our argu-
ments are again the Cauchy-Schwarz inequality, Sobolev inequalities, integration
by parts and the continuity of the Hilbert transform on Lp, 1 < p <∞.

(
−u4, ∂x(ψu)

)
= −

4

5

(
u5, ψ′

)
. ||ψ′||L∞ ||u||5H1 , (61)

−4
(
u2H(∂xu) + uH(u∂xu) +H(u2∂xu), ∂x(ψu)

)

. ||u||3H1 (||ψ′||L∞ ||u||L2 + ||ψ||L∞ ||u||H1) , (62)

(
−2H(∂xu)

2 + 6(∂xu)
2, ∂x(ψu)

)

. ||u||2H5/4(||ψ
′||L∞ ||u||L2 + ||ψ||L∞ ||u||H1) (63)

and

(
u∂2

xu, ∂x(ψu)
)

= −
(
∂xu, ∂x(ψ′u2)

)
−

1

2

(
(∂xu)

2, ∂x(ψu)
)

. ||u||3H1(||ψ′′||L2 + ||ψ′||L∞) + ||u||H5/4(||ψ′||L∞ ||u||L2 + ||ψ||L∞ ||u||H1)(64)

It is a bit more delicate to estimate the two remaining terms, which are
(H∂x(uH(∂xu)), ∂x(ψu)) and

(
H∂3

xu, ∂x(ψu)
)
. We begin with the last one.

Using the properties of the Hilbert transform, the fact that D = H∂x and an
integration by parts,

(
H∂3

xu, ∂x(ψu)
)

=
(
∂xD

3/2u,D3/2(ψu)
)

= −
(
D3/2u,D3/2(ψ′u)

)
+

1

2

(
(D3/2u)2, ψ′

)
−
(
D3/2u,

[
D3/2, ψ

]
∂xu

)
.

Using Lemma 2.5, we have

−
(
D3/2u,D3/2(ψ′u)

)
. ||u||2H3/2 ||ψ

′||H3/2 , (65)

and it is easy to see that

1

2

(
(D3/2u)2, ψ′

)
. ||ψ′||L∞ ||u||2H3/2 . (66)

Next,

[
D3/2, ψ

]
∂xu =

[
J3/2, ψ

]
∂xu− [R,ψ]∂xu
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where R is defined by

R̂f(ξ) =
[
(1 + ξ2)3/4 − |ξ|3/2

]
f̂(ξ) = |ξ|3/2

(
(1 +

1

ξ2
)3/4 − 1

)
f̂(ξ) .

In particular, R is bounded on L2, and

|| [R,ψ] ∂xu||L2 . ||ψ||L∞ ||u||H1 .

Using finally Lemma 2.7, we obtain

(
H∂3

xu, ∂x(ψu)
)

. (||ψ′||L∞ + ||ψ′||H3/2)||u||2H3/2 + ||ψ||L∞ ||u||H1 ||u||H3/2 . (67)

We now control the last term.

(H∂x(uH(∂xu)), ∂x(ψu)) =
(
D1/2(uDu), D1/2∂x(ψu)

)
.

Lemma 2.5 yields

||D1/2(uDu)||L2 . ||u||H1 ||u||H3/2 , (68)

and with Lemma 2.7, we obtain that

||D1/2∂x(ψu)||L2 . ||J3/2(ψu)||L2

. ||ψJ3/2u||L2 + ||
[
J3/2, ψ

]
u||L2

. ||ψ||L∞ ||u||H3/2 + ||ψ′||H3/2 ||u||H1/2 . (69)

Bringing together (58) and the estimates (60-64), (67), (68) and (69), we get

d

dt
(−I3(u)) . C(ψ)

[
(1 + h+ k)5 + (1 + h+ k)||u||2H3/2

]
. (70)

Integrating with respect to time, we obtain the announced result. �

Lemma 8.4 Under the same assumptions that in Lemma 8.3,

||u(t)||H3/2 6 m(ψ, t, ||φ||
3/2
H ) , (71)

where m is an even positive function which growth with t on R+, and which is

continuous with respect to t and ||φ||
3/2
H . m can be expressed in function of h

and k, but we will omit this expression, which is of low interest.
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Proof. Using the conservation law I3, Lemma 8.3 and the Cauchy-Schwarz
inequality,

||u(t)||2H3/2 . C(||φ||
3/2
H + (1 + k)5) + C(ψ)

∫ t

0

(1 + h+ k)5ds

+C(ψ)

∫ t

0

(1 + h+ k)||u(s)||2H3/2ds .

The result follows by applying the Gronwall’s lemma. �

Passing to the proof of Theorem 1.5, take now φ ∈ H3/2. Since (7) has
been shown to be locally well-posed in H3/2, there exists T ∗ > 0 and a solution
u ∈ C([0, T ∗[, H3/2) of (7). Moreover, either T ∗ = ∞ or T ∗ is finite and
||u(t)||H3/2 −→

t↑T∗
+∞. We assume by contradiction that T ∗ is finite. Let (φj)j∈N

be a sequence of Hs1 functions such that φj → φ in H3/2, where s1 is large.
We denote by uj ∈ C(R, Hs0) the solution of (7) with initial data φj , which is
given by the results of [9]. Then, using Theorem 1.3, it is easy to see that for
all T < T ∗, uj → u in C([0, T ], H3/2). In particular,

||u||L∞
T H3/2 6 lim inf ||uj ||L∞

T H3/2 6 limm(ψ, t, ||φj ||H3/2) = m(ψ, t, ||φ||H3/2 ) .

Letting T → T ∗, we obtain a contradiction with the fact that ||u(t)||H3/2 blows
up as t ↑ T ∗.

We have shown that (7) is globally well-posed in H3/2. We next prove that
it is globally well-posed in Hs, where s ∈ (3/2, 2).

Inequality (48) was shown for a regular solution of (6), but it clearly remains
true for a regular solution of (7).

Like in [19], we use the following inequality due to Brezis and Gallout (see
[3]): if f ∈ Ha(Rn) with a > n/2, then

||f ||L∞ 6 Ca,n(1 + ||f ||Hn/2

√
log(2 + ||f ||Ha)) . (72)

Since s− 1 > 1/2, it follows that

||∂xu||L∞ . 1 + ||u||H3/2

√
log(2 + ||u||Hs)) . (73)

Thanks to (73) and (48), we obtain that there is C > 0 such that for all
u0 ∈ H∞, T > 0, t ∈ [−T, T ],

d

dt
||u(t)||2Hs 6 C(1 + ||u(t)||H3/2) log(3 + ||u(t)||2Hs)(3 + ||u(t)||2Hs) ,

using Lemma 8.4, we get

||u(t)||2Hs 6 (3 + ||u0||
2
Hs) exp exp(C(1 +m(ψ, T, ||u0||H3/2))t) .

By continuity with respect to the initial data, this inequality remains true
for u0 ∈ Hs. This shows that (7) is globally well-posed in Hs, and the proof of
Theorem 1.5 is complete.
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9 Appendix

The proof of Lemma 2.4 is similar and simpler to that of Lemma 2.3 which was
done in [11]. It is based on the following result due to Coifman and Meyer (see
[5], [6]).

Theorem 9.1 Let σ(η, ξ) ∈ C∞((Rn)k × Rn\(0, 0)) satisfy

|∂νσ(η, ξ)| 6 Cν(|ξ| + |η|)−|ν| , (74)

where ν = (ν0, ..., νk), νj ∈ Nn, and

|ν| = |ν0| + ..+ |νk| 6 N := n(k + 1) + 1 .

Then
||σ(D)(a1...ak, f)||L2 . ||a1||L∞ ...||ak||L∞ ||f ||L2 ,

where σ(D)(a, f) = σ(D)(a1...ak, f) is defined by

σ(D)(a, f) :=

∫ ∫
eix(ξ+η̃)σ(η, ξ)â(η)f̂ (ξ)dηdξ ,

a(x) = a1(x1)...ak(xk) , xj ∈ R
n ,

η̃ = η1 + ...+ ηk , η = (η1, ..., ηk) .

In our case, n = k = 1, hence N = 3.

Proof of Lemma 2.4. We begin as in the proof of Lemma 2.3 in [11]. We
write

[Js, f ]g(x) = c

∫ ∫
eix(ξ+η)

[
(1 + (ξ + η)2)s/2 − (1 + η2)s/2

]
f̂(ξ)ĝ(η)dηdξ

= c
2∑

j=1

σj(D)(f, g)(x)

where

σj(ξ, η) =
[
(1 + (ξ + η)2)s/2 − (1 + η2)s/2

]
φj(

ξ

η
)

and the φj are positive even functions on R such that φ1 + φ2 ≡ 1 on R and
Suppφ1 ⊂ [−1/3, 1/3], Suppφ2 ⊂ R\[−1/4, 1/4].

It was shown in [11] that

||σ1(D)(f, g)||L2 . ||∂xf ||L∞ ||Js−1g||L2 . (75)

Next, we define

σ2(D)(f, g)(x)

=

∫∫
eix(ξ+η) (1 + (ξ + η)2)s/2 − (1 + η2)s/2

ξ(1 + ξ2)
s0+s−1

2

φ2(
ξ

η
)(1 + ξ2)

s0+s−1

2 ξf̂(ξ)ĝ(η)dηdξ

=: σ̃2(D)(Js0+s−1∂xf, g)(x) .
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It suffices to prove that σ̃2 satisfies the assumptions of Theorem 9.1 to obtain
that

||σ2(D)(f, g)||L2 . ||Js0+s−1∂xf ||L2 ||g||L∞ , (76)

which will complete the proof of Lemma 2.4, combined with (75).
It is clear that σ̃2 ∈ C∞(R2\(0, 0)) (because it vanishes if |ξ| 6 |η|/4). In

fact, σ̃2 ∈ C∞(R2). Indeed, if |ξ| 6 1/8 and σ̃2(ξ, η) 6= 0, then |η| 6 4|ξ| 6 1/2,
and |ξ + η| 6 5/8. Therefore, using integer series, for |ξ| 6 1/8, we can write

σ̃2(ξ, η) =
1

(1 + ξ2) s0+s−1
2

∞∑

r=0

cr
(ξ + η)2r − η2r

ξ
φ2(

ξ

η
) ,

which is clearly of class C∞ on {(ξ, η), |ξ| 6 1/8}, thanks to the mean value
theorem and because the ray of convergence of

∑
crX

r is 1, and 1/8 + 1/2 < 1.
Therefore σ̃2 is bounded on the compact set K := {(ξ, η), |ξ| 6 1, |η| 6 4},
hence on the set {(ξ, η), |ξ| 6 1}, because it vanishes on {(ξ, η), |ξ| 6 1}\K,
and we have a similar result for the derivates of σ̃2.

It remains to see that the derivates of σ̃2 of order less or equal to 3 are
bounded on {(ξ, η), |ξ| > 1}. That is what we will do now.

Let ν be a multiindex such that |ν| 6 3. Then by the Leibniz formula,

∂ν σ̃2(ξ, η) =
∑

α+β+γ+δ=ν

cαβγδ∂
α
(
(1 + (ξ + η)2)s/2 − (1 + η2)s/2

)

∂β 1

ξ
∂γ 1

(1 + ξ2)
s0+s−1

2

∂δφ2(
ξ

η
) . (77)

We estimate now each derivate in the right hand side of (77).

∣∣∣∂α
(
(1 + (ξ + η)2)s/2 − (1 + η2)s/2

)∣∣∣ . (1 + (ξ + η)2)
s−|α|

2 + (1 + η2)
s−|α|

2 ,

∣∣∣∣∂β 1

ξ

∣∣∣∣ .
1

ξ1+|β|

and ∣∣∣∣∣∂
γ 1

(1 + ξ2)
s0+s−1

2

∣∣∣∣∣ .
1

(1 + ξ2)
s0+s−1+|γ|

2

.

If δ = 0, ∂δφ2(ξ/η) = φ2(ξ/η) is bounded and vanishes on the set {(ξ, η), |ξ/η| 6

1/4}. Else, ∂δφ2(ξ/η) vanishes on {(ξ, η), |ξ/η| 6 1/4 or |ξ/η| > 1/3}, and

∣∣∣∣∂δφ2(
ξ

η
)

∣∣∣∣ .
1

η|δ|
.

1

ξ|δ|
.

Therefore, on the set {(ξ, η), |ξ| > 1},

|∂ν σ̃2(ξ, η)| (|ξ| + |η|)|ν| . Max
α+β+γ+δ=ν

Qαβγδ , (78)
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where

Qαβγδ :=
(|ξ| + |η|)|ν|

(
(1 + (ξ + η)2)

s−|α|
2 + (1 + η2)

s−|α|
2

)

|ξ|1+|β|+|δ|(1 + ξ2)
s0+s−1+|γ|

2

.

To control Qαβγδ, we distinguish two cases:

• if s− |α| > 0,

Qαβγδ .
|ξ||ν|(1 + |ξ|2)

s−|α|
2

|ξ|1+|β|+|δ|(1 + ξ2)
s0+s−1+|γ|

2

. (1 + ξ2)−s0/2 . 1

because s0 > 0.

• if s− |α| < 0,

Qαβγδ .
|ξ||ν|

|ξ|1+|β|+|δ|(1 + ξ2)
s0+s−1+|γ|

2

. (1 + ξ2)(|α|−s0−s)/2 . 1

because |α| 6 3 and 3 − s0 − s 6 0.

The proof of Lemma 2.4 is complete. �
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