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Abstract

We prove existence and uniqueness of a positive solution to a system of two coupled Gross-Pitaevskii
equations. We give a full asymptotic expansion of this solution into powers of the semi classical
parameter ¢ in the Thomas—Fermi limit € — 0.

Résumé

On montre I’existence et I'unicité d’une solution positive pour un systeme de deux équations de Gross-
Pitaevskii couplées. On donne un développement asymptotique complet de cette solution en terme de
puissances du parametre semi-classique ¢, dans la limite de Thomas-Fermi ¢ — 0.

Keywords. Gross-Pitaevskii equation, Ground State, Bose-Einstein, Thomas-Fermi limit, asymp-
totic expansion.
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1 Introduction

Recent experiments with Bose-Einstein condensates [PS] have stimulated new interest in the Gross—
Pitaevskii equation with a harmonic potential. This equation can be written as

icur + 2 Au+ (1 — |z)u — [ul’u=0, zeR? teRy, (1.1)

where u(t, x) denotes the complex valued wave function of the Bose gas, and ¢ is a small parameter. The
limit e — 0 corresponds to the Thomas—Fermi approximation of a nearly compact atomic cloud [Fer],
[T]. At equilibrium and in the absence of rotation, the condensate is described by the ground-state,
which is a positive, time independent solution u(t,z) = n-(x) to (1.1). The ground state minimizes
the Gross—Pitaevskii energy

E.(u) = /Rd <s2|vu\2 + (2 = Dul® + %\u|4) da (1.2)

among functions with finite energy. The understanding of the profile of the ground state is particularily
important [A]. It is well known (see for instance [IM]) that in the Thomas—Fermi limit ¢ — 0, the
ground state 7. converges to the Thomas—Fermi’s compactly supported function

(1—|zHY? for |z| < 1,

= 1.
() { 0 for |z| > 1. (1.3)
The function 79 has a singularity at |z| = 1, whereas for € > 0, 5. is regular. The question of the
description of the behaviour of 7. close to the turning point || = 1 as ¢ — 0 has been adressed by

Dalfovo, Pitaevskii and Stringari [DPS] and by Fetter and Feder [FF] on a formal level. Among other



reasons, this question is relevant because an important part of the kinetic energy is concentrated in
the region |z| =~ 1 (see also [G]). In particular, it is shown in [DPS] and [FF] that it is possible to
describe 7. close to |z] = 1 as € — 0 thanks to solutions of the Painlevé II equation. This analysis
has been made rigorous in [GP], where a full asymptotic expansion of 7. in terms of powers of g2/3
is calculated. The proof consists in introducing a new variable y = (1 — |z|?)/¢2/3 that blows up the
solution close to the turning point |z| = 1, writing 7. (z) = €'/?v.(y) and solving the equation satisfied
by ve in terms of the variable y. It turns out that the variable y makes it possible to describe the
behaviour of 7. as € — 0 not only close to the turning point, but also globally for all z € R?. In [KS],
Karali and Sourdis have extended this result to more general potentials.

The purpose of this paper is to adapt the result obtained in [GP] to the case of a two—component
Bose-Einstein condensate. As we shall see, one of the new difficulties we are facing to is that the ground
state has now two turning points instead of one in the case of a scalar Gross-Pitaevskii equation. As
a matter of fact, it will be necessary to use three different variables to describe the ground state,
instead of one for the scalar equation. Then, denoting by 71 and 72 the wave functions of the two
components, 71 and 72 solve the following system of two coupled Gross-Pitaevskii equations with
quadratic potentials,

{ EAm + (p — [x*) m — 2a1n? — 2a0m3m =0 (1.4)

e2Anz + (p2 — |@]?) 12 — 2a2m3 — 200nin2 =0,

where o, a1, a0 > 0, pi1, 12 > 0 are chemical potentials, € is a small parameter and € R? where the
dimension d is 1,2 or 3. Ground states of this system have also been studied in the case d = 2 and
with different methods by Aftalion, Noris and Sourdis [ANS]. They prove various estimates on the
difference between the Ground state and the Thomas-Fermi limit, which can be recovered by using
the full asymptotic expansion of the ground state we prove here.

For convenience, we define

ag

i=1-2 1,=1-% pp=1- .
o1 s Q102

We will consider here only values of the parameters such that the two components of the Thomas—
Fermi limit (710, 720) are supported and do not vanish on disks centered at z = 0, in opposition with
other cases where one component is supported in an annulus and the other one in a disk. More specific
conditions are given below. One of the differences between this case and the one component case
is that, as we shall see in the next section, the Thomas—Fermi limit (n10,720) has now two turning
points. Thus, we have to introduce two different new variables. We will still be able to give a full
asymptotic expansion of (11, 72) into powers of € in the limit € — 0, but functions of each of these two
new variables will appear in every term of the expansion.

1.1 Calculation of the Thomas-Fermi limit

We are interested in solutions of (1.4) which converge in the Thomas-Fermi limit ¢ — 0 to functions
mo and m2o which are both supported in a disk, with respective radii R1 and Ry (for j = 1,2,
R; = inf {R > 0, Suppn,o C B(0,R)}), and such that (n10,720) solves (1.4) with ¢ = 0. Let us recall
the arguments leading to the expression of the Thomas—Fermi profile (10, 720) of the ground state, as
it has been done in [AMW]. Up to a change of the indices, we assume (see Remark 1.2 below for the
case R1 = R»)

Ri < R».

From our definition of R1 and Rz, we have nio(z) = n20(z) = 0 for |z| > R2. For Ri < |z| < Ra,
mo(z) = 0, and the second equation in (1.4) implies

2 _ li2—|~’5|2

n20() Y

Thus,

p2 = R3, (1.5)



and 720(x) > 0 for |z| = Ri1, which implies that ni0(x) # 0 and 72 (z) # 0 for |z| = Ry, |z] < R1. If
e =0, m # 0 and 12 # 0, then (1.4) can be rewritten into a non-homogeneous linear system in the
variables n?,n2. Solving this system (for the peculiar case I'12 = 0, see Remark 1.3 below), we get, for
|z| = R1 and |z| < R1,

Py 1 Qg 2

= -2 -T 1.6

no(x) 50T (Ml P 2|z )7 (1.6)
2 1 (a7} 2

= ——u1 — I . 1.7

n20 () 20T 03 (H2 o 1] ) (1.7)

In particular, since 710 vanishes on the sphere |z| = R1 (or equivalently, using the continuity of 729 on
the same sphere), we deduce

@ «
H1 = foug + FQR% = lR% + F2R?. (18)
Qa2 Q2
Moreover, we also infer from the positiveness of 5%, and (1.6) that the condition

FQ/FlQ >0 (19)

has to be satisfied. Finally, (1.7) and the assumption of positiveness of 72 on the disk with radius Rs

(and not on an annulus) yields
1 @
= (Mz - *O,ln) >0,
ISP a1

which can be rewritten in terms of R; and Rs as

Iy o
RZ> 20 2R 1.10
2 - aq F12 ! ( )
As a result, provided that the parameters satisfy conditions (1.9) and (1.10),
r vz n1/2
mo(x) = (2@112“12) (R — |z]%) / if |z| <R (1.11)
0 if ‘.’E| > R,
and
R2_R2 1/2 .
(Bt 4 sl @ =) it el <R
n20 () = (R§27\1|2)1/2 it Ry < 2] < R (1.12)
ag
0 if |$| Z R2

define a solution for ¢ = 0 to the system (1.4), which, taking into account (1.5) and (1.8), can be
rewritten as

{ e?Am + (%Z(Rg — RY) + RY — |17\2) m — 2a1n; — 200m3m =0 (1.13)

e2Any + (Rg — \x|2) N2 — 202m3 — 200m3n2 = 0.
Remark 1.1 From (1.5) and (1.8), p2 —p1 = T2(R3 — R3). Thus, under the extra assumption T's > 0

(an assumption which will be made later), the assumption Ry < Ra tmplies p1 < uo.

Remark 1.2 If Ry = Ry = R and 12 # 0, mo(z) and n2o(x) are given by (1.6) and (1.7) for |z| < R,
and they both vanish at |x| = R. We infer I'2/T12 > 0, I'1/T12 > 0 (if T'1 = 0 or I's = 0, then one
of the two components is identically equal to 0, and therefore we are brought back to the study of one
simple equation, like the one which was studuied in [GP]) and

i _ % _RQ_L _ %
Iy M1 042”2 = Y 2 alﬂl »

which implies p1 = p2 = p. Then, for € > 0, if n denotes the ground state of

e2An+ (u— |z|*)n — 2|Ti2ln® = 0



(which, up to a rescaling, is the one which is described in [GP]), then

(1, m2) = ((ITel fo)' . (10| fa2)' /)

solves (1.4).

Remark 1.3 IfI'12 = 0, then an analysis similar to the one which is done above implies a1 = ag =
ap =« and @1 = p2 = u. Then,

(m,m2) = (n,n)
solves (1.4), where 1 is the ground state solution of

2 An+ (1 — |z*)n — dan® = 0,

which is described in [GP] (up to a rescaling).

1.2 Goal and strategy

Our goal is to construct a solution (71,72) of (1.13) for € > 0 sufficiently small, and to describe its
convergence to (n10,m20) as € — 0. The first step consists in constructing aproximate solutions of
(1.13). Because of the singularities of 1o and n20 at || = R1 and |z| = Rz, (m(z),n2(z)) will be
described by functions of different variables, depending on the region of R? & belongs to. We write
R? = Dy U Dy U Dy, where

Dy = {x GRde\Q <RI —EB}7

D, = {x e RYR? —2¢° < |2 < R? +2aﬁ}
and
Dy = {x e RY[zf? > R?+55},

where 8 € (0,2/3) is some number that will be fixed later (note that Do N Dy and D; N D2 are not
empty). Then, for x € Do, (m1(x),n2(z)) will be described as a function of the variable z = R} — |z,
whereas for j = 1,2 and = € Dy, it will be described as a function of the real variables y; given by

R} — |af?

v =" (1.14)

In order to be more specific, let us introduce the following truncation functions. Let ¢ be a C*° function
on R wich is identically equal to 0 on R_ and identically equal to 1 on [1,400). Then, let us define

B
z—¢&
2= (55505

such that ®.(2) = 0 for z < &’ and ®.(z) =1 for z > 2¢”, which means (if ®.(z) = ®-(R} — |z|?) is
considered as a function of the variable z, also denoted ®. for convenience) that Supp®. C Dy and
&, =1 for z € Do\D;. Similarly, we set

W)= (1- 52/3y1 —&f 52/3y1 + 2¢°
Xe(Y1 ¥ 2eB — B ¥ ] ¥ 2¢8 )
such that ye(y1) = 0 for y1 > 26°72/% and y1 < —2e°72/3, whereas x-(y1) = 1 for —72/3 <y, <

e#72/3  which means (if x.(y1) = xe((R? — |z|?)/e?/®) is considered as a function of the variable z,
also denoted x.) that Suppx. C D1 and x. = 1 for x € D1\(Do U D2). We also define

R2 — R? _
‘I’a(yz)zl—w(g%JrQ):1—¢(—%+62/3 ’By2+2),



2 2 2 2
such that W, (y2) =0 for y2 > Rjg/fl —P72/3 and W, (y2) = 1 for y» < Rjr;/?l —2¢#72/3 which means

(if We(y2) = We((RE — |2]?)/?/?) is considered as a function of z, also denoted W.) that SuppW. C D2
and ¥, =1 for x € D;\D;. Formally, we look for (n1,7n2) under the form

{ m(z) = Pew(z) + 61”3xsl/(y1) (1.15)
mo(x) = @7 (2) + ' Pxe A1) /2 + P W (),
in such a way that
for z € Do, (1, m2)(2) = (w(2),7(2)), (1.16)
fora € Dy, (myme)(@) = (v(yn), M) (1.17)
and
for x € Dz,  (n1,m2)(z) = (O,s”gu(yg)) . (1.18)

We look for approximate values of the functions w, 7, v, A and p by using a multi-scale analysis.
Namely, we write

w=wo +e°wr +e'wa + -+

T:T0+E2T1 +E472+---

v=uwo+e3u +e* 3+ (1.19)
A=Al B p N+ BN + 0 + -

p=po+ePpr +ePus+ -

The wj’s, 75’s, v;’s, A;j’s and p;’s in this expansions are e-independent functions, which are chosen in
such a way that (1.16), (1.17) and (1.18) provide at least formally solutions to (1.13) at any order.
Then, we prove rigorously that the truncation of the formal asymptotic expansions we have obtained
are indeed approximations of positive solutions to (1.13) which converge to (n10,720) as € — 0. For
this purpose, we use the ansatz

3
=
—~
8
~
Il

Dew(2) + /% (xev(y) + 2NV P(r) )

(@) = @o7(2) + £ (xeA(w) /2 + Wep(ye) + 2N TPQ(x)) e
where w, 7, v, A and p are now truncations up to some finite order (N € N for v, \, M = M(N) for
w, 7 and L = L(N) for p) of the formal series (1.19), and P, @ are remainder terms. A fixed point
theorem provides the existence of P, Q as well as estimates which ensure that the remainder terms in
(1.20) are indeed small. The better w, 7, v, A and p are chosen (that is, the larger is N), the smaller
is e2NH+D/3(P Q). The functional space in which (P, Q) is obtained is H.(R%)?, where

HL(RY) = {f € H'(R’) | min(y], ly=)'/*f € L*(R")} .

H}(R%)? is endowed with the norm

1/2
P @l e = ([ (9P + [9QF) do+ [ max(t,min(nl lpaD)(PE +1Q)ds )

Remark 1.4 Note that the set H_, (]Rd)2 does not depend on e, even though it’s norm does. However,

this norm has been chosen in such a way that the norm of the continuous embedding of HY(R®)? into
HY(R%? is uniformly bounded in €.

Once we have constructed (n1,72), we would like to estimate in different norms the difference
between the exact solution (11, 72) and its approximation

[ mnte) = 0o 2t (121)
N2app (7)) = P7(2) + ' PxeA(y1)/? + '3V p(yp),



where w, 7, v, A and p are truncations of the formal series (1.19) up to some fixed orders My for w
and 7, Np for v and A and Lo for u. However, the estimates on P and @ provided by the fixed point
argument are not very good. So in order to get better estimates on 7; — Mjapp (7 = 1,2), we proceed
as follows. We choose three large integers M > Mo, N > Ny and L > Lo and write 7; as in (1.20)
(with truncations of the formal power series at orders M, N and L instead of My, Ny and Lo). Then,
the estimate on 1; — 1japp is obtained thanks to estimates on 2wy, and 2™ 7., for My +1 < m < M,
on sQn/Sl/n and 52"/3)\n for No+1<n < N and on 82"/3un for Lo +1 < n < L. The estimates on P
and Q provided by the fixed point argument are good enough to ensure that 2V/3+1 P and 2V/3+1Q
are negligible in comparison with the other terms in the expression of 7; — Njapp-

In our main result below, we give estimates on the LP(R%) and H'(R?) norms of 1; — 7japp for
j = 1,2. Note however that depending on the need of the reader, our strategy can give many other
informations on 7; — Njapp (see Remark 1.6 below).

Theorem 1.5 Let d € {1,2,3}, and ao,a1,02 > 0, Ro > R1 > 0 such that I'2,T12 > 0 and such
that (1.10) is satisfied. Then, for € > 0 sufficiently small, (1.18) has a unique solution (n1,m2) €
Co(Rd)2 such that the two components m and n2 are both positive. Moreover, if Mo, No, Lo € N, if

B € (0752/3)\(@, if Wm = Wm(2), Tm = Tm(2),Vn = Un(y1), An = An(y1), in = un(y2) are the functions
given by (2.6), (2.7), (2.10), (2.19), (2.30), (2.39), (2.34), (2.44) and (2.42), then

I =Ml = © (%) and |z = naasll; = O (2) (1.22)

where E can be either LP(R?) for any p € [2,4+00] or H*(R?),

Mo No

Mapp = P Y & wm +2x > ¥ Pup,
m=0 n=0
Mo No 1/2 Lo
Mapy = B S £+ ( 2 52n/3)\n> +e LS ey,
m=0 n=-—1 n=0
and for p € [2,400],
min ((2 - 38)Mo+2—58/2+ B/p, 1+2/(3p)) if No=0
(LP(RY) = min ((2 — 38)Mo +2—58/2+ 3/p, 5/3+2/(3p)) if No=1and p>2
m ) min((2-38)Mo+2-58/2+8/p, 2—-9) if No=1andp=2

min ((2 - 38)Mo+2—-58/2+ B/p, BNo+2—3B/2+B/p) if No>2
where 6 > 0 is arbitrarily small, and

(LP(RY)) = min ((2—-38)Mo+2—28+8/p, 4/3+2/(3p) , 2Lo/3+1+2/(3p)) if No=0
2 T min((2-38)Mo+2—-28+8/p, BNo+2—B+8/p, 2Lo/3+1+2/(3p)) if No>1,

whereas min ((2 — 38)(Mo + 1) , 2/3) if No=0
1 mdyy ) min ((2—38)(Mo+1), 4/3 if No=1
nURD)) =9 iy g(z - 3ﬂ)(MZ +1), 2 —)5) if Nﬁ =2
min ((2 — 38)(Mo +1) , B(No —2) +2) if No >3
and
min ((2 - 38)(Mo+ 1)+ 3/2, 1, 2Lo/3 +2/3) if No =0
Y2 (H'(R")) = ¢ min (2 —38)(Mo+1)+8/2, 5/3, 2Lo/3 +2/3) if No=1

min ((2 - 38)(Mo + 1)+ /2, B(No—3/2)+2, 2Lo/3+2/3) if No > 2.

Remark 1.6 Depending on the value of My, No, Lo and p, the value of the parameter 8 € (0,2/3) can
be adjusted in such a way that the values of y1 and 2 are as large as possible. If we are only interested
in the approximation of one of the two components n;, one can even choose B € (0,2/3) to optimize 7;
without considering the other component. In some cases, one can be interested in estimations on the
norms of N1 — Niapp and M2 — N2app, NOt ON R as a whole, but only on a subdomain like Dy, D1 or Ds.
In each minimum in the expressions of y1 and ~y2 in the statement of the theorem, the first argument
corresponds to the rate of convergence of the norm in Dy, the second one to the rate of convergence of
the norm in D1 and the third one (for n2) to the rate of convergence of the norm in Da. The LP and
H' norms of the restriction of m — Napp to D2 converge to 0 faster than any power of € as € — 0.



In the following corollary, we write more expicitely upper bounds on the rates of convergence of
M — Napp and N2 — Naqpp to 0 in the particular and important case where My = No = Lo = 0 and
E=1L1%Lor H'.

Corollary 1.7 If 8 € (0,1/3), we have

0L2(Rd)(54/3)
m = ®ewo + " xero + Op oo ra)(€)
OH1<Rd)(€2/3)
and
Y OL2(R4)(54/3)
e = @10 + €'/ Pxe (2;/; + /\0) +eepo +{ Opocpay(e)
€ OHI(]Rd)(EZ/S).

1.3 Organization of the paper

In Section 2, we calculate formally all the functions w;’s, 7;’s, v;’s, A;’s and p;’s appearing in the formal
series (1.19), in such a way that truncations of these series provide at least formally, through the ansatz
(1.16), (1.17) and (1.18), solutions to (1.13) at any order. We also study asymptotic behaviours of
these functions. In Section 3, we study the functions obtained by truncations of the formal series. In
particular, if w, 7, v, A, u denote these truncations, we estimate the order at which (1.16), (1.17) and
(1.18) solve (1.13), respectively on Do, D1 and D2. We also check that (1.16) and (1.17) are close one
from another on Do N D; and that (1.17) and (1.18) are close one from another on Dy N D>. Section
4 is devoted to the proof of the main result.

Notations.

e If A and B are two quantities depending on a parameter x belonging to some set D, the claim
“for z € D, A(z) S B(x)” means “there exists C' > 0 such that for every z € D, A(z) < CB(z)”.

e Let F(z) be a function defined in a neighborhood of co. Given a € R, {fm}men € R, and v > 0,
the notation

F(x) N x® Z fma™ ™™
m=0

— 00

means that for every M € N,
M
F(@) —2® 3 fna ™ = 0@ "M as 2 - oo,
m=0

and, moreover, that the asymptotic series can be differentiated term by term. We use the same
notation if v < 0 and if F is defined in a neighborhood of 0.

e Co(R%) denotes the space of continuous functions on R? that converge to 0 at infinity.

e If (fo)o<e<e, is a sequence of functions such that for every e, f. belongs to some Banach space E-.
that may depend on ¢, if @ € R, f. = Og_(%) (respectively f. = op.(¢%)) means that || f-||z. /e®
remains bounded (respectively converges to 0) as € — 0.

2 Formal asymptotic expansions

2.1 Asymptotic behaviour of vy, g, A_1, Ag-

We are looking for a solution (11, 72) to (1.13) which converges to the Thomas-Fermi approximation
as € = 0. Namely, for every x € R?,

m(z) —>mo(x),  n2(z) — n20(). (2.1)



The convergence of (171,72) (expressed using the ansatz (1.20)) to the Thomas-Fermi limit determines
the asymptotic behaviour of v(y1), u(y2), A(y1) as y1,y2 — +oo. We will construct the functions
Vo, o, A—1 and Ao in such a way that they capture entirely this asymptotic behaviour. More precisely,

for |z| > Ra, El/S,uo(y2) sj(é 0 yields  po(y2) :>oo 0
2 g2\ 1/2 . 1/2
for By < o] < Rz, £/*po(ys) — (%) yields juo(y2) ~ (yT) ,
for Ri < |z| < Rz, €"%vo(y1) = 0 yields wo(y ) — 0,
e— 1——00
/2 1/2
for |z| < Ry, eV3uo(y1) = (2(¥1F12 (R? — || )) yields vo(y1) v oo (22?1%112)
N 1/2 R2_ |22\ 1/2 RZ-R? R2—|z|? 1/2
o o<l < (o) g () - (2 )
. R3—R
yields  A—1(y1) ylj)oo 22a2 iy
Mo(y) |~ sag
A 1/2 RZ-R2 1/
for [z] < R, e (A 4 xo) T = (T 4+ il (R - )
R3—R?
yields  A—1(y1) ylj-‘r)oo TR
r
)\O(yl) y1:+oo 20(;1?{112 .

2.2 Expansions of w and 7 in D

In the domain Dy, we look for (n1,72) solution of (1.13) under the form (1.16). It follows that w(z)
and 7(2) have to solve for z € (0, R?) the following system of differential equations

—2dew’ + 4(R; — 2)eW” + <%(R§ — R} + z) w—2mw® = 2007w = 0 (2.2)
—2de%r + 4(R% - 2)527” + (R2 RZ+ z) T —2007° — 200wt = 0. (2.3)
Then, we look for w and 7 under the form of formal power series in the parameter 2:

=] oo
2m 2m
g Wm, = g Tm.

m=0 m=0
Plugging these expansions into (2.2), we get

o oo oo
—2d Z 52mw£n 1+ 4 Rl —Zz Z EQmng 1+ ( (RQ — Rl ) Z €2mwm
m=1 m=1

=0

o0 oo
2m 2m
—2a1 E € E Wrn, WingWmg — 200 E € E W, TmaTms = 0, (2.4)
m=0

mi+ma+mgzg=m m=0 mi+ma+mz=m

whereas (2.3) yields

—2d Z ™11 +4(R} — 2) Z " 1+ (R5 — RI+ 2 Z " T

m=1 m=1 m=0
e [eS)
2m 2m
—2a E € E Ty Tma Tms — 200 E € E Winq Wiy Tmg = 0. (2.5)
m=0 mi+mo+ms=m m=0 mi+mo+mz=m

At order m = 0, we deduce that w3, 7§ have to solve in the domain z € (0, R?) (a range of values of z
for which they are expected not to vanish) the linear system

1
a1wd + aoTd 5 (%(R% - R%) + z)
2

1
ozowg + ongg 3 (RS — Rf + z) .



As already mentioned in (1.11) and (1.12), it follows that

2 Iy
wy = z (2.6)
201112
and
2 2
2 _ Ry — Ry I
T = + z. (2.7)
2&2 2052P12
For m > 1, (2.4) and (2.5) imply that
/ 2 1"
2dwy, 1 +4(z — RY)wp—1 + 201 > Winy WimeWmg + 200 > Wiy Tmg Tmg
my + mo 4+ m3z =m mi +mg + m3 =m
M Wm, _ my, mg, mg < m my,mg,mg < m
- ! 2 "
Tm 2d7y,—1 +4(2 — RY)Trm—1 + 202 > Tmy Tma Tmg + 200 > Wmy Wma Tmg
my + mg +mgz =m mq + mg +m3 =m
my1,mg,m3 < m mi,mg, m3 < m
where
a1w2 QoW To
0
M = -4 2 (2.9)
QowWoTo Q2T
Thus, the functions wy,, 7 for m > 1 can be calculated thanks to the recursion relation
w. 1 a27'02 —QoWoTo
m
=—— 9 X (2.10)
Tm aroel'2wiTy | —QowoTo 1w
d, / 2 " aq ag
—gWm_1— (2 — Ri)wm_1 — % > Wmy WmaWmgz — 5~ > Wmy TmgTmg
mq + mg +m3 =m mq + mg +m3 =m
mi,mg,mgzg < m my,mg,mg < m
_d — (2 — RH)7" | _— o2 _ 0
$Tm-1— (z— Ri)Tp_1 — % > Tm1 TmyTms — 5 > Wmq Wma Tmg
mq + mg +m3 =m mq + mg +m3 =m
mi,mg, m3 < m mi,mg, m3 < m

From this relation, we deduce useful informations about the behaviour of wy, and 7,,, for z € (0, R3].

Lemma 2.1 For every m > 1, there exists (Wm,n)n>0, (tm,n)n>0 € RY such that

~ 1/2—3m n
wm (2) R F io W, n 2 (2.11)
and
~ 1-3m n
Tm (%) R 570 tm,nz". (2.12)

In particular, there is a constant ¢, > 0 such that
Vz € (0,R3], |wm(2)| <emz?7%™ and |rm(2)] < cmz T

Remark 2.2 Note that for m =0, (2.11) is also true (with wo,n = 0 for n > 1), whereas (2.12) has
to be replaced by the Taylor expansion of 7o at z = 0, which can be written as

( ) ~ M 1/2+§:t 1+n (2 13)
Tolz z:O 2&2 —o 0@ '

for some (to,n)nz0 € RY.
Proof. From (2.10), w1 and 71 can be explicitely expressed by

—dw(/2— (2= R})wif + ag(dr/24+(z—R3) 7))

w1 | _ a;Tiaw? arazT12woTo 214
= ’ 24 11 ’ 24,11 . ( . )
1 ag(dwg /24 (2—R7)wqg ) _ dry/2+(2—R71)7g
ajazli2woTo asTia7d

Then, it follows from (2.6), (2.7) and the expansions as ¢ — 0 of 7§, 7/, 1/70 and 1/7§ that (2.11)-
(2.12) hold for m = 1. Let m > 2 and assume that (2.11) and (2.12) are true for m replaced by any
integer between 1 and m — 1. Then (2.11)-(2.12) also hold at order m thanks to (2.10), the recursion
assumption, (2.6) and (2.13). L]



Remark 2.3 A consequence of Lemma 2.1 is that for every x € Do (which in terms of the variable
z, means R? > z > 65), for every m > 1,

‘82mwm(2)| < Cm&ﬁ/2+m(273[3)7 |82m7'm(2)| < Cm&ﬁ+m(273ﬂ)‘

In particular, since we have chosen 8 € (0,2/3), for every M > 1,

M M
2 2
E e wm — wo — 0 and E e Tm — To — 0,
e—=0 e—=0
m=0 L2 (Do) m=0 L2 (Do)

and for a fized value of M, the larger ism € {0,--- , M}, the smaller are the L°° (Do) norms of €™ wm,
and €*™ 1y, in the limit € — 0.

2.3 Expansion of y in D,

For x € D,, we look for a solution (11,72) to (1.13) under the form (1.18). Thus, p is constructed in
such a way that 7o () = £*/3u(y2) solves, for |z| > Ry,

e?Ana + (RS — |z]*) n2 — 2a2m3 =0, (2.15)
which means that for y» < (R3 — R?)/e?/3,

Al (y2) — 24> 1/ (y2) + y21(y2) — 202u(y2)® = 0. (2.16)

Moreover, we are looking for a solution 72 that converges to m20 for |x| > Ri. Thus, as already
discussed in Section 2.1, u has to satisfy the following asymptotics:

ply2) — 0, ply2) ~ (‘W)m-

Y2 ——00 y2—+oo \ 2ai2

We rescale to change the unknown function p into 7, defined by

R/3 ”
[J(yg) = (20:;)1/2’7 R2/3 .
2

Then, it turns out that u solves (2.16) if and only if v solves the differential equation

B -
B3 = RS o

41— EPy)1" (y) — 2d2°%H (y) + yr(y) —1(¥)* =0, —co <y < =2 (2.17)
2

where & = ¢/R%. In [GP], we have constructed a solution + of this equation for y € (—oo,&~2/3] (y
was denoted vz in that paper). Moreover, this solution, for any N € N, can be expressed under the
form (see below for an explanation of the notations)

N
Yy) =D & y(y) + VTV PRy o(y).
n=0

Thus,

N
w(y2) = 7Ré/3 > g2y, [ 2 4 2/ Ry Ru: (-2, (2.18)
(202)1/2 o Rg/a (200)1727 R§/3

In particular, the functions p, introduced in (1.19) are given for every n > 0 by

_ R;/s R-An/3 Y2 2.19
pn(y2) = W 2 Tn N (2.19)
2

The functions v, and Ry, mentioned above have been defined as follows in [GP].
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e o is the Hastings-McLeod solution of the Painlevé-II equation, that is the unique solution of

4v0 (y) + y10(y) —(y)® =0, yeR, (2.20)

with the asymptotic behaviour

Y.
) o~ v @) = 0.
e for 1 <n < N, 7, is the unique solution of
—47(y) + Wo(y)mm(y) = Fu(y), yER, (2.21)
which goes to 0 as y — Fo0, where
Wo(y) =37 (y) —y (2.22)
and
Fa@) == D %1 @)Y ()¥ns (y) = 2dy-1(y) — 4y7ri-1(y),
ni,ng,ng < n
ny +ng +ngz =n
o Ry :z solves
_4(1 - 52/33})}%%],5 + 252/3dR§V,§ + WoRn,s = FNaé:(y7 RN»5)7 y € (_0075_2/3]7 (223)
where
2N-—-1
Fne(y,R) = —(dyvi +2dvy) — Y &/° > Yy Yz Y
n=0 ny+ng+ng=n+N+1
0< ny,ng,ng3 < N
2N 2N+1
n=1 ny+mng =n n=N+1

0< ny,ng <N

The analysis below requires the precise knowledge of the behaviour of v,(y) as y — Z£oo. This
behaviour was already described in [GP], and it is summarized in the next two propositions:

Proposition 2.4  The behaviour of v as y — —oo is described by

1 1 3/2 ( —3/4
= — —=(- 1+0 ) ~ 0, 2.24
Yo(y) NG EEE exp( 3(-v) +O(ly|~"") S (2.24)
whereas as y — 400,
W) & v ey (2.25)
n=0

where ag = 1, and for n > 0,

1 1
An+1 = 2 (9n2 - Z) an — 5 Z AnqQnylng.

ni+nz+ng=n+1
ni,m2,n3<n

Remark 2.5 The calculation of the first terms in (2.25) gives

1 73 _
Yoly) =y"* - 2y 5/2—§y 2o, (2.26)

2

1
Proposition 2.6 For everyn > 1,

Vn(y) y—ﬁ—oo y1/272n Z gn,myism fo'l" some {gn,m}m€N7
m=0

and (y) = 0.
y——o00
Moreover, if d =1, for everyn > 1, gn,o =0.
For instance, 71 (y) ~ Wy_gp if d =1, whereas v1i(y) ~ = %y_?’/z ifd=2,3.

y——+oo y—+oo

11



2.4 Expansions of v and A in D,

For x € Dy, we formally look for a solution (71, 72) to (1.13) under the form given in (1.17). Then, it
turns out that v and A have to solve

2 p2
@%V—I—MV—ZOW/S—Z&OAV = 0 (2.27)
(6 %) g

—de?PAN — (R = 2Py )N 4+ 2(R? — 2Py) AN + 1207 — 2000% — 2000202 = 0 (2.28)

—2de?/3) + 4Rfl/" — 452/3y1u" +

Moreover, we are looking for solutions (71, 72) that converge to the Thomas-Fermi limit (710, 720) as
e — 0. As a result, according to Section 2.1, ¥ and A have to satisfy the following asymptotics. On
the one side, if Ry < |z| < Ry is fixed, ¢ — 0 if and only if y1 — —oo, and

R; — RY £>

— 0 A ~ —
V(yl) ) (yl) Y1 —oo ( 205252/'3 20{2

Y1 ——00

On the other side, if |z| < R; is fixed, € — 0 if and only if y; — 400, and

)~ Toyr ) /2 )~ R2 — R? Ty
! y1—+oo \ 21’12 ’ y1—+oo 2082/3 200012
We formally develop v and X into powers of e2/3;
v(y) = > e Pua(y), Aw) = Y (), (2:29)
n=0 n=-—1

and we plug these expansions of v and A into (2.27). We obtain

oo oo oo oo oo
o
—2d Z 3y |+ 4AR? Z 3y — Z eyl L+ —O(Rg — RY) Z eyt + 1 Z /3y,
n=1 n=0 n=1 Q2 n=-—1 n=0
oo oo
—201 Z g2n/3 Z UnyVnaVng — 2000 Z g2n/3 Z AnqVny = 0.
n=0 ni+ns+nz=n n=—1 ny +ng =mn,
ny 2 —1,ng 20
At order n = —1, we get, in agreement with the asymptotics of A_; given in Section 2.1,
RS — R}
A = —— 2.30
1(y1) 20y (2:30)

and therefore the equation can be simplified into

oo o0 o0 oo
—2d Z 8271/31/:1,1 + 4R§ Z 527‘/31/,/1/ — 4 Z 52”/%;’,1 + Z egn/syn
n=1 n=0 n=1 n=0

—2a1 i g2n/3 > VnyVnyVng — 200 i gn/3 > Ay Vny =0 (2.31)
n=0 n=0

ni+ng+nz=n ny + ng = n,
ni >0,ng9 >0

At order n = 0, we obtain

4R?1/6’ + 10 — 20411/8 — 200 oo = 0. (2.32)
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Similarly, plugging (2.29) into (2.28) and multiplying by %3 we get

—d i g/ > Ay Any + 2RY i e/ > Arry Ans
n=1

ny+mng =mn-—23 n=0 ny+ng=mn-—2
ny,mg > —1 ny,ng > —1
oo} oo
2n/3 " 2 2n/3 / /
-2 E € E Any Ang — RY E € E Ay Ang
n=1 ny+mng=n-—3 n=0 ny4+mng=n-—2
ny,ng = —1 ny,ng = —1
(oo} [e o]
Z 2n/3 z: / / 2 2 2 : 2n/3 z :
+y1 € / Anl )\77,2 + (RZ - Rl) € / )\n1>\n2
n=1 ny+ng=mn-—23 n=-—1 ny+ng=n-—1
ny,ng 2 —1 ni,ng = —1
[eo] o0
2n/3 2n/3
+y Y e > Ay Any — 202 Y 2 > Ay Anp Ans
n=0 ny+ng=n-—2 n=-—1 ni]+mng+ng=n-—2
ny,ng 2 —1 ny,ng,ng 2 —1
oo
2n/3
—2ag E € E Ani AnaVnszVng =0 (2.33)
n=0 ny+mng +ng+ng=n—2

ny,ng =2 —1, ng,ng =20

This equation at order n = —1 is satisfied thanks to (2.30). At order n = 0, we obtain

Yy «
Ao(y1) = ﬁ - 0721/0(3/1)2. (2.34)

From (2.32) and (2.34), we infer the equation satisfied by vg:
4R%I/(I), + Tayiv0 — 20(1F12V§ = 0. (2.35)

Moreover, according to Section 2.1, the asymptotic behaviour we need for vy is

1—\2y1 1/2
~ (2 - 0.
woln) <2a1F12) ),

Looking for vg under the form

vo(y1) = Ry?|0o|'? Loy
T Qe TR\ RE )

vo solves (2.35) if and only if 7 solves

4sign(T2)7"(y) + yy(y) —v(¥)° =0, yeR, (2.36)

with the boundary conditions

W) o~ VY ) 2 0 (2.37)
If the sign of I'> (which is the same as the sign of I'12 according to (1.9)) is negative, it can be easily
seen that (2.36) has no non-trivial solution with fast decay to 0 as y — —oo. Indeed, if -y solves (2.36)
with 7/ (y) — 0 and yy(y)? — 0 as y — —oo, then by integration between —co and y, we get

2sign(T'2)7'(y)? = ,y'Y(;J) +/y 7(;) dt + ’Y(i) ,

— 00

which implies y =0 if I's < 0 and y < 0. Also, from now on, we assume
Iy > 0, T'i2 > 0. (2.38)

Under this condition, v has to be the Hastings-McLeod solution ~ of the Painlevé II equation (2.20),

and
RETYS (1,
I/o(y1) = Yo . (239)
(200)1/2175°  \ R}
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Thanks to (2.30), equation (2.31) at order n > 1 gives

2 1 2
4RIV, + y1vn — 615V — 2000 A0Vn — 2000 An Vo (2.40)
! "
= 2dv,_1+4y1v,_1 + 201 E VniVnoVng + 200 E AniVng-
ny +ng +nz=n ni +ng =n,
0< ny,na,mg <n—1 1< ny,ng <n—1

On the other side, equation (2.33) at order n > 1 yields

—d > Moy Any + 2RE > Ml Ans

ny+ng =n-—3 ny+ng=n-—2
ny,ng 2 —1 ni,ng = —1
" 2 2 : / ’
_2y1 § )\n1>\n2 - Rl Anl)‘nz
ny4+ng=n—3 ny+ng=n-—2
ni,ng = —1 ni,ng = —1
/ / 2 2 2 2
+y1 AnyAn, + (R2 — R AngAng +2(R5 — RY)A—1 A,
17'\n2 17\n2
ny+ng=n-—3 ny+ng=n-—1
ny,ng 2 —1 ny,ng =0
2
+y1 g )\nl )\ng - 2052 § )\n )\n )\ng - 6052)\—1)\71,
ny4+ng=n-—2 ny+ng+ng=n-—2
ny,ng 2 —1 n—12mny,ng,n3 = —1
2
—2a0 E Ani AnaVngVng — 4021 vovn =0, (2.41)
ny+mng+ng+ng=n—2
ni,mg = -1, n—12>mng,ng >0

therefore for n > 1,

[o7s) 202
Ap = —222 L — 2.42
n o VoVn + (R% — R%)Q n ( )
where
6y = > (=dXny Mg — 201000, Mg + Y1 A0, Aby)
ny+mng =n—3
ny,ng = —1
+ > (2RIAY, Any — RIN, ALy + 410, Any) + (R — RY) > Any Ang
ny 4+ ng=n-—2 ny4+ng=n-—1
ni,ng = —1 ny,ng =0
—2a > Ay Ans Ang — 200 > Any Any Vng Un2.43)
ny +ng +ng =n-—2 ny+ng+ng+ng=n-—2
n—12mny,ng,n3 = —1 ni,ng = —1, n—1>=mn3,ng =20

At this stage, we have constructed A_1, v and Ao, which are given respectively by (2.30), (2.39) and
(2.34). For n > 1, the A,’s and the vy,’s are constructed by induction as follows. Let n > 1, and
assume that the Ay’s and the vy’s are known for every k < n — 1. Then, plugging (2.42) and (2.34)
into (2.40), vy has to solve

where
T = —4R19;, + W(y1), W(y1) =6ail1205 — Damn (2.45)
and
dag oo
F, = —ﬁ&t — 2dv_ — 4V — 201 Z Vn,VnaVng — 2Q0 Z Any Vno(2.46)
2 1 ny4+ng+ng=n ny +ng = n,
0< ny,ng,ng <n—1 1< ny,ng <n—1

Note that only Ax’s and v’s for k < n — 1 appear in (2.46) and (2.43). Once (2.44) has been solved,
Arn is given by (2.42). In order to invert T in (2.44), one needs to understand the behaviour of F,(y1)
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as y1 — *oo. Thus, 0., F,, vy, and A\, will be constructed recursively in such a way that for every
n=l1,

onlyr) ~ i’ Ogmg%:_w?) Drmyi ™™, on(y) & v ;Z_ S (2.47)
Fr(y1) ylf—oo 0, Fn(y1) y1~>+<x> Yy K Z Frnmyr o (2.48)
m=0
vn (Y1) ylf—oo 0, va(y1) y1~>+oo yr o2 Z Nn,my1 o (2.49)
M) &yl 30 Lemyn s () Ay Z Lnmyr ™™, (2.50)

o<m<(n—2)/3

where the Dy 'S, Fnom’S, Nnm’s, Lnm’s, 5n,m’s and zn,m’s are some real coefficients. Note that
thanks to (2.39), (2.34), (2.24) and (2.25), vp and Ao admit similar expansions. However, the power of
the leading term in the expansions they satisfy as y1 — +oo (and for Ao, also as y1 — —o0) is higher
of three units to the one which would be given by (2.49) and (2.50) for n = 0. More precisely, we have

~ ~ 1/2 § 3m
VO(yl) yl_’:"_oo 0, VO(yl yl—,:o—oo NO my1 (251)
and
U =
A ~ A ~ Lo.m 3m 2.52
olyr)  ~ P ofyr) = m§ Lo yi " (2.52)
where
Iy 1/2 R% m
No = 2.53
om (20&1F12) T, am ( )
and
Loo= — andform>1, Lom=—20 > Now N (2.54)
00 20{2F12 = 1, om Qs 0Omq14iVOmao - .

mi1+mo=m

Next, let us explain why 01, F1, v1 and A1 admit asymptotic expansions like the ones given in (2.47),
(2.48), (2.49), (2.50) and let us calculate explicitely the first terms in these expansions. Thanks to
(2.43) for n =1 as well as (2.30), (2.34), (2.52), (2.53), (2.54),we have

61 = 2yiA1do 4 2RIANG A1 + (R3 — RIS — 602 AgA 1 — daoh_1 Aovg
3aoRH(R: — RY) _, 7
= 2RIANA_, = =emzmti 0 . 2.55
AoA-1 = @102l y1 +O0(y ") ( )

Thus, the asymptotics as y1 — 400 in (2.47) holds with

3a0R1 (R5 — R7)

Dlo—O and D
051052P12

(2.56)

From (2.52) and (2.55), we also infer that 61 & 0, which is the asymptotics as y1 — —oo in (2.47).

Y1 —r—00
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Then, (2.46) yields

4aoa21/0 ’ 7"
= _7(123 — R%)Q 01 — 2dl/0 — 4y11/0 (257)
r, \/? 12 R? 5 120372 R? . 12
= 1-d M (2 —a) - 0 ,
y1—+oo (2a1F12> ( Jo (2a1T2T'12)1/2 2( ) arasl2(RE — R2) n 0 )

Thus, (2.51) and (2.47) for n = 1 imply that (2.48) for n = 1 holds with

r, \Y? R? 5 12027, R?
Fio = 1—d d Fu=— "2 (2(71-qa) - .
" <2a1F12) (1-d) end Fu (200T2T12)1/2 279 onopl2(RE — RY)

In order to calculate v; from (2.44), let us first notice that the function W defined in (2.45) coincides,
up to a rescaling, to the function Wo(y) = 370(y)? — y which was studied in [GP]. On the other side,
W can be expressed in terms of Ao thanks to (2.34). Namely,

F1/3y1 30&11_‘1 60(1&2F12
W) =TYRPw, [ 22 ) = or — 2R 2N (). 2.58
(y1) =57 R Wo Ik 0y T2)wm ” o(y1) (2.58)

In particular, there exists C' > 0 such that W (y1) > C for every y1 € R, and W admits the asymptotic
expansions

Y1 ——00 y1—+oo

—+o0
6 Iy _3m
W) ~ -Tap, W) ~ m <2F2—O“§j”ZLo,my13) (2.59)

m=1

In the case d = 1, since Fip = 0, F1 € L*(R), and v; is obtained by inversion of T, which is a
Schrédinger operator on L?(R). Moreover, thanks to (2.59) and the positiveness of W, Lemma 2.1 in
[GP] implies that the solution v to (2.44) admits asymptotic expansions like the ones given in (2.49),

with ) -
6R1 OéoRl 5
Nio=0, Nij1=-— - =
Lo ’ bl (2a1F12F2)1/2 <041CE2(R§ - R%)Fm 4F2

In the cases d = 2,3, Fip # 0, and therefore Fy ¢ L? (R). We construct the solution v1 to (2.44) by
using the same trick as in [GP]. Namely, we look for v1 under the form

_ Fuoy;, ?

W(y1)
where ® € C*°(R) is such that ®(y1) =0 for y1 < 1/2 and ®(y1) =1 for y1 > 1, in such a way that

Q(y1) + 71,

1

Froy; \?

& | Froyy
W(y1)

(4R3O}, + W(y))n = Fi— Fioyy ®(y) + 4R} dy?
1

P(y1) (2.60)

The right hand side of (2.60) behaves now like O(y1_7/2) as y1 — —+oo, and its behaviour at —oo is
the same as the one of Fy, therefore the right hand side in (2.60) belongs to L*(R), and (2.60) has a
unique solution 7 in L?(R). Moreover, again thanks to Lemma 2.1 in [GP], we deduce the existence

of asymptotic expansions for 7y as y1 — Foo, with 71 (y1) = O(y; o/ %). These expansions for 7
yl*} oo

imply that 11 has expansions like in (2.49), with

N _Fo_ _ 1-d
YO or, T 2(2a1Tal2) /2’
Then, from (2.42) and (2.55),
4012R% "
N o= 228 Y- 2.61
1 2V0y1+(R§—R§)2 0A-1 ( )
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and thanks to (2.51), (2.55) and (2.49) for n = 1, A1 as asymptotic expansions like in (2.50) (in
)

particular, A1 (y1 ~ 0), with
Y1—>—00
ao(d —1) . 3ao R} 4R? 5
Lio=——+ difd=1, Li1= -= .
1,0 20(10(2F127 and 1 ’ Lt 20&1&2F12 (R% — R%)Flz FQ
For n = 2, (2.43) and (2.46) give similarly (after simplifications involving also (2.30), (2.34) and (2.61))
82 = —dAoA_1 — 2Y1NoA_1 — 2RZAG A0 — RINGE + 2RIN A1 — 20002 10 (2.62)
and
dagav
P = —ﬁdg — 2dvy — 4y — 6arvor? — 200111 (2.63)

which implies, thanks to the expansions calculated previously for Ao, vo, A1 and v1 that §2 and F»
satisfy respectively (2.47) and (2.48) for n = 2, with

T (dlia(R3 - RY) +T4RY) = d(R} — R}) + R?
D = — D = 2.64
20 40212, roRe 4032 (2:64)
and
g0 ( Do \'* Ty (dli(R3 - RY) +T1RY)
20 = a2 2a1I‘12 P%z (R% — R%)z
In order to solve (2.44) for n = 2, we look for v, under the form
oo 1/2 ~
vy = . [ + v 2.65
2 WY (y1) + 72 (2.65)
Then v; solves (2.44) for n = 2 if and only if 7» solves
~ d2 F2 0y1/2 —5/2
—4RIO2 + W = F— Fol?e AR = | 220 _ g = o@ ).
(—4R(0,, + W(y1))P2 2 — Faoy " @(y1) +4R7 a7 | W (y1) e (y177)

In particular, the right hand side in this equation belongs to L*(R). Thus by inversion of T like for
n =1 and d = 2,3, and coming back to (2.65), v, satisfies (2.49) for n = 2, with

Ny — o e 1 I (drm(R% - R%) + F1R%)
20 = = = -1
DT az (2a1F2F12)1/2 7, 2(R3 — R?)?

As a result, from (2.42) for n = 2, A2 satisfies (2.50) for n = 2, with

Iy (dl12(R3 — RY) + T1RY)
2(R3 — R?)*T'fhon

d(R3 — RY) + RY
2as(R3 — RY)

LQ,Q = — and Zgﬁo = — (266)
Next, let us fix n > 3. We assume that we have constructed the vy’s for k € {1---n — 1}, and
that asymptotic expansions (2.47), (2.48), (2.49), (2.50) with n replaced by each of these k’s are
satisfied. Then it is clear from (2.43) and (2.46) that F, ~ 0 as y1 — —oco as indicated in (2.48).
In order to study the asymptotic expansion of §,, as y1 — +oo, let us first focus on the first sum
in the right hand side of (2.43). If ni,n2 > 1 and n1 + n2 = n — 3, then it follows from (2.50)

that Anyng (Y1) := —dA%, Any — 2017, Any + Y1 A%, A7, admits an asymptotic expansions which can be
written as
—+o0
n—I —3m
Y Z Cm¥Y1 ", (2.67)
m=0

for some coefficients (¢m )men, with { = 8. Thus, we deduce that

—+o0 —+o0
n—_8 . —3m n—2 - —3m
> s (W1) & Y70 Duamteyr " =972 Y Dumyn
Y1 —+00
ny+ng =mn-—3 m=0 m=2
ny,ng =1

17



for some coefficients (Dn,m)mgg. Similarly, An,n,(y1) has an asymptotic expansion which can be
written as (2.67) with i =5 ifn1 > 1 and no < 0or n; <0 and ne > 1, and with | = 2 if n1,n2 < 0.
As a result, the first sum in the right hand side of (2.43) admits an asymptotic expansion as y1 — +0oo
like (2.67) with { = 2, and in order to calculate the leading term cyf_2 in this expansion, one has
to consider only the terms of the sum corresponding to indices ni,n2 € {—1,0}. The same kind of
arguments applied to the other terms in the right hand side of (2.43) yields the asymptotic expansion
of 6, as y1 — 400 given in (2.47). Moreover, in order to express Dno, the only terms of the right hand
side of (2.43) which have to be considered are written in the calculation below, where we use (2.52),

(2.30), (2.50), (2.51) and (2.49)

On = —dAoAn—3 — 2Y1 A0 An XoMn—3) 1rne
oo ( 0An—3 — 2Y1A0 3+ Y1200\ n_3) 1{n=s}
+2y1 A1 01 + 2y1 X0 An—2 + 2(R3 — R})AoAn—1 — 120X 120 n—1 — 6a2\§ An—2
—8&0)\_1A01/01/n_1 — 4&0)\_1An_1l/g — 40[0)\31/01/n_2 — 400)\0)\77,—21/3 + O(y?_5)

_ PRSI ¥ PR S VR
Y1 :+oo 2a2F12 2052P12 v v 2052P12 2a2F12 {n=s}

R3—R? ,_ r _

+2 =2y P L1 0+ 20 Ly )yt Ln_20

2042 2a21"12

I -3
2(R3 — R}) | ——— T L

+2(Rz — RY) (2(121“12 y1) Y1 1,0

RE—R} ([ T - I 2
—12 Lpn_10— _— L

@2 2&2 2(12F12 v 1.0 6&2 20[2F y h 2,0

R3 — R} Iy T2 1/2 1/2\ n-7/2
-8 Np—
@0 2052 20&2P12y1 20(1P12 Y1 Y n-10
2
e BB s 2 \'"? 1)
0 20[2 Y n-1,0 2(11F12 yl
I 2 T2 12 1/2| n—9/2
4 - ) Ny
o7)) (2a2P12y1) ((2@1F12> Y1 Y1 n—2,0

2
I'y n—d Iy 12 1/2 _5

—4 o Ly
o7 (2a2F12 y1) Y1 2,0 ((2a1F12) Y1 +O0@W ™)

(1- d)F% n_o [ R3— R? 't 2 oy n—2 I'1
= 1= ————Ln_ Ly R — R Ly _
e Y1 10212, {n=3} T Y1 - n—1,0 + ool 20 + (R Dy 9% AP
3(R3 — R s 3T o (R} = ROTATS*Nou10 oo
= - Lp-10— —— Lp_20— 2« :
sl MO g0, T T ey e
—ao (R5 — R)T2Ln_1,0 n-2 _ aol3Ty* N2, s _ @olilaln-20 Y2+ Oy )
a1aal'ia ! a§(2a1)1/21_‘%2 ! aiazl'?, ! '
e Y 2 Dno + O(y?™?), (2.68)
with
(1—ari (R3 — RO It
Dno = - Y0ig ez, o1 g
™0 405%1—‘%2 { 3} OQPlg n=1o 2&21—‘%2 ne20
72ao(R§ - R%)FlFé/QN e aol'3ry? o (2.69)
a3(201)V/71%° © o a3(2an)ryyt

The existence of an asymptotic expansion of d,(y1) as y1 — —oo like the one given in (2.47) follows
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from (2.43) similarly as for the expansion at y1 = +00. Moreover, like in (2.68), we obtain

_ oy IRV
On Y1 oo ( dX\oAn-3 + yl)\())\nfii) 1{n=3}
21 A1 An—1 + 21 XoAn—2 + 2(R§ — R?))\o)\nq — 122X 1 A0An_1 — BaaAiN, 2 + O(yq 75)
= Doyl ?+0017), (2.70)
with
5 o 1-— d]. . Z RS - R% + Zn72,0 (2 71)
n,0 = 4&% {n=3} n—1,0 s 20 . .
Then, (2.48) follows from (2.46), (2.51), (2.47) and the recursion assumption. Moreover,
4&0042 FQ 1/2
Fno=— Dyo. 2.72
o= gy (ga) Do @72)

Then, using the same trick as for n = 2, we look for a solution v, of (2.44) under the form

Frno n-3/2
3 y @
W(y) ™!

Up = (Y1) + vn.

vn solves (2.44) if and only if v, solves

P = —3/2 2 & | Fn Oyn73/2
Tl/n :Fn, where Fn :Fn_Fn70y’,1,L @(y1)+4R1d7y2 W@(yl) .
1

The function Fvn defined just above admits expansions as y1 — Foo which are similar to those satisfied
by F, and given in (2.48), except that in the expansion of F, as y1 — +o00o, the power of y; in the
leading term is smaller from three units than the one of F;,. By iterating this process a finite number
of times, we are brought back to solve an equation like (2.44), but with a right hand side which is
in L*(R). Thanks to Lemma 2.1 in [GP] and (2.59), it turns out that v, satisfies (2.49), where the
coefficient in the leading term as y1 — 400 is

Fn,O _ 20(00(2

Npo =

0= _ Dy 0. (2.73)
M2 (RZ— R?)? (201T12Ts) "/

Finally, from (2.42), (2.51), (2.49), (2.47) and (2.73), we deduce that X, satisfies (2.50), with

[e7s) FQ 1/2 20[2 20&2
L, = —-2— Non + ——55Dno = ———55=—Dno, 2.74
0 w (o) Mot g = e R P 279
and
T 2a25n 0
Ino = -—=920nm0 2.75
¢ T w-mp 27

which completes the recursion and proves that (2.47), (2.48), (2.49) and (2.50) hold for every n > 1.
In addition, one can compute explicitely the coefficients of the leading terms in the expansions of §,,
F, vp and A, as y1 — £oo. Indeed, as y1 — +0o0, according to (2.69), (2.73) and (2.74), we have, for
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every n = 3,

B (1 —-ary _ (R3— R 20 D o I? 20 D
0T Tyazre, = T2 (B2 —R2)2Tya " 07 20072, (R2 — R2)2Ty, 20
Oco(R% — R?)FlF;/Z 2@0&2
+2 2 3/2 2 2 1/2 Dn—1,0
a3(2a1)/2175° (R — RY)? (200TM12l2)
aol‘fl‘ém 2010042
2 5/2 (p2 2 1/2 Dn—2,0
(&5} (2041)1/21"12 (R3 — R?)? (2a1T12I'2)
(1—-d)r3 or, r?
= ——1ypev—————5Dn10— ——5--=Dn_
4031, U T (RI-RYIL, Y (RI-RYMY,
2037 alr?
o1 Dy10+ 01 5 Dn—2,0

araal'}y(R3 — RY) a1l (R3 — RY)
(1—d)r} 2r', ri

= 1 n=3} — Dn— - 7Dn_ .
43T, T T (RS- RDM T (R - R,
Thus, defining for every n € N
2 _ R\ "
o (mray,, 79
1

we infer thanks to (2.56) and (2.64)

2dl'12(R3 — R3) 4+ TR}
404%P1 ’

2(1+ d)l—‘m(RS — R%) + 2T R}

_ _ 2 _ 2
di =0, do=—(R;—Rj) 4037 ’

ds = (R3 — R})

and
VTL 2 4, dn = *2dn_1 — dn_g.

It follows that for n > 2,

(—1)™(R5 — R?)? (T12(R3 — R})(d+n —2) + (n — 1)1 RY)
40¢§F1 ’

dn = —

and therefore

Do - " (R3 — R?)? (N2(R5 — RY)(n+d —2) + (n — 1)I'1 RY)
"0 T\ N2 (R2 — R?) 402T

Coming back to (2.73) and (2.74), we get, for n > 3,

Noo o - " ao(T12(R3 — RH)(n+d—2)+T1Ri(n—1))
0=\ T L (R2 — R2 12 (2.77)
12( 2 1) 20071 (2&1F12P2)
and
_ n 2 p2 . 20
Ln,O _ ( 2F1 , ) Flz(RQ Rl)(n +d 2) +I'1 R (n 1) ' (2.78)
1—‘12 (R2 — Rl) 2&2F1F12

Similarly, as y1 — —oo, for n > 3, from (2.71) and (2.75) we get

~ 1-d 2 = 1 -
Dno=-—21 o ——= Diro——o—Dp_so.
n,0 40[% {n=3} R% — R% n—1,0 (R% — R%)Q n—2,0

Since from (2.47) for n =1 and (2.64), we have
~ ~ d(R3 — R}) + R}
Dig=0, Dyo= _(2—21)4—17
4as
we deduce
d(R3 — RY) + R + R}
403(R3 — RY)

D3 =
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and for n > 4,
. -1 n+1
Do = 2(2) 2)n—2
4a3(R3 — RY)
and therefore thanks to (2.75), we obtain

((d—2+n)(R} — R}) + (n— 1)RY)

- (-1

_ _ 2 _ 2 _ 2
Lo = 5o — gy (@ = 24 W) = R + (0 = DRY).

The main results obtained in this section are summarized in the following proposition.

Proposition 2.7

R; — Ri
A = 2 1
1(y1) S
1/31:1/3 1/3 1/2
vo(y1) = By°r Y0 LYy, = < i ) / 2+ 0@y *?)
(2a1)1/2I14? R3] nimroe \ 20Tz 1 1
VO(yl) ~ 0
y1——00
Y1 (e 7)) 2 I't _9
A f— — — — — O
ov1) 20 o2 vo(yn) Y1400 2a2F12y1 +O0 ")
Y1
A ~ A
o(y1) y1——oco  2Q2
~1( BaoaaRIAGA 110 / "
1 (yl) = T (—W — 2dl/0 — 4y11/0
1-d —-3/2 —9/2 ey
B el )72 Y1 +02(y21 ) ifd=2,3
= 6R’ agR 5 —9/2 —15/2 . .
y1——+oo - (2a1F1211“2)1/2 (ala2(R%_}§)F12 — m) Uq + O(y1 ) ifd=1
vi(y1) ~ 0
Y1 —>—00
Qo 4oy R2 /
A = —2— A0 A
1(y1) o (R 0
ag(d—1 — _ .
{ o=l L1 Oy ) if d=2,3
" 3agRY 4R} 5 —4 A
y1rteo 2a1(321}12 ((RS_R%)Flz - i) Y1 + O(yl ) ifd=1.
At(y1) ~ 0
Yyl —>—0o0

Un (1) = (Fn(*l“l ) ao(T12(R5 — RY)(n+d—2) + 1R} (n — 1)) 52

n—11/2
Y +O0(y
R% - R%) 2a21" (2a1F12F2)1/2 ! ( ! )
vn(y1) ~ 0

Y1 —>—0Q
-Ty "T12(R3 —RH(n+d—2)+T1R3(n—1) ,_o s
An -
W) T (Flz(Rg—R§)> 2as01 15 v+ O
1 n+1 e e
() = GO (= 2+ n) (B — B+ (n— DRy + 00 ),

y1——0o0 QQQ(Rg - R%)

3 Truncation of the asymptotic expansions

In section 2, we have explained how to calculate asymptotic expansions into powers of € of w, 7, v, A
and p in such a way that (1.15), (1.16), (1.17), (1.18) and (1.19) provide formally solutions to (1.13)
at any order. However, we have not said anything about the convergence of these formal series. In
this section, we prove that the truncations of the formal series at a finite order provide approximate
solutions to (1.13) at a arbitrarily high order in terms of powers of €. More precisely, M, N and L are
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three fixed positive integers, and we set in all the section

M M
= Z 2™ wm(2), 7(2) = Z " T (2)
m=0 =
N N
v(y1) = 26%/3%(1/1), Z 2n/3/\ ),
n=0

L
Z 23 1 (y2), (3.1)

where the wy,’s, Tm’s, vn’s, An’s and u,’s are the ones calculated in Section 2. The way integers M,
N and L are chosen is explained in Sections 3.5 and 3.6 below.

3.1 Consistency of the ansatz
Ansatz (1.20) requires the calculation of /\(yl)l/2 for z € Suppx. C Di. So it makes sense to combine
(1.19) and (3.1) only if the function A given by (3.1) satisfies A(y1) = 0 for € Suppx.. We next show
that the last inequality indeed holds for x € D;.

Lemma 3.1 Let N > 0 and A given by (3.1). There exists C > 0 (which might depend on N) such
that for e € (0,1] sufficiently small, for every x € Dy,
Ayr) = Ce™??

Proof. Let z € Dy. Then yo > (R3 — R3)/e*/? — 2eP72/3 —2872/3 Ly < 26P72/3 and since o is
increasing and 7o(y) ~ V¥, we get on the one side
— o0

2 p2 5—2/3 R2 _ R2 )
23\ L ae(m) = 22— 02y e T B T a0 o sz B BY LG pays
c 1 o) 202 Q2 vo(yr)” > 2000€2/3 a9 a2 vo(2e ) Q00062/3 +0(e ),

whereas for n > 1, thanks to (2.50)

" P xyn)] < ene™ (Lyicny + " 1y, 51)) < Ene™? max(1,e772D02)
< Enmax(e2/3 PTDTBY — (23, (3.2)
2 2
for some ¢, > 0 and &, = 2" %¢,. As a result, for ¢ sufficiently small, we have A(y1) > 532_5513 for
every x € Dy. . n

3.2 Truncation of (w,7) in Dy

In this section, we prove that (3.1) provides an approximate solution to (1.13) in Dy at an arbitrarily
high order. For convenience, we use the same notation w for the functions z — w(z) and = — w(z) =
w(RE — |z?).

Lemma 3.2 Let M > 1 be an integer, B € (0,2/3) and w, T given by (3.1). Then

_ 0(8(2—3B)M+2—3,B/2)

e Aw + @(Rg — R)w + 2w — 201w® — 2007w
a2 Lo (Do)

and
HEZAT + (R3 — R} 4 2)1 — 2007 — 2aow27—HLm(D0) = 023 M+2-28y

22



Proof. Thanks to (2.6), (2.7) and (2.8), we have

e2Aw + @(Rg — R%)w + 2w — 200w — 2007w

(0%}
M+1 M M
2 [&70] 2 2 2 2
= g € mAwm,1+a—(R2—R1) E M wm + 2 g e Wm.
m=1 2 m=0 m=0
3M 3M

2 2
—2a1 E e“m E Winq Wiy Wimg — 2000 E e”m E

Tmq TmoWmg

m=0 mj + mg + mz =m m=0 mij + mg + mg =m
0 my,mg,mg < M 0< mqy,mg,m3g < M
3M
2(M+1 2
= SMDAGY — 20 E e“m g Winy Wrng Wrn
m=M-+1 my + mg +mg =m
0< my,mg, mg < M
3M
2 2m
—4Q 3 Tmq TmoWms -
m=M+1 my + mg +m3z =m
0< my,mg, mg < M

From Lemma 2.1, (2.6), (2.7) and Remark 2.2, we infer that for every = € Dy,

le® Aw + @(Rg — RYw + 2w — 201w® — 2007w
a2
3M 3M

m=M+1 m=M-+1

Similarly,

AT + (R% — R% +2)T — 2057° — 2000w3T

M1 M

= Z ™ AT 1 + (R5 — R} + 2) Z ™
m=1 m=0

3M

3M
2m 2m
—2a2 € Ty Tmo Tms — 200 €
1 2 3
m=0 m=0

(3.3)

(3.4)

< Q2AM+1) —3/2-3M Z g2m ,3/2=3m Z €2mz5/2—3m56(2—3B)M+2—3B/2.

Wiy Wmo Tms

m1 + mg +mg =m mq + mg +m3 =m
0 my,mg,m3g < M 0< my,mg,m3g < M
3M
2(M+1 2m
— g2+ >ATM — 20 E € E Ty Tmg Tms
m=M+1 mj + mg +mg =m
0 < my,mg,mg <M
3M
2 2m
—40Q0 3 WmqWmo Tms
m=M+1 my + mg + mg

thus for z € Do,
|e? AT 4+ (R3 — R} + 2)7 — 207° — 200w 7|

~

3M
< 8(2735)1\4+273Jr Z €2m2173m§€(2736)M+2726.

m=M+1

3.3 Truncation of (¢'/3v,c'/3)\Y/2) in D,
Lemma 3.3 Let N > 4 be an integer, and v, \ given by (3.1). Then

23

3 2
A (51/31/) + (%(R% — R} + z) 3y — 2my (51/31/) — 20 (51/3)\1/2) /3y
2

L (D)

_ O(gBN+477B/2)



and

) 3 2
A (61/5)\1/2) + (R% —Ri+ z)sl/3>\1/2 — 209 (61/3)\1/2) — 2 (51/31/) gl/3)\1/2 = 0(55N+2_’B).
Le°(Dy)
Proof. Using (3.1), (2.32) and (2.40) for n € {1,--- , N}, we get
3 2
et <€2A (51/3y) + <%(R§ - Rf) + z) ey — 204 (el/su) — 2ap (51/3)\1/2> 51/31/)
2
2 p2
= BAp + @wu + v — 2a1V3 — 2000\
Q2 I3 /3
2 p2
= —2d€2/31/ + 4R%1/” — 462/3y11/” + %%V + v — 20m/3 — 20\
N+1 N N+1 o N-1
n n n 0 n
= -2 Zl e? /31/,/1_1 +4R3 ZOEZ /31/,/{ — 4 Zl g2 /31/;'_1 + a—Q(R% — R?) ;1 g2 /31/n+1

N 3N 2N
2n/3 2n/3 2n/3
+y1 E 3y, — 2ay g g/ E VnyVnoVng — 200 E g2/ E AniVno
n=0 n=0

ny+mng+ng=mn n=-—1 ny+ng =n
0K ny,ng,n3 <N —1<n <N
0< ny <N

N+1 N N+1
z : 2 2 z : 2 z : 2

= —2d &€ n/3V;l,1 + 4R1 &€ n/SI/,;l/ - 4y1 3 n/sl/:,:,1
n=1 n=0 n=1

N 3N 2N
2n/3 2n/3 2n/3
+y1 E 23y, — 2ay E g/ E VnyVnoVng — 200 E g2/ E AniVng
n=0 n=0 ny+mng+ng=mn n=0 ny+ng =n
0< nyp,ng,n3 <N 0< nyp,ng <N
2(N+1)/3 1 2(N+1)/3 11
= —2d?WHD/ Z/N—4y15( +1/ 145
3N 2N
2n/3 2n/3
—2aq E g2/ E VnyVngVns — 200 E g2/ E AnqVno (3.7)
n=N+1 ny +ng +ng =n n=N+1 ny+ng =n
0< ny,ng,ng <N 0< ny,mg <N
2N—1
2(N+1)/3 / 1" 2n/3
= g2W+Y/ —2dvy — dyivy — 200 E g2/ E Vni1VnoVng
n=0 ny+ng+ng=n+N+1

0< ny,ng,ng <N

N—-1
2n/3
—2ag E g2/ E AniVny
n=0

ny+ng =n+N+1
0<ny,ng <N

Thus, if we note that for z € D1 = {m e RY| - 269723 Ly < 2&572/3}, |52/3y1| <ef 5 0ase—0,
we have thanks to (2.49), (2.50) and (2.51)

2 p2
e le*?Av + %MV + v — 2aly3 — 200\
oo €2/3
2N—1
< £2N/3+5/3 max(1, yl)N—7/2 + £2N/3+5/3 Z c2n/3 max(1, yl)n+N+1—5/2—5/2+1/2
n=0
N-1
Jr621\1/3+5/3 Z g2n/3 maX(Lyl)n+N+175/272
n=0
< £2N/3+5/3 max(1, yl)N—7/2 < £2N/3+5/3 max(1, E(ﬂ—z/s)(NJ/z)) _ €5N+477B/27 (3.8)
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where the last equality holds because N > 4. The first estimate of the lemma is proved. Similarly,
from (3.1), (2.30), (2.34) and (2.41), we deduce

3 2
2A (51/3)\1/2) + (R% — R + 2)51/3/\1/2 — 20 (51/3)\1/2) —2ap (51/31/) g/3\1/2

= en? [—daz/S/\)\’ — (R = 2By )N+ 2(R? — 2Py AN + y2\% — 2400 — 20401/2/\2]

2N+3 2N+2
—1/3y—-3/2 2n/3 / 2 2n/3 "
AN —a YT > Ay Ang +2RT D & S A2 Ans
n=1 ny+mng =n—3 n=0 ny+ng=mn—2
—1<ng,ng <N —1<ny,ng <N
2N+3 2N+2

—2y Y &P > NiiAny — R Y 207 > Ay Ao
n=1 n=0

ni+ng=n-—3 ni+mng=n-—2

—1< ny,ng <N —1< ny,ng <N
2N+3 2N+1
2n/3 / / 2 2 2n/3
Y Y NN B-RD Y € S
n=1 ny+ng=mn-—3 n=-—1 ny4+ng=n-—1
—1<nj,ng <N —1<ni,ng <N
2N+2 3N+2
2n/3 2n/3
tyr Y e > AmiAny — 200 Y & > My Ang Ans
n=0 ny+ng=mn—2 n=-—1 ny+ng +ng=n-—2
—1< ny,ng <N —1< ny,ng,n3 <N
AN+2
2n/3
—2ap g € E Ani AnaVngVny
n=0 ny+mng+ngt+ng=n-—2
1< ni,nyg <N
0<ng,ng <N
2N+3 2N+2
—-1/3y—-3/2 2n/3 / 2 2n/3 "
= e VAT —d > 2 > AnyAn, +2RT D & > Aty Ans
n=N+1 ny+mng =n-—23 n=N+1 ny+mng=n-—2
—1< ny,ng <N —1< ny,ng <N
2N+3 2N+2
2n/3 " 2 2n/3 ’ ’
2y Y e > NiAn, — R Y e > A Ay
n=N+1 ny+mng =n-—3 n=N+1 ny+ng =n—2
—1<mni,ng <N —l1<ni,ng <N
2N+3 2N+1
2n/3 ’ ’ 2 2 2n/3
M Y NN EBoR) Y e S
n=N+1 ny+mng =n—3 n=N-+1 ny+mng=n-—1
—-1<ny,ng <N —-1< ny,ng <N
2N+2 3N+2
2n/3 2n/3
ty Y e > Ay Any — 200 > 2 > Ay Any Ans
n=N+1 ny+mng=n-—2 n=N+1 ny+mng+ng=mn-—2
—1< ny,ng <N —1< ny,ng,n3 <N
AN+2
2n/3
—2ap E € E At Ang Vng Vny (3.9)
n=N+1 ny+mng+ng+ng=n-—2

—l1<ny,ng <N
0< ng,ngy <N

In order to estimate this quantity, we consider separately each sum appearing in the bracket in the
right hand side of (3.9). Let us focus for instance on the first one. If n > N + 1, ny + no = n — 3 and
ni,n2 > 1, then we infer from (2.50) that for 2 € Dy (which implies |y1| < ?~%/%), we have

€2n/3|A;L1 )\n2‘ 6271,/3 max(l, |y1|)n—8 S HlaX(EQn/37 EQn/3+(B—2/3)(n—8)) — max(aQn/3, 6ﬁn+8(2/3—5))

<
S maX(EZ(N+1)/3’EB(N+1)+8(2/37B)).
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If one of the two indices n1,n2 belongs to {—1,0}, whereas the other one is larger than or equal to 1,
we infer similarly thanks to (2.30), (2.34) and (2.50) that

E2n/3|)\’ln‘1)\n2| 5 maX(EQ(N+l)/37EB(N+1)+5(2/375)).
Finally, If N > 3, the conditions n1 +n2 = n — 3 > N — 2 excludes the case where both n; and neo

belong to {—1,0}. Using similar arguments as well as Lemma 3.1, we deduce that for z € D; and N
large enough,

3 2
S (51/3/\1/2) + (Rg — RI + 2)81/3)\1/2 — 2a (51/3/\1/2) — 20 (51/31/) gH/3\1/2

-1/ 52(N+1)/3’8B(N+1)+2(2/37,8)) < E,BN+27,8‘ (310)

< e YPemax(

3.4 Truncation of (0,e'/3y) in D,

Lemma 3.4 Let L > 1 be an integer and p be given by (3.1). There exists C > 0 such that for z € R?
and € €]0,1],

3 Ce2L/3+5/3
A (81/3u) + (R: — R} + 2)e'* 1 — 2as (El/gu) < —= (3.11)

S 14+ |yo |2L+1/27

where y2 = (R3 — |z|?)/e*/3.

Corollary 3.5 Under the same assumptions, there is h € L> N L*> (]Rd) such that for every & € R
and € €]0,1],

3
A (61/3u> + (R} — RI 4 2)e"p — 20 (El/gu) ’ < 2B (g, (3.12)
Corollary 3.6 Under the same assumptions, there is C > 0 such that for x € D1 N Dy and e €]0, 1],

3
e2A (51/3u) F(RE— R? 4 2)31 — 200 (51/3u) < Ce?lt?, (3.13)

Proof of Lemma 3.4. Taking into account the equations satisfied by the p,’s, namely
ARG + yapto — 202415 =0 (3.14)
for n =0 and

ARGy =200 > iy fnabng + 2dpn 1 + dyapi 1 — yopin (3.15)

nit+nz+ng=n

for n > 1, we infer
3
2A (51/3u) +(R3 — R} + z)sl/3,u — 20z (51/3p)

= (P Ap+yap — 200"

3L
| 2, g 0y Y g
n=L+1 ny+mng +ng=n

0< ny,ng,n3 <L

2L—-1
23 adpl, — dyopl, — 200 Y 2P > fny fina fing | - (3.16)
n=0 ny+ng+ng=n+L+1

0<ny,ng,ng <L
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Let us define for y € R

ho(y) = (L+ [yl ) max | WL lypz (), max [y (9)pins (1) s (9)]
ny4tngtny=ntltl

0< ny,ng,n3 < L

Thanks to (2.19) and Propositions 2.4 and 2.6, h¢ is uniformly bounded on R. The lemma follows. =

Proof of Corollary 3.5. For z € R? and € < 1, one has

1 1 1 if |z> <2R3
- <hix)={ —L0—rs if |z[>>2R3
1+ Yo 2L+1/2 R2—|2|2) 2L+1/2 2|2 2L+1/2
v 1+ (F552) ()
The corollary follows, since L > 1 and d < 3 imply h € L*(R?). x

Proof of Corollary 3.6. The corollary follows from Lemma 3.11 and from the inequality

1 < AL/3+1/3
1+ [yo[2Et172 ’

that holds for x € D1 N Ds. M

3.5 Comparison of (w,7) and £/3(v,\'/?) in Dy N D,

Lemma 3.7 Let N e N*, M > %N, and w, T given by (3.1). Then for everyl > 0,

1
0) om d( 1/2-3mn _ B(N+1/2—1)
w — Z e Wi (z ) =0 (a ) (3.17)
(m,n)€N2
(2—-3B8)m+pBn<BN Lo°(DoNDy)
and
]
M) y1/2 B 2m A i4n—3m _ B(N+1-1)
T A Li=o Z e tm,n 7 ( ) = o(e ). (3.18)
(m,n)€N2
(2—3B)m+Bn<BN L (DoNDy)

where the Wm n’s and the tm n’s are defined in Lemma 2.1 and (2.13).

Proof. From Lemma 2.1, for every | > 0,

M M =) dl
) _ 2m (1) ~ 2m @ 1/2—3m+n
w'(2) = ZOE Wy (2) = Z € Zwm,n e (z )
m—

dl
2m 1/24k
€7 W m, i (z ) (3.19)

3
I
<}
3
Il
<}

NgE

z—
k=—3M (m,n)e{0,--,M}xN
n—3m=k
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Thus, since € Do N Dy implies e® < 2 < 2e? - 0ase — 0,

N

w(l)(z) = Z ( Z €2mwm,n)di;(21/2+k)+0(21/2+N_l)

k=—3M (m, n)E{O M}XN

d' _ _
_ Z £2m Wi (21/2+n 3m)+0(zl/2+N l)
z—0 dz 1
(m,n)€{0,--- ,M}xN
n—3m<N
d' - -
_ 2m 1/24n—3m B(1/2+N—1
= > M wmn (#7277 ) 4 0 (g (€7 2NY)
(m,n)€{0, -+ ,M} xN
n—3m
2m+B(1/24n—3m— l)<6(1/2+N 1)
d' - -
2 1/2+4 3 1/24N-—1
Zio Z e mwm,na (Z /24n m) +0L<x>(D0mD1)(E’8( / )). (320)
(m,n)€N2

(2-38)m+Bn<BN

Note that the assumption on M in the statement of the Lemma ensures that the set {(m,n) €
N2, (2 —38)m + Bn < BN} is a triangle included in the rectangle {0,--- , M} x {0,---, N}. Similarly,
we infer from Lemma 2.1 and (2.13) that

FO (s Z 2m (W) ~ A2 2 d' S1-3mt
3 " Z:O 1l o+ § 3 " g tm ndi " n)
]
- 1/2 Z Z 2m d ( 1+k)
zZO )\_1 1l=0 + g tm,n 7dzl z .

k=—3M (m,n)€{0, ,M}xN

n—3m=~k
N dl
o )\1,/1211:0 + Z Z Sthm,n e (sz) —I—o(zN“*l).
k=—3M (m,n)€{0, ,M}xN
n—3m=k
Thus,
1
l 1/2 2m d 1+n—3m N+1—-1
7'( )(Z) 830 )\ / 1[ o+ Z 3 tmyn E (Z + )—'—OLOO(DOQDI)((‘:ﬁ( ))
(m,n)e{0,--- ,M}xN
2m+(14+n—3m—1)B<(N+1-1)8
l
. 1/2 2 d 14+n—3 B(N+1—1)
=, Ao+ > 2 Mmoo (2777) + 01 (Do) (€ ( ). (3.21)
(m,n)EN

(2=3B)m+pBn<BN
]
Lemma 3.8 Let N > 1. We assume that B € (0,2/3)\Q. There exist two families of numbers

(Nm,n)m>0,n>0 and (Im,n)m>0,n>0 which do not depend on N such that if v and X are given by (3.1),
then for 1 =10,1,2,

d (i 2m d" [ 1j2—3men B(N+1/2—1)
=l G D DI e 1S ) ERIC ) 622
(m,n)€EN
(2=3B)m+Bn<BN L (DoNDy)
and
il(al/sA( )1/2)_)\1/21 . Z 22 dil(zlﬁ»nf&m) _ 0(55(N+171)I323)
le Y1 =0 , m,n le 5:0 .
(m,n)EN
(2—-3B8)m+pBn<BN L>°(DgND1)
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Proof. For x € Dy N Dy, we have 2e0-2/3 >y = #2835 1o ase — 0. Thus, we infer from
(2.49) and (2.51) that for every I > 0,

d (1/3
()
dyt
[eS) dl / N [eS] dl
~ 1/3 i/ ( 1 273m) 1/3 2n/3 Nnmi( n75/273m>
y1—+o00 € 7n§::0 0 dyt %1 te nz::lg mzz:o T dyh %

e’} dl B e’} . dl B B
ylf_‘_oo ZNO,mfl/ST (yi/2 Sm) + Z Z Nn,m61/3+2 /3 a (y1 5/2 k)
m=0

l l
Y k=—N (n,m)e{l,--,N}xN dy
3m—n=k

dl am 1/9— 38BN _,;
= 2 Nome P (017 e oy
y1—+00 o dy;
0sm<5=33
nyz d _5/0_ —5/2-88N-2 3
+ Z Z Nn,m€1/3+2 /SF (y1 5/2 k) + eo(y, 235 ).
_N<k<38N=2_ 35 (n,m)e{l,--,N}xN Y1
SN 2-3p 3m—n=k
Thus, for x € Do N D1, we have
d' (1/3
= ()
dy}
21/3 2m d' 1/2—3m 21/3 242m d —5/24n—3m
= ¢ Z € No,mﬁ (z )—|—€ Z Nn,me 2 (z )
z
o<m<-B_N (n,m)e{1,- ,N}xN
™S 2-3p 3mfn§3§73}273
Jr()LOC<ID[)HD1)(65(NJr1/2)+(2/3*ﬁ)l)
= s Z e? No,md ; (21/2 3 )+€21/3 Z Nom-1€” ] (21/2+ 3 )
z
o<m<zEE N (n,m)€{1,-+ ,N} xN*
3m—n< 3N —2
N"2-38
oL Dy (PN FL/DHE/3-P)y
d _ d' _
g21/3 Z 52mNO,mﬁ (ZI/Q 3m) +€2z/3 Z Nmm_1€2del (Z1/2+n 3m)
z
o<m< 5L N (n,m)eN*?
(2=38)m+BnBN
+0L0 (Dgrpy ) (87N TYBTEEZAN), (3.24)

where in the last equality, we have neglected all the terms in the sum over (n,m) which can be
incorporated in the rest term, and we have used that the condition

(n,m) € N2 (2-— 38)m + Bn < BN (3.25)

clearly implies n < N (even n < N, in fact), as well as

36N —2
—-n< ——Fs. 2
3m—n 535 (3.26)
Indeed, (3.25) can be rewritten as
1 1 B BN
it - = < , 3.27
3(3m n)+n(3+2_3ﬂ> 535 (3.27)

which yields (3.26) if we take into account that n > 1. The result follows from the change of variable
z = 52/3y1, with
NO,m if n=0
Nmyn = 0 if n>landm=0
Nom—1 if m>1landm > 1.
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Similarly as for €'/, we have

& (82/3)\(311))

dy}
2/3OO d' 1-3 2/3N 2/3oo d 2-3
~ )\71: + € Lmi 7m+€ En ani A
2/3 G d' 1-3 2/3 o 2n/3 - d' 1+n—3
~ Ailg_oy +¢ Lom—- M) 4 e e Lnm_1— e
y1—+oo 1H=0} mZ::O o dyl1 (yl ) ; mz::l ’ ldyi (yl )
N e} dl
~ A1l g2/ NT oD (yitr iy 3.28
oo 1 {z_o}+n2:;) mz::o , dyll (?J1 ) ( )
with
L07m if n=20
Lnm = 0 if n>landm=0
Lypm—1 if n>=1andm>1.
Thus,
il (62/3)\(y1))
dyt
~ )\_11“10} " Z z Ln,mez(n+1)/3d7l (yiik)
yrteo k=N (n,m)e{0, - ,N}xN Y1
3m—n=
_ = otz A [ 1ok 2/3 , 1=3E255 -1
y1;+oo )\_11“:0} + Z Z Ln,mg Tyi (yl ) +e O(yl )
-N<k< 2 (nm)E(0, - NIxN
. = 2(n+1)/3 d' 1—-3m+n 2/3 1- 2851
:+oo )\_11“:0} + Z Ln,m5 W (y1 ) + e O(yl ) (329)
i (n,m)€{0,--- ,N}xN i
3m—n< 23531‘\;
Therefore for x € Do N D1,
d" [ a3
dT/i (5 A(Z/l))
. dt
B 2m _21/3 1-3m+n 21/3 B(N+1—1
y1:+oo A—ll{l:O} + Z Ln,mif 3 / @ (Z )+5 / OLOO(DoﬁDl)(E ( ))
(n,m)e{0,--- ,N} xN
3m—n< 23531’\;
!
. 21/3 - om 4/ 1-3m4n 21/3 B(N+1—1
oo Afll{l:o} +e Z . Lyn,me E (Z ) +e 0L°<>(D0r1D1)(€ )(330)
(n,m)€EN

(2—3B)m+pBn<BN
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thanks to the same remark as in (3.27). In particular, for [ = 0, we get

VBN (y1) 2 (3.31)
1/2
= A1+ Z Ln,me®™ 2t 73m 4 4 OLOO(DgﬁDl)(EB(N-H))
(n,m)€N2
(2—38)m+pn<BN
k
N+1
PN S Lm0 | opm oy ()
k=1 ('n.,Tn)GN2
(2—3B8)m+pn<BN
N+1 k
— )\1_/12 + Z cnz® Z HLnj,mj (€2Z73)m1+-4.+mkZn1+<.<+nk + OLOO(Dole)(EBWH))
k=1 ((ny,m1),,(ng,mp))eM)F =1
Vie{l,:-- ,k}, (2=3B)m;+Bn;<BN
N+1 k
_ )\17/12 + Z ckzk Z g2m n—3m Z H Lnj,mj + OLoo(DOle)@ﬁ(NH))
k=1 (n,m)eN? ((n1,m1), ,(ng,my))€(N)F I=1
(2-3B)m+Bn<B(N+1—k) ni+tng=n
mi+-+mp=m
n+1 k
L RO DI o > T Loy, o1 o) (74),
(n,m)€EN? k=1 ((n1,m1),+,(ng,mp)) €M)k I=1
(2-3B)m+Bn<BN nitotnp=n—k+1

mi+---+mp=m

=il m

where the c¢’s are some real coefficients. So, we have proved (3.23) for { = 0. In order to prove (3.23)
for [ = 1, we first write

diyl (51/3)\(1/1)1/2) _ %d;;l (52/3)\(311)) (52/3)\(3;1))71/2.

—1/2
Then, note that (52/ 3/\(y1)) has the same kind of asymptotic expansion as the one that appears
in the right hand side of (3.31). Indeed, the same calculation can be done with the power 1/2 replaced
by —1/2, which only changes the values of the ¢;’s. Thus, for some coefficients (Qm,n)m nen2, We have

—1/2 B B
(52/3)\(y1)) = )\71/2 + Z M Iy + oLoo(Dole)(aﬁ(NH)) (3.32)

(n,m)eN?
(2—3B8)m+Bn<BN

31



From the product of this expansion with (3.30) for [ = 1, we infer that

d 1/3 1/2 _ 1 2/3 = om d 1—3m+n 2/3 BN
dyr (5 A1) ) = 351°¢ Z Lnme 1 (2 ) +€0r% (pynpy) (€77)
(n,m)€N2
(2=3B)m+pBn<BN
X )\:1/2 + Z Eszn—3m+lam’n + OLoo(Dole)(€ﬂ(N+l))
(n,m)eN?
(2=3B)m+pn<BN
ATy ;a -
- At Y L -smen:
(n,m)eN?
(2-3B8)m+pn<BN
£2/3 , . 5
+T Z ez Z Lnym, (1 —3m1 4+ n1)my,ny
(n,m)eN* xN ni,nz,my,maEN
(2-3B)m+pBn<BN nitna=n—1
mi+mo=m
+0L°°(DomD1)(€5N+2/3)
= ¢%/3 Z U™ 2" 73 4 OLoc(Dompl)(EBN+2/3), (3.33)
(m,n)eN?

(2-3B)m+pBn<BN

for some coefficients [, , € R. In order to prove (3.23), it is now sufficient to establish that for
every m,n > 0, the I, ,’s and the I, »’s, defined respectively in (3.33) and (3.31), are related by
Upn = (147 —3m)lm,,. For this purpose, we note, for z € [¢7,2¢7] 6(2) = /3 A(y1)"/?, such that
according to (3.31) and (3.33),

0(z) = A2+ > L™ 2" 73 L 0L o Doy (E7NTY) (3.34)
(m,n)€N2
(2—3B)m+pBn<BN
and
0'(2) = > U €™ 2" 2™ 4 000 (ponipy) (€°7). (3.35)
(m,n)€N2

(2=3B)m+Bn<BN
Then, we have on the one side from (3.34)

0(2e”) — (%) = > L (273 1) CT3OMEBHD 6 onpy (67 T3.36)

(m,n)eN2
(2-3B)m+pn<BN

whereas on the other side, thanks to (3.35),

2¢8

H(QEB) _ 9(56) _ Z l;n,nEQm/ Znismdz+0LOO(DOOD1)(EB<N+1))
(m,n)6N2 e?
(2—3B8)m+pBn<BN
l;fnn n—3m+1 2-38)m n+1
= Z m(2 + 71)€< B)m+pB(n+1)
(m,n)6N2
(2—3B8)m+Bn<BN
n—3m#—1
+1n(2) > U n€2™ + 0po0 DDy (7). (3.37)
(m,n)EN?
(2-38)m+pn<pN

Since ( is not rational, the family of functions of the variable ¢, (52m+ﬁ<"+173m))(m,n)€Nz is linearly
independent, and we deduce by comparison of (3.36) and (3.37) that I, , = (n — 3m + 1)lm », in both
casesn —3m+1#0and n—3m+1=0. (3.23) for [ = 1 follows. The proof for [ = 2 is similar. =
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Lemma 3.9 Let N > 2 be an integer, e > 0 and § € (0,2/3)\Q. Let (01,02)0<c<e, be a sequence of
pairs of reqular functions defined for z € [Eﬁ, 25[3], such that

—0 (a"(N“/Q)) (3.38)

Lee(DoNDy)

€2A91 —+ %(Rg — R§)91 + 201 — 20(19% — 20(00391
2

and

[€2A02 + (R3 — R?)02 + 205 — 202603 — 20100305 =0 (af*““”) (3.39)

HLOO(DoﬁDl)

are satisfied, where AQ; refers to ZZ:1 88722 (0;(RT — |z?)) = —2d0)(2) + A(RT — 2)0 (2) (with z =
k

R? — |z|>). We assume that there exists two families of real numbers Pm.n, qm.n, defined for every

(m,n) € N? such that (2 — 38)m + Bn < BN, such that

!

o _ 2m d (12 3min _ B(N+1/2-1)
Vi e {0,1,2}, o 3 e (z ) E:Oo(e )3.40)

(m,n)EN
(2-3B8)m+pn<BN Lo°(DoNDy)
and
I

0) 1/2 2m 4 1in-3m _ B(N+1-1)

vie{0,1,2}, ||6;7 — A 1q—0y — Z ) e mn 7 ( ) = ole (3.41)
(m,n)EN
(2—3B8)m+pn<BN L°>°(DoND1)

Then, equations (3.40), (3.41), (3.38) and (3.39) entirely determine the values of the pm »’s and the
Gm,n’s for (2 —38)m + Bn < B(N — 1). Moreover, these coefficients do not depend on N or (3.

Proof. For convenience, for every (m,n) € N, we denote pj,, = (1/2 — 3m + n)Pm,ns P =
(—=1/2=3m+n)(1/2 = 3m+n)Pmn, G = (L + 1 —3Mm)gm,n and g, , = (n —3m)(1 4+ n — 3M)gm,n-
For functions (61, 62) that satisfy (3.40) and (3.41), let us calculate the function that appears in the

33



left hand side of (3.38), evaluated at z = €°. In the calculation below, implicitely, 8; = 6;(e?).

A0, + %(Rﬁ — R2)01 + 201 — 20167 — 200020,
2

/ % 2-3 +1)+B(n+2)+5/2
= -2 Z (dpm,n+2pm,n)€< B)(m+1)+B(n+2)+5/
m,n=>0
(2-3B)m+pn<BN
AR S Dl @I AV +B (1) 462
m,n=0
(2=3B)m+Bn<BN
X0 p2 _ p2 (2-38)m+Bn+5/2 (2-38)m+B(n+1)+8/2
+ Qo (R2 Rl) Z Pm,n€ + Z Pm,n€
m,n=>0 m,n=>0
(2=3B8)m+pBn<BN (2—3B8)m+pBn<BN
2-3 38/2
—2a; Z ( Z Drrs s D P g ) €235V 38/
m,n=0 mi,ma,m3,n1,n2,n3=0
(2—3B8)m+pBn<BN mi+ma+mz=m
ni+ng+nz=n
—200M_1 Z pm,ne(Q_Sﬂ)m+ﬁ"+ﬁ/2
m,n =0
(2=3B)m+pBn<BN
1/2 2-3 +Bn+38/2
— 4o\ > ( 3 Gran s Drgmg ) €239+ +38/
m,n20 my,mg,n1,n2>0
(2=3B8)m+pBn<BN nit+nz=n
mi14+mo=m
—2a Z ( Z Gt G g P mg ) €2 3EVTHERKSBI2 4 (BN +0/2)
m,n=0 my,m2,m3,ni,n2,n320,
(2—3B8)m+Bn<BN ni+nz+ng=n
mi+ma+mz=m
/ 7 2—-3 2
= -2 Z (dpmfl,n72 + 2pm71,n72)5( BymtBnt+h/
m=1,n>2
(2=3B)m+pn<BN
+4R% Z p%_l,n_1€(2*35)m+6n+5/2 + Z pm7n718(2*35)m+ﬁn+3/2
m,n>1 m>0,n>1
(2—3B)m+Bn<BN (2—38)m+Bn<BN
2— 2
—20 Z ( Z pM1,n1pm27nzpm3,n3)5( 36ym-+Bn+6/
m2=20,n>1 my,mgz,m3,ny,n2,n3=0
(2—3B8)m+pn<BN mi+ma+mg=m
ni+not+ng=n—1
_40‘0)‘17/12 Z ( Z qm1,n1pm2,n2)5(273ﬂ)m+ﬁn+6/2 (3.42)
m2=0,n>1 ni,ng,my,mg=0,

(2—38)m+pn<BN nit+nz=n—1
mi1+mao=m

(2—3B8)m+Bn+3/2 BN+B/2
—2a0 § ( § qmlyﬂlqm27n2pm3,n3)5 +o(e )s
m>0,n>2 ni,ng,n3,my,mz,m3z=0
(2—3B8)m+Bn<BN ni+natng=n—2

m1+ma+mz=m

where we have used (2.30). Since 3 is not rational, the functions ((07 €0) D e 5(2_3ﬂ)m+ﬁ") )
m,neN

are two by two distinct, and therefore linearly independent. According to (3.38), we deduce from (3.42):

e form=0and 1<n<N,

Pon—1 — 2001 E Po,n1P0,n3P0,n3

ni,n2,n320
ni4+ng+nz=n—1

1/2
—4ao] E q0,n1P0,ny — 2000 g q0,n190,nP0,n5 = 0,
ni,ng20 ni,nz,n320
ni+ng=n—1 ni+not+nz=n—2

which can be rewritten as

P00 — 201p50 — 4aoX 2 qoopo0 = 0 (3.43)
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forn =1, and

2 1/2 1/2
Po,n—1 (1 — 6aipp,o — 4Ot0>\,/1 qO,o) - 4Ot0>\7/1 D0,040,n—1 (3.44)
1/2
= 2, > PO,n1P0,nyPong + 4o\ > @omiPoms 200 Y oy GonaPong
0og<ny,n2,nz3<n—1 0<ny,na<n—1 ni,ng,n3 =0
ni+no+nzg=n—1 nij+no=n—1 ni+no+ng=n—2
for n > 2.
o for I<m<B(N—-1)/(2—-30) and n =1,
2 1/2
4R1pfr:z71,0 + Pm,o — 20 Z Pm1,0Pms,0Pms3,0 — 4050)\,/1 Z dmy,0Pms,0 = 07
my,mg,m320 my,mo 20
mi1+mot+mg=m mi+ma=m

which can be rewritten as

Dm0 (1 — 6aipg.o — 4040)\1_/12(10,0) - 4ao>\1_/12p0,0qm,0

2 1 1/2
= —ARippm 10+ 2 > Py 0Pma,0Pms.0 + 4o\ > Gmy 0Pm{345)
o<my,mo,mz<m o<my,ma<m
mi1+matmgzg=m mi+ma=m

e for m > 1 and n > 2 such that (2 — 38)m + Bn < BN,

_2(dp;n71,n72 + 2p'lrln71,n72) + 4R?p;:171,n71 + Pmyn—1
—2a1 Z Pmi,n1Pma,naPmsz,ng

mi,mz,m3,ni,n2,n320
mi1+mat+mz=m
ni+nztng=n-—1

1/2
—dao A E Gmy ,ny Pma,ny — 200 E dmi,n1@ma,n2Pmzng = 0,
my,maz,n,nz220 mi,mz,m3,n1,n2,n320
ni+no=n—1 ni+no+nz=n—2
mi+mo=m mi1+ma+mz=m

which can be rewritten as
(1 — 6oupg o — 4ao)\1_/12qo,o) D1 — 40X\ po.ogm.n—1 (3.46)

= 2(dp;n71,n72 + 2p'lr:7,71,n72) - 4R%p%71’n71 + 201 Z Pmi,n1Pma,naPms,ng

mi,mgz,m3,ny,n2,n320
mi1+maot+mz=m
ni+no+nzg=n—1
vi€{1,2,3},(m;,n;)#(m,n—1)

1/2
+4OKOA,1 § dmq,n1Pma,no + 200 § dm1,m149mo,mnoPmgz,ng-
mi,m2,n1,n220, mi,m2,m3,ni,nz,n3,mz=0,
nit+nz=n—1 ni1+ngs+ng=n—2
mi+ma=m m1+ma+mgz=m

vi€e{1,2},(m,n;)#(m,n—1)
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Next, we perform the same kind of calculations with the function that appears in the left hand side of
(3.39).

€2A92 + (R% — R%)ez + 205 — 2&263 — 20[00%92

/ " 2-3 1 2
R e S S
m,n=0
(2—38)m+pn<BN
+4R? 3 Gl 23O AD+B(n 1) 15
m,n=>0
(2—3B)m+Bn<BN
2 2\,1/2 Y 9 93
+(R3 — ROAYY + (B3 — RY) S e
m,n=0
(2-38)m+Bn<BN
1/2 —
LSl D S
m=0,n>0
(2—-3B)m+pBn<BN
3/2 2-3
—2042)\7/1 — 6azA_1 Z qm,ns( B)ym+pn+p3
m>=0,n>0
(2—38)m+Bn<BN
v 2-3B8)m+pB(n+1)+
—6az\Y/} > D D S
m,n=0 mq,ma,n1,n2=0
(2—3B8)m+pBn<BN mi+mo=m
ni+na=n
2-3 2
—2a Z ( Z qm1¢n1Qm2,n2qm3¢"3)€( Ayt Blnt2)+6
m=>0,n2>0 m1,mz,m3,n1,n2,n3>0,
(2—-38)m+pn<BN ni+ng+nz=n
mi+ma+mz=m
1/2 o8 s
_2ao)\_/1 Z ( Z pM1,n1Pm2,n2)E( B)m+pBn+3
m,n=0 m1,mg,ny,n3=0
(2—3B)m+Bn<BN mi1+mo=m
ni+na=n
2—-3 1 N4+1
—2a Z ( Z pml,nlpmg,nZng,,ng)g( B)m+pB(n+1)+8 +O(€ﬁ( + )).
m,n=0 my,ma,m3,n1,n2,n320
(2—-38)m+pn<BN mi1+mo+mz=m

nit+nz+ng=n
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Thus, changing the indices and throwing away all the terms that can be incorporated in the rest,

20y 4 (R3 — R3)02 + 2602 — 20265 — 2000762

2-3
= 2 Z (dgrm—1,n—2 + 2qm—1,n—2)e > ¥ TETE
m=21,n>2
(2—3B)m+pBn<BN
+4R? Z g e2T3PmAAnS
m,n>1
(2-3B)m+Bn<BN
+(R§ _ R%) Z Im n5(2—35)m+5n+5
m,n =0
(2=3B)m+pn<BN
1/2 _
_|_EB)\7/1 + Z qm,n718(2 38)m+pBn+8
m>=0,n>1
(2=3B)m+pn<BN
—6azA_1 Z qm,n€<2736)m+3n+ﬁ
m>=0,n>0
(2—3B)m+pn<BN
1/2 .
—6a2>\7/1 Z ( Z le,n1Qm2,n2)5(2 3B)m+pBn+p

m>0,n>1 my,ma,ni,nz >0
(2=-38)m+BnLBN my+mo=m
ni+naz=n—1

(2—3B8)m+pn+p
—2az E ( E qm17n1qm2»n2qu°,yn3)5
m>0,n>2 mi,mz,m3,n1,n2,n3=0,
(2—38)m+Bn<BN ni+ng+ng=n—2
mi1+ma+mz=m
1/2 E: Z 2-38)m+pn+
_2050)‘7/1 ( pm17n1pm27n2)5( Pymetfnts (3'47)
m,n>0 my,m2,n1,n220
(2=3B)m+pBn<BN mi+ma=m
ni+na=n
2-3 +Bn+ N+1
—2a0 E ( E pM1,n1pm21”2qm37n3)5( Pmetfn B+O(€B( ))'
m=0,n=1 mi,mz,m3,ni,n2,n3=0
(2—3B)m+pBn<BN mi+mo+mz=m

ni+nz+ng=n—1

According to (3.39), the right hand side of (3.47) is equal to 0, up to the rest term o(e?¥*+1). Thus,
the linear independance of the family of functions of ¢, (5(2735)’"*&1) yields:
m,n =0
e for m =0, n = 0, thanks to (2.30), we get
—2(R3 — RY)qo,0 = A (200p5,0 — 1), (3.48)

e form=0and 1<n <N,

(R3 — RY)qo.n + qo.n—1 — 602X _1q0.n — 62 A/} Z q0,n190,nz

ni,n220,
ni+ng=n—1
A1/2
—202 90,n190,n290,n5 — 200A"{ P0,n1PO,ny — 200 P0,n1P0,n240,n3
ni,n2,n320, ni,n220 ni,n2,n320
ni+ng+nz=n—2 ni+ng=n ni+nz2+ng=n—1
which, using (2.30), can be rewritten as
2 2 1/2
—2(R3 — R1)qo,n — 4a0po,0A_’} Po.n (3.49)
_ )\1/2
= —qon-1 + 6 -1 qo,n140,no + 2a qo,n1490,m540,n3
ni,nz20, ni,nz,n320,
ni1+ng=n—1 ni4+no+nz=n—2
200\ 2
+2a0A P0,n1P0,ny 1+ 200 Po,n1P0,n2q0,n3,
0<ny,n2<n ni,nz,n320
ni+ng=n ni1+ng+nz=n—1
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e for 1< m < BN/(2—-38) and n =0,

(RS = RD)gm,o — 6022 1m0 = 200\ D" pinyoPmaio =0,

my,m220,
mi1+mo=m

that is

—2(R3 — RY)gm,0 — 400p0,oA"pmo = 200X}

o<my,ma<m,
mi+mo=m

e for m > 1 and n > 1 such that (2 — 38)m + Bn < BN,

_Q(dq:n—l,n—Q + 2q1lq/'1,—1,n—2)1{n>2} + 4qu£il_1,n_1 + (Rg - R?)qm,n + dm,n—1

—6a2A_1¢m,n — 6042)\1,/12 Z Gmi1,n1 Gma,ng — 202

mi,m2,n1,n2>0 m1,mz,m3,ni,nz,ng =0,
mij+mao=m, ni+na+ng=n—2
ni1+ng=n—1 mi+mo+mz=m
1/2
=200} E Py ,ny Pma,ngy — 200 E Py niPma,naGmszng =0
my,m2,n1,n220 mi,mz,m3,n1,nz,n320
mi+ma=m mi1+matmgzg=m
nit+n2=n ni+na+ng=n—1

which can be rewritten as

72(R§ — R%)qmm‘ - 4a0)\1_/12p0,0pm,n

= Z(dq':n—l,n—Q + Qq'xz—l,n—Q)l{n>2} - 4R§q::7,—1,n—1 — @m,n—1 + 62

+2a2 Z

m1,mg,m3,n1,n2,n320
ni+ng+nzg=n—2
mi1+ma+mz=m

200012 )

qmy,n1q9mo,naqmsz,ng

Pmiy,n1Pma,no + 2aO

>

>

>

Pmy,0Pm2,0-

1/2
-1

dmy,nydma,naqms,n3

>

0<my,m2,n1,n2
ni+ns=n—1
mi1+mo=m

(3.50)

dmy,n1qdma,ny

Pmy,n1Pma,naqms,ng

mi,ma,n1,n220 mi,mz,m3,n1,n2,n320
mi+ma=m m1+ma+mz=m

ni+na=n
vie{1,2},(mj,n;)#(m,n)

ni+ng+nz=n—1

Next, we show that the system of equations satisfied by the pm, »’s and g¢m,»’s has a unique solution

such that pg,o > 0. First, plugging

g _ 1 —2a0p30 \L/2
Y0 T AR -R)TTY

(which comes from (3.48)) into (3.43) and using also (2.30), we get

B T, 1/2
poo = 2112 ’
and
— Fl
W0 = T a(200(RE — RV

(3.52)

(3.53)

(3.54)

Next, for 1 < n < N — 1, the go,»’s and the po,,’s are constructed recursively thanks to (3.49) as
well as (3.44) with n replaced by n + 1. We solve the system obtained by combination of these two

equations by inverting the matrix

2 2
M= —2(R3 — Pﬁg —4040170,0)\1,/121/2 B —2(R3 — Ry)
74o¢0p070)\_1 1-— 6041p(2)70 — 4a0)\_1 qo,0 —2ap ((Ragl;frfl)gz

38

)1/2

ajazli

(3.51)

—2ap (LRng%)Fz ) 1/2

ol

Ti2



where we have used (2.30), (3.53) and (3.54). The determinant of M is
det M = 4(R3 — R})T'2 > 0,

therefore M is invertible, and there is a unique possible choice for (go,n,po,n) for 1 <n < N — 1 such
that the assumptions of the lemma are satisfied. Then, for 1 < m < S(N —1)/(2—30), the gm,o’s and
the pm,o’s are constructed recursively thanks to (3.45) and (3.50) by inverting the same matrix M.
Finally, if m > 1, n > 1 and (2 — 38)m + n < S(N — 1) and if the gr,’s and the pi;’s are known for
every k < m,l <nand (k1) # (m,n), (¢gm,n,Pm,n) is entirely determined because the system made of
(3.46) for n replaced by n + 1 and (3.51) has a unique solution thanks to the invertibility of M. This
way, we prove recursively that the assumptions of the lemma determine completely the values of the

coefficients gm,» and pm,,n, provided (2 —38)m + fn < B(N —1). "
Lemma 3.10 Let N > 3 be an integer, M > ﬁN, and w, T, v, A given by (3.1). Then for
1 =0,1,2, we have
1
FERCORERT) — oePV1/2-D) (3.55)
Z Lo°(DoND1)
and
1
‘ % (r(2) — ) ) — o(ePND), (3.56)
Lo (DoNDy)

Proof. The assumptions (3.40) and (3.41) made on (01(z),02(z)) in Lemma 3.9 are satisfied by
(w(z),7(2)) thanks to Lemma 3.7, and also by (¢/3v(y1),e/3A(y1)'/?) thanks to Lemma 3.8. As-
sumptions (3.38) and (3.39) are satisfied by (w(z),7(z)) thanks to (3.4) and (3.6), and they are also
satisfied by (e'/%v(y1),e"/3A(y1)'/?) thanks to Lemma 3.3. Therefore, Lemma 3.9 ensures that for
every (m,n) € N? such that (2—38)m + n < B(N — 1), Wm.n = Nm,n and tm.n = lm,n. In particular,
(3.55) and (3.56) are satisfied. .

3.6 Comparison of '/3(v,\'/?) and (0,¢'3y) in D; N D,

We first give an expansion of El/s(u, )\1/2) into powers of € in D1 N D3, as € — 0.

Lemma 3.11 Let N > 1 be an integer. There exist a family of numbers (Im,n)m>0,n>0 which does not
depend on N such that if v and \ are given by (3.1), then for every a > 0,

dl (1/3 a
2 (e V(yl)) = o(e%) (3.57)
‘ dzt Lo (D1ND2) e—0
and
d (1 1/2 1/2 2m7 d a3 B(N+1-1)
= (e A1) ) NS TP & — (= ) =, o 13.58)
(m,n)EN?
(2-38)m+Bn<BN
14n—3m>=0 Lo°(D1ND2)

Proof. For x € D1 N D2, we have —2eP=2/3 Y1 < —eP23 4 o ase — 0. Thus, (3.57) follows
from (2.49) and (2.51). As for (3.58), we proceed like in the proof of Lemma 3.8. First, from (2.50)
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and (2.52), we have

(3.59)

d' ( 2/3 2/3 d' 2/3 al 2n/3 7 d' n—2—3m
— (e )\(yl)) ~ A1lq—oy +77 5 (y1/(202)) + € Z € Z Lo~ (41 )
dy; yi—r—oe dy; oyt 0<m<(n—2)/3 dy;

2/3 d' 2/3 > 2n/3 = d' 113
n n —om
S Aalu=oy +e al (y1/(202)) + 7% e > Ln,mflw (1 )
1 n=1 1<m<(n+1)/3 1
N . dl
~ 2(n+1)/3 T 4 nd1-3m
y1—r>v—oo )\711{1:0} + Z € Z anm dyﬁ (yl )
n=0 os<m<(n+1)/3
¥ d' 1-3
~ o Aalamoy Y EOTPLL o ()
v e 0<n<N,m3>0 dy
with
1/(2a2) if n=m=0
i _ (1 if n>landm=0orn=0andm=>1
o Lpm-1 if nz2landl<m<(n+1)/3
0 if n>1landm>(n+1)/3.

Thus, for z € D1 N D2, throwing away the smallest terms,

P dl
d l
Y1 (m,n)EN2
(2—3B)m+Bn<BN
At this point, the calculation becomes similar to the one which was performed for y1 — 400 in the
proof of Lemma 3.8. Indeed, we can deduce like in (3.31) that for [ = 0,

1/3 1/2 _ 1/2 2 —3m+17 B(N+1
N = N 3 STt opee 0,y (7Y, (3.60)
(n,m)€N2
(2-38)m+Bn<BN

where

k ~
b =2 e > [T Zn,m, (3.61)
k=L ((n1,m1), ,(ng,my))eN)k =1

ni+---+np=n—k+1
mi4-fm=m

for the same coefficients ¢ as in (3.30). Note in particular that l~m,n =0if m > (n+1)/3. Indeed,
under this condition, for every k € {1,--- ,N + 1}, if n1,--- ,ng, m1,--- ,my are indices like in the
second sum in (3.61), we have

ntl_(m+D+- -+t

my+---+mr=m > 3 3 )

therefore at least for one of the indices j € {1,--- ,k}, we have m; > (n; + 1)/3, which implies

koo
HLnj,mJ- - 07
Jj=1

for every k € {1,---, N + 1}, and therefore l~m7n = 0. This is the reason why we can add without
changing the result the condition 1 4+ 7 — 3m > 0 in the sum that appears in (3.58) for [ = 0. The
proof of (3.58) for I = 1 and | = 2 is similar to the one which was done on Do N D; in the proof of
Lemma 3.8. "

The next lemma provides an asymptotic expansion of (0,81/3u) into powers of ¢ in D1 N D3 as
e —0.

40

dl 2/3 21/3 2m 1+n—3m B(N+1)+(2/3-p)1
4 (5 / ,\(yl)) =, Alpgy e YT e Lnm 5 (2 ) + OL00 (s D) (€N FDHE/3=B)).



Lemma 3.12 Let L > 1, and u given by (3.1). Then there exists a family of numbers (Qm,n)m,n>0
such that for every l € {0,1,2},

d' 1/3 1/2 2 d' 14+n—3 2L—pl
e (5 / M(y2)) — A 1g=0} — E Qm,n€ mdzl (z ) = o(*"77")(3.62)
m,n=>0
Bn+(2—38)m<2L—3
1+n—3m=>=0 Lo (D1ND>)

Proof. Forx € DiNDa, (R3—R})e™ /% —&P=2/3 > 4y > (R — R})e™/% —2:772/3 & 400 ase — 0.
Thus, for [ = 0, 1,2, thanks to (2.19), (2.25) and Proposition 2 6, using for convenience the notations
go,m = Qm, g’EL zn = Gn,m, gg)m = (1/2 —2n — Sm)gn m and gn m — ( 1/2 —2n — Sm)g'gtl,?ma we infer

d% (61/3u(y2))

_ I/SZEZTL/S Mn(y2))

1/3
_ 3 2n/3 (1) p2m_—21/3 1/2—2n—3m—l1
S SR WO
m=0
2 L—
_ El/d 2n/3 3 1) R2m —21/3 1/2—2n—3m— l 1/3 2(n—1)/3 ( 1/24n—3L— l)
= 7(2&2 172 Zﬁ Z 9n,m Yo Z 0L (D1ND>)\Y
m=0 n=0
1/3 — 2\1/2—2n—3m—1 1/2—2n—3m—l1
. € 2n/3 (z) 2m _—21/3 (Rz — RY) Z 2L
- (2a2)1/2 Zg Z m 12 gl/3—4n/3—2m—21/3 1+ R%—R% "'OL°°(D1F1D2)(<E )
n=0 =0

L L—n

1/2—2n—3m—1
n+m m —2n—3m— z
= )\17/12 Z Z g2(n+m) (l) Rg (R2 Rf) 2n—3m—1 <1+ m) +0L°°(D10D2)(€2L)

n=0m=0

— A2 2527 > g R (R — RTINS o imin2” 4 0p (0,000 (£7) (3.63)
m,n=0, k=0,
n+m=j Bk+25<2L
_ )\1/2 (l) (Rg _ R2 + )\1/2 Z Z (l) R%m R2 R%)iznismilck,l,m,nzk +0L°°(D1QD2)(52L)1
7,k=>0 m,n=0,
ﬁk+2j<2L, n+m—]
(4,k)#(0,0)

for some coefficients (ck,i,m,n)k>0 (With coi,m,n = 1, VI, m,n). Then, we change the variable k in the
sum into p = 35 + k — 1. Note that p € N since (5, k) € N*\{(0,0)}. Thus,

d' (s 1/2 (1) (p2 2\ 1
i (5 / H(yQ)) =A /1 982}(32 — RY) (3.64)
DY sy Y OB R - BT I oy iy (671).
J,p=0 m,n=>0,
B(p+1)+(2-38)j<2L ntm=j
p23j—1

The result follows for [ = 0, since go,0 = 1, with

Omm = A2 n am Z (O)ng(R _ RZ) ik,

k,i>0,
k+i=m

For [ =1, (3.64) gives the existence of some coefficients (a, ,)m,n» such that

d 1/3 2m d 24n—3m 2L
% ( / ﬂ(y2)) = Oé{)’o + m;[) Cllyn’n+1€ % (Z ) =+ OLOO(DlﬂDQ)(E )
B(n+1)+(2—38)m<2L
14n—3m>0
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Thus,

d d - L
dz (al/s'“(y?)) = Z O‘;nvngm@ (2" + oo Dy Dy (€2F)
;n20
Bt (2= 35)ym<aL
n—3m=0
d .
2m 14+n—3m 2 —
= Z Q€ o (= ) + 0L (DynDy) (€ %)
m,n>0
B(n+1)+(2-3B8)m<2L
n—3m>=
m d n—om —
= > Wy’ = (217%™ - opee (pyapg) (€27 77). (3.65)
m,n=0
B(n+1)+(2—3B8)m<2L
14+n—3m2>=0

where in the first equality, we have changed the index of summation n by n+ 1, in the second equality,
we have neglected some terms in the sum, and in the last equality, the extra term we write in the sum
is in fact equal to 0. In order to prove that (3.62) also holds for I = 1, it remains to prove that for
every pair of indices (m,n) appearing in the sum in (3.62) (except for 1 +n — 3m = 0, for which the
corresponding term in (3.62) for [ = 1 is anyway equal to 0), we have o, ,, = am,n. This can be done
by using the same trick as in the proof of Lemma 3.8. Namely, we have on the one side thanks to
(3.62)

2 p2 2 p2
51/3# (Rz Ry 6;372/3) B 51/3# (Rz RY 25,372/3)

22/3 =2/3
= > Q€™ (1) 3mAQAn=8m) (1 glHn=8m) 4 61 e (DyaDa) (€77)(3.66)
5n+(23?3£)%;)<2L—5
14+n—3m>0
and on the other side, by integration of (3.65) between z = —2¢# and z = —¢®, we have the same

equality with am,» replaced by aj, . Since 8 has been chosen irrational, the linear independance of
the functions ¢ — e2=38)m+8(+1) jmplies that for all the indices (m,n) appearing in the sum (except

for 1 +n —3m = 0), we have am,n = A}, . The proof of (3.62) for [ = 2 is similar. "

The next lemma shows that the expansions of £'/3 (v, \'/?) and (0,'/3u) calculated respectively in
Lemmata 3.11 and 3.12 are in fact the same.

Lemma 3.13 Let N > 1 be an integer, €0 > 0, and § € (0,2/3)\Q. Let (8)o<e<e, be a sequence of
regular functions defined for z € [—2¢”, —€P] such that

£ 80 + (13 = RO + 260 — 2020°| . y, py = 0 (£°NT). (3.67)

We assume that there exists a family of real numbers ¢m.n, defined for every (m,n) € N? such that
(2 —=38)m + pBn < BN, such that for 1 € {0,1,2}, we have

m dl n—3m -
00 M1y - Y. & Tl () = o(e” NI (3.68)
(m,n)EN2
(2=3B8)m+Bn<BN L>(DiND32)

Then, equations (3.68) and (3.67) entirely determine the values of the qm,n’s for (2 —38)m + fn <
B(N — 1). Moreover, these coefficients do not depend on N or (.

Proof. For convenience, for every (m,n) € N2, we denote Gmn = (1 +n—3m)gmn and g, , =
(n —3m)(1 4+ n — 3m)gm,n. For a function 6 that satisfies (3.68), let us calculate the function that
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appears in the left hand side of (3.67), evaluated at z = —”. We have
e2A0 + (R3 — R3)0 + 20 — 2a20°

= =2 Z (dq’ +2q.) )(_1)"73"”8(2*36)(m+1)+5(n+2)+ﬂ
m,n m,n
m,n=0
(2—3B8)m+Bn<BN
+4R} Z g o (=131 2B (A +B (1) 46
m,n=0
(2-3B)m+pBn<BN
+(R3 — R)X? + (R: — RY) Z G (1) 3MF 1230 m Bt 8
m,n =0
(2=3B8)m+Bn<BN
_513)\17/12 + Z qm}n(_1)n—3m8(2736)m+,{3(n+1)+5
m=0,n>0
(2=3B8)m+pBn<BN
_2a2)\3_/12 _ 6&2)\,1 Z qmm(_1)n73m+1€(2735)m+5n+3
m=0,n>0
(2—3B)m+Bn<BN
—60 A2 3 ( 3 Qs s G ) (1) PGB8 B 1) 45
m,n=0 mi,mga,n1,n220
(2=3B8)m+Bn<BN m1+ma=m
ni+nz=n
202 Z ( Z qml»n1qm2,n2Qm3,n3)(—1)n73m+1E<273ﬁ)m+ﬁ(n+2)+5
m=>0,n20 mi,ma,m3,n1,n2,n320,
(2=38)m+Bn<BN ni+ng+ng=n

mi+ma+tmz=m
Thus, changing the indices and throwing away all the terms that can be incorporated in the rest,

A0+ (R — R1)0 + 20 — 2020° — 200076

= —2 Z (dq;’nfl,nfz + 2q;71,n72)(_1)n73m+15(2736)m+ﬂn+ﬁ
m>=1,n>2
(2=3B)m+pn<BN
+4R? Z q;;_l,n_l(_1)n73m+1€(2736)m+6n+5
m,n>1
(2—3B8)m+pBn<BN
+(R§ _ R%) Z qm,n(71)n—3m+1€(2—3ﬁ)m+ﬁn+5
m,n=>0
(2=3B8)m+Bn<BN
_5/3)\17/12 + Z qm’n_l(_1)n—3m+1€(2—3[3)m+/3n+5
m=20,n>1
(2=3B8)m+Bn<BN
—6ash_1 Z Im n(_l)n73m+15(273ﬁ)m+6n+3
m>=0,n>0
(2=3B)m+pBn<BN
1/2 — —
76@2)‘—/1 Z ( Z dmy,ny qm2,n2)(71)n St g(2m8mEbn+s
m20,n>1 mi,ma,ny,n220

(2—3B8)m+Bn<BN mi+mo=m
ni+ng=n—1

n—3m+1_(2—38)m+Bn+pB
—200 E ( E le,n1q7n2,n2q7rwyn3)(_1) € :
m>0,n>2 mi,ma,m3,n1,nz,n3=0,
(2—3B)m+Bn<BN ni+natnz=n—2

mi1+ma+tmgzg=m

According to (3.67), the right hand side of (3.69) is equal to 0, up to the rest term o(e?V+1). Thus,

the linear independance of the family of functions of ¢, (6(2736)’"*5") yields:
m,n>0
e for m =0, n = 0, thanks to (2.30), we get
2(R3 — R})qo.0 = A7, (3.69)
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e form=0and 1 <n <N,

2 2 1/2
(R3 — R1)q0,n + qo,n—1 — 6a2A_1qo,n — 62 A’ E qo,n190,ns — 202 E q0,n190,n290,n5 = 0,
ni,n220, ni,n2,n320,
ni+nog=n—1 ni+no2t+nz=n—22

which, using (2.30), can be rewritten as

2 2 1/2 z : j :
_2(R2 - Rl)qO,n = —lJo,n—1 + 60[2A7/1 qO,nl qO,TLQ + 2012 qO,nl q(),ng qO,n37 (370)
n1,n220, n1,nz,n320,
ni+ng=n—1 ni+ng+nz=n—2

e for 1 <m < BN/(2—-33) and n =0, we get
dm,0 = 0. (371)
e for m > 1 and n > 1 such that (2 — 38)m + fn < BN,

72(dq',m71,n72 + 2Q%71,n72)1{n22} + 4R%q;;71,n71 + (Rg - R%)‘]m,n + gm,n—1

1/2 2 : o
76Q2A71qm,n - 6052A_1 Qm1,m19mo,ny — 20{2 2 dm1y,mn149mso,na3qmsz,ng = 07
my,ma2,n1,n220 mi,mz,m3,ni,n2,n3=0,
mi+mo=m, nit+natng=n—2
ni+no=n—1 mi1+ma+mz=m

which can be rewritten as

—Q(RS - R%)Qm,n = Q(dqznﬂ,nfz + 2q':;7.71,n72)1{n>2} - 4qu§;71,n71 — gm,;n—1

1/2
+602 Ay § Gmi1,nGma,ns T 202 E Qs 1 Qma mo Qmg,nk3-72)
0S<my,ma,n1,ng mi,ma,m3,ni,n2,n320
ni+ng=n—1 nitnztng=n—2
mi+ma=m m1+ma+mz=m

From (3.69), (3.70), (3.71) and (3.72), it clearly follows that all the ¢ »’s for indices (m, n) that satisfy
(2 —-38)m + Bn < BN are completely determined. "

Finally, we show that ('/2v(y1), "3 A(y1)"/?) and (0,'/2u(y2)) are close one from another on DN Ds.

Lemma 3.14 Let N > 1 be an integer, L > B(N + 1)/2 and v, X\, u given by (3.1). Then for
le {07 17 2}’

= o(e%) (3.73)

Lee(D1ND2)

d (1
Yo > 0, H@ (5 V(yl))

and

= o(ANF17D), (3.74)

dl
Hﬁ (2@ = £ u(y2))
z Lo°(D1NDs)

Proof. (3.73) has already been proved in Lemma 3.11. § = /3 \(y1)*/? satisfies assumption (3.68)
in Lemma 3.13 thanks to Lemma (3.11) (with gm, = 0 if 1 +n — 3m < 0). €'/3A'/? also satisfies
the assumption (3.67) thanks to Lemma 3.3 and (3.73). The two assumptions (3.68) and (3.67) of
Lemma 3.13 are also satisfied by 0 = 51/3,u(y2), thanks respectively to Lemma 3.12 and Corollary 3.6.
Therefore, thanks to Lemma 3.13, (3.58) and (3.62), we deduce (3.74). ]

4 Proof of Theorem 1.5

4.1 Derivation of the equations

We look for solutions of (1.13) under the form given by the ansatz (1.20), where 8 € (0,2/3)\Q, N is
a large integer, M > max(1,8N/(2 — 3p8) and L > max(1, 3(IN + 1)/2. For the sake of simplicity, we
rewrite this ansatz as

m = e'/3 (p1 + 62<N+1)/3P> , (4.1)

n = &7 (p2 + 62(N+1)/3Q) , (4.2)
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where

p = ¢€571/3w+xgu,
p2 = ®56_1/3T+X5)\1/2+\I15,u.

—
= W
=z =

Implicitely, p1, p2, P and Q are functions of z € R?, w and 7 are functions of z = R? — |x\2, v and
A are functions of y1 = z/e%/® and y is a function of the variable yo = (R3 — |z|?)/e*/®. V and
A refer to derivatives with respect to @ € R?, whereas primes refer to derivatives with respect to
variables z, y1 or y2, depending on the function which is concerned. For instance, we note Vw for
Vw = —2zw' (R} — |z|?) = —22w’(2). Using this ansatz and these notations, the first equation in (1.13)

becomes

4/3 2N/3+2 Qo Rg - R% 2(N+1)/3
e/ Ap1 +¢ AP+ —=—F5—+u)(n+e P)
a2 g

—20&1(p1 + 52(N+1)/3P)3 _ 2050(p2 + 52(N+1)/3Q)2(p1 + 52(N+1)/3p) _

Reorganizing the different terms, we get

ap R% — R?

P Apr + Tz,lpl +y1p1 — 20007 — 20051

s

ap R3 — R}

+52(N+1)/3 (84/3AP + Q—O%P + oy P — 6a1p%P — anpgp — 4a0p1p2Q)
2

—|—54<N+1)/3 (—6a1p1P2 —4app2 PQ — 2aop1Q2) + 2N+ (—2a1P3 — 2&0PQ2)

Similarly, the second equation in (1.13) writes

Y3 Apa + y2p2 — 20293 — 20097 p2
+e2(NHD/B (54/3AQ +12Q — 602p5Q — 20097 Q — 4040010213)
+64(N+1>/3 (76a2p2Q2 —4daop1 PQ — 2a0p2P2) + 2N+ <72a2Q3 - 2aoP2Q)

Equations (4.5) and (4.6) can be rewritten as the system

A, [ P } = 2@ + 2@, P,Q) + (2, P.Q),

Q
where )
A — —e*BA + p.(2) re(z)
N re() —*3A 4 q.(2) |’
ao R5 — R} 2 2
pe(z) = Ty 2 U + 6a1pr + 2a0p2,

q-(z) = —ya + 6azp3 + 200p7,
Te(7) = daop1p2,

2 2
0(p) = e 2N/ e Apy + 20 22 o 4 yipr — 20093 — 200031
Y3 Apy + y2p2 — 20293 — 200p7 p2

2 2
2 _ a(N+1)/3 | 3a1p1 P 4 200p2 PQ + cop1@Q
P, = -2
fE (1‘, 7Q) € |: 3Oé2p2Q2+2060p1PQ+060p2P2 )

3 2
3 _ o AN+1/3 | aa P+ aoPQ
fs ('T,Pv Q) - 2e [ OLQQ3 +CM()P2Q
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4.2 Estimate on the source term f?

Equation (4.7) will be solved thanks to a fixed point argument. For this purpose, we need to show
that the source term f2 is small if functions w, 7, v, A and p are given by (3.1). The first component
of f2 can be rewritten as

0 —2(N+1)/3 | _4/3 @o R% - R% 3 2
2], = € e/ "Apr + w2 M +y1p1 — 20091 — 2a0p2p1

= @ ¢ 2NN/ [EzAw + @(Rg — R%)w + 2w — 2010w° — 20[07'200}
(6%

g0

_ R — R}
+Xe € 2AN+D/3 [84/3AV + %%V + v — 2a11/3 — 2a0)\V]
2

g1

42e72N=D/3 [V@EV(671/3W) + VXEVI/] e 2N-D/3 [A@E(sfl/?’w) + Axsy]

k1 k2

+ 20 2NFD/3 [5_1¢5w3 +xer® — pﬂ + 20 2NFD/3 [e_ltl)grgw + Xe AV — plpg](,4.8)

11 la
As for the second component of f0, we have
[£], = g 23 [54/3AP2 + y2p2 — 2a2p3 — 20409?92}

= &, e TANH)/3 -1 [E2AT + (Rg — R? +2)T — 2007 — 2aow27]

ho

(4.9)

fxe 6—2(N+1)/3 [54/3A(A1/2) + y2)\1/2 . 2a2)\3/2 . 2O[()VQ)\1/2} 4. 8—2(N+1)/3 [84/3Au T gy — 2042M3]

hy ha

4 em2N-D/3 [A@g‘”% + Ay A2y A\IJEM] 42e"2(N-D)/3 [vq>ge‘1/3v7 FVxVAY2 4 erw]

k3 ky

+ 2a2€—2(1v+1)/3 [5_1<I>g7'3 + Xs)\g/Q + ‘I’elﬁ . pg] + 2a0€—2(N+1)/3 [6_1(135w27’ + X5V2)\1/2 . p%pz} )

I3 la
Thanks to Lemma 3.2, for x € Supp®. C Do, we have
1< £(238)(M+1/2)—2N/3-2/3 lho| < (2-38)(M+1/2)—2N/3-2/3-6/2 (4.10)

|go and

From Lemma 3.3, for € Suppx. C D1, we obtain

g1 < c—(2=3B(N/3-7/6) 4 Iha| < o~ (2-38)N/3+1/3-58 (4.11)
Lemma 3.4 yields, for x € Supp¥. C D2,
|ha| S &7 (x). (4.12)

Next, let us estimate ki. Note that V®. is supported in Doy N D, whereas V. is supported in
(Do N D1) U (Dy N D3). Moreover, for x € Do N Dy, we have

B
_ _ —B z—€
V&, = —-Vx: = -2z "¢ (726[3 — 55) .

Thus,

—2N/3+1/3— 1/3 —2N/3+2/3—
| S 7N 9w — o) 1oy + 32 G0 L b oy 1o,

Lo (DoNDy)
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Then, thanks to Lemma 3.10 and Lemma 3.14,
k1 = oL ((DenD1)U(D1nDy)) (€7<273'B)N/3755/2+1/3) . (4.13)
Similarly,

||k4||L°°((DoﬁDl)U(DlﬂDz))

< gT2N/3+2/3 <€—1/3—[3 ‘ i (7_ o E1/3>\1/2) +€—1/3—ﬁ ‘ i (51/3>\1/2 o 51/3#)
- dz Lo (DoND1) dz
- 0 (57(273ﬁ)N/3725+1/3) 7
and we also get similar estimates for k2 and ks:
ky = OLeo((DOnpl)u(Dsz))(6_(2_3B)N/3_5B/2+1/3)» (4.16)
ks = 0rs((Donpyu(DinDy) (e FTPINETRIS), (4.17)

Next, we estimate [1. Clearly, [ is supported in Do N D;. Moreover, Lemma 3.10 implies

51/31/ _ W"'OLOO(DONDI)(EB(N_I/Q)),

and since £” < |z| < 2¢? for & € Do N Dy, it follows from the definition of w given by (3.1), (2.6) and
(2.11) and from the asymptotics of the wy,’s as z — 0 given in (2.6) and (2.11) that

lwll 2 (porpy) = OE).

Thus, on Do N D1, we get

3
b= 200 VT [cbsw?’ + (1= @2) (w0 + oo (poripy) (7 72))

3
— (@Ew +(1-)(w+ OLoo(Dole)(e’B(N_l/Q))) :|

—2N/3-5/3 B(N+1/2)) —

= 2a:¢ ‘<2‘3’3)N/3+5/2‘5/3) (4.18)

0L (DoNDy) (5 OL>(DgNDy) (5

As for Iz, it is supported in (Do N D1)U (D1 N D3). Taking into account Lemma 3.10 and Lemma 3.14,
l> can be rewritten as

lo = g 2N+D/8 -1 [{fbgrzw +(1 -9, (T + o(eBN))2 (w + o(eﬂ(N_l/Q)))
— (Bew+ (1= B0+ 0PV (et (1 @) (7 + o(EBN)))Q} Lognn,

2
+€ {Xs)\y - XeV (Xa/\1/2 + (1 - Xs)/l) } 1D10D2:|

~(2-89)N/3-5/3-/2)

= 0L (DynDy)(E 1pynp; + 0n(D1nDs) (E7) 1D NDs, (4.19)

where « is arbitrarily large. Similar calculations yield
Is = orse(pynpy (e CTPINETN b b, 4 0pee(pyapy) (€7 TN b b, (4.20)

and

—(2—3B)N/3-5/3

Iy = OLoo<D0mD1)(€ )1DomD1 +0Loo(DlﬁD2)(Ea)1D1mD2. (4.21)

Combining all these inequalities and noting that the measure of D; is of the order of €, we deduce

0
||[f5]1|’L2(Rd)
< E(24,3)(1\/1+1/2)721\7/372/3+57(273@)1\7/:>,+7/3—36+67(2738)1\7/3+1/372B_,_57(2736>1\’/375(3.22)

and
0 (2—38)(M+1/2)—2N/3—2/3—3/2 —(2—3B8)N/34+1/3—3/2
||[f5]2||L2(Rd) 5 € +e
+82(L—N)/3 +8—(2—35)N/3+1/3—35/2 +€—(2—3/3)N/3—5/3+/3/2
5 5(2—3,8)(M+1/2)—2N/3—2/3—,8/2 +62(L_N)/3 +6_(2_3’8)N/3_5/3+6/2. (4.23)

47

(4.14)

L°°(D10D2)>

(4.15)



4.3 Estimate on the resolvent of A,

In order to solve equation (4.7) with the choice of v, i, A given in (3.1), we have to invert A.. For this
purpose, we prove that A. is a positive self-adjoint operator on L? (]Rd). It will be convenient to have
an idea about the size of the functions pe, g- and r. appearing in the expression of A., depending on
x. As a preliminary, let us first simplify the expressions of p? and p3, depending on whether x € Dy,

x € D1\(Do U D3) or z € Dy. Thanks to Lemma 3.10, (2.6) and (2.11), we have, for = € Dy,

1 2
o7 = =7 (<I>5w+xgal/3u)
1 _ 2
= 75 (Pew+ (1= )@ + 0L (perny (* 7))
1 _ 2
- £2/3 (w + OLM(DoﬁDl)(Sﬂ(N 1/2>)1DOQD1>
w? BN-2/3)
= o5 + 0rc(Dynpy) (€ )1ponDy

2M
wb

1 2m N—2/3
= m + m ZIE Z WmqWmo + OLOO(DoﬁDl)(EB / ))]-DOMDI

mi+mo=m
0<my,ma<M

I'sz _
= e+ O () (€2 7%) + 0 Dy (€

BN—2/3)
2001 112€2/3 )

1pynpy,

(4.24)

where for the last equality, we have used (2.11) to infer that for m > 1, m1 + mo = m and z € Dy,
Wiy Wiy S 2P 3™ < €#73%™ and that 2m + 8 — 38m > 2 — 23. The same kind of calculation yields,

still for € Do,

1 2
o= an ((IJET (= ®)(r+ 0L°°(DomD1)(€ﬂN))>
7_2 1 2M
0 2 N-2/3
- £2/3 + £2/3 Z e Z TmyTmy +0L°°(DOWD1)(EB / ))1D0ﬂD1

m=1 mi+mo=m
o<my,ma<M

R3 — R? 'z

= + + OLOO(DO)(54/3_25) + 0L°°(D0ﬁD1)(55N_2/3))1D00D1-

20(262/3 2&2F12€2/3

Next, we deduce from (2.39), (2.49), and (2.51) that for z € D1\(Do U D3),

2N
PR B o D S
n=1 ni+ng=n
0<ny,na <N
R2/372/3 N )
= S0 51)” + O\ myupay (€77,
Q1l12

and using (2.30), (2.34), (2.50) and (2.52), we get (again for z € D1\(Do U D2))

_R Ry aoRYTSS

2 ~ \2 2/3
= A=2” W1 20 o Opee ,
P2 204282/3 + 2a2 2a1a2F12 o (yl) T L (Dl\(D0UD2))(6 )
where s
g _ FQ/ Y1
1= .
R}

For x € D2, we use Lemma 3.14 to obtain, for a > 0 arbitrarily large,

pi = X§V2:OLOC(Dlr‘]Dz)(Sa)le(DlﬁDg)a
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as well as, using also (2.19), (2.25) and Proposition 2.6,

2 1 1/3
P2 = m(‘l’e&' w+

1
= o (o

2L
_ u3+262"/3
n=1

2
(1= )+ o1 0,0y (7))

6(N+1))

2
2 (D1nDy) (€ 1L°°(Dsz))

>

Hnq Hng + OL°°(D1ND3) (Eﬁ<N+l>72/3)

ni1+ns=n

0<ny,n2<L

2/3
2

- 2 70(72)? + Oroe (D) (€%%) + 0150 (D1 Dy (€

2c

where

B(N+l)72/3)1L°°(DlﬁD2)v

Y2 = —573-
RY®

1r(D,NDs)

(4.29)

From (4.24), (4.25), (4.26), (4.27), (4.28), (4.29) and the definitions of p. and ¢., we deduce the
following expressions of p. and ¢., depending on whether € Do, x € D1\(Do U D2) or € D,. For
each of this cases, we also calculate r2 and —A. = p.q. — 2, a quantity which will play a key role in
the sequel. A large integer N been fixed, We assume that 8 € (0,2/3) satisfies BN — 2/3 > 4/3 — 2§
and S(N +1)—2/3 > 2/3 (which are equivalent to 8 > 2/(N +2) if N is large). For € Dy, we obtain

Pe ()

2291

T T Oy (€7°7%),
12

2_p2
qe(z) = % 4 v OLOO(DO)(84/372’8),

2 4a(2)F2y1

_AE(I) =
For z € D1\(Do U D),

pe(T)

where

a1a2F12€2/3

4F2y1
22/3

Ti2

r
(R%—R?Jrrl

——i
12

) O )

r -
(Rg — R? + r;z> + OLoo(DO)(€2/3 2/3).

RYPT2PWo (1) + OLOO(Dl\(DOUDg))(52/3)7

Wol(y) = (1 + 1%) 7(y)* - v,

() =2y2— >

403 RT3

2 _
rg(a:) - arozl'12

Yo(%1)

—A,

Finally, for z € D2,
pe(z) =

where

agRY TS

QRT/SFS/S (y2 _

2/3.2/3 . 93
Y0(51)* + OLo (Dy\(DouD)) (€%),

a1l

2 ( 0BT
Yo— —

~\2
o Yo(91) ) + OLoe(Dy\(DouD2)) (1),

00213
a1l'12

Q ~
—Tay1 + OTZRE/SVO(W) + O (g (€27,

Vo) =) — v,

49

70(?71)2) Wo(y1) + Oree(py\(DyuDs)) (1)-

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



¢-(x) = RY*Wo (@) + Opoc (py) (€2/%), (4.39)

re(x)? = 00 (py) (%), (4.40)

for a arbitrarily large, and
(0% ~ ~
A, = <—F2y1 + 07233/3%@2)) R3*Wo(2) + Opos(py) (1). (4.41)

Then, (4.30), (4.34) and (4.38) will provide us upper and lower bounds on p.. For this purpose, since

the function Wy appears in (4.34), we first prove a lemma which gives informations about the size of
this function.

Lemma 4.1 Fory e R,

Wo(y) < Wo(y) < Wo(y), (4.42)
and
max(1, [y]) S Wo(y) < max(1, [y[). (4.43)
Proof. We write

Wol(y) = Woly) + 2 <Fi12 — 1) ()%,

where 1/T'12 — 1 > 0, which directly provides the lower bound on Wo. Moreover, the analysis of the
continuous functions o and Wy which was done in [GP] ensures that Wy(y) > 0 for every y € R,

Wo(y) ety 2y, Wo(y) S Y Yo(y)? Ve Y and v(y)? y:)oo 0. We deduce (4.43) and the

existence of Cy > 0 such that 3 /Wy < Co. Then, we obtain the upper bound
—~ 1
Wo < (1+2 (— 71> Co) Who.
T2

Then, we get lower and upper bounds on p. as stated in the lemma below.
Lemma 4.2 For z € R? and € > 0 sufficiently small,
max(1, [y1]) < pe(z) < max(L, |y1]).

Proof. On Dy, the two estimates directly follow from (4.30), since for z € Do, y1 > 2% 5 o0
as € — 0, whereas /372 — 0. On D;\ (Do U D), they are consequences from (4.34) and Lemma 4.1.
On Ds, we deduce them from (4.38). Indeed, we know from the asymptotic expansion of vy (2.26)

that Vo(y) = O(y™2),and Vo(y) ~ —y — +oo, therefore Vj is bounded from below. Then, we
y——+oo Yy——o0
have on the one side, for e sufficiently small,
@ . _
pe(z) > “2RYinfVo(y) + alyr| — 1 2 max(L, |yi]) 2 €77 — 4o0. (4.44)
a2 yeR e—0
On the other side, the properties of v stated in Proposition 2.4 imply
Vy € R7 ‘/O(y) S maX(L _y)'
Thus, using also Lemma 4.1 and the inequalities y1 < 0 and y1 < y2, we get
pe(z) S max(1l, —y2) + max(1, —y1) < max(1l, —y1) = max(1, [y1]). (4.45)

As for g., we infer similarly the next lemma from (4.31), (4.35) and (4.39).
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Lemma 4.3 For z € R? and e > 0 sufficiently small,
max(1, [y2]) T ¢-(x) S max(1,[y2|).

Proof. In order to prove the two inequalities for x € Dy, we rewrite (4.31) as
4:(2) =2 (B3~ B+ £L2) + Ope () (£1/°7%9). (4.46)

As z describes Do, z describes the interval [¢”, R] C [0, R?]. On this interval, G(z) = R} — R + FFTlQZ
reaches its extrema at z = 0 and at z = R}. Since G(0) = R3— R} > 0 and G(R}) = R3 — %R% >0
(thanks to (1.10)), and because —2/3 < 0 < 4/3 — 24, there exists a constant ¢ > 1 such that for every
T e D()7

15_2/3 < g (z) < ce Y3,
c

The inequality follows for x € Dy, since (R% — R%)aﬂ/g <y2 < R%sﬁ/g on Dy. On D:\(D1 U D3),
the inequalities clearly follow from (4.35), since on that set, y2 2> e2/3, Finally, on Dj, they are
consequences of (4.39) and Lemma 4.1. L]

We are now ready to prove positivity of the operator A.

Theorem 4.4 A. defines a positive self-adjoint operator on L*(R?)?, with form domain HL(R?)?,
where
H,(R?) = {P e H'(R*)| max(1, min(|y], |y=]))"/*P € L*(R") }.

Moreover, there exists C > 0 such that for every (P, Q) in the domain of A.,

P P 4 2 2 . 2 2
(al g -1 6]) =" [ 0vPr+1vaR) ot c [ maxtimingul lih)(PE + Qs

Proof. For P,Q € C°(R?), we have

<Aa { P } , { P D :/ (s4/3\VP|2 + e 3IVQP + pe P? + ¢-Q? +2T5PQ) dz. (4.47)
Q Q R4
Taking into account the positivity of p. and ¢. shown in Lemmata 4.2 and 4.3,
1 e(e — ? _As
peP? +4-Q* +2r.PQ = — (p-P +1.Q)* + L Teg? > T22 2
Pe Pe Pe
where
A = T? — Peqe-
Symmetrically,
PP +0.Q* +20.PQ > 25 P2,
Qe
and thus
peP? +q-Q* +2r.PQ > % min (‘pAf , —‘qAE> (P*+ Q). (4.48)
We shall see next that there exists ¢ > 0 such that for every z € R?,
—Ac(x) 2 cpe(2)ge(x), (4.49)
which is equivalent to
—As(z) = cmax(1, |y1]) max(1, |y2]) (4.50)

thanks to Lemmata 4.2 and 4.3 (up to a change of the constant ¢ > 0), and which implies

7AE 7AE . . .
mm( ; 7) > emin (pe (w), g (x)) 2 min (max(1, [y ]), max(L, |yzl)) = max(1, min(ya], [ya]))-(4.51)
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For x € Dy, (4.49) comes from (4.33), because for such values of x, we have y1 > ?72/3 > 1 for ¢
sufficiently small (and therefore y1 = max(1, |y1])), we also have R2e™2/3 > yo > (R2 — R)e~?/3, and
therefore e=2/% > max(1, |yz|), and finally, the remark we have done to bound g. from below in the
proof of Lemma 4.3 implies that R2 — R? + %z is bounded from below by a positive constant as
x € Do. For x € D1\(Do U D3) (4.49) follows from (4.37) and Lemma 4.1, since y2 = max(1, |y2|) on
that domain, and 7o (71)?) < €722, For & € D2, note that Wo(72) = max(1, |y2|) thanks to Lemma
4.1. Then, using (4.41) and the same arguments as to obtain (4.44), we complete the proof. "
We deduce classicaly from Theorem 4.4 the following corollary.
Corollary 4.5 A. is invertible, and

—1 —4/3
1AZ 2o ayz, s rayzy S €2,

where HL,(RY)? is endowed by the norm

1/2
1P Qg o = ([ (VPR +19QF) do+ [ max(t,min(ll )PP +1QR)dz )

Remark 4.6 Note that the set H), (]Rd)2 does not depend on ¢, even though it’s norm does. However,
our choice of the HL(R?)?-norm ensures that the norm of the embedding of Hy(R%)? into H*(R%)? is
uniformly bounded in €.

4.4 The fixed point argument

Let 1/3 > § > 0, and N a large integer. We fix 8 € (0,2/3) such that (2—38)N/3 < §, and then L and
M large enough such that (2—38)(M+1/2)—2N/3-2/3 > —2, (2—-38)(M+1/2)—2N/3-2/3—3/2 >
—2 and 2(L — N)/3 > —2, in such a way that (4.22) and (4.23) imply

0 -2
”fE HL2(Rd)2 S e (4.52)
We are going to apply the Picard fix-point theorem to the map
©. : HyR"? — Hy(RY)?
in the ball Br of H,,(R%)* centered at the origin, with radius R = 2||AZ" f2
follows from Corollary 4.5 and (4.52) that

172 (gatys- Note that it

R<e 103, (4.53)
From (4.24), (4.25), (4.26), (4.27), (4.28), (4.29), it follows that for x € R%,
/3 /3

1| <et and |p2| Set

Thus, the Sobolev embedding HL(R?) ¢ H*(R?) ¢ L*(R?) (d < 3) implies that for every (P,Q) €
Hi(RY? we have f2 € L*(R%)?, and

1£2(P,Q)ll 2 gy S N3P, Q) gaye- (4.54)
Then, Corollary 4.5 yields
[AZ 2P Q) gy, oy < € THI(PL Q) iy ey (4.55)

Similarly, thanks to the Sobolev embedding Hy(R%) ¢ H'(RY) c L8(R?) (d < 3), we get, for (P,Q) €
Hoy(RY)?,

172P.Q)| gy gy < 2P, Q)1 rerys (4.56)
and

[AZ1 2P, Q) gy maye < €PN P Q)T - (4.57)
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From (4.55) and (4.57) we deduce that if (P, Q) € Br, for some positive constants Cy and Cs,
10 (P, Q) 11 (ray2 < g 4 Cpe2N/3-13/3 p L 0, AN/3-20/3

Therefore, if N > 7 and ¢ is sufficiently small, Br is stable by ©.. Similar arguments prove that ©.
is a contraction on that ball. As a result, ©. has a unique fixed point in Bg.

4.5 Positivity of n; and 7.

This section is devoted to the proof of the positivity of the solution (11,72) to the system (1.13) given
by (4.1)-(4.2)-(4.3)-(4.4), which has just been constructed in the sections above. We proceed in three
steps. First, we prove that for j = 1,2, p; (given by (4.3) or (4.4)) is bounded from below by a positive
constant on the set S; = {x € RY, |ar:|2 < R? + 52/3}, provided ¢ is sufficiently small. Second, we prove
L estimates on P and @, which ensure that 7; and 7y are positive on S; and S2 respectively. Finally,
we prove positivity of (n1,72) on R? thanks to the maximum principle.

1%¢ step. For some integers N, M,L > 1, let w, 7, v, X and u be the functions given by (3.1). Then,
we decompose the functions p1 and p2 given by (4.3)-(4.4) as

pr = 571/%1[)0\[,1 + (q>5571/3w + Xay) 1p,np; + v1p,\Dy (4.58)
and
pr = e Y3r1pp, + (®5571/3T + xg)\l/Q) 1ponn; +A*1p\(Douns)
+ (Xe)\l/z + ‘I’e,u> 1pynpy + #lp,\Dy,s (4.59)

and we are going to bound from below w, 7, v, A\ and p separately on the different sets appearing in
the indicatrix functions above. According to Remark 2.3, w and 7 satisfy

2—55/2)

w =wo + Oreo(py)(€ and 7 =179+ OLW<DO)(£2_M). (4.60)

Moreover, thanks to the explicit expressions of wo and 79 (2.6) and (2.7), we deduce that for € Do,

I, 1/2 572 R% . R? 1/2 5
> d > — 0] . 4.61
wo (2041F12) € and 7o 20, + 0(e”) ( )

Since 8 < 2/3, we have 2 — 53/2 > /2 and 2 — 28 > 3, so we conclude that for z € Dy,

I 1z 8/2 2-58/2 R} — R3\'? B
= - d Z | — . 4.62
w (20411"12) e’ 4+ 0(e ) and T ( s ) + 0(e”) (4.62)

We have already seen in the proof of Lemma 3.1 that for z € Dy,

R3 — R?

T O(°72/%). (4.63)

Using similar arguments, we infer from Proposition 2.7 that
v =104 Opes(py)(e7?). (4.64)

Then, (2.39), the fact that o is an increasing function and Proposition 2.4 imply

(Ral)'/? Iy B-2/3 2/3 Iy B/2—-1/3 2/3
Z GarT) 20\ 7273° +0(?) = BarT ) + O(e”?) for & € Do N D1(4.65)
1
whereas
(Fal5)'/* ry”? 2/3
> (zalrm)l/Q’Yo *Rf/g +O0(*?) forx e D1NS. (4.66)
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From Proposition 2.6, we get in the same way
B = po + Oros(py) (°), (4.67)
which implies thanks to (2.19) for n =0

Ry? 1 2/
’u>(2a2)1/2% _Rg/?’ +0(”) forx € DaNSs. (4.68)

Combining (4.58), (4.62), (4.65) and (4.66), we deduce that

_ r, \"? _
P1 2 (5 /3 (ﬁf—h) 66/2 + 0(55/3 55/2) 1D0\D1

~1/3 Iy 12 8/2 Iy 1z B/2-1/3 5/3-58/2 2/3
+ @58 m I + Xe m 13 + O(E ) + O(E ) ]‘DOle

R T 1/3
+ (%70 (—F;/S/Rf/?)) + 0(82/3)> 15\ y-

(2a1F12)1/2
I vz B/2—-1/3 (R1F2)1/3 1/3 1 »2/3
> (—2 1p, 4+ 2) (—F R ) 1
<2a1F12> € Do + (2a1I‘12)1/2% 2 / 1 S1\Do
+O(€5/3—55/2)1D0 + 0(52/3)151MD1-
z als, (4.69)
1/2 1/3 1/3
i i i — 1 r (R1T'2) T
if ¢ < 1 is sufficiently small, where ¢1 = 5 min |:(204112—‘12) ' GarTag) 17270 ( sz/3>:| . On the other

side, using (4.59), (4.62), (4.63) and (4.68), we have

R2 _ p2\'Y? _ _
pr > <(21> e+ 0EP ) | Lpuni)\pa

2042
1/2 c
RS -R\'? s R -1
202 " (202)172 70\ 27

+ (min

RY® —1 2/3
+ Qas)i2 0\ 27s +O0(e™") | 1s,\p,
2

> ceols, (4.70)

+ O(Eﬂl/3)> 1p,np,

. 1. rZ-R2\/2 RLY® 1
for ¢ < 1 sufficiently small, where c2 = 5 min ( 5oz ) ' (2ag)172 0 27|

gnd step. Let N be a large integer, R > 0 as in Section 4.4 and (P, Q) € (H.)? the unique fixed
point of the map ©. constructed in that section. In order to control the L* norm of (P, Q), we will use
the continuity of the embedding of H?(R?) into L°>°(R?%) (remember that d < 3). Because of Remark
4.6 and (4.53), we know that the H' norms of P and Q are controled by

(P, Q)| (mr1yz S 7%,
such that in order to control the H? norms of P and Q, we only need to control the L? norms of

AP and AQ. For this purpose, let us introduce a C°° function 6 on R?, which is radial, positive,
supported in {z € R?,|z| < 2} and such that §(z) = 1 for |z| < 1. We also define, for integers n > 1,

54



0, (z) = 0(x/n). After integrations by parts, the (L?)? scalar product of (4.7) with (AP, AQ)&., yields
0 [ (APE 41800+ [ VPR +aVQP +2n.9P ¥ Q)
R R
= / (PVpe - VP +QVq. - VQ)0n / (p:PVP +q-QVQ) - VO
R4

/ Vr. - V(PQ)6, / rV(PQ) - V6, — /R I+ (AP, AQ)0,

1 1
= 5/ (ApeP? + AgQ* + 2Ar. PQ)0,, + 5/ (p-P* + q-Q* + 2r. PQ) A0,
R4 R4
+ / (VpeP? + V. Q* + 2Vr.PQ) - V6, — / f- - (AP, AQ)0,. (4.71)
R R4
Thanks to Lemma 4.2, for n > 1 and ¢ < 1 sufficiently small,
1 T
< < =
peA0a| S max(L, |y )| A0a] S 7 max(L,]a”)—; (a0 (2))]
1 1
S g max (80 a0l ) S o (@72)
Similarly, Lemma 4.3 yields
1
l9eA0n] S 5 (4.73)
and since A, < 0 thanks to (4.49), (4.72) and (4.73) also imply
1
Next, we use the estimates
max(|vP€‘7 |Vq€|7 ‘VTF:') 5 max(574/3, |l‘|/€2/3), maX(|ApE|7 ‘Aq€|7 |AT€D 5 5727 (475)

that will be proved later. Arguing like in (4.72), it follows from (4.75) that for n > 1,
|Vpe - VO, | < e %3, |Vge - VO, <3, |Vre - VO, | <e /3. (4.76)

Letting n — oo, and using the positivity of the quadratic form a(P, Q) = pe P2 +¢-Q? +2r. PQ, shown
n (4.48) and (4.49), we deduce from (4.71), (4.72), (4.73), (4.74), (4.75), (4.76), the Young inequality
and (4.53) that

0 [ (APE+1AQR) S &7 (IPIEe + QIE:) + & I oy

—26/3

S € +5_4/3Hf6‘|i2(kd)2- (4.77)

Thanks to (4.52), (4.54), (4.56) and (4.53), the L? norm of f. can estimated as

2N/3-19/3 4N/3—-26/3 -2
/3=19/ /3-26/3 < =2

HfEHLZ(Rd)2 55_2+€ +e
provided N is large enough. Thus, (4.77) yields
||(AP7 A62)||L2(]Rd)2 S 5_57
which combined with (4.53), implies
1P, @)l ware S NP, Q) m2ayz S (4.78)

In view of the ansatz (4.1)-(4.2) as well asthe estimates (4.69), (4.70) and (4.78), we conclude that if
N is sufficiently large and if € is small enough, 71 and 72 are strictly positive respectively on S; and
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S2. In order to complete the proof of this last statement, it remains to prove estimates (4.75). This is
the issue we address now. First, we deduce from (2.6), (2.7) and Lemma 2.1 that

Wiz o) S 1 IVwllzoe g Se°,  Aw]lnoe(py) S, (4.79)

HTHL‘X’(DO) S HVTHL"O(DO) S ”ATHL"O(DO) S (4'80)

where for the estimates on V7p and A7p, we have used assumption (1.10). From (2.51), (2.49), (2.52)
and (2.50), we infer

[WllLoe(pyy S €273, IVVllLeepy) S€7%% [|AV||Leo(ny) Se7Y7, (4.81)

A2 2T N oy S e IV oy S €7 AN o) S 'A82)

Note that the first estimate in (4.82) has already been proved in Lemma 3.1. (2.19) and Propositions
2.4 and 2.6 imply

- - —4
litllzoe by S €72, NVullLeo(py) S22, NAullLeo(py S (4.83)

Moreover, it follows from their definitions that the truncation functions ®., x. and W. satisfy the
estimates

IV@ellzee, Vxellooe, [VEelie S8 AL, [Axelle, |AV:[|Le S ™ (4.84)

Combining (4.79), (4.80), (4.81), (4.82), (4.83) and (4.84) and using Lemmata 3.10 and 3.14, we obtain

||P1HL<><>(1Rd) S 571/3> ||p2HL°C(Rd) S 571/37 (4.85)
Vo1l ey = 1@ 2V + xe Vv + VO (e 2w = 1) || poo gay S e™TVE7P72D 0 (4.86)
and
IVp2llpoemay = [®e™/2Vr + X VAY?) + TV + VO (27 = N?) + VO (1 — A7) oo
< e (4.87)
provided N is large enough, as well as
[Ap1ll oo ray = [1®e™ 2 Aw + xcAv + 2V (67 /*Vw — V) + Ad. (e w — )| oo (ga)
< 6min(71/372ﬁ,*4/3>’ (4.88)
and
[Ap2llpoemay = [1®ce™ VPAT + X ANY?) + WeAp+2VE V(e /37 — X/2) 4+ 2V V(1 — A7)
FAD (P = AP) + AT (p— AP oo gy S5, (4.89)

where we assume again that N is sufficiently large. (4.75) follows by differentiation of the definitions
of pe, ge and r. given in Section 4.1.

3rd step. First, note that the functions 7; and 72 we have constructed are radial. Indeed, p; and
p2 are functions of the variables z, y1 and y2, which all depend on z only through |z|. On the other
side, the equation (4.7) is radially symmetric, such that the uniqueness of its solution (P, Q) in the
ball Br, which was proved in Section 4.4, ensures that both P and @ are radial. For convenience, we
consider n; and 72 as functions of r = |z|. At this point, according to the conclusion of the second
step, we already know that for j = 1,2, n;(r) > 0 for r € [0, (R? + £*/*)!/2]. So it remains to prove
that n;(r) > 0 for r > (R? + e2/3)1/2 We shall see that it is a consequence of Hopf’s lemma (see for
instance [E]). Indeed, the system of equations (1.13) satisfied by (71,72) can be rewritten as

(-a+Z)(n)=0 forj=12
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where o
1 = 200m; + 2a0m3 — a—Z(Ré — R}) + (Jz|* - RY)

and
o = 2007 + 20015 + |z|* — R3.
Let us fix j € {1,2}. We shall see in Lemmata 4.7 and 4.8 below that ¢; > 0 for |z| > (R? + %/%)/2,
Let us admit provisionnaly this fact. We know that —n;(r) < 0 for r < (R? 4+ &*/3)'/2. Assume
by contradiction that there exists ro > (R? + £2/%)!/2 such that —n;(ro) = 0. Then, Hopf’s Lemma
applied on the ball of R? centered at the origin and with radius ro ensures that —nj(ro) > 0. In
particular, r — —n;(r) is strictly increasing in a neighborhood of rg, in such a way that we can define
r1 € (ro, +o0] by
r1 = sup{r > ro, —n; is stricly increasing on (ro,r1)}.

If 1 is finite, we can apply again Hopf’s Lemma on the ball centered at 0, with radius r1, and conclude
that —nj; is increasing on a neighborhood of r1, which is a contradiction with the definition of r1. Thus,
r1 = +oo. Thus, —n; is strictly increasing on [ro,+00), with —n;(ro) = 0. This is a contradiction
with the fact that n;(r) — 0 as r — 400 (which is itself a consequence of the decay of the un(y2)’s as
y2 — —oo and of (P,Q) € H*(R%)). Therefore —n;(r) < 0 for every r > 0.

Lemma 4.7 For e > 0 sufficiently small, c1(z) > 0 for every x € R*\S.

Proof. Note first that for ¢ < 1, since 8 < 2/3, ]Rd\Sl is the disjoint union of the sets D1\ S1 and
D>\D;. We first consider the case where x € D;\S;. Starting from (4.1) and (4.3), we have

c1/3 2(N+1)/3P)

m = XeV + €

1/3
_

v+ 0100 (Dy D) (€%) + Opee (py\sp) (€2 7197%))

v+ OLOO(DI\SI>(€2N/3713/3))

(
(
1/3(
(Vo + Opoe (py\s1) (€77)), (4.90)

€
1/3
et/

where the first line holds because z ¢ Supp(®.), the second one because x. =1 on D1\ D2 and thanks
to Lemma 3.14 and (4.78), the third line holds provided « is chosen large enough, and the last line
is true for N large enough, since D1\S1 C {z,y1 < —1} and thanks to the asymptotics of the v,’s as
y1 — —oo given in Proposition 2.7. The same kind of arguments yield, still for x € D1\S1:

= 81/3()(5)\1/2+\I/5M+EZ(N+1)/3Q)
51/3()\1/2 E;3(1\1-4-1)—1/3) 2N/3—13/3)

+ 0L (D1 D) ( + Oree(py\sy) (€

As a result, thanks to (2.30), (2.34) and (2.39), for z € D1\S1, we have

g = 2a152/3(uo + O (52/3))2 + 2ap ()\,1 + 82/3)\0 + O (54/3)) — %(R% — Rf) — 52/3y1
2
F1/3y1 2
= Rf/31“§/352/370 ( ;2/3 ) —T2e?%y) 4 O (£*%) = T2e?® + O(e*?) > 0, (4.92)
1

for e sufficiently small, where the inequality holds because = ¢ S1, which implies y1 < —1. Let us now
consider the case where z € D3\ D;. Then, using again (4.78),

m = €2N/3+1P _ OLOQ(D2>(52N/374) _ OL00<D2)(54/3)
and

2 = 61/3(/L + 62(N+1>/3Q) = 61/3(/110 + OLOO(Dz)(€2/3))- (493)
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We infer that

o = 2a0e?Pud - (R2 R}) + (Jz” = RY) 4 Opoo(py) (e*?)
= 2[R, (2 Y +7R R o (%)
B a2 1 Ry® ay €2/ b2 g2/3 Loo(D2) &

2
o R3 — Ri
_ 52/3 OR§/3 ('YO ( Y2 ) o Y2 > 4Ty ( 252/3 y2) +OL°°(D2)(€4/3),(494)
| ——

as Rg/a R2/3

. >2e8-2/3
>infycr[yo(y)2—y]>—o0 >2e Do

and thus ¢1 > 0 on D2\ D if ¢ is sufficiently small. »
Lemma 4.8 c2(x) > 0 for every x € R*\S,.

Proof. The lemma is a straightforward consequence of the definition of c2, since the assumption
z € R4S, can be rewritten as |z|? > R3 + /3. .

4.6 Uniqueness of the ground state

In this section, we prove that the solution of (1.13) constructed in the previous sections is the unique
ground state of the system, that is the unique solution of (1.13) with two positive components. Unique-
ness of the ground state of (1.13) was proved in [ANS]. We recall the arguments for the sake of
completeness. First, the next lemma gives an a priori upper bound on positive solutions to (1.13).

Lemma 4.9 Lete > 0, and let (n1,712) be a positive solution of (1.13). Then, for every 0 € (0,1) and
z €RY, forj=1,2,

0
n;(z) < M; min |:1,exp <_£ (|:c|2 — r?))] , (4.95)
g 2 2 2 1/2 aq aj Ro
where ay = (E(R2_Rl)+R1> 5 M1 = W7 r = m, MQ = W and To =
R
(1_922)1/2'

Proof. We first prove that n; is uniformly bounded from above by the constant M; defined in the
statement of the lemma. The proof follows an idea which is due to Farina [F], and which is also used
in [IM] and [ANS]. Let us define

1
wy = = ((2a1)1/2n1 - al) , and wi = max (0, w1).
€
Then, Kato’s inequality yields
Awf 2 1{w1 O}Awl

1w
_ { E1 >0} (2a 1) 771 (205177% 4 2040173 — Z—Z(R% - R%) - (R% - |$|2))

1w
= %(swl + a1) ((5w1 + a1)2 — (a1)2)
1w
= { 81 >0} (swl =+ a1)5w1(5w1 + 2a1)
> (w)’ (4.96)

From Lemma 2 in [B], it follows that w;™ < 0, which means 7; < M.
Next, like it was done in [ANS], we prove that n; decays at least as fast as a gaussian as |z| goes
to infinity. Easy calculations show that

0? Olz?\ _ do 9z
( A+ 5 | )exp (f e | =P () > 0, (4.97)
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whereas
6? 1 201 3 2
(~a+ Gl ) m = 5 (af = (1= 680 o — 250t = 200 <0 (1.9%)

o(lz?—r})
2e

that Wi(z) > 0 for |z| = r1. Assume by contradiction that the inequality W1 > 0 does not hold for
every x € R? such that |x| > r1. Then, since Wi(z) — 0 as |z| — oo, Wi reaches a minimum at some
xo € R? such that |xo| > 71. In particular, AWi(zo) > 0 and Wi(zo) < 0. This is in contradiction
with the difference between (4.97) multiplied by M; and (4.98) evaluated at wo. The proof of the
estimate on 7 is similar. n

for x > r1. Then, we set W1 = M exp (f 1n1. We know from the first part of the proof

The next lemma states the uniqueness of the ground state of (1.13) and is also proved in [ANS].
We give here a proof which is slightly simpler.

Lemma 4.10 Let € > 0, and let (m1,7m2), (&1,&2) be two positive solutions of (1.13). Then m = &
and n2 = &o.

Proof. Let v1 = & /m and va = & /n2. Since (n1,7m2) and (&1, &2) solve (1.13), it follows that for
(4,7) = (1,2) or (2,1), we have

e2div (n?Vvi) = 20;mivi(v; — 1) + 200min;vi(v] — 1). (4.99)

Let ¢ € C°°(Rd) be a non-negative function supported in {z € R%, |z| < 2} such that ((z) = 1 for
|| < 1. For n > 1, we also define ¢, = ¢(-/n). Next, let us multiply (4.99) by (v? —1)¢2 /v;, sum over
R? and use integration by parts. We obtain

1 2
/ nflei|2 1+ = Cdr + —2/ [oci (7722(1)12 - 1))2 + Ozonf(vf — 1)77?('0? — 1)} Cdr
R4 ’Ui 13 RrRd

—/ n Vo (vl - l) ((n) dx
Rd Vi

—2/ n?wVviCnVCndx—&-?/
RrRd

2 sz

= (0 Vnda. (4.100)

Next, we estimate each integral in the right hand side of (4.100) thanks to the Cauchy-Schwarz in-
equality. For the first one, we have

‘/ N7V Vindz| = ‘/ 1:&:V0i(n Vndx
Rd Rd
1/2 1/2
< (/ n?miﬁcf;d:c) (/ f?\vcnﬁdm)
R4 R4
< 1) EvelGde+ [ €196 (4.101)
4 R4 Rd
whereas for the second one, we get
) 1/2 1/2
‘/ n?V?lCnVCndiﬂ < </ 2\Vm| ¢2d ) (/ 772~2|V(n|2dx)
R4 Vs Rd R4
< l/ 2 |W’| g‘ndav—i—/ n2 |V |2 da. (4.102)
4 Rd R4

Combining (4.100), (4.101) and (4.102), we infer

3 [ vel (1 ) Gaoe 5 [ fos (20 = 10)* + aonof = a5 - 1)] e

< 2 /R (@ + IV (4.103)
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Finally, we sum the inequalities given by (4.103) for (7,j) = (1,2) and for (4,7) = (2,1). We deduce
o Lol (14 5 ) o g [ wivwl (14 5 ) o+ 5 [ a[nif - 0.0 - ] G
2 Jrd v 2 Jrd v32 €2 Jpa
< 2 (@ +atedrdIve i, (1.104)
R

where qui,u2] = aluf + 2cpuius + agug. Note that the assumption I'12 > 0 can be rewritten as
a2 — a1 < 0, which implies that there exists ¢ > 0 such that for every wi,us € R, qlui,uz] >
c(u% +u3). As a result, in order to conclude that v1 = va = 1, it is sufficient to prove that the right
hand side of (4.104) converges to 0 as n — oco. It is the case thanks to Lemma 4.9. Indeed, for
n > max(r1,72), since V¢, is supported in {z € R, n < |z| < 2n}, we have

/ (ET4+NT+E3413) | Va2 dx < 2 (Mfeer%/‘E + MgeeTg/E) IVC¢|IZe0 ‘{w eRY 1< |z <2} nd_Qe_nze/E,
Rd
where the right hand side goes to 0 as n — oo. "

4.7 End of the proof of Theorem 1.5

In section 4.4, we have constructed a solution (n1,72) to (1.13) that converges to 0 at infinity. In
section 4.5, we have checked that this solution is positive. In section 4.6, we have seen that (n1,72) is
in fact the unique such solution of (1.13). So the first part of the statement of Theorem 1.5 has already
been proved. Let us now fix three integers Mo, No and Lo, as well as 8 € (0,2/3). According to our
construction of (n1,72) explained in sections 4.1 and 4.4, provided M > Mo, N > max(No,2/8 — 2)
and L > Lo are large integers that satisfy the conditions listed at the beginning of sections 4.1 and
4.4, (n1,m2) can be written like in the ansatz (1.20)-(3.1). Thus, defining Niapp and n2qpp as in the
statement of Theorem 1.5, we have

M N
M= Mapp = Pe D wm +20x Y ¥, 4 2NHP (4.105)
m=Mgp+1 n=Ng+1

and

M N 1/2 No 1/2
N2 — Noapp = P, Z Ezme_’_El/SXe (Z g2n/3)\n> _ (Z 82n/3/\n>

m=Mop+1 n=—1 n=—1
L
+elPw ST e, + 2N, (4.106)
n=Lg+1

The next step consists in evaluating the L? and H' norms of each term in the right hand side of (4.105)
and (4.106). Let us start with the L? norm of ®cwym,, for m > 1 and p € [2, +00). Since Supp®. C Doy,
we have

el < [

|z

(RE =<2 2 2yvip.d—1
s |wm (2)|Pdz = /sd ) / |wm (R — r7)[Pr®™ "drdf
<R?-¢ -1Jo

d—1 R% D/ P2 d/2—1dZ
— 57 [ e @PRE -2 L (4.107

Since d/2 — 1 > —1/2, the integral converges at z = R3. Moreover, thanks to (2.11), we deduce

Rt p(p2 d/2-1 d—2 P i p(1/2—3m) R‘f72|w of” _(-p(3m—1/2)+1)
Ri— TTdz ~ RYT Ay~ L T PpEme .
/5/3 |wm<z)| ( ! Z) i eso L |wm0| /5[1 ? ? =0 p(Sm - 1/2) -1
As a result,

H(I)EUJmHLP(]Rd) = O(g_gﬂm+5/2+ﬂ/p)~ (4.108)
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Similarly, (2.12) yields
[ on || o )y = O(e™ 2 FFFEP), (4.109)

Note that (4.108) and (4.109) also hold for p = +oo thanks to (2.11) and (2.12). Note also that (4.108)
and (4.109) are sharp. Indeed, since ®. = 1 for |z|?> < R? — 2¢”, we deduce that ||<I>gwm||zzp(Rd) can be
bounded from below by an integral similar to the one that appears in the right hand side of (4.107).

Next, let us estimate the L” norm of x.vy, for n > 1 and p € [2,+00). Since Suppyx. C D1, we get

(R}+2eP)1/2 RZ—r2\|" .,
P P -
XV, < / vn (Y1 da::/ / <7> r "drdf
bernlosny < [ terae= [ e (P
2eB—2/3 2/3 d
= |s* 1|/ |un(yl)|1"(R?—52/3.141)””2‘17E 5 Loy (4.110)

For y1 € [725572/3,25572/3], we have 1 < R? — e2/3y, < 1, therefore according to the asymptotic

behaviour of v, (y1) as y1 — %00 given in Proposition 2.7, we obtain

O(e3r) ifn=1or (n=2andp>2)
IXevnllpoay = O(|Ine|zes) if n=2andp=2 (4.111)
(9(5727” B(TH%H%JF%) if n>3.

Similarly,

2

O(e3») ifn=1

IXeAnll Lo ey = n 5 (4.112)
€ LpP(R) O(E*%Jrﬁ(an)vL;Jr%) if n > 2.

Again, it easily follows from Proposition 2.7 that (4.111) and (4.112) also hold for p = +o0, and the
two estimates are sharp. Next, since SuppV. C D2, we infer
R =\ " 4
Hn (W T drd@

Wbl < [
2/3
_1e77°d
|in (y2) [P (RS — e2/3yp) /21222 (4.113)

2_p2
Ry—Ry__B-2/3

|bn (y2) [P dac Z/ /
|Z|22R%+86 gd—1 2+€5)1/2
2

— |Sd—1

In order to estimate the integral in the right hand side of (4.113), we split the integral into two pieces.
First, for y2 € (7R3/52/3, (R3 — Rf)/52/3 — 5672/3), we have 1 < R2 + ¢ < R2 — %3y, < 2R3 < 1.
Therefore, according to (2.19) and Proposition 2.6,

2 2
Ra—R] __p-2/3

£2/3 _
/ i (2) P (B — €2/%g) /2~y

7R§/52/3 e—0

O(1). (4.114)
Ifd=1,2 and y» < —R2%/e?/3, we still have (RZ — ?/3y5)¥271 < 1, therefore

RZ/e2/3
/ ln (y2) [P (RS = €*Py)*Hdy, = O(1), (4.115)

oo

whereas if d = 3 and yo < —R3/e%/3, then (R3 — £?/3y2)'/? < v/2e'/3|y2|'/? and since Proposition 2.6
implies pn(y2) =  O(y2|~%?), we deduce that (4.115) also holds. Combining (4.113), (4.114) and
Yz —>— 00

(4.115), we deduce
2
19 eptnl o ety = O(e7). (4.116)

Note again that (4.116) is sharp and that Proposition 2.6 implies that it is also true for p = +oo0.
We are now ready to estimate 171 — 1app and 7o —n2app in LP(R?). Remark first that since 8 < 2/3,
(4.108) and (4.109) imply that the larger is m > 1, the smaller are e*™®.wy, and > ®.7p, in LP(R?),
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in the limit € — 0. Similarly, since 8 > 0, it follows from (4.111) and (4.112) that the larger is n, the
smaller are €23y v, and €2*/3x.\, in LP(R%). Thus,

O("57) if No =0
5 2
_ 8.8 O(e33) if No=1andp>2
_ _ 030+ 52y
I = mevell oo e ( Y o(meter) if No=1 and p =2
PN DT i Ny > 2.

Pl Lo gty O3, (4.117)

Now, remember that in (4.78), the H?(R?) norm of P is controled by some power of ¢ (namely, ¢~°)
wich is independent of N. Thus, thanks to Sobolev embeddings, for fixed values of My, Ny and Lo, if
M, N and L are chosen sufficiently large (and such that they satisfy the conditions at the beginning
of sections 4.1 and 4.4), for € small, 52N/3+1|\P||Lp(md) becomes negligible in comparison with the
other terms in the right hand side of (4.117). The estimate on 71 — N1app in (1.22) follows in the case
E = LP(RY).

As for the second component, using the same arguments, we infer from (4.109), and (4.116) that

O3 Mot ) +5+ 5y

N1 1/2 Not1 1/2
+Xe <)\1 + Z EQn/?’)\n1> — <>\1 + Z €2n/3)\nl>

n=1 n=1

lIm2 — 772aPPHLP(]Rd)

1, 2(Lo+1) | 2
+OETTE ) 1 1Ql oy O, (4.118)

In order to estimate the second term in the right hand side, note that thanks to the asymptotic
behaviour of A\g given in Proposition 2.7 and (4.112) for p = +00, we have

N+1

Z €2n/3>\n71 _ OLOO(Dl)(EB),

n=1

and the same property holds for N replaced by No. Thus, the mean value theorem applied to the
function square root close to A_; and (4.112) imply

4 2
_ 8 O(e3730) if No=0
_ _ O3t a e |
72 = N2app | Lo ) ( ) 0(82+B<N071)+%) if No> 1.

T e ) (4.119)
under the same condition of largeness on M, N, L than for the estimate on 11 — 1714pp. We have proved
the estimate on 72 — naapp in (1.22) for E = LP(R?).

Next, let us prove (1.22) for E = H'(R?). For this purpose, we have to estimate the L?(R%) norms
of V(®ewnm), V(®eTm), V(Xetn), V(xeAn) and V(¥epy,) for my,n > 1. In view of the definitions of
®., xe and U, it is clear that the L>°(R?)? norms of their gradients are all O(¢~*). Thus, performing
calculations similar to the ones which were done to obtain (4.108), (4.109), (4.111),(4.112) and (4.116),
we obtain

IV(@)wmll ey, = O ™), (4.120)

V(@) | oy = O™ ™4/, (4.121)
(’)(5%_[3) ifn=1

IV valpogey = 4§ O(lnelzes—?) if n = (4.122)
(9(572‘7”*6("73)+g) ifn>3
O(e3~P) if n=1

IV(x)Anllp2gay = { O T N (4.123)
1_

IV (@) pnll 2@y = Oe377). (4.124)



By differentiation of (2.11) and (2.12), since V = —2z L similar calculations as the ones that gave

(4.108) and (4.109) yield

Vel sy = O™, (4125)
V7| 2 (ga O(e=3mH0/2), 4.126
L2(R)
Next, since V = ;3@ %, a calculation similar to (4.110) yields
9 2|89 2e0720 ' 2,2 _2/3 N\d/2
HXEVVnHL"‘(Rd> S 25 | L aas [vn (y1) |7 (R — €™ 7ya)™ "y (4.127)
Then, after differentiation of (2.49), we deduce that
O(e™1/3) ifn=1lorn=2
IXeVenllp2gay = O(|Ine|ze™3) if n=23 (4.128)
0(672n/3+6(n73)+5/3) if n > 4.
Similarly, differentiation of (2.50) yields
OE1?) ifn=1lorn=2
||st>\n||L2(Rd) = { 0(872n/3+5(n75/2)+4/3) ifn >3 (4-129)
Using Proposition 2.19 like it was done to obtain (4.116), we infer
[V inllpogay = O %), (4.130)

Like in (4.117), taking M, N and L large enough, we deduce from (4.120),
that

O(E2N0/3+2/3)

O(|Ine|2£)
O(Eﬁ(N072)+2)

IV (m = Mmapp) | 2 me) (9(6(273*8)<MO+1)) +

Next, we write

(4.122), (4.125) and (4.128)

ifN():OOI‘N():].
if No=2
if No > 3.

(4.131)

M N 1/2 No 1/2
V(2 = n2app) = V (‘I)a Z €2m7'm> +e'*Vx. (Z 52"/3/\n> - <Z 2"/3>\n>
m=Mop+1 n=-—1 n=—1
=T =:Ty
4= 51/3Xs (Z 62n/3)\n> . < Z EQn/B)\n> Z 2n/37 )
n=-—1 =—1 n=—1
=:T3
No -1/2 N
4= 61/3Xs ( Z 62”/3An> Z €2n/3v)\
n=-—1 n=Ng+1
=:Ty
L
+e'/3v (\I/ > 52"/3un> + 2Ny Q. (4.132)
n=Lo+1 —
=:Tg
=:T5
Thanks to (4.121) and (4.126), we have
1Tl 2@y = 0(5(2—36)(M0+1)+ﬁ/2)_ (4.133)
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T5 is estimated like the second term in the right hand side of (4.118) in (4.119), using (4.123) instead
of (4.112). We obtain

O(e2/375) if No=0
T2l L2@ey = { O(PP0-3242) i No > 1. (4.134)

In order to estimate T3, note that thanks to (2.52) and (2.50), A}, is uniformly bounded on R for
n=0,1,2,3, whereas for n > 4, \, = 0L00<D1)(€7<2/37ﬁ)<n73>). Therefore, since A_; is constant,

N
2n/3 _ 2z
_Zl eV An So 28 Ao + Oree(py)(1).

Applying the mean value theorem to the inverse of the square root close to A_1, we use the same
arguments as to obtain (4.119) from (4.118) and we get thanks to (4.112)

P AP S (1.135)
Lemma 3.1 and (4.129) yield
Tl = § ggZZT;;iZig)+2) N0 =0or (4.136)
It follows from (4.124) and (4.130) that
I Ts)l 2y = OV, (4.137)

Finally, like in (4.117), we deduce from (4.53) that if M, N and L are chosen large enough, Ty is
neglectible in comparison with the sum of the five other terms. Therefore, combining (4.133), (4.134),
(4.135), (4.136) and (4.137), we obtain

_ O(e>/3F if No=0
||V(772 _ 772app)||L2(Rd) _ (’)(a<2 3/3)<Mo+1)+6/2) + { OEEB(N07)3>/2)+2) if Nz > 1.
O(°/3) if No=0 O(e2No/3+1) if No=0or1l
O(PWNo=1/242) i Ny > 1. O(PWNo=3/D+2) if Ny > 2.
+O(52(L0+1)/3).
0(5(2—3[3)(Mo+1)+,3/2) +0(e) + 0(52(Lo+1)/3) if No =0
_ 0(6(2736)(M0+1)+5/2) + 0(85/3) + 0(52(L0+1)/3) if NO -1

0(5(2*33)(Mo+1)+@/2) + O(EB(NO’:”/Q)”) + (9(62(Lo+1)/3) if Ny > 2.

The estimate on 71 — Niapp in (1.22) for E = H*(R?) follows from (4.117) and (4.131), the estimate
on 712 — N2app comes from (4.119) and (4.138).
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