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The Cauchy Problem for defocusing Nonlinear
Schrodinger Equations with non-vanishing
initial data at infinity.

Clément Gallo
UMR de Mathématiques, Bat. 425

Université Paris-Sud
91405 Orsay, France.

Abstract. For rather general nonlinearities, we prove that de-
focusing nonlinear Schrodinger equations in R" (n < 4), with
non-vanishing initial data at infinity ug, are globally well-posed
in ug + H*. The same result holds in an exterior domain in R",
n=273.

1 Introduction

This paper is devoted to the study of the Cauchy problem for defocusing
nonlinear Schrodinger equations in dimensions n < 4:

i%+ Au+ f(luP)u=0, (t,z) ERxQ (1)
u(0) = wug ’

where 2 = R™. The initial data uy has the boundary condition
|ug(2)[* — po as x — o0, (2)

where pg > 0 denotes the light intensity of the background. The real-valued
function f is assumed to be defocusing. Namely, f satisfies the following
assumption:

f(po) =0 and f'(py) < 0. (Hy)

Under the same condition (Hf) on f, we also study the Cauchy Prob-
lem (1) where Q is an exterior domain in R, n = 2,3, with a data ug which

1



satisfies the same condition at infinity (2).

Equation (1) with @ = R" admits many particular solutions with the
boundary condition (2). These solutions may be gathered under the label
“dark solitons”. For general nonlinearities, let us mention for instance the
stationary and the travelling bubbles. A. de Bouard [dB| gave a necessary and
sufficient condition on the nonlinearity ensuring the existence of a stationary
bubble, in any dimension. She also proved that the stationary bubbles are all
unstable (see also [BGMP], [BP]). Z. Lin [L] studied the travelling bubbles
in dimension one. He gave a criterion on the variation of the momentum with
respect to the speed which determinates if these bubbles are stable or not.
The Gross-Pitaevskii equation, which is (1) with f(r) = 1 —r (here, pg = 1),
has been the object of a deeper study. F. Bethuel and J.C. Saut [BS] proved
the existence of travelling waves for the Gross-Pitaevskii equation for small
non-zero speeds, in dimension two. Similar results have been obtained by D.
Chiron [C] in dimension three and more.

The existence of all these dark solitons makes relevant the study of the
Cauchy problem (1) with condition (2) at infinity. For example, it is a
preliminary to the study of their stability when it is not known whether
these solitons are stable or not!. For unstable dark solitons, the study of the
Cauchy Problem (1) gives informations on the way this unstability occurs:
for instance, a global well posedness result prohibits blowing-up.

A first step in the study of this Cauchy Problem has been done in [BS],
where it was shown that the Gross-Pitaevskii equation is globally well-posed
in 14+ HY(R") for n = 2,3. However, this point of vue is not relevant in all
cases. Indeed, in dimension one, most of the travelling bubbles have different
limits at +00 and —oo. Moreover, it was shown by P. Gravejat [Gr] that the
two dimensional travelling waves for the Gross-Pitaevskii equation do not
belong to the space 1+ H! (they do not even belong to 1 + L?), in spite of
the fact that they tend to 1 at infinity (up to the multiplication by a constant
of modulus 1).

As a consequence, we need to find a more appropriate framework to study
the Cauchy Problem. In [Ga] (see also the works of P.E. Zhidkov [Z0], [Z1],
[22], [Z3]), we worked in the Zhidkov spaces

XFRY) := {u € L®(R"), Vu € H*1(R™)}.

We proved some global well-posedness results for (1) in dimension one, with

L As far as we know, the only dark solitons for which a stability result has been estab-
lished are the stationary bubbles (see [dB]) which are known to be unstable, the travelling
bubbles in dimension 1 (see [L]) and the black solitons in dimension 1, which are station-
ary solutions to (1)-(2) vanishing at one point, in the contrary to the bubbles (see [DMG],

[G))-



condition (2) at infinity. However, we assumed the potential

PO
V(r)= f(s)ds

to be positive, a condition which is not satisfied for all the nonlinearities
for which there exists a stationary bubble (see [dB]). In the Gross-Pitaevskii
case, as for the existence of travelling waves, the Cauchy problem has been the
object of deeper investigations. Using a Brezis-Gallouét method, O. Goubet
[Go] proved the global well-posedness for the Gross-Pitaevskii equation in
X?(R?), if the initial data has finite energy. More recently, P. Gérard [Ge]
obtained a global well-posedness result for the Gross-Pitaevskii equation in
dimension two and three in the energy space

{ue H. ,Vue L*1—|ul* € L*}.

In this paper, we generalize this results to a larger class of nonlinearities.
In particular, the potential is not assumed to be positive?. Our main result
is as follows.

Theorem 1.1 Let n = 1,2,3 or4, py > 0, and f € C*'(R,) (k = 1 if
n=1Fk=2ifn=23, k=3 ifn=4 ) which satisfies (Hg). We assume
moreover that there exists ay = 1, with the supplementary condition oy < o
if n = 3,4 (where of =3 ifn=3,a] =2ifn=4), and oy € R with
ag — ag < 1/2 such that
f'(r)| < Cor=3 ifn=1,2,3
Vr 2 1, { }f///((r)n < 007”0”74 ifn =4

3
3Co >0, 4> po, if aq < 3/2, V is bounded from below (Hoo 1)
if on >3/2, ¥r =2 A, r** < CoV(r)
Then for any reqular function of finite energy ¢, which means
¢ € Cy U (R, Vo € HF (R, |6 — po € L*(R™), (H)

equation (1) is globally well-posed in ¢ + H'(R™). Namely, for every wy €
HY(R"), there exists an unique w € C(R, H'(R™)) such that ¢ +w solves (1),

2In the usual “0 at infinity” case, the boundedness of the H! norm may be deduced from
the conservation of the energy, the conservation of the charge and a Gagliardo-Nirenberg
inequality. In our case, the analoguous to the charge is the quantity [(Ju|?> — po), the
conservation of which is not so clear.

SRemark that the first condition in (Hg, a,) implies |V (r)| < r® for r > 1. Thus, in
the case a1 > 3/2, (Ha, a,) may be satisfied only if as < a1, so that s € [ag — %,al].
Remark also that in the case oy < 3/2, aa plays no role.



with the initial data w(0) = wy.

For any T > 0, the flow map wo — w, H' — C([0,T], H') is Lipshitz con-
tinuous on the bounded sets of H*.

The energy

ew = [ V@+wPdet [ V(o+uP)ds

15 conserved by the flow.

For a very large class of defocusing nonlinearities, assumption (Ha, o,)
is satisfied for some aq, as as required in Theorem 1.1. We give here some
examples.

Examples.

1. The pure powers: f(r) = (p§ —rP) where p is a positive integer if n = 1 or
2, p=1if n = 3. In that case, V(r) > 0 on Ry, V(r) ~ Iﬁrpﬂ as r — 0o
and f”(r) = —p(p — 1)r?=2. Thus (Ha, a,) is satisfied for oy = az =p+ 1.

2. Saturated nonlinearity: f(r) = (Hzr)g — (1+1a)2- In this case, f"(r) =

% and V(r) = % > 0. In particular, (H;,,) is satisfied for any
9.

3. The cubic-quintic case: f(r) = (r — po)(2a + po — 3r), where 0 < a < po.
Then V(r) = (r — po)?(r — a) and f”(r) = —6. In the contrary to the
two previous examples, V' is not positive on Ry, but (H,, 4,) is satisfied for
a; = as = 3. Thus Theorem 1.1 applies in dimensions one and two (in

dimension three, Theorem 1.3 below applies).

The global well-posedness for an initial data in the energy space
E={u€ H.,Vue L?p— |u* € L*}.

is a consequence of Theorem 1.1 and of the following proposition, which
directly follows from the results of P. Gérard in [Ge].

Proposition 1.1 Let u € E. Then there exists ¢ € C;°(R™) N E such that
Vo € H*(R™)" and w € H'(R") such that u = ¢ + w.

From this Proposition we deduce:

Theorem 1.2 Under the same assumptions that in Theorem 1.1, for any
ug € E, there exists an unique w € C(R, H'(R™)) such that u := ug + w
solves (1).



Proof. Given uy € FE, let uyg = ¢ +wy be a decomposition as in Proposition
1.1. Thanks to Theorem 1.1, there exists an unique w € C(R, H'(R")) such
that ¢ + @ solves (1). Therefore w = @w — wy is the unique element of
C(R, H'(R")) such that u := ug + w solves (1). O

In particular, the solution ©v = ¢ + w given by Theorem 1.1 does not
depend on the choice of the decomposition of uy € F into ¢ + wy.

In the critical case ay = af, we obtain the following local result.

Theorem 1.3 Under the same assumptions on f and ¢ that in Theorem
1.1, if n = 3,4 and oy = «af, there exists R > 0 and T > 0 such that, for
wo € H' with ||wo||gn < R, there exists a unique w € C([0,T], H') such that
¢+ w solves (1).

For that T, the flow wy — w 1is locally Lipshitz continuous from the ball of
radius R in H' into C([0,T], H').

The energy is conserved on [0, T).

Similarly to the sub-critical case, we deduce from Theorem 1.3 and Propo-
sition 1.1 the following result.

Theorem 1.4 Under the same assumptions on f that in Theorem 1.3, if
ug € E satisfies (Hy), there exists T(ug) > 0 and a unique w € C([0,T], H")
such that ug 4+ w solves (1).

It was shown in [Ge] that in dimensions two and three, the Gross-Pitaevskii
equation is globally well-posed in the energy space E endowed with a struc-
ture of complete metric space by the distance

d(u,v) = Jlu = vlxem + [[Juf* = o] 2.

It is quite clear that for any 7' > 0 and ug € E, ug + C([0,T], H') is strictly
included in C([0, T, E). In particular, P. Gérard obtained in [Ge] the unique-
ness of the solutions to (1) in a bigger space than in Theorem 1.2. Using
some of the arguments developed in [Ge| we get the uniqueness in the energy
space for other non-linearities than Gross-Pitaevskii. More precisely, we have
the following result.

Theorem 1.5 Let n = 2,3,4. Under the assumptions of Theorem 1.1, let
T >0, u € E and u € C([0,T], E) be a solution of (1) with u(0) = wy.
Then u — ug € C([0,T], H'), and therefore u is the solution of (1) given by
Theorem 1.2.



Remarks.

1. In Theorem 1.3, R = R(¢) depends on ¢. For general uy € E, it is not
clear whether we can find a function ¢ which satisfies (Hy) and such that
wy = up — ¢ € H' has H'-norm less than R(¢). That is why we need to
assume that ug satisfies (H,) in Theorem 1.4.

2. In dimension 4, the Gross-Pitaevskii equation is critical (that is a; = af).
In [Ge], P. Gérard proved that the four-dimensional Gross-Pitaevskii equation
is globally well-posed in the energy space F, provided the initial condition wu
has small energy. In Theorem 1.3, we prove that for critical non-linearities
(and in particular for Gross-Pitaevskii in dimension 4), (1) is locally well-
posed in ug + H*, for any regular initial condition wu, in the energy space,
without the smallness assumption on the energy. However, we do not obtain
any global well-posedness result, and we only prove the local Lipshitz conti-
nuity of the flow on small intervals of time. The missing argument is a per-
sistency result. The reason of this missing is that for general non-linearities
(in particular when the potential V' is non-positive), the conservation of the
energy does not imply the conservation of the smallness of w in H'.

Our proof of Theorem 1.1 consists in looking for a solution of (1) under
the form ¢ + w. Thus the equation satisfied by w writes

Jw w = F'(w
{zua(t())—i_:Awo F( (t)) , (3)

where

F(w) = =A¢ — f(|¢+ w[*)(¢ +w). (4)

We prove that (3) is locally well-posed in H*(R"), k =1forn =1,k =2
for n = 2,3 and k = 3 for n = 4, and we give estimations for the H!'-norm of
w on the interval of existence in H*. Next, for n = 2,3 or 4, using Strichartz
inequalities, we prove that (3) is locally well-posed in H', and globally in H*.
Finally, we approximate our (local) H! solution by the (global) H* solution,
and we deduce that its H'-norm may not blow up on bounded intervals of
time.

Using the Strichartz inequalities obtained by N. Burq, P. Gérard and N.
Tzvetkov in [BGT], the same method gives similar results, in dimensions two
and three, when R™ is replaced by an exterior domain 2 = R"\ K, with either
Dirichlet or Neumann boundary conditions. More precisely, we consider the
initial value problem

%+ Apu+ f(JulP)u=0, (t,r) ERx Q )
U(O) = Ug € ED ;



where the initial condition ug belongs to the energy space with Dirichlet
boundary conditions

Ep = {U < H11C>C(Q)7vu S LZ(Q)7pO - |U|2 < LZ(Q)7XUJ S Hé(Q)}

Here, x € C°(R™) and x = 1 in a neighborhood V' of the obstacle K. We
also consider

%+ Ayu+ f(JulPu=0, (t,z) e R x Q -
u(0) = ug € By ’

where the initial condition uy belongs to the energy space with Neumann
boundary conditions

Eyn :={u € H..(Q),Vu € L*(Q), po — |[u]* € L*(2), xu € Hy(Q)}.
The result we prove is as follows.

Theorem 1.6 Let n = 2 or 3, and Q C R™ be the exterior domain of
a smooth, compact, non-trapping, non-empty obstacle K, and f € C3(Ry)
which satisfies (Hy). We assume moreover that there exists a; > 1, ay €
a1 — 1/2,04] such that (Hy, a,) is true. If n = 3, we assume moreover
ap < 2.

Then, for every ug € Ep (resp. Ey ), there exists an unique w € C(R, H}(2))
(resp. C(R, Hy(R2))) such that ug + w solves (5) (resp. (6)).

Given ¢ € Ep (resp. Ey), for any T > 0, the flow map wo — w, H} —
C([0,T], Hy) (resp Hy — C([0,T], Hy) ), where w(0) = wy and ¥ + w solves
(5) (resp. (6)), is Lipshitz continuous on the bounded sets of H} (resp Hy,).
The enerqgy is conserved by the flow.

In the critical case n = 3, ay = 2, we obtain:

Theorem 1.7 Let Q C R? be the exterior domain of a smooth, compact,
non-trapping, non-empty obstacle K, and f € C3(R,) which satisfies (Hy).
We assume moreover that there exists as € [3/2,2] such that (Ha,,) is true.
Then, for every ¢ satisfying

¢ € C°(Q), Vo € H®(Q), Suppp C Q\(V NQ), |¢]> — po € L*(Q)

(in particular, ¢ € Ep N Ey), there exists R > 0 and T > 0 such that
for every wy € Hj (resp. Hy) with ||wo| miy < R, there exists an unique
w € C([0,T], HY(Q)) (resp. C([0,T], H;(Q))) such that w(0) = wy and ¢+ w
solves (5) (resp. (6)).

For that T, the flow wy — w is locally Lipshitz continuous from the ball of ra-
dius R in H(Q) (resp. Hx(2)) into C([0,T], H}(R2)) (resp. C([0,T], Hx(£2))).
The enerqgy is conserved by the flow.



Remark. In the case of an exterior domain, we only obtain uniqueness
results in spaces like ug+C([0, T, H}), and not in C([0, T'], Ep) (the continuity
in Ep should be understood in the sense of the analogous to the distance dg
for an exterior domain). Indeed, even for the linear Schrodinger equation,
the well-posedness in the energy space is not that clear.

Notations. If m € [0, 00], C;*(R"™) denotes the space of bounded functions
of class C™ on R".
We denote H*(R") = QOHS(R”).

The notation A < B means that there exists a harmless constant C' > 0 such
that A < CB.

If T >0, p,q>1, LLL? denotes the Banach space LP([0,T], L?) equipped
with its natural norm.

If p € [1, 0], we denote by p' = p%l its conjugate exponent.

The structure of this paper is as follows. In section 2, we prove that
(3) is globally well-posed in a space H*(R™) with k large. In section 3, we
give an estimation on the H! norm of this solution on its maximal interval of
existence in H*. In section 4, thanks to a fixed point argument in C([0, 7], H")
and Strichartz estimates, we prove that (3) is locally well-posed in H!. In
section 5, we prove a persistence result and obtain the global well-posedness of
equation (3) in H', in the sub-critical case. Section 6 is devoted to the proofs
of Proposition 1.1 and Theorem 1.5. In that section, most of the arguments
are due to P. Gérard (see [Ge]). In section 7, we adapt the method to the
case of an exterior domain in R, n = 2, 3. Section 8 is devoted to the proof
of some technical lemmas concerning the LP + L? spaces, stated and used in
section 6.

2 Local theory for regular solutions

Lemma 2.1 We assume (n, k) = (1,1), (2,2), (3,2) or (4,3), f € C*(R,)
satisfies (Hy), ¢ satisfies (Hy). Then F maps H*(R™) into itself.

Proof. Let w € H*(R") and ¢ € L. Then ¢ + w € L™ because of the
Sobolev embedding H*(R™) C L>*(R™). Since f and f’ are continuous, it



follows that f(|¢ 4+ w[?), f'(|¢ +w|*) € L>®. Next, we write

ﬂw+mﬁx¢+w):=(WP—p@[:f@m+dWP—p@Md¢+w)
+2Re {w/o o+ swf'(|¢+ swP)ds| (¢ +w) (7)

Using (Hy), it is easy to see that the right-hand side in (7) belongs to H".
Thus F(w) € H*, because A¢p € H”. O

Lemma 2.2 We assume (n, k) = (1,1), (2,2), (3,2) or (4,3), f € CF1(R,)

satisfies (Hy), ¢ satisfies (Hy). Then F : H*(R") — H¥(R™) is locally Lip-
shitz continuous.

Proof. Let us take R > 0 and wy, wy € H* such that ||w:| gx, ||w2| g+ < R.
Then

Fma—ﬂm)zl[ﬂw+m+4m—wmmm—wﬁ

+2NRe [(w2 —w1)¢ +wi + s(wg — wl)}
X f(|6+ wn + s(wz — 1)) (6 + wy + s(wz — wy))|ds(8)
Next, for all = € R,
[6(x) + w1 (2) + s(ws(w) — wi(2))] < |@llz= +2CR,,

where C is the norm of the continuous Sobolev embedding H* C L. Thus
there exists a constant C(R) > 0 such that || £ (|¢+w; +s(ws—w)|?)| 2~ <
C(R), for @« = 0,..,k + 1. Using again Sobolev embeddings H*(R") C
L>*(R"), as well as H'(R") c LYR") for n = 2 or 3, H'(R?) c L*(R?)
and H?*(R*) C LP(R*) for every p € [2,00), it follows from (8) and its differ-
entiation that

|F(w1) = F(ws) || e < C(R)||wy — wa| s,
where C (R) only depends on R, and not on wy, ws. O

Once these two lemmas have been established, we can apply the classical
results of the theory of nonlinear evolution equations (see for instance [P],
Theorems 6.1.4 and 6.1.5, and [CH]). We deduce the following local well-
posedness result:



Theorem 2.1 (n,k) = (1,1), (2,2), (3,2) or (4,3), f € C*Y(R,) satisfies
(H;), ¢ satisfies (Hy). For every wy € H*(R™), there exists T*(wq) > 0 such
that (3) has a unique mild solution w € C([0,T*), H*(R™)), which means that
w(t) = ePwy — Zfot =2 F(w(s))ds, where e*® denotes the Schridinger
group. If T* < oo, then ||w(t)|gx T +o0 as t T T*. Moreover, the map
T* : H* — R* is semi continuous from below, and if wy € H*(R"), w
is a classical solution to (3), which means that w € C([0,T*), H* *(R™)) N
CH((0,7°), HH(R")).

3 Estimate on the H'! norm for regular solu-
tions

We next prove under the supplementary assumption (Hg, o,) for some a; > 1,
ay € [y —1/2, a4] that the norm of w(t) in H'(R") (where w is the solution
of (3) given by Theorem 2.1) can not blow up on [0, 7*(w)). In particular, in
the one-dimensional case, this result and Theorem 2.1 imply that w is global.
Namely, for every wy € H'(R), T*(wg) = +00, and Theorem 1.1 is proven in
the case n = 1. We first prove that the energy is conserved on [0, T*(wy)).

Lemma 3.1 Let (n,k) = (1,1), (2,2), (3,2) or (4,3), f € C*(R,) satis-
fies (Hy), ¢ satisfies (Hy), wo € H*(R™). Then for every t € [0,T*(wy)), the
energy

&0 = [Vo+ Vol + [ Vilol) +uttaP)ds O
is conserved: E(t) = £(0) =: &, where V(r) := [ f(s)ds.

Proof. It suffices to prove Lemma 3.1 for wy € H**2. Indeed, once this
is established, the lower semi-continuity of 7™, the continuity of the flow
wo — w(t) from H* into H* for every ¢t < T* (see [CH]), the density of H*2
into H*, and the continuity of the map H* 3 w — V(|¢ + w|?) € L! imply
the Lemma in all its generality. Let us first verify that

( w = V(| +wl?)
HER™) — L

is continuous. We write

V(o +w?) = V(\gz)\?)—/ 2Re [wo + sw]

0

X <f(\d)\2) +/ 2Re [swo + sTw] f'(|¢ + ST’LU’Z)CZT) dg10)

0
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We have already seen in the proof of Lemma 2.1 that f(|¢|?) € L?. Thus,
using the Cauchy Schwarz inequality and the Sobolev embedding H* C L,
it follows that the last term in the right-hand side of (10) is continuous from
H* into L'. In order to prove that V(|¢|*) € L', we just write

V@6 = (16— po)? / s / ~F(po+ st(16P — po))drds,

and we use the assumption |¢|? — py € L?, as well as the boundedness of ¢
and the continuity of f’.

We next prove the Lemma for wy € H**2, which will be assumed from
now on. Let t € [0,7*(wy)). Let us multiply (3) by dw(t), sum over R™ and
take the real part. We get

d

_% o ‘V(QS“‘ ’LU(t))(x)’de - / iv(yqﬁ(x) + w(t,x)P)dx —0.

Next, w — V(|¢p+w|?) € CL(H*, L'), as is shown by the following expansion,
which is obtained by the Taylor formula. For every w,éw € H*,

V(o +w+dw|*) = V(|¢ +w|*) — 2%Re [5w¢+ w} f(|o +wl?

1 1
—4/ / Re [dwe + w] Re [sdwd + w + sTow] f'(|¢ + w + sTow|*)drds
o Jo
1
+2/ slow?f(|¢ + w + séw|*)ds. (11)
0
Since moreover w € C1((0,T*), H*), the map t — V (|p+w(t)[?), [0, T*(wp))
L*(R™) is of class C'. Thus

d

[ vt +utt ol = 5 [ V(o) + w0

and the lemma is proved. O
Lemma 3.2 (n, k) = (1,1), (2,2), (3,2) or (4,3), f € CF'Y(R,) satisfies
(Hy), ¢ satisfies (Hy). Let us write V as V =V, — V_, where V,,V_ > 0

and V_ is assumed to be bounded. Then there exists a constant Cy > 0 such
that for every wy € H*(R™), t € [0,T*), we have

V¢ + Vaw(t)]|7 +/Rn Vi(lo(z) +w(t,2))de < Cr(1+ lw(t)[l72) (12)

11



Proof. Thanks to Lemma 3.1, it is clear that the left hand side in (12)
equals

Eo+ /n V_(|p(z) +w(t,2)|*)dz .

Next, the definition of V' and (Hy) imply V(po) = 0, V'(po) = —f(po) = 0
and V" (po) = —f'(po) > 0. It follows that there exists Cy > 0 and § > 0
(for convenience, we assume § < pg) such that V(r) = Cy(py — r)? for every
r € [po — 0, po + ¢]. In particular, V_ =0 on [py — 6, po + d]. Thus

[ vatote) + wta)Prde < V-l o lo + w(OF < - 5)]

HIVollp [{z, 6 + w(t)]* > po + 0} |(13)

Next, using the triangle inequality, {z,|¢ + w|?> < po — d} is a subset of
{x, |w| = |¢| — (po — §)/?}, which is itself included in the union of {z, |w| >

)/ /
|| — (po _5)1/2 w} and {z, |¢| — (po _(5)1/2 M}‘
&mmm$@w+w0\>pw~nc{xmo\>mWHWﬂ—ww>
%} U {z,|6] = M} Thus

[ Vottota) + wit. o) da

4‘w(t,x)|2dx 1/2 4 (,00 . 5)1/2
<mwm<éwﬂy4m_wm |{\m ! H

sjut, o) d % )12
& ((po + 0)1/2 — pyl7)? 2

The result follows, since (Hy) implies |¢(z)* — po as @ — oo. O

We next use the assumption (H,, o,) to control the L?-norm of w. It will
then follow that its H'-norm remains bounded on bounded intervals, because
of Lemma 3.2.

Lemma 3.3 Let us assume that (Hy), (Hy) and (Hpa, o) are satisfied, for

some ay = 1, ag € [y — 1/2,4]. Then there exists a constant C5 > 0 such
that for every t € [0,T*), we have

lo@lZe@e < 1+ wollfagn))e™". (14)
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Proof. Since Cy > 0, in the case oy > 3/2, (Hy,.0,) implies V() > 0, and
thus V_(r) = 0 for » > A. Therefore V_ is bounded, as it is required to apply
Lemma 3.2. This is also true if oy < 3/2. As in the proof of Lemma (3.1),
the study may be reduced to the case wy € H**2. Under this assumption,

let us multiply (3) by w(t), sum over R™ and take the imaginary part. We
get

Gl = ~2m [ 86+ f(16+ w(o))o] wds,

Flo+w®)) = fI¢l*) +/0 2Re[w(t)¢ + sw(t)|f'(|¢ + sw(t)]*)ds .

For any 3 > 0 we denote by Ag > 1 a constant such that for every a,b > 0,
(a + )P < Ag(a” +1°). From the first assertion in (Hy, o,), we deduce the
existence of C} > 0 such that for every r > 0, 7'/2|f'(r)| < C4(1 4+ r*1=3/2) if
oy > 3/2 and r'/2| f'(r)| < CJ if a; < 3/2. Then, in the case a; > 3/2,

d
Sl

< 20080052 + ol 116 )l s
1
4 [ atete)Plo@Icya + o) + sult,n) e dsda
nJo
< 2008002 + ol 1162 L) s

+4|6 ]| Cg Aza, -3 (lw@)II72 (1 + 6l7277) + w7542
< G+ w7 + lw)]7305), (15)

where Cj is a positive constant. When oy < 3/2, we similarly obtain

d
Zle@lz: < Gl + [lw@)]e).

If oy < 3/2, the result follows by the Gronwall lemma with C5 = Cy. If
a; > 3/2, it remains to control the L?***~! norm of w(t). In the sequel,
oy > 3/2is assumed. Using the second assertion in (Hy, o,)?*, the assumption
2ap — 1 < 2a5 and Lemma 3.2 we get

4Up to a change of A, we may assume in the sequel A > max(po, ||¢[|%,1).
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/ lw(t, z)]** dx

-/ it ) Plut, o) o+ [ wlt, o) o
{@,|¢-+w|<A/2} {z.|p+tw|>A1/2}

< w(t, =) [*lw(t, z)|** ~*dx

/{w,w(t7$)<A1/2+ll¢lle }

) (o + 1o+ w P )
{z.|p+w|>A1/2}
< A4 ol [ Jultn) P+ Aol [ da
Rn {w.|¢-+w|>A1/2}

+A2a1100/ VJF(’QS + ’LU’Q)d.T
{z,|p+w|>A1/2}

(A 4 follm o) + A2 IRy
RV e T PR

+ A20,—1CoC1(1 + [Jw(t)|32) - (16)

N

Next, concatenating the estimations (15) and (16), there exists a constant
(5 > 0 such that

d
Zlo®lz: < s+ [w®)l2) -

We conclude by the Gronwall lemma. O

In the one-dimensional case, the global well-posedness of (3) in H' is a
straightforward consequence of Theorem 2.1, Lemma 3.2 and Lemma 3.3.
More precisely, we have proven:

Theorem 3.1 If n = 1, under the conditions (Ht), (Hay0n), (Hp), (3) is
globally well posed in H'(R). Namely, for every wy € H(R), T*(wy) = +00.

Remarks.

1. In the one-dimensional case, the Lipshitz continuity of the flow from the
bounded sets of H! into C([0,T], H') for any T > 0 may be obtained by
classical methods (see [P], [CH]), so that we will drop the proof.

2. In the case V > 0, Lemma 3.1 gives a better information than Lemma

3.2. Indeed, it says that for every t > 0, ||Vw(t)| 2 < 53/2 + |V 2. Com-
ing back to the examples presented in the introduction, this implies that

14



||Vw(t)|| 2 remains bounded on R, for the pure powers and for the saturated
nonlinearities.

3. In the one-dimensional case, if ¢, is one of the traveling bubbles studied
by Zhiwu Lin or a black soliton, ¢, satisfies the assumption (Hy). Thus (1)
is globally well-posed in ¢, + H'. In the cases where ¢, is unstable, one can
not expect to prove instability by blow-up and the mechanism of instability
seems unknown so far.

4 Local theory for H' solutions

In this section, we prove that (3) is locally well-posed in H*(R"™), for n = 2,3
or 4, in both sub-critical and critical cases. Namely, we prove that for every
wy € HY(R™) (small in H! if n = 3,4 and ay = «f), there exists T' > 0 and
a unique solution w € C([0,T], H(R")) of

t
w = Py — z/ e =IA P (w(s))ds. (17)
0
We employ a fix point argument for the map

B(w) = ey — i /0 3 P (s ds. (18)

in the space
Xr=LPH' N LRPWhe

equipped with its natural norm [jwllx, = [Jwllrgem + [|w|roy14, where
(po, qo) is an admissible pair. A pair (p, q) € [2, 00| is said to be admissible if

2 n n

_+_:_7 b, q 7é 2700 .

2L ) £ (o)
We fix (po, qo) = (2,6) for n = 3, (po, qo) = (2,4) for n = 4, while for n = 2,
go may be choosen large, but finite (and thus pg > 2 is close to 2). We will

use the Strichartz estimates which we recall now (for a proof, we refer to
[KeTal).

Proposition 4.1 For every admissible pairs (p,q) and (p, q), for every vy €
L*(R") and f € L7 (R, L7 (R")),

1" vo || Lor,za®ny) S llvollr2@n) (19)
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and

||/ ei(t=7) dT||Lw(RLq(Rn < ||fHLP (R,L7 (R™)) (20)

The result we next prove is as follows.

Theorem 4.1 We assume that f satisfies (Ha,.a,) for some aq > 1, with
the supplementary condition oy < of if n = 3,4 (where af = 3 if n = 3,
af =2 ifn=4), and some ay € [a; — 1/2, aq].

Ifn =2, orn = 3,4 and oy < of, then for every R > 0, there exists
T(R) > 0 such that for every wy € H' with |wo| g < R, there exists an
unique w € Xp(gy solving (17). Moreover, w € C([0,T(R)], H').

If for some T > O w € C([0,T], H') solves (17) then w € Xr, and w is the
unique solution to (17) in C([0,T], H').
The flow map is locally Lipshitz continuous.

Forn = 3,4 and oy = af, there exists R > 0 and T > 0 such that for
every wy € H' with ||wo||mn < R, there exists an unique w € X1 solving (17).
It is the unique solution in C([0,T], H'). The flow map wy — w, H' — Xp
(with the same small T') is locally Lipshitz continuous.

The next four lemmas give the estimates which will enable us to apply
the fixed point argument.

Lemma 4.1 LetT > 0 and w € Xp. Then
[@(w)l[rgere + | P(w)l|ropa < flwollrz + CT (1 + |[wllrger2)
max(2,2a1 —1)
+CT (||w]|F e 1 + IILooHl 1)

where C' is a positive constant.

Proof. We first decompose F' in the following way:

F(w) = =Ad — f(|¢ + w[*)(¢ + w)

= —A6 — f(161*)¢ — f(I¢]*)w — 2Re[wd]f'(|6[*)¢ b= Rw)

—2 [ Re[wd + sw]f' (|6 + sw|?)dsw — 2|w|>¢ [} sf'(|¢ + sw|?)ds
—ARe[wd)o [\ [ Re[sw + sTw]f"(|¢ + sTw|?)drds.

The Strichartz inequalities (19) and (20) yield

1P(w)llzgerz + 12wl zrora < llwollze + CllEr(w)l| oy Lz + CllEa(w)] L 422)
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where (p, ¢) is any admissible pair and C' > 0. For the sequel, we fix

(4/3,4/3) if n=2,
(p/> q/) = (27 6/5) it n=3, (23)
(2,4/3) if n=4.

On the one hand,

[Fi(w)l[pre S T+ |lwllzgere), (24)
while on the other hand, using the first assertion in (Hu, a,),
[B(w)] S |w]*(L+ |w|)m©2ead), (25)
Thus,
1By S Nl g+ Nl e,
S T |0l + TV ool Y, (26)

because of the Holder inequality in time and Sobolev embeddings. Note that
¢ max(2,2a; — 1) is finite if n = 2, and is not larger than 6 if n = 3, than 4
it n =4, thanks to o < af.

Concatenating (22), (24) and (26), we obtain (21) (the constant C' may have
change). O

We next prove the same kind of estimation for VF(w).

Lemma 4.2 There ezists 0 > 0, with 0 = 0 only if n = 3,4 and oy = aof,
such that for every T'> 0 and w € Xr,

V@ (w)|[rgrz + [IVR(w)|l 2o o < [Vwollzz + CT(1 + [[Vwl|pger2)
+CO(1 + |Vl o2 ) (T w| e + T 22l - (7)
where C' > 0.

Proof. Let us first write

VF(w) = =VA¢— f(l¢+w[*)V(d+w) —2Re[V(d + w)¢ + w](¢ +w) f'(|¢ + w]?)
= —VAs — f(|oP)V(¢ +w) = 2Re[V(o +w)olf (9]¢} = Gi(w)
=2 Jy Relwd + 5wl (|6 + swl?)dsV () +w)
—4Re[V (¢ +w)o _gbfol Re[wed + sw] f"(|¢ + sw|*)ds
—2Re[V (¢ + w)@|(¢ + w) f'(|¢ + w|?)
29[V (¢ + w)dlw f'(|¢ + wl?).

=: Go(w)
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Next, thanks to the Strichartz inequalities (19) and (20),
IVE(w)lpgers + [[VO(W)|prora < [[Vwollrz + CllG(w)l o2 + CllGa(w)ll 1 428)

with the same choice of p/,¢" as in (23), and C' > 0. Next,

1Gi(w)[pn: & T+ ||Vwlpger2) (29)
and
Gao(w)] < V(¢ + w)Jw|(1 4 [w])m=(O2013), (30)

which implies, thanks to the Holder inequality and Sobolev embeddings,

1,201 -2
1Go()l e S IV + w011 (uwuw T uwums’:;x(i;alL)Lﬂm(l,ml2>)

Ly
max(1,2a1 -2
L%V[(/LT ' )>’ (31)

~

S (U4 |IVwllpgere) (Tl/p/HwHL%OHl +T7||w]

where 1/¢' =1/2+ 1/ (our choice of ¢’ gives f =4 ifn=2or 4, 3 =3 if
n=3),0=2%— M, and the pair (s,7) is chosen such that:

b (S,T) - (OO’ 2) if % - % < ﬁmax(11,2a172)
e else, r > 2 and
= & (which means that (s, r) is an admissible pair),

L 5 (which gives the Sobolev embedding W*" C

= Bmax(1l,2a1 —

L,ﬁ’ max(1,2a1 —2) )7

S 33

(lll) m 2 % (that is @ 2 O)

Such a choice of s and r is possible if and only if

n n 2 1
——1 < -+ — . 32
2 (ﬂ + p’) max(1,2a; — 2) (32)

Indeed, if (32) is true, it suffices to choose n/r € [2 — —2—— 1 +

p’ max(1,2a1—2)
m] Moreover, if (32) is a strict inequality, 7 and s may be chosen
in such a way that # > 0. For n = 2, (32) is always satisfied and is strict,
while for n = 3 or 4, (32) is equivalent to a; < «f, and is strict if and only

1 *
it a; < af.
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Since r € [2,q] (taking gy large enough, this can always be assumed for
n = 2, while for n = 3,4, n/r > n/2—-1=n/q), and (s,r) is an admissible
pair, we obtain by interpolation

lollgwre S Tl millwl s S Il (33)

where 6 € [0,1]. We deduce (27) from (28), (29), (31) and (33). O

In the next two lemmas, we evaluate ®(w;) — ®(ws) in Xy, provided
wi, Wy € XT-

Lemma 4.3 There exists 6y > 0 and 0; > 0 (with 6, = 0 only if n = 3,4
and oy = i) such that for every T > 0 and wy,wy € LEH" C L L%,
[@(w1) = P(w2)[| g2 + [|P(w1) — P(w2)l| 2o Lao

S Tllwr = wellpgere + ([[wr — wollrgerz + [[wr — wall 2o a0 )

X (T%(|lwy g + lJwllzgemn) + T (lwill e + lwall pge ) ™21~ %34)

Proof. First,

F(uw) — F(w2) B
= 2%e[(w2 — w1)d] f'(101*)¢ + f(|B]*) (w2 — w:) }o1(wi, w)
+4Re[(wy — w1) Q] f fo Re[(wy + s(wy — w1))p + 7(wy + s(wy —wy))] )
X f"(|6 + 7(wy + s(wy —wy))|*)dsdT
+2 fy Ref(ws — wn)é + wr + s(we — wi)] /(19 + wy + s(wy — wi)P)dsws p6y(wy, w)
+2 fol Re[(wy — wi)wy + s(wy — wi)]f'(|¢ + w1 + s(wy — w1)]?)dse
+2 [ Re[wid + swi] /(| + swi [?)ds(wy — wy).

/

Next, with p’, ¢’ as in (23), we get by the non-homogeneous Strichartz esti-
mate (20)

[®(w1) — q)(w2)||L%°L2 + || ®(wy) — @(wg)HL?oLqO
< orCwnsw) g + 6w, ws) (35)

It can easily be seen that

[01(wi, wo)|lpr e S Tllwr — wol[rgere (36)

~Y
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and

[Gs(w, w)| S hwr = wa(Jwi| + Jws] ) (1 + [wn] + a2 (37)

Thus, by Holder and Sobolev,

192 (w1, wo)l o S wr = wall o o (w1 e 20 + [[w2| e p2or)

max(1,2a1—2) (38)

= wll o o] + [l 72020252 o

where 1/¢' = 1/q1 +1/qo, with (q1,¢2) = (2,5) if n =2 or n = 3 and a3 < 2,
whereas ¢a = qo/ max(1,2aq — 2) if n=3 and ag > 2 or n = 4. Thus, by
Sobolev and Holder in time,

11
02 (wr wo)ll o S T3 oy = wal g g (lwn e + el e )
1 _ 1 _
T 7% [lwy = wl| gz o | + [l [ o™, (39)

where (p3,2¢’) and (pa,q1) are admissible pairs (g, g2 have been chosen in
sort that 2 < ¢1 < o). Moreover, 1/p" — 1/p3 > 0, and our choice of ¢
ensures that 1/p’ —1/py > 0 assoonasn =2 orn = 3,4 and a; < aj. An
interpolation argument yields the announced result as in the proof of Lemma
4.2. O

We next estimate V(®(w;) — ®(ws)) in LF Ly N LY L.

Lemma 4.4 There exists 05,05 > 0, with 63 = 0 and 03 = 0 only if n # 2
and oy = o, such that for every T > 0, wy,wy € X,

[VO(wi) = VO(ws)||rger2 + [V(wr) = VO(w2)|[ropae S TNV (w1 — wa)| 1z r2

+T1/pl( + H/LUlHLooHl + "wQ"LooHl)maX(l’ZaliQ)le - wQHL%QHl

max(1,2a1—2)
D a0 ) (40)
max02a13+H W

FT%wy = wa sy ([l [

+T93Hw1 — wa|x, (1 + leﬂL%oHl 4 HwQHL%QHl)(leH Hmax (0,201 — 3))‘
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Proof. We first write

VE(w) — ( 2)
= 2Re[V (wy — w1)g] f'(|0[*)d + f(|6]*) V(w2 — wy) } (wr, ws)
+2Re[V (wy — w1) @] [ 2Re[wad + sws] (|6 + sws|?)dsd )
+2Re[V (wg — wy) g + wa f' (| + wa|?)we
IR 10y — w16+ )6 s e)
+2 fo Relw,¢ + swi|f'(|¢ + swy|?)dsV (wy — wy) )
+2 fo Re[V (¢ + wy)wy — wi] f'(|¢ + w1 + s(wa — wy)]*) (¢ + wy + s(we — wy))ds )
4 [V Re[V () +w1)p + wy + s(ws — wr)|Re[(ws — wi) + wy + s(wy — wy)]
X f"(|¢ + w1 + s(wg — wy)[*) (¢ + wy + s(wy — wy))ds va(wr, ws)
+2 fo Re[V (¢ + w1)p + wy + s(we — w)]f'(|¢ + wy + s(wy — wy)]?) (we — wy)ds
+2 [ Re[(wy — w1)p + wy + s(wy — w)|f'(|¢ 4+ wr + s(wy — wy)|?)dsV (6 + ws). |

The non-homogeneous Strichartz inequality (20) implies

V(D (w:) —

S (wa)) | zsorz + ([ V(P (wr) —

©(w2))ll 220 Lo

< ||’71(w17w2)||L1TL2 + H%(wla%)HL;’m/ + ||73(w17w2)||Lg’qu

where (p/,¢’) is given by (23). Next,

<

~

||’71(w17w2)||L1TL2

while
[ye(wi, wa)| S |V (w2
and
|73(w1, ws)] (IVel + V| + [Vwal)|w,

Using the Holder inequality, we get

~

HVQ(wl? w2)||L§,/L‘1'

xomwgm+mwgm+mwrwwm

21

- w2)||L§?L27

(41)

(42)

— wi)|(Jwr] + |wal) (1 + [wn] + fwp]) O 201 75343)

— ws| (1 + |wy| + |wy|)™>O2(2Y)

IV (w1 — w2)HL39L2

max(1,2a1 —2)

Lp / max(1,200) — Q)L[i max(1,2a1 —2)

o



and
Iy (wi, wolll e S (IVQll2 + [[Vwr]gerz + [|Vawa]| g r2)

X <Hw1 - w2HL;’Lﬂ + [ (w1 — wz)!wl\maxm’ml_g)HLr;LB + [[(w1 — w2)|w2’max(0’2al_3)HL;’LB>

(46)
Next, the Holder inequality in time and the Sobolev embeddings ensure that
for j = 1,2,
HwaHLp 15 ST Jwjl| oo
and ( ) ( )
max(1,2a1—2 0 max(1,2a1 —2
H J HL;’ max(l,;oqu)Lﬂ max (1,20 —2) S./ T ? Hw]‘ L,?le'r ' )
with the same choice of s, r and 0, = § we did to get (31). It follows then
from (45) as in the proof of Lemma 4.2 that
Ive(wi, wolll e S IV (w1 = wa)l[ g2
(T (ol + osllgerms) + T (lanl 722 4 a2 2)
Using the same arguments, we also have
lwr = wall s S STV |lwy — wa e (48)
and, if fmax(1,2a; —2) < qo, for j = 1,2,
||w1 _w2||L°°H1 if 2061 —3 0
max(0,201 —3) 1 T
|y Oy S T { s = wal o s 2 Sy 200 =3 0,
T

where € = 3(2a; — 3)/qo (note that 2a; — 3 > 0 and (205 — 2) < g imply
€ (0,1)). In that case, it follows from the Sobolev embeddings that

ws) | PO T (49)

ST |lwr — woll g w7

H(wl - LP LB ~

Next, if fmax(1,2a; —2) > qo, since 5 < qo, we have 2c; — 3 > 0 and the
Holder inequality yields

201 —3

|2a1 3||LP LB ~ le wQHLg}qu HwJ’ 1P2(201-8) 1 g5 (207 —3)
T

[ (wy — w2)|w9
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where (p1,q1) = (200 — 2)(p/, 8) and (p2, ¢2) = 52=3(p', 3). Then,

201 —2

1
_ Tv ™ |lwy — woll s wor lwill 75555, if @1 > qo
[(wr — wa) [w " 72 s S . S (50)
J R N S w?“L%"HlejHi?H? it ¢ < qo.

If n = 2, it is possible to choose ¢q large enough, such that ¢; < qo. If n = 3,4
and ¢q; > ¢, r and s are chosen such that

. 2
(i) s+5%=73,

11 1 1 11
(11);—;éq—1<q—oz§—g(thusr>2),
oo 1 1
(i) - —35 >0.

These conditions may be satisfied if and only if § — p% <14+ qﬂl, which is true

if ap <3 forn =3, a; <2 for n =4. Moreover, as in the proof of Lemma
4.2, ifn=2o0rn=3,4 and oy < o, s and r may be chosen in such a way
that 05 :=  — 222 > 0.

As in the proof of Lemma 4.2, it follows from an interpolation argument
and from (46), (48), (49) and (50) that

||73(w17w2)||L?/Lq’ N Tl/p,(l + ||w1HL§9H1 + ||w2HL%°H1)maX(L2a1_2)||w1 - w2||L%°H1
max(0,2a1 —3 max(0,2a1 —3
FT (1wl + sl o) s = wallx (|57 4 gl 7). (51)
for some 03 > 0, with 65 = 0 only if n = 3,4 and a; = af. Concatenating
(41), (42), (47) and (51), we obtain the announced result. O

The fixed point argument in the sub-critical case. The last four
lemmas enable us to apply a fix-point argument to ® in X;. We first consider
the cases n = 2 and n = 3,4 with a; < . Let us take R > 0 and wy € H',
||lwol| g1 < R. Let Bgyi be the ball of radius R + 1 in X7, for some 7' > 0.
Thanks to Lemmas 4.1 and 4.2, since 6 > 0 in (27), & maps Bgr,; into itself
as soon as 1" is chosen small enough. Since 6y, 01, 65,605 > 0, Lemmas 4.3 and
4.4 then ensure that ® defines a contraction on Bg,i, taking if necessary T'
even smaller. Then, existence and uniqueness of a solution to (17) in Xrp
follows from a fixed point argument. Retaking all the arguments above with
Xp = LEH' N L Wo replaced by C([0,T], H') N LW we deduce that
this solution belongs to C([0,T], H').
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The fixed point argument in the critical case. Let us now take care
of the case n = 3 or 4, a; = of. Since = 6 = 0y = 05 = 0 in Lemmas 4.2,
4.3 and 4.4, the argument we used for a; < aj breaks down. However, since
max(1,2a; —2) > 1, using Lemmas 4.1 and 4.2, ® maps Bsyg into itself for
every wg € H' with ||wo| g < R, provided R and T are small enough. In a
similar way, taking R and T" even smaller if necessary, ® defines a contraction
on Bspg, thanks to Lemmas 4.3 and 4.4, and because max(0,2a; — 3) > 0.

In order to complete the proof of Theorem 4.1, it remains to show the
uniqueness in C([0, T], H'), as well as the Lipshitz-continuity of the flow. We
first prove this in the case n =2 or n = 3,4 and a; < of.

Proof of Theorem 1.1: the uniqueness. Let T > 0 and wy,wy €
C([0,T], H") be two solutions to (17) with initial data w,(0) = w,(0) = wo €
H'. Then by Lemma 4.3, for T' < min(7, 1), defining 6 := min(1, 6y, 6;) > 0,

[[w1 = ws| Lz p2 + [lwr = wal| 120 £

< OT? (Jhwy = wall s + s = wall 2o )
X (14 [Jwill g + llwellzgemm + (Jwillzgemn + [Jwa|l pge g )™ 2072))

Since 6 > 0, we can choose T small enough, in such a way that

max(1,2a1 —2))

CT? (1+ lwillgern + llwellrgern + (lwillzgern + llwall ) <1,

which implies that w; = ws, on [0, 7). Since T only depends on w1l pge r +
| wal| e 1, We can reiterate this argument on small intervals of length T until
the whole interval [0, T'] is recovered. This proves the uniqueness of a solution
to (17) in C([0,T], H").

We next prove that if for some T > 0, w € C([0,T], H') solves (17),
then w € Xp. Let T > 0 and w € C([0,T], H') be a solution to (17).
Let us define Ry := ||w||pgeq1. From the contraction argument developped
above, we deduce that there exists T'(Ry) > 0 such that for every data in
the ball of radius Ry in H', there exists an unique solution in Xy (g, with
this initial condition. It is the unique solution in C([0,T(Ro)], H') with
that initial data. Thanks to this argument, for every k € N such that [ :=
[kT(Ry), (k+1)T(Ro)]N[0,T] # 0, there exists wy, € C(I,, H)NLPo (I}, W)
which solves (17), with wg(kT(Ry)) = w(kT(Rp)). The uniqueness of the
solution in C(Iy, H') implies that w coincides with wy, on I;. In particular,
wyy, € LP (I, Whe), and thus w € X7.
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Next, we prove the local Lipshitz continuity of the flow, in the sub-critical
case.

Proof of the local Lipschitz continuity of the flow in the sub-critical
case. We first define R = |[w|| s + 1. The contraction argument we em-
ployed above ensures that there exists T'(R) € (0, 1) such that for every data
wp in the ball of radius R in H', there exists an unique solution to (17) (with
wy replaced by ) in Xr(ry. This solution has been obtained by a contraction
argument in the ball of radius R + 1 in Xr(g). In particular, its Xp(g)-norm
is less than R + 1. Thus, if wgy € H' satisfies ||wor — w(kT(R))|| g < 1 for
some k € N such that KT'(R) < T, there exists wy € Xp(g) solving (17) (with
wy replaced by wp ). Defining 84 = min(6y, 61, 65, 605) > 0, slightly modified
versions of Lemmas 4.3 and 4.4 yield

||wk - w(kT(R) + ‘)HXT(R)

< Cllwo e — wkT(R)) || + Cllwy — w(kT(R) +.) T(R)%(1 + Rmax(1,201-1)y,

HXT(R)

where C' > 0. Up to a change of T'(R), one may assume that
CT(R)94(1 + Rmax(l,Qalfl)) < 1/2’
in such a way that

|we — w(kT(R) + .)| < 2C||wor — w(kT(R))| g1

|XT(R)

If wy satisfies ||wo — wollm < (1/max(1,20))(%w, a solution w to (17)
with wy replaced by wy may be constructed step by step by this argument,
recovering [0,7] by intervals of length T'(R). We deduce that T*(wg) >
T*(wp) = T. Moreover,

|w — 0| x, S w0 — wo g,

which completes the proof of the local Lipshitz continuity of the flow if n = 2
orn=3,4and oy < of.

Proof of Theorem 1.3: the uniqueness. In the critical case n = 3,4
and a; = aof, let as before be T" and R small enough such that ® defines a
contraction on Bag. Let wy,wy € C([0,T], H') be two solutions to (17) with
the same initial condition wy € H', which satisfies ||wo||g1 < R. Defining
0 = min(1,6,), Lemma 4.3 provides, replacing T by min(T, 1),

w1 — wa|zeerz + [lwr — w2||L§0qu < C(Jwr — wellpgere + [Jwr — w2||L§0qu)

X(TG(]_ + Hw1||L%°H1 -+ Hw2||L%°H1) + (4R)2a1‘—2)'
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Taking T" and R even smaller if necessary, one may assume that
C(T°(1+ lwil gz + lJwallpgern) + (AR)™17%) < 1,

which implies that w; = wy on [0, T7.

Proof of Theorem 1.3: the local Lipschitz continuity of the flow.
Let w € X7 be a solution to (17), with |lwol/gn < R/2. Let wy € H' be
such that ||wy — wWyl|g: < R/2. Previous results ensure that there exists
w € Xt which is a solution to (17) with wo replaced by wg. Then, taking
0 = min(1,1/p',0y), modified versions of Lemmas 4.3 and 4.4 yield
lw =@, < Cllwo = wollan + CT Jw — |7 (1 + [[wl e + @] e )** 172
+Cllw — @) xp (Jwllxp + 0] x7)**1 72

+ClJw — @l x, (1 + wllzgem + [[@0] e ) (w0l x7 + 0] x1)
< Cllwg — wo | g (52)

Ol — ]y (T7(1 + 4R 72 4 (AR)™172 + (1 + 4R) (4R) ™1 79).

207 -3

Choosing T" and R even smaller if necessary, one may assume that
C(T?(1+4R)* 72 4+ (4R)* 72 4 (1 +4R)(4R)* %) < 1/2.

Under this condition, (52) induces the Lipshitz continuity of the flow on small
intervals of time.

5 The global well-posedness

As it was remarked at the end of section 3, Theorem 1.1 has already been
proved in the one-dimensional case. This section is devoted to the proof
of a persistency result which, once combined with the results of the pre-
vious sections, will give the global well-posedness of (17) in H!, for di-
mensions n = 2,3,4, in the sub-critical case. In the following, (n,m) =
(2,2),(3,2) or (4,3).

Let wy € H™, and T (wy) > 0 be the maximal time of existence of a
solution w to (3) in H™(R™), given by Theorem 2.1, in such a way that
l|w ()] gm tTTT(:ﬂo) oo if T (wy) is finite. We also define

T (wo) = sup{T" > 0, there exists a solution to (17) in Xz}.

Since C([0,T], H™) C Xr, it is clear that T} (wy) < 77 (wp). Let us as-
sume by contradiction that 77" (wg) < T} (wp). In particular, T} (wy) < oo.
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The uniqueness result in Theorem 4.1 ensures that w is the restriction to
[0, T} (wo)) of a function which lives in X (w,)—e, for every e € (0, T} (wo) —
T (wp)). The results of section 3 ensure that ||w(t)|| g remains bounded on
[0,T% (wg)). Therefore > [|0%w(t)| 2 — oo as t T T (wp).

2<]al<m

Let us differentiate (3) twice, in directions z; and z;. Using also the
Taylor formula, it follows that J5,w solves

1@0 kw + Aa 7kU}
= —AP 0 — f(|6°)07 (¢ + w) — 2Re [ 20+ w)o] f(167)e }90(t)

—2f01 Re [wo + sw] f/(|¢ + sw|?)dsd? (¢ + w)
—2 [ Re (¢ +wyw] f'(lp+ sw|*) (¢ + sw)ds

[

[

—4f01 Re [07 (¢ +w)o + sw]| Re [wo + sw] f"(|¢ + sw|*) (¢ + sw)ds i(t)
—2 fol Re [8]2 (¢ +w)d + sw] f'(|¢ + sw|*)wds

—2%e [04(¢ + w)¢ + w] 9;(¢ +w) (|6 + w[?) )
—2%Re [@(qﬁ +w)o + w] (o +w)f' (| + w|?)

~2%e [0,(6 + W)@+ w)] (6-+ w)f (16 -+ w]) o)
—4%Re [@(qb—l—w)d)—i-w] Re [c%(qb%—w)gb—l—w] "(l¢ + w|?) (¢ + w).

It follows from the Strichartz estimates (19) and (20) that for 7" < T} (wy),

107 kwllzge e < 107 5wollze + llgoll e + gl o s + lall s (53)

where p/, ¢' are given by (23). First,

lgollzr: < T+ 0] pwllreer2) - (54)
Next,
191(5)] S |wl|(1 4 w213 (52, (¢ 4+ w)],
while
ga(s)] S (14 w|™O2179)18;(¢ + w)| |0k (¢ + w)| (55)
S (A w0270 056 + w)| |0k (¢ + w)]. (56)

Then, using arguments developped in the proof of Lemma 4.2 to control
HG2(@U)HL?’L¢, we obtain
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1,200, —2
lgrll o S N05( + w2 (1wl s + Hw!\?erﬁax(?;lfmmmax“2a1_2))

max(1,2a1 —2
< 1024(6 + w0) | e 2 (TP w]| o prn + TO || 32172)), (57)

where [ and 6 are the same as in Lemma 4.2. Using (56), we also have

192l 3t o S TY7N05(6 + W)l 30 20 100 (6 + w) | e 20

H|05(¢ + w) (¢ + w) | P2, (58)

LP L

From now on, we distinguish the cases n = 2, n = 3 and n = 4. For n = 2,
thanks to Hoélder, Sobolev and Gagliardo-Nirenberg inequalities, (58) yields

lgll oo s S T2+ Nlwl| e )* (1 + (| Awl|pgpr2)
T 4wl g ) (1 + || pge ) el ™ . (59)

For n = 3, the same arguments yield

lgall s S T2+ lwll e )2 (1 + [ Awll e 12) 2

1 max(1, 2a1 3)

+1=" (1 [l e ) (L + [ Aw]] gepe) w232, (60)

where s and r are chosen in such a way that

s 1 1 1
(11) r 3 < 6 max(1,2a1—3)

ey 1 (1,21 —3)
(iif) 5 — === > 0.

These conditions may be satisfied, provided a; < 3.
For n = 4, we deduce from (55) and the Gagliardo-Nirenberg inequality
that if (03] < 3/2,

TY2(10;(¢ + )| e 15/3 1 9k( + w) | e 1375
T+ wllpgm)(L+ Y 10°w]lrgrz),  (61)

laf=2

1921l L2 /s

AR A
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while if oy > 3/2 (and oy < 2),

lgallzon S T2+ wllogm) X+ Y 0w pzr2)

|a|=2
+105(¢ + w) (b + w) [w*** 7 L2 . (62)
Let us fix ¢ := 53— — 1 > 0. Then by Hélder,
al
10(¢ + w) Dk (é + w) [w*** = 12 fass
1 142¢
< V(@ + w)[ T |2 paa+0 [V (0 + w) | 5 HLwL ae w72 | e pacase
1 142¢
_ T+e T+e 20013
- IV, IVl (63

Next, the Holder inequality in time yields

1 +e

IV +wl ™ 5 TEEDITE w5, =T [V +w)l i)

It follows from the Gagliardo-Nirenberg inequality that

142¢

IV@+w)| 7 e S VIO + w0l 5 1A+ w)l[Lgerz, (65)
Lgo L T3¢ T

and by Sobolev
[l S w2, (66)
We deduce from (62), (63), (64), (65) and (66) that if a; > 3/2,

loallzzors S T+ wllpgen) (L + > 10wl zr2)
|ar|=2

T V(6 + )| 5196 + 0 A+ w) e 25272 (67)

Concatenating (53), (54), (57), as well as (59), (60), (61) or (67), and
summing over the indices of length 2, we get

Sl wllgre £ 3 N0%wollze + T(1+ 3 0%l e r2)

o] =2 || =2 la]=2
T wllags,, o+ T ol )0+ Y 0wl sgere)
|or|=2
TV (1wl )P0t Djages 100 2 22) 2
+ +T9<1+r|w||Loo0 Dllwlig if n = 763)
(1 + [[wllx, )l ||§§i§?vjj“ V(14 3 s 07w 1 2) i n = 4,
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where 0,0 > 0. Thus there exists a small Ty > 0 depending only on
]l X, < 00 such that
k

Dol wllig e < Cllwlixg,,) +C D 10wl

oo =2 |o|=2

)
ing [0, T} (wp)] by a finite number of intervals of length Tp, it follows that

> jaj=2 |0W|| Lz 12 remains bounded as T T T} (wo). This is a contradiction
in dimensions n = 2 and n = 3.

where ¢ > 0 and C([|w|x,.,,,) only depends on [w[x,. - Recover-
k k

For n = 4, we need to control the derivatives of order 3 of w. Denoting by
02w one of these derivatives, 93w solves an equation which may be written
as
i8t33w + A33w = fO + fl + f2 + f37
where
[fo()] S 1A | + 167 f'(16]°)[0°(¢ + w)| + | f(|6*)[10°(¢ + w)],
LAO] S 10(e+w0)P [|£/(16 +w?)| + |+ w?| (¢ + w]*)] + ¢ +wl*| £ (|6 +w]*)]] ,

101 S 100 +w)llo¢+w)l |6+ wllf (16 +w*)| + ¢+ wP /(16 + w])]
<

|0%(¢+ w)[|0(§ + w)|(1 + fw]O2179)) (69)
and
1
FEIGI I \33(¢+w)!/0 6+ swl|f'(Ip + swl*)] + |¢ + swl’| (|6 + sw|?)]] ds|w]
S 1% (¢ + w)|[w] (1 + [w]exO2e1=3)), (70)

Thanks to the Strichartz estimates (19) and (20), for T' < 75 (wo),

10PwlLgre S 110%wollze + 1 follye + Ifillgnavs + L fell anavs + [Lf5ll 2 kT8)

Next,

[follrre S T+ [[0°w] peer2)- (72)
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Since oy < 2, (Ha,.ap) implies that 7 — 72f”(r), r — rf”(r) and f' are
bounded. Thus

fillzz s S 106 +w)lFepe S TV210(6 + w) |21 (73)
Using (69), we get

Ifollzras S TV210%(6 + w)ll g 2210(6 + w)l| e o

L 0610006 + Pl it = 373 7Y

where, by Holder and Sobolev, if o > 3/2, choosing ¢ = 2a4 — 3 € (0, 1),

10%(¢ + w)3(¢ + w)|w[** =3 12 1ars
< T+ g0 + )l .

S TP+ (107w ) [0(6 + w)l| e e llwl| 757 (75)

~

2001 -3
[ P

Thanks to (70) and Sobolev,
lligin S T2 + w)lips (Jolligrs + o252, )
S TP+ 0wl ) (lwllpm + ol e ") (76)

Concatenating (71), (72), (73),(74), (75), (76) and summing over the indices
of length 3, we get

S0 wlligere S Y 0% wollz + T (1 + > 10%wl pger2) + T?(1 + HwHL;%(wO)

|a|=3 |a|=3 |a|=3

AT Pl o)l et S 1l Tl
al=3
o max(1,2a1 —2
T4 S 0wl el + [l
|a|=3
Therefore there exists 77 > 0 sufficiently small and C(||wl| L ) m2) >0,
3o

both depending only on Hw||Loo H2 <0 such that

Dl wllpgere S Y 107 wolle + Clllwlleg,, #2)-

|af=3 |af=3

We can recover [0, 775 (wp)] by a finite number of intervals of length 77,

and thus ) ||0%w|| 2 remain bounded as T' T T3 (wp). We have obtained
|al=3
a contradiction in the four dimensional case.
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We are now ready to prove the global well-posedness of (3). Let wy €
HYR"), n = 2,3 or 4, and T" > 0 be such that there exists a solution
w € C([0,T],H") to (3) with initial data wy (such a T exists thanks to
Theorem 4.1). Let us take a sequence (wp,), C H* (k = 2 if n = 2,3,
while ¥ = 3 if n = 4) which converges to wg in H'. By the lower semi-
continuity of 77 (which is a byproduct of the local Lipshitz continuity of
the flow map), 17 (wo,n) = 13 (wo) > T for n large. We have just seen that
T (won) = T (wo ). Therefore for n large, the energy is conserved for w,
on [0, 7). Namely, for all ¢t € [0,T], E(wn(t)) = E(wo,n), where

£(w) = \V(¢+w)\2dx+/ V(16 + w]?)da.
R™ Rn

Moreover, w,, — w in X7. The map w +— V(|¢ +wl|?) is continuous from H'
into L', as it can easily be deduced from (10), (11), Sobolev embeddings and
the first condition in (Ha, a,). It follows that for every ¢ € [0,T], E(w(t)) =
E(wyp). Moreover, for every t € [0, 7], Lemmas 3.2 and 3.3 give the estimates

[lun(®)][72 < (1+ [Jwonl[72)e™

and
V(¢ + w(t)]|72 < Cr(1+ (1 + ||won|[72)e”).

Passing to the limit n — oo, these inequalities remains true for w, replaced
by w, for every ¢ € [0, T]. It follows that the H' norm of w remains bounded
on bounded intervals.

The proof of Theorem 1.1 will be complete if we show the Lipshitz con-
tinuity of the flow on bounded sets of H!'. That is what we next do.

Proof of the Lipshitz continuity of the flow. Let 7" > 0, R > 0 and
wo, Wy € H' with H! norm less than R. Let w,w € C([0,T], H') be the
associated solutions to (3). Then, as in the proof of the local Lipshitz conti-
nuity of the flow we gave in the previous section, slightly modified versions

of Lemmas 4.3 and 4.4 yield for T < T,

lw —wllx; < Cllwo = wol s
- N . 1,201 —2 . 1,201 -2
+CT o = @l (lwller + [l + 35 + il ™)
Thanks to our estimation on the H' norm of w, ||w||zepr and ||| e ave
majored by a quantity which only depends on R and T'. So are ||w||x, and
||| x,, because of the same arguments we used in the previous section to
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prove the local Lipshitz continuity of the flow. Thus there exists h(R,T) > 0
such that

’max 1 201 — 2

~ nmax(1,2a1—2)
[wllxz + 0]l xs + [[w] D )R < R(R, T).

Choosing T > 0 small enough such that
CTh(R,T) < 1/2,

we obtain
|w — U~JHXT < 2C||wy — Wol| g1

Next, recovering [0, 7] by small intervals of length T and repeating this ar-
gument on each of these intervals, we get

~ T ~
lw — @[z < (2C)F g — |,

which completes the proof. O

6 Well-posedness in the energy space

This section is devoted to the well-posedness in the energy space. We prove
Proposition 1.1 and Theorem 1.5, using arguments developed in [Ge].

6.1 Decomposition of a data in the energy space

Here, following P. Gérard, we give a proof of Proposition 1.1.

Let us take w in the energy space

E={uec H. (R"),Vu e L*(R"), po — |u]* € L*(R™)}.

loc

Let x € C(C) be such that 0 < x < 1, x(z2) = { 0

also choose p € C(R™) such that fRn p=10<p<1 and p is supported
in the ball of radius 1
We first decompose u as

= (I = x)(wu + x(u)u.

As it was mentioned by P. Gérard in [Ge], we have on the one side (1 —
X)(u)u € HY(R™), and on the other side y(u)u € L*®(R™), V(x(u)u) €
L*(R™), and thus x(u)u € H] (R"). Moreover, the choice of x ensures

x(wul® = pol = Ilul? = pol if Jul® < 200,
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while if |u]? > 2pg, one has

|Ix(uw)ul® = po] = max(x(w)’|ul* = po, po — x(u)?[ul?)
< max(Jul® = po, po) < |ul* — po.

In all these cases, we have ||x(u)u|* — po| < ||u|* — po|. Therefore x(u)u € E.
Next, we split x(u)u as

x(u)u = p* (x(u)u) + (x(w)u — p* (x(u)u)).

Since x(u)u € X*(R™), it is clear that ¢ := p* (y(u)u) € C;°(R"™) and
Vi € H*(R"). In order to prove Proposition 1.1, it remains to verify that
[Y]? — po € LAR") and x(u)u — ¢ € HY(R™). Since x(u)u € E, this is a
consequence of the next two lemmas, which have been proved in [Ge].

Lemma 6.1 Ifv e E, [pxv|?> — py € L?

Lemma 6.2 Ifve E,v—pxv e H'.

Proof of Lemma 6.1. This was proved in [Ge]. We recall the arguments.

pro)@P = = [ [ ple=)ota = 5)0w)@) - po)duds

= px(Jul’ = po)(x) +7(2),
—_——

eL?

r(z) = /
g
— /Rn /n p(x plx —y—a)v(y) /01 aVi(y + sa)dsdyda

_ / 1 / ( / pal — y)o(y)Vo(y + sa)dy) dads,

where p,(2) = p(2)p(z — a).
As it was mentioned in [Ge], for every positive integer n, E C X*(R") +

H'(R"). In particular,

. / plx = 9)v(y)([©(Y) —v(y))dydy

n

=
S

) / p(z —J)v(y) /0 (7 —y)Vo(y + s(§ — y))dsdydy

n

=
=

=

L™ ifn=1
E C L>® 4+ LS ifn=2
L®+ Loz ifn>3
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since Vv € L2, the Holder inequality yields

L2 ifn=1
oVT(. +sa) € { L2+ L% ifn=2 |
L2+ LT ifn>3

with the norm of vV7(. + sa) in the corresponding space uniformly bounded
in s and a. Next, % = 110 + % — 1, with respectively ¢ = 2, 3/2, "5, yields
respectively p =1, 6/5, n2—47:2 € [1,00]. p, belongs to all these LP spaces, with
norm uniformly bounded in a. Therefore the Young inequality implies that
the map
v [ pa(z —y)uly)Vuly + sa)dy
]Rn

belongs to L?(R"), and the Lemma has been proved. O

Proof of Lemma 6.2. It is clear that V(v — p xv) € L* Let us verify
that v — p x v € L2 Thanks to the properties of p,

2

lp* v(z) —v(z)|*dr = /n dx

:/Rn n
/n/np(y)

1
/ / o(y) / Vo(e — sy)Pdsdydz < || Vo|a.
n JRn 0

O

[ o) el =) = ola))dy

Rn
2

/]R p(y) / 1 —yVu(z — sy)dsdy| dx

0
1

/ yVu(x — sy)ds
0

2

dydx

N

N

6.2 Uniqueness in the energy space.

Using arguments introduced by P. Gérard in [Ge], we prove here Theorem
1.5. In this section, x denotes a cutoff function: x € C*(C), 0 < x < 1, and

(2) = 1 for |z| < 1,
4= 0 for |z| > 2.

If 4 > 0, we also denote x,(2) = x(z/p). We first state some elementary
lemmas about the L” 4+ L7 spaces. The proofs are in the appendix.
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Lemma 6.3 Let 1 <p<g<ooand fe L+ L% Let f,c LP and f, € L9
such that f = f, + f,. Then for every p > 0 if ¢ < oo (resp. p > 2| fyll L
if ¢ = 00), xu(f)f € LY and (1 — x,)(f)f € LP. Moreover, we have the
estimates

()l < 4 3PN + 2 gl if < oo

and
(e < 4 1o () 1+ (2) 1A ) "+ A i < o0
301 foll o g =o0

In particular, if f, # 0, fqy # 0, defining po as follows,

Wfalllg Y77
iy — <||J{p||ip> g < oo (77)
3| fall Lo if =00
we have
Xpo (F) fllze < 6| fgllzs (78)
and
(1= Xuo) (D) fllr < 2+ 27+ 29Y) 1 foll o (79)

Lemma 6.4 If |f| < |g| and g € LP + L7 for some p,q € [1,00], then
fe L+ LT with |[fllzore < C(p Ql|gllLriLa, where C(p,q) > 0.

Lemma 6.5 Let 1 < p; < p < py < oo. Then LP C LP* 4 LP2, with a
continuous embeddzng.

Lemma 6.6 Let 1 < p; < py <00, 1 < q1<q2\oof f1+f2,whe7"e
fi € LPi and g = g1 + g2, where g; € L%. Then fg € Linta + LP2+q2 and

1 fgll » ooy < O fllzorgzee ||q)| Lo 4 Las,

Lp1+q 14 [ Pp2ta2

where C' > 0 depends only on the p; and the g;.
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Proof of Theorem 1.5. Let 7> 0, uy € E, u € C([0,T], E) be as in the
statement of the theorem and v € ug + C(R, Hl) C C(R, F) the solution to
(1) given by Theorem 1.2. Then, for every ¢ € [0, T,

v(t) —u(t) = —z'/o elt=s)A [G(v(s)) — G(u(s))] ds, (80)

where G(u) = — f(|u]?)u. Next,
G(v) = G(u) = (Jul* = po)(u~— U)/O F'(po + s(lul* = po))ds

+v(IUIQ—\v|2)/0 F(lol + s(jul® = [v]*))ds.  (81)

The Sobolev embeddings ensure that w,v € L® + H' C L* + L%, where
qo > 2 is as large as we want it to be if n = 2, g9 = 6 if n = 3 and
go = 4 if n = 4. The first assertion in (H,, o,) ensures that for s € [0, 1],
|f"(po + s(|ul® = po))| < O + |uf?)™@*©1=2) " where C' > 0. Thus, thanks
to Lemma 6.4, f'(po + s(|u|* — po)) € L™ + L#w0ai=2 . In a similar way,
P10 + s([ul? = [v]2)) € L + Lemta7 . Tt follows from Lemma 6.6 that

G(v) — G(u) € L* + L7,
where % = w —|— —|— . For n = 2, ¢ is chosen large enough such
that ¢/ > 1. Forn=3,¢ =6/ max(4 2a) = 6/5 only if oy < 5/2, while for
n =4, ¢ = 4/3. From (81), Lemma 6.6, Sobolev embeddings and Lemma
6.4 we deduce

IG(@) = GWllpesre S @+ fullxrem )2 lu — vl x14 1 di(u, /o)

Hlvllxremdp(u, v) + [ullxiem + ol xiem)? ™ C0=2(82)

Since u,v € C([0,T1], E), the right hand side in (82) is uniformly bounded on
[0, T]. Therefore G(v) — G(u) € LLL2 + LE L7 where (p, q) is an admissible
pair. Thus, it follows from (80) and the non-homogeneous Strichartz estimate
(20) that u—v € C([0, T, L?). Since u,v € C([0,T], E), we already know that
V(u—v) € C([0,T], L?). Thus u—v € C([0,T], H'). The result follows for n =
2, n =4, and n = 3 with the supplementary condition oy < 5/2. Next, we
prove the result for n = 3, oy € (5/2,3). In that case, (82) remains true, but
with ¢’ € (1,6/5), in sort that the non-homogeneous Strichartz estimate may
not be applied. However, we deduce from Lemma 6.3 and (82) that for every

>0, xu(G(v)=G(u)(G(v)=G(u) € L* (and (1=x,)(G(v) =G (u))(G(v) =
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G(u)) € LY), with an L? norm uniformly bounded on [0,7] by a quantity
@ which only depends on p, ¢', supyejo 7y [u(t)[|x1 a1, SuDsepo 1y [0 x1 411,
SUD¢e(o,7] dp(u(t),v(t)) and SUD¢e(o,7] dp(u(t),/po). Thus

IXu(G(v) = Gu))(G(v) = G(u))l| 112 (83)
< TQ(p,q's sup [[u®)|xrem, sup [lo(E)l|x1m, sup de(u(t), v(t)), sup dg(u(t),/po))
te[0,7 te[0,7 te[0,7 te[0,7]

Next, the first assertion in (Ha, q,) ensures |G(u)| < Juf(1 + |u*)* 1. Since
[

u € L>® + L5 Lemma 6.4 implies G(u) € L™ + L?1-1. The same is true for

G(v), and we have

1G(v) — G(u)|| P S+ ||lu|lxriom + HUHXlJrHl)Qalil-
Lo+ 2%1

The right hand side is uniformly bounded on [0, T, thus, thanks to Lemma
6.3, (1—x1)(G(v)—G(u))(G(v)—G(u)) € Lf},Lq/, where (p, ¢) is an admissible
pair, and ¢ = 52— € (6/5,3/2) if a; € (5/2,3). We have shown that

2001 —1
G(v) — G(u) € LLL? + L5 LY. As in the previous case, it follows from the
non homogeneous Strichartz estimate that v — v € C([0, 7], H'). O

7 The case of an exterior domain

In this section, K denotes a smooth, compact, non-trapping, non-empty
obstacle in R", n = 2,3, and Q = R"\ K. The Strichartz estimates we used
in the previous sections on R” fail when we are working on such an open set
Q2. However, N. Burq, P. Gérard and N. Tzvetkov obtained in [BGT] the
following Strichartz type estimates.

Proposition 7.1 For every pair (p,q) € [2,00] such that
1 n n
l,n_2 84
PR (84)
for every T > 0, there exists C(T) > 0 such that for every vy € L*(Q),
€22 vg |l 2. Loy < C(T)lvoll 20, (85)

and, if (p,q) satisfies (84) and moreover p > 2, p > 2, then for every [ €
LR LT (),

t
H /0 el(tiT)ADf(T)dTHL’%Lq(Q) < C(T)HfHLI;'Lq"(Qy (86)

where Ap denotes the Dirichlet Laplacian. This is also true if Ap is replaced
by the Neumann Laplacian Ay .
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These Strichartz type inequalities are sufficient to prove the global well-
posedness result for the initial value problem (5) stated in Theorem 1.6.

Proof of Theorem 1.6. The proof is very similar to that we made in the
case of R™, so that we will only indicate the main changes. We only do it in
the Dirichlet case, exactly the same arguments value for the Neumann case.

As in section 7, we remark that a data ug € Ep may be decomposed as
ug = ¢ + wy, where wy € Hy () and

QS € CIC))O(Q)a VQS € HOO(Q)a Suppqﬁ C Q\(V N Q)> ‘¢‘2 — Po S LQ(Q) .

Indeed, defining g as the extension of ug to R™ by 0, the results of section
7 ensure that 5 5 .
g = ¢+ wo = (1—x)¢+ X0+ o,
where ¢ satisfies (Hy) and @, € H'(R"). Then ¢ = ((1 — X)@\Q and
wo = (o + W) satisfy the required conditions.
As in the case 2 = R", we can look a solution to (5) as u = ¢ + w,

where ¢ is as above and w(t) € Hg (). We are reduced to study the Cauchy
problem

(87)

i% + Apw = F(w), (t,z) €Rx Q
w(0) = wy ’

where F(w) = —Ap¢ — f(|¢ + w|*)(¢ + w). Retaking the arguments devel-
opped in the proofs of Lemmas 2.1 and 2.2, it is easy to see that F' maps
HZ(Q) into H*(Q) and that it is locally Lipshitz continuous. Moreover, if
w € HZ(Q) and (wy,), is a sequence in C°(Q) such that w, — w in H*(Q),
F(w,) — F(w) in H* and F(w,) € C.(Q). Thus F(w) € HF(Q2). Therefore
F defines a locally Lipshitz continuous map from HZ(f2) into itself.

Next, we remark that the operator A on HZ(f2) defined by

{ D(A) ={w € HZ(Q),Apw € H3(Q)},
Aw = iApw for w € D(A)

generates a strongly continuous group e*4 which is the restriction of e®*~r
to HZ(Q). Therefore the classical theory for nonlinear evolution equations
implies that for every wy € HZ(L2), there exists a maximal time of existence
T*(wp) such that (87) has an unique mild solution w € C([0,T*), HZ(Q2)). If
wy € HY (), w e C([0,T*), D(A)) NCH(0,T*), H()).

As in Lemma 3.1, we obtain the conservation of the energy first for wqy €
H$ () and then for wy € HZ(Q) by density of Hj(2) into HZ(). One may
prove analogous results to Lemmas 3.2 and 3.3 with identical proofs.
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As in the R™ case, the local well-posedness is obtained by a fix point
argument for the functional

¢
d(w) = APy — i/ e"(t’s)ADF(w(s))dS
0

in a space Xp = L H' N LW where (po, qo) satisfies (84) and py > 2 is
close to 2. We begin by giving the analogous of the estimates established in
Lemmas 4.1, 4.2, 4.3 and 4.4.

In the sequel, gg > and &’ > 0 satisfy the following conditions

e0<1, e <1 it n=2,
/ — <
g +eg<4—2m
and po, qo, P’, ¢ are defined by
Po 90 Y q
2 4 2 4
TL:2 1—eo >2 1+¢0 <4 W<2 Q>4/3 (89)
_ 2 6 2 6
n=3| 15 >2 |55 <3| 5o <2| 57 >3/2

Lemma 7.1 Let n = 2,3, with oy <2 if n =3, and let Ty > 0, wy € H' .
Then there exists C' > 0 such that for every w € LY H', T < Ty,

| (w) ||L;°L20L§0Ltzo

< lwollz + CT(+ ellgesz) + CTYP (]l g + ] g™ = 190)

Lemma 7.2 Under the same assumptions, there exists C > 0 and 0 > 0
such that for every w € Xp, T < T,

IV ()| o r2pzopan < [[Vawollze + CT (L + | Vawl|pzor2)
max(1,2a1—2
+OT (1 + [|wl| ) ([Jw]| xp + [Jaw] 3272y, (91)

Lemma 7.3 Under the same assumptions that for Lemma 7.1, for every
w1, Wy c L%OHl, T < T(),

[@(w1) — ®(w2) | pee2nrropa S Tllwr — wollpgere

—f—Tl/p,le — wQHL%OHl(HwIHL%OHl -+ Hw2||L%°H1 + Hw1||zl;oxl({1£2a1—2) + ||w2HL%°H1
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Lemma 7.4 Under the same assumptions that for Lemma 7.1, there exists
01,05 > 0 such that for every wi,wy € Xy, T < Ty,
VO (w1) = VO(wa)l|pee ponpropa S TNV (wi — w2)||zgere

T Jwy = ws|l e, (Jwallxy + [lwallx,)

+T%{Jwy = walx (1 + [lwillxy + [lwallx, ) (1 + [Jwnllx;

max(0,2a1 —3)

D s

Proof of Lemma 7.1. Taking into account the new choice of parame-
ters po, qo, P, ¢ given by (89) and the new Strichartz estimates given in
Proposition 7.1, the proof is similar to that of Lemma 4.1. In dimension
2, the Sobolev embedding H' ¢ L*' and H' c L¥ ™#(2201-1) gre true be-
cause 2¢', ¢ max(2,2a; — 1) € [2,00). In dimension 3, they are true because
g’ < min(2,5 — 2a4), which implies 2¢/, ¢’ max(2,2a; — 1) < 6. O

Proof of Lemma 7.2. The proof is rather similar to that of Lemma
4.2. VF may still be decomposed as G; + G5. With the new parame-
ters po, qo, P, ¢, estimations (28), (29) and (30) remain true. In the two-
dimensional case, using (30) as we did it to obtain (31), we easily get

max12a1 2
G2l e S TV (1 + [Jwll ) ([l x + o]l ). (94)

Let us give a little bit more details for the proof of a similar result in dimen-
sion three. Using (30), an estimation on the LZ}/L‘]' norm of G(w) may be
reduced to estimations on both V(¢ 4+ w)w and V(¢ + w)|w|mex(1:201=2) for
the same norm. Next, using the Holder inequality and Sobolev embeddings
and taking into account the value of parameters p’ and ¢’ given by (89), it
follows that

V(¢ + w)w]| S V(e +w)

1+a’Lﬁ LOTOLG
1+4+¢€ 757’
S T2 Vit o)l 5 o [lwlligem
L; L3—e¢
< T+ llwllxp) wllxo- (95)

For the very last inequality, we used that the pair (2, z°) satisfies (84) and

an 1nterpolat10n argument as in Lemma 4.2. ThlS can be done, provided

3 66, < 5 + , which is equivalent to &’ + ¢ < 1. This is a consequence of (88).
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The same arguments yield

IV(¢+w)|w™™ 2072 S IVG 4 w)] s 202072

1

S TRV + w)l| oo ] P
1
S TV (1 [|w] ) o272,

where (3, is given by 1/¢' = 1/, + max(1,2aq —2)/6, and 1/s,+ 3/, = 3/2.
(88) ensures that 2 < 51 < go. Moreover, 1/p'—1/s; = min(1,4—2a4)/2 > 0.
Thanks to (28), (29), (94), (95) and (96), the lemma easily follows as in
Lemma 4.2. U

Proof of Lemma 7.3. We use the decomposition of F(w;) — F(ws) given
in the proof of Lemma 4.3. Inequalities (35), (36) and (37) are still valuable.
Using the same arguments that in the proof of Lemma 7.1 (in particular,
¢ max(2,2a; — 1) < 6 in dimension 3), we obtain, for j = 1,2,

[[Jwy — wszj\HL;%qu/ S Tﬁle - w2HL°T°H1ijHL;°H1
and
oy — walfuwg 0202 Ly ST = sl agean ooy a2,
The lemma follows. O

Proof of Lemma 7.4. We use the decomposition of VF(w;) — VF(ws)
into y1 + 2 + 3 written in the proof of Lemma 4.4. Using (41) and (42)
(which remain true, with the new value of p', ¢, po, qo), it suffices to control
the L%l L7 norm of v, and ~y3. This will be done thanks to estimates (43) and
(44) as follows. As in the proof of Lemma 7.2, for j = 1,2, we get

IV (wy = wa) Jwy |

Ly L ST wy — wal| xp lwsl g mr,

I(IVOl+Vwr [+ Vws]) (wr—wa)l| o S T s —wa|xp (14w x4 lwell ),

[V (w, —w2)|wj|max(1’2al_2)HL;’L«;’ S T%||lwy — wal| x| aHmaX (212 (97)

as well as
1(IV o]+ [Vwr| + [Vws|) (wi — wa)(Jwy] + Juws]) (021 =3) HLz;Lq/

g T02||U)1 — w2||XT(1 + ||w1]|XT + Hw2||XT)(Hw1||XT + Hw2||XT)max(O,2aJ<9§)
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where ) =0y = 1/p' forn=2,60, =1/2and 6, =1/p' — 1/s; = min(1,4 —
2aq)/2 > 0 for n = 3. The Lemma easily follows. O

The local well posedness in X7 may be deduced from Lemmas 7.1, 7.2, 7.3
and 7.4 as we did it in section 4 for the R™ subcritical case. The uniqueness
of a solution to (87) in C([0,T], H') and the Lipshitz continuity of the flow
may be proven as in section 4.

Next, we prove the global well-posedness result. The strategy is similar
to that we employed in Section 5 for the R™ case. As in Section 5, if w €
C([0,T], H5(Q2)) solves (87), then 0%, w solves

i@taikw + A@ikw = go+ 91+ go.

With the new choice of p’, ¢ we made in (89), (53) and (54) are still valuable.

It remains to estimate ||g;||,,,,, for j =1,2. In dimension 2, (57) remains
T

true (with # = 1/p’), while it follows from the Gagliardo-Nirenberg inequality,

(56) and Holder that

192()l o) S V(0 +w) HLz (14 > 07wlla)

|af=2

max(1,2a1 3 o
+([wll 4,,1(“(12&1 W V(0 + w) 2 (14 ) 107wl 2)), (99)

1—¢/ |a‘ 2
which implies that

E/

/ 3—¢’ 1+
lg2ll o o S TV (1 + [lwll o) = (14 D [|0%w] pzer2)

jal=2
Al 0 o) (14 3 (07w 4800)

laf=2

In dimension 3, for j,k € {1,2,3}, using the Holder inequality, Sobolev
embeddings and an interpolation argument, we get

1056(S+ W)l S 10540 + W)l g2l 0

< 0+ D0l [wll s,
|a|=2

T2+ ) 0w g e) |wl

|af=2

N

L;}Wlﬂ‘l? (].0].)

Sliwllx
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where 1/ =1/¢ —1/2 = (1-¢)/6, 1/ry =1/34+1/8 = (3 —¢€')/6 and
1/s1 =3/2—=3/ry =€'/2. In a similar way,

1074(6 + w) w22y

(1,2 2
S 0@+ ) lrellwl e oo

o max(1,2a1 -2
S A+ 0wl e w2

ng max(1,2a 2)W1’T2

|a|=2
1 max(1,2a7—-2)

——97 § : o max(1,2a1 —2)
S Tp’ Ep) + H@ wHLooLQ) H SQWI "o s (102)

al|=2 —,_/

| ‘ < max(1,2a1 —2)

ol 2
: L _ l 1 _ 2max(1,2a; —2)41—¢’

with - = 3+ gomizar D = 6maaioa ) and 72 € [2,¢o] thanks to

(88). Moreover L w = min(1,4 — 2a4)/2 > 0, because oy < 2.
We also have by Holder and Gagliardo-Nirenberg

V(6 +w)Pll e S IV@+ W)y V(@ + w)l|ge s
1+ao+a

S HV(¢+w)HLquOHV(dww)HLW L+ Y 10%wlpgere)

laf=2

!

(1+ ol =5, (103)

1 _ 1
S TV n(l4 ) [10%wl|per2)

jaf=2

+Eo+6

where 1/¢' = 1/qo + 1/¢ and 1/p" — 1/pg = (¢' + &¢)/2 > 0. Next, we have
to estimate |||V (¢ + w)|?|w|max(©:201-3) HL,,/ . If ay < 3/2, this has just been

done. Thus we assume «; > 3/2. Provided (3(2“7;7:,) 2, we have by Holder,

Gagliardo-Nirenberg and Sobolev

V(6 +w)P [l N v S IV(@+ W)l 1 IV + w)lagens w2l s
T

L 1 —

S T w0 |[V(6+ w1+ Y 10wz llwll* e, s
‘Ot| 9 LooL 1—50—5/

€ +s —

S T (Ut flwllg) (U4 ) 10"l ) w51 (104)
|a|=2

Note that (88) ensures 632‘;:5,) < 6. On the other side, if 61(36;7;:3) < 2, the
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same arguments imply
IV (6 + w) Pl =y

<

2001 -3
S (¢+w)HL;oquHV(dww)HLOOLWH\w! M e s
15 +a — Vo] «
S T (U wl) 1+ Vol ) (14 Y 110w rgre) w5 4105)
=2

where v € (0,1). Using the same arguments that in section 5, we can deduce
from (36), (37) as well as (57) and (100) in dimension 2, (101), (102), (103),
(104), (105) in dimension 3, that (87) is globally well-posed in X7.

Proof Theorem 1.7. In the critical case n = 3, a3 = 2, a local well-
posedness result may also be obtained. Indeed, the proofs of lemmas 7.1,
7.2, 7.3 and 7.4 above also work in that case, if we choose py = 2/(1 — &),
P =2/(14¢€), where gg, &’ > 0 satisfy eg+¢’ < 1 and 3eg+¢’ < 2. The only
difference is that we get # = 0, = 0 in Lemmas 7.2 and 7.4. Instead of (96),
we use the following estimate, which we prove as usual by Holder, Sobolev
and an interpolation argument.

V(6 +w)wll e S I1V(6+ w)||L;p/Lq~||WHi3Tp/Lq
<

V(¢ + w)HL;p'LquHi;pfwl,q—
1
S (T + wllx) lwllx,. (106)

where ¢ and ¢ must satisfy 1/¢+2/¢=1/¢',1/3p'+3/¢=3/2and 1/4—1/3 =
1/q. Thanks to our choice of py, qo, p’, ¢’ and to the condition we imposed on
0,6’ > 0, we obtain ¢ = 18/(8 — ¢’) € [2, qo], which is the condition under
which the above mentioned interpolation argument is valid. We similarly
prove

I(V] + [V | + [Vaws|) (w1 — wo) ([wi] + w2 1 o
1
S lwr = wallx (T% + [Jwillxy + wellxg) (lwilx, + (w2l x,),(107)
which we use instead of (98), and for j = 1,2,
IV (w1 — wo)[w; [l S lwn — wallxp Jw; 3, (108)
T

which will be used instead of (97). Thus, in the critical case, estimations
(91) and (93) may be replaced respectively by

qu)(w)HL%OLQngoqu < [Vwollzz + CT(1 + |[Vw| g r2)
3 37
+CT2 (1 + [lwllx,)[lwllx, + C(T% + [wllx,)(lwllx, + wlk, 1109)
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and

~

VO (w1) = VO(wa)l|pee ponpropa S TNV (wr — wo)l[rgere
1
+T2 [Jwy — wa | x, (|will xr + [Jwellxz)

1
Hllwr = wallx, (T5 + [lwn |l xp + [Jwzllx, ) (lwi |l xp + lwe]l ;). (110)

From Lemma 7.1 (which remains true for a; = 2) and (109), we deduce as
in section 4 that for 7" and R small enough, if ||wy|/z: < R, ® maps the ball
of radius 2R of H! into itself. Taking T and R even smaller if necessary,
Lemma 7.3 and (110) ensures that this map is a contraction. The rest of the
proof is identical to that of Theorem 1.4 which was done in section 4. O

8 Appendix

Proof of Lemma 6.3. 1If p, f, and f, are chosen as in the statement,

o, [f(@)] > p} = Hop <[f@)] <[fl@)] + [ fo(2)]}]
< Hoow/2 < |hp@) 3+ Ha, 1/2 < [ fo(@) [}

)= (2 1gk

(/2 < o)} < (%) T (112)

Next, since p < 00,

oz < @ < [ (Z1ht)

Similarly, if ¢ < oo,

Thus
2\? 2\ ¢
(o f@) > 1] < (;) prlliﬂr(;) L. (113)

If g = 00, if 1 > 2] fy| o, ome has |{a, 1/2 < | f,(x)]}] = 0, and

{z, [f(2)] > p}] < (%)pllprip (114)
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If ¢ < 00, using (111) with p replaced by 2u, we have for p > 0,

1/q
([ butnse)
1/q
< x)|vdz
</{x,f<x>|<zu}|f( ) )

1/q 1/q
< ([ inra) ([ o)
{z.| f(2)|<2p} {z,|f(2)1<2p}
1/q 1/q
p q=p q
<1, senea B@RB@ETE || o @ |l
[fo(@)] <o @) 2 p
1/q 1/q
e P/q q q
< WFURE| i e TP | | Ji ) Vi@l | 4150
@) 2 n (@) 2 p

< LD+ 20, | £ (@) = i} + 2]yl
<3 AL + 2 ol (115)
while for ¢ = oo, ||xu(f)fl|zee < 2. On the other side, using (113), if ¢ < oo,

(f1a=xansr) "

1/p 1/p
1/p
< Pd Pd P
([, pra) = P |« P
\fq(x)l < \fq( )= w
1/p
q
< e 15,@)]
< Ul @ > 7 | e P
" fal@) =
2\ P 92\ ¢ HfHQ/p
< prumw((—) prufzp+(—) quHqu) ol (116)
m p 0

while if ¢ = oo, we similarly obtain thanks to (114), and because pu > 2|| f, || L

11 =) () f e < 3l foll 2o

Replacing i by 1 or by g, the estimates announced in the statement easily
follow from (115), (116) and their analogous in the case ¢ = co. O
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Proof of Lemma 6.4. Let g = g,+g, be a decomposition of g in LP+L9. If
gp =0 (resp. g, = 0), then g € L9 (resp. g € LP), and the result is clear. Let
o > 0 associated to this decomposition by (77) (where f,, f, are replaced by
9p» 9q)- Thanks to Lemma 6.3, x,,(9)g € L? and (1 —x,,)(9)g € LP, and the
estimates (78) and (79) hold for g. Writing f = x,,(9)f + (1 — X )(9) f, we
deduce that f € LP + L4, with || f||r4re < C(p, @) |9l 2r+1e, Where C(p,q) =
max(6,2 + (27 + 29)1/p). O

Proof of Lemma 6.5. Let f € LP, f #0, and u = || f||z». Then

1/p2 1/p2 y -
(/ﬂm |M) (/km |mpvh) < @) B 1717 = 25 Lo,

and

l/pl p—p1\ /P
(/Wl—ht ﬂ“) (/l ﬂ“(%g ) < P 1B = ) fll e

Therefore f € LP* + LP? and

| Fllamszvs < (127520 o

O

Proof of Lemma 6.6. We write fg = fig; + f192 —|— fog1 + fog2. Thanks

to Holder, it is clear that for ¢,57 = 1,2, fig; € L“*qa, and HfZg]H <
I fillwi llg;ll i - For @ # j, we have ppff] € (Bh-, L2 The lemma follows,
thanks to Lemma 6.5. 0

Aknowledgements. 1 am grateful to Patrick Gérard, Jean-Claude Saut
and Nikolay Tzvetkov for helpfull discussions.

References

[BGMP] 1.V. BARASHENKOV, A.D. GOCHEVA, V.G. MAKHANKOV, LV.
PuzyNIN, Stability of the soliton-like “bubbles”, Physica D, 34 (1989),
240-254.

[BP] 1.V. BARASHENKOV, E.Y. PANOVA, Stability and evolution of the qui-
escent and traveling solitonic bubbles, Physica D, 69 (1993), 114-134.

48



[BS] F. BETHUEL, J.C. SAuT, Travelling waves for the Gross-Pitaevskii
equation I, Ann. Inst. Henri Poincaré physique théorique 70 (2) (1999),
147-238

[dB] A. DE BOUARD, Instability of stationnary bubbles, STAM J. Math. Anal.
26 (3) (1995) 566-582.

[BGT] N. BURQ, P. GERARD, N. TZVETKOV, On nonlinear Schridinger
equations in exterior domains, Ann. Inst. H. Poincaré, AN 21 (2004),
295-318.

[CH] T. CAZENAVE, A. HARAUX, Introduction aux problemes d’évolution
semi-linéaires, Mathématiques et applications, Ellipses, (1990)

[C] D. CHIRON, Travelling waves for the Gross-Pitaevskii equation in di-
mension larger than two, Nonlinear Analysis, 58 (2004), 175-204

[DMG] L. D1 MENzA, C. GALLO, The black solitons of the NLS equation,
in preparation.

[G] C. GALLO, The dark solitons of the one-dimensional nonlinear
Schrodinger equation, in preparation

[Ga] C. GALLO, Schridinger group on Zhidkov spaces, Adv. Diff. Eq., 9
(2004), 509-538

[Ge] P. GERARD, The Cauchy problem for the Gross-Pitaevskii equation, to
appear in Ann. IHP

[Go] O. GOUBET, personal communication

[Gr] P. GRAVEJAT, Asymptotics for subsonic travelling waves in the Gross-
Pitaevskii equation, preprint (2003)

[K] T. KATO, On nonlinear Schridinger equations, Ann. Inst. H. Poincaré,
46, 1 (1987), 113-129.

[KeTa] M. KeeL, T. TAO, Endpoint Strichartz estimates, Amer. J. Math.,
120 (1998), 955-980.

[L] Z. LIN, Stability and instability of traveling solitonic bubbles, Adv. Diff.
Eq., 7 (2002), 897-918

[P] A. Pazy, Semigroups of linear operators and Applications to Partial
Differential Equations, Appl. Math. Sci. 44, Springer, New-York (1983)

49



[Z0] P.E. Zuipkov, The Cauchy problem for a nonlinear Schrédinger equa-
tion, Soobshch. OIYal, R5-87-373, Dubna (1987).

[Z1] P.E. ZHIDKOV, Solvability of the Cauchy problems and stability of some
solutions of the nonlinear Schrodinger equation, preprint OIYal, P5-89-
322, Dubna (1989), Matem. Model., 1, no.10,155-160 (1989).

[Z2] P.E. ZHIDKOV, Ezxistence of solutions to the Cauchy problem and sta-

bility of kink-solutions of the nonlinear Schrodinger equation, Siberian.
Math. J., 33 (1992), 239-246.

[Z3] P.E. ZHIDKOV, Korteweg-de-Vries and nonlinear Schrédinger equations:
qualitative theory, Lecture Notes in Mathematics 1756, Springer-Verlag
(2001).

50



