

Projet PROSPEN 2 2017 - 2020

Laboratoire d'Économie Appliquée de Grenoble

The future of road mobility : can gas vehicles be a credible alternative for road transportation decarbonisation?

Gabin MANTULET, Adrien BIDAUD, Silvana MIMA

Plan

- I Energy context
- II Mobility trends
- III Methodology
- IV Modelling results
- V Conclusions and perspectives

I – Energy context

World primary energy consumption is 80% made with fossil fuels (coal, oil, gas)

Transportation sector relies on OIL

Source : European Commission, Joint Research Centre, GECO 2018

Transport represent around 20% of world CO_{2eq} emissions in 2015 Road transport represents ³/₄ of transport CO₂ emissions

Challenges with climate change : decarbonisation of energy consumption ... and a decarbonisation of transportation because of oil dependancy

I – Energy context: concerns and policies for transportation sector

Mobility issues

- Mobility needs fulfillment
- Global warming
- Air pollution
- Oil producers and fuel prices variation dependency
- Energy security → monopoly of oil

Policies incentives and measures

- Carbon tax on fuels
- Bonus/malus on cars according to their technology and their CO2/particle emissions
- Quotas for sales for the different type of cars
- Subventions for clean cars or infrastructures development
- Urban tolls
- Incentives for using other and softer transportation modes (public transport, bike, etc.)

\rightarrow A need to change mobility technologies but difficult \rightarrow Which alternatives can we use?

Target: phase out conventional cars sales

Pays	Date
FRANCE	2040
NORWAY	2025
GERMANY	2030
THE NEDERLANDS	2030
THE UK	2040 (Scotland 2032)
INDIA	2030
ISLAND	2030
DENMARK	2030
SPAIN	2040
CHINA	2050

4

Plan

I – Energy context

II – Mobility trends

- III Methodology
- IV Modelling results
- V Conclusions and perspectives

II – Mobility trends

The optimal engine for each mobility need

- <5km : human. No cars for very shorts travels
- 5km<>400km : Electric/Hybrid
- >400km : Oil/Gas

II – Mobility trends

Road transportation technologies main characteristics : +/- aspects

	Vehicle performances		Recharge		Climate impacts		Costs	
	Autonomy (km average)	Per km fuel consumption	Charging stations network	Length of recharge	Air pollution	CO2 releases (well to wheel)	Vehicle cost (€/vehicle average)	Fuel cost
Gasoline	800			Minutes			22000	
Diesel	800			Minutes			22000	
Plug in hybrid	800			Minutes/hour for battery			33000	
Electric	300			Hours			29000	
Hydrogen	600			Minutes			44000	
Gas	600			Minutes			26000	

II – Mobility trends : Natural gas vehicles (NGV) deployment

II – Mobility trends : Environmental benefits of natural gas in transport

CO2 emissions with a 'well-to-wheel' cycle

GNVs emissions are lower (-25%) than gasoline cars and even biomethane emissions are comparable to those of electric engines powered by low carbon sources.

II – Mobility trends : the question

Will gas vehicles really be a credible alternative for future mobility?

Advantages	Drawbacks		Market share natural gas vehicles in Europe	Natural gas vehicles fleet development
The same autonomy we are	Charging stations network not	35%	33%	2016 2030
used to with oil cars	very developed	25%	~ 25%	1.300.000 12.600.000
conventionals	electric and hydrogen motors	20%		
No air pollution	For the moment, using a	15%		x21
	majority of fossil natural gas : dependancy of gas producers		6 12%	9.000 190.000
	gas prices, etc.	5%		
Still developed in some		0% too	day 2030	
countries : proof of efficiency			Ambitio	us objectives

Method : using a long term energy model, POLES, to analyze future transportation mix according to some scenarios

10

Plan

- I Energy context
- II Bibliography trends
- III Methodology
- IV Modelling results
- V Conclusions and perspectives

III – Methodology: mobility modelling in the POLES model

Yearly recursive simulation up to 2100

III – Methodology: 4 scenarios

ightarrow A reference case: a business as usual projection, built for comparison

→ A climate constraint scenario defined to limit global warming under 2°C
2°C

 \rightarrow The same climate constraint scenario with more progress for non oil fuelled vehicles* **2°C clean**

- Vehicle costs : -20%
- Infrastructures : +20% development for charging stations
- Performances : 20% consumption/km
- → The same climate constraint scenario with more progress for non oil fuelled vehicles 2°C clean LD with lower demand
 - Demand (exogenous) for mobility: -30%** : changes in people behaviour

* Electric, H₂, gas

** Hypothesis based on Gruber et al, that are not prices base.

Baseline

Plan

- I Energy context
- II Green gas process
- III Methodology
- IV Modelling results
- V Conclusions and perspectives

Road transportation mix

Light vehicles fuel consumption

Few NGVs for light vehicles but gas can reach 10% of energy consumption

Trucks and bus vehicles fuel consumption

More NGV in trucks and buses (can reach 25% of the park in 2100)

Gas vehicle a relevant alternative for goods, public transport and fleets⁸

Road transport CO₂ emissions

Less CO2 emissions transport with larger NGVs penetration

Plan

- I Energy context
- II Green gas process
- III Methodology
- IV Modelling results
- V Conclusions and perspectives

V – Conclusions and perspectives

The study

- A model based approach on the future of road mobility in a decarbonisation context (2°C warming mitigation)
- A particular focus on gas vehicles and their role in mobility mixes

State of the art

- NGVs are nowadays the **most developed fleet of non conventional (ICE) vehicles**
- NGVs are a **promising alternative** for conventionals especially in fleets, long transportation modes and trucks

Outlines from simulations output

- NGVs as a catalyst for transportation energy consumption reduction (idem for CO2 emissions reductions) with an **appreciable development for heavy vehicles**
- The speed of the NGV diffusion largely depends on performance improvements and government push on infrastructure development (subsidies for vehicle acquirement, tax advantages for gas...)
- NGV is unlikely to widely transform road transportation energy mix, but it can be an alternative among others

Further steps

- Study the influence of greening gas network for NGVs deployment
- The competition of gas/biogas for NGVs between others energetic valorization of biomass (biofuel, electricity, heat...) that are also key for energy systems decarbonisation.

Projet PROSPEN 2 2017 - 2020

Laboratoire d'Économie Appliquée de Grenoble

Thank you for your attention

Gabin MANTULET, PhD student, LPSC – CNRS, Laboratoire de Physique Subatomique & Cosmologie (LPSC) 53 Avenue des Martyrs, 38000 Grenoble Phone: +33 (0) 6 18 13 03 72, Email: <u>gabin.mantulet@univ-grenoble-alpes.fr</u>

Adrien BIDAUD, CNRS researcher, LPSC – CNRS, Laboratoire de Physique Subatomique & Cosmologie (LPSC) Phone: +33 (0)4 76 28 40 45, Email: <u>Adrien.Bidaud@lpsc.in2p3.fr</u>

> Silvana MIMA, CNRS researcher, GAEL – CNRS, UPMF - BP 47 - 38040 Grenoble Phone : +33 (0)4 56 52 85 89, Email : <u>silvana.mima@univ-grenoble-alpes.fr</u>

Bibliography and resources

California New Car Dealers Association (CNCDA), "New Light Vehicle Registrations in California Should Approach Two million units in 2015", 2015

Comité des constructeurs français d'automobiles, "Analyse et statistiques 2018", http://ccfa.fr/

Deutsche Energie Agentur

Franck Bruel, "L'Énergie efficace, quand moins et mieux font plus", Eyrolles, 2018

Frost & Sullivan's, "Global Electric Vehicle Market Outlook 2018", 2018

Gruber et al, "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals"

Natural Gas Vehicle Knowledge Base, "*Current Natural Gas Vehicle Statistics*", 14/11/2018, available online http://www.iangv.org/current-ngv-stats/

NGV Italia, "A common vision on sustainable fuels", ACT 2014 - Driving the Global Shift Toward Sustainable Transportation

IEA, "Global EV outlook 2017", 2017

IEA, "World energy balances", 2018

Statista, "Global sales of NGVs", 2018, <u>https://www.statista.com/statistics/787068/global-sales-of-natural-gas-vehicles-by-country/</u>

www.Gaz-Mobilite.fr

I – Energy context: decarbonisation of energetic system

Emissions GES actuelles CO_2 $\approx 50 \, \text{GtCO2/an}$ Ce que nous pouvons encore émettre : CO2 CO2 ≈ entre 800 et 1000 GtCO2 CO2 CO2 CO2 CO2 À répartir sur les différentes énergies ! CO2 CO2 CO2 CO2 Notre budget 2°C (66% de chance de rester sous 2°C) Entre 20% et 25% des réserves prouvées Entre 1% et 2% des ressources Temps restant à émissions constantes : 20 ans

BUDGÉTISONS LE CARBONE

TIC, TAC....

BP Statistical Review 2016

AVENIR CLIMATIOUE

I – Energy context: need of transportation decarbonisation

European Union - 2016

The relevance of road transportation in transportation sector emissions

^[1] <u>Sources</u> : EC (2016), EEA (2010), Transport & Environment (2015)

II – Mobility trends

Road transportation features and projections

Around 4% annual growth

Prévisions mondiales de la demande de transports routiers

http://www.cartografareilpresente.org/article59.html

EVs are driven significantly less than other types of vehicles.

II – Mobility trends Italy NGV deployment Immatriculations par filière énergétique

Du 1er janvier au 31 août 2018

Technologie	Immatriculations	Parts de marché	
Diesel	739.045	53.74%	
Essence	455.665	33.14%	
GPL	89.062	6.48%	
GNV	31.645	2.30%	
Hybride	53.513	3.89%	
Hybride rechargeable	3.144	0.23%	
Electrique	3.098	0.23%	