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B.Alziary
J.Fleckinger

Institut de Mathématique, UMR5219
Ceremath - Université Toulouse 1

Abstract We show how the solutions to a 2 × 2 linear system involving
Schrödinger operators blow up as the parameter µ tends to some critical
value which is the principal eigenvalue of the system; here the potential is
continuous positive with superquadratic growth and the square matrix of
the system is with constant coefficients and may have a double eigenvalue.

1 Introduction

We study here the behavior of the solutions to a 2 × 2 system (considered
in its variational formulation):

(S) LU := (−∆+ q(x))U = AU + µU + F (x) in R
N ,

U(x)|x|→∞ → 0

where q is a continuous positive potential tending to +∞ at infinity with
superquadratic growth; U is a column vector with components u1 and u2
and A is a 2 × 2 square matrix with constant coefficients. F is a column
vector with components f1 and f2.
Such systems have been intensively studied mainly for µ = 0 and for A with
2 distinct eigenvalues; here we consider also the case of a double eigenvalue.
In both cases, we show the blow up of solutions as µ tends to some critical
value ν which is the principal eigenvalue of System (S). This extends to
systems involving Schrödinger operators defined on R

N earlier results valid
for systems involving the classical Laplacian defined on smooth bounded
domains with Dirichlet boundary conditions.
This paper is organized as follows: In Section 2 we recall known results
for one equation. In Section 3 we consider first the case where A has two
different eigenvalues and then we study the case of a double eigenvalue.
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2 The equation

We shortly recall the case of one equation

(E) Lu := (−∆+ q(x))u = σu+ f(x) ∈ R
N ,

lim
|x|⇒+∞

u(x) = 0.

σ is a real parameter.

Hypotheses
(Hq) q is a positive continuous potential tending to +∞ at infinity.
(Hf ) f ∈ L2(RN ), f ≥ 0 and f > 0 on some subset with positive Lebesgue
measure.
It is well knwon that if (Hq) is satisfied, L possesses an infinity of eigenvalues
tending to +∞: 0 < λ1 < λ2 ≤ . . . .

Notation: (Λ, φ) Denote by Λ the smallest eigenvalue of L; it is positive
and simple and denote by φ the associated eigenfunction, positive and with
L2-norm ‖φ‖ = 1.

It is classical ([15], [19]) that if f > 0 and σ < Λ the positivity is improved,
or in other words, the maximum principle (MP) is satisfied:

(MP ) f ≥ 0, 6≡ 0 ⇒ u > 0.

Lately, for potentials growing fast enough (faster than the harmonic oscilla-
tor), another notion has been introduced ([4], [5], [9], [10]) which improves
the maximum (or antimaximum principle): the ”groundstate positivity”
(GSP) (resp. ” negativity” (GSN)) which means that there exists k > 0
such that

u > kφ (GSP) (resp. u < −kφ (GSN)) .
We also say shortly ”fundamenal positivity” or” negativity”, or also ”φ-
positivity” or ”negativity”.
The first steps in this direction use a radial potential. Here we consider a
small perturbation of a radial one as in [9].

The potential q We define first a class P of radial potentials:

P := {Q ∈ C(R+, (0,∞))/∃R0 > 0, Q′ > 0 a.e. on [R0,∞),

∫ ∞

R0

Q(r)−1/2 < ∞}.
(1)
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The last inequality holds if Q is growing sufficiently fast (> r2). Now we
give results of GSP or GSN for a potential q which is a small perturbation
of Q; we assume:
(H ′

q) q satisfies (Hq) and there exists two functions Q1 and Q2 in P, and
two positive constants R0 and C0 such that

Q1(|x|) ≤ q(x) ≤ Q2(|x|) ≤ C0Q1(|x|), ∀x ∈ R
N , (2)

∫ ∞

R0

(Q2(s)−Q1(s))

∫ s

R0

exp
(

−
∫ s

r
[Q1(t)

1/2 +Q2(t)
1/2]dt

)

drds < ∞. (3)

Denoting by Φ1 (resp. Φ2) the groundstate of L1 := −∆ + Q1 (resp.
L2 = −∆ + Q2), Corollary 3.3 in [9] says that all these groundstates are
”comparable” that is there exists constants 0 < k1 ≤ k2 ≤ ∞ such that
k1φ ≤ Φ1,Φ2 ≤ k2φ. Finally

Theorem 1 (GSP) ([9]) If (H ′
q) and (Hf ) are satisfied, then, for σ < Λ,

there is a unique solution u to (E) which is positive, and there exists a
constant c > 0, such that

u > cφ. (4)

Moreover, if also f ≤ Cφ with some constant C > 0, then

u ≤ C

Λ− σ
φ. (5)

The space X It is convenient for several results to introduce the space of
”groundstate bounded functions”:

X := {h ∈ L2(RN ) : h/φ ∈ L∞(RN )}, (6)

equipped with the norm ‖h‖X = ess supRn(|h|/φ).
For a potential satisfying (H ′

q) and a function f ∈ X , there is also a result
of ”groundstate negativity” (GSN) for (E); it is is an extension of the
antimaximum principle, introduced by Clément and Peletier in 1978 ([13])
for the Laplacian when the parameter σ crosses Λ.

Theorem 2 (GSN) ([9] ) Assume (H ′
q) and (Hf ) are satisfied and f ∈ X ;

then there exists δ(f) > 0 and a positive constant c′ > 0 such that for all
σ ∈ (Λ,Λ + δ),

u ≤ −c′φ. (7)

Remark 1 This holds also if we only assume f1 :=
∫

fφ > 0.
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Hypothesis (H ′
f ) We consider now functions f which are such that

(H ′
f ): f ∈ X and f1 :=

∫

fφ > 0.

Theorem 3 Assume (H ′
q) and (H ′

f ) are satisfied. Then there exists δ > 0
such that for Λ − δ < σ < Λ there exists positive constants k′ and K ′,
depending on f and δ such that

0 <
k′

Λ− σ
φ < u <

K ′

Λ− σ
φ. (8)

If Λ < σ < Λ + δ, there exists positive constants k” and K”, depending on
f and δ such that

− k”

Λ− σ
φ < −u < − K”

Λ− σ
φ < 0. (9)

This result extends earlier one in [17] and a a close result is Theorem 2.03
in [11]. It shows in particular that u ∈ X and |u| → ∞ as |ν − µ| → 0.
Proof: Decompose u and f on φ and its orthogonal:

u = u1φ+ u⊥ ; f = f1φ+ f⊥. (10)

We derive from (E) Lu = σu+ f :

Lu⊥ = σu⊥ + f⊥ (11)

Lu1φ = Λu1φ = σu1φ+ f1φ. (12)

We notice that since q is smooth; so is u. Also, since f ∈ X , f⊥, u and u⊥

are also in X and hence are bounded. Choose σ < Λ and assume (H ′
f ). We

derive from Equation (11) (by [6]Thm 3.2) that : ||u⊥||X < K1. Therefore
|u⊥| is bounded by some cste.φ > 0.
From Equation (12) we derive

u1 =
f1

(Λ− σ)
→ ±∞ as (Λ− σ) → 0. (13)

Choose Λ− δ small enough and σ ∈ (Λ− δ,Λ). Hence

K ′

Λ− σ
φ < u; u <

K”

Λ− σ
φ.

For σ > Λ. we do exactly the same, except that the signs are changed for
u1 in (13).
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3 A 2× 2 Linear system

Consider now a linear system with constant coefficients.

(S) LU = AU + µU + F (x) in R
N .

As above, L := −∆+ q where the potential q satisfies (H ′
q), and where µ is

a real parameter. L can be detailed as 2 equations:

(S)

{

Lu1 = au1 + bu2 + µu1 + f1(x)
Lu2 = cu1 + du2 + µu2 + f2(x)

in R
N , .

u1(x), u2(x)|x|→∞ → 0.

Assume

(HA) A =

(

a b
c d

)

with b > 0 andD := (a− d)2 + 4bc ≥ 0.

Note that b > 0 does not play any role since we can always change the order
of the equations.
The eigenvalues of A are

ξ1 =
a+ d+

√
D

2
≥ ξ2 =

a+ d−
√
D

2
.

As far as we know, all the previous studies suppose that the largest eigen-
value ξ1 is simple (i.e. D = (a− d)2 + 4bc > 0). Here we also study, in the
second subsection, the case of a double eigenvalue ξ1 = ξ2, that is D = 0;
this implies necessarily bc < 0 and necessarily the matrix is not cooperative.

3.1 Case ξ1 > ξ2

This is the classical case where ξ1 is simple. Set ξ1 > ξ2. The eigenvectors
are

Xk =

(

b
ξk − a

)

,

Set X := X1.
As above, denote by (Λ, φ), φ > 0, the principal eigenpair of the operator
L = (−∆+ q(x)).
It is easy to see that

L(Xφ)−AXφ = (Λ− ξ1)Xφ.

5



Hence
ν = Λ− ξ1 (14)

is the principal eigenvalue of (S) with associated eigenvector Xφ. Note
that the components of Xφ do not change sign, but, in the case of a non
cooperative matrix they are not necessarily both positive. We prove:

Theorem 4 Assume (H ′
q)and (HA); f1 and f2 satisfy (H ′

f ); assume also
D > 0 and d− a > 0. If

(ξ2 − a)f1
1 < bf1

2 ,

there exists δ > 0, independant of µ, such that if ν − δ < µ < ν, there exists
a positive constant γ depending only on F such that

u1, u2 ≥
γ

ν − µ
φ > 0. (15)

If ν < µ < ν + δ, the sign are reversed:

u1, u2 ≤ − γ

ν − µ
φ < 0. (16)

Remark 2 If (H ′
q) and (HA) are satisfied; if f1 and f2 satisfy (H ′

f ) as in

Theorem 4, but if d−a < 0 we have, if (a−ξ2)f
1
1 +bf1

2 > 0 and ν−δ < µ < ν

u1 ≥
γ

ν − µ
φ > 0, u2 ≤ − γ

ν − µ
φ < 0

Remark 3 It is noticeable that for all these cases, |u1|, |u2| → +∞ as
|ν − µ| → 0.

These results extend Theorem 4.2 in [4].
Proof: As in [3], we use J the associated Jordan matrix (which in this
case is diagonal) and P the change of basis matrix which are such that

A = PJP−1.

Here

P =

(

b b
ξ1 − a ξ2 − a

)

, P−1 =
1

b(ξ1 − ξ2)

(

a− ξ2 b
ξ1 − a −b

)

. (17)

J =

(

ξ1 0
0 ξ2

)

.
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Denoting Ũ = P−1U and F̃ = P−1F , we derive from System (S) (after
multiplication by P−1U to the left):

LŨ = JŨ + µŨ + F̃ .

Since J is diagonal we have two independant equations:

Lũk = (ξk + µ)ũk + f̃k, k = 1 or 2. (18)

The projection on φ and on its orthogonal for k = 1 and 2 gives

ũk = (ũk)
1 φ+ ũ⊥k , f̃k = (f̃k)

1 φ+ f̃⊥
k ;

hence
L(ũk)

1 φ = Λ(ũk)
1 φ = ξk(ũk)

1 φ+ µ(ũk)
1 φ+ (f̃k)

1φ, (19)

Lũ⊥k = ξkũ
⊥
k + µũ⊥k + f̃⊥

k . (20)

If both fk verify (H ′
f ) , they are are in X and bounded and hence both f̃⊥

k

are bounded; therefore, by (20) both ũ⊥k are also bounded.
We derive from (19) that

(ũk)
1 =

(f̃k)
1

Λ− ξk − µ
=

(f̃k)
1

ν − µ
.

Consider again Equation (19) for k = 2; obviously, (ũ2)
1 stays bounded as

µ → ν = Λ− ξ1 and therefore ũ2 stays bounded. .

For k = 1, (ũ1)
1 = (f̃1)1

ν−µ → ∞ as µ → ν = Λ− ξ1, since (f̃1)
1 = 1

ξ1−ξ2
((a −

ξ2)f
1
1 + bf1

2 ) > 0,; this is the condition which appears in Theorem 4. Then,
we simply apply Theorem 3 to (18) for k = 1 and deduce that there existes
δ > 0, such that, for |Λ − ξ1 − µ| = |ν − µ| < δ, there exists a positive
constant C > 0 such that ũ1φ ≥ C

ν−µφ. Now, it follows from U = PŨ , that

u1 = b(ũ1 + ũ2), u2 = (ξ1 − a)ũ1 + (ξ2 − a)ũ2.

As ν − µ → 0, since ũ2 stays bounded, u1 behaves as b(ũ1)
1φ, u2 as (ξ1 −

a)(ũ1)
1φ. More precisely, if |µ− ν| small enough

(ũ1)
1 ≥ K

ν − µ
if µ < ν ; ũ11 ≤ − K

ν − µ
if µ > ν

where K is a positive constant depending only on F .

Remark 4 Indeed, we always assume that b > 0, hence u1 > 0 for ν−µ > 0
small enough. For the sign of u2 we remark that (ξ1 − a) and (d − a) have
the same sign.
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3.2 Case ξ1 = ξ2

Consider now the case where the coefficients of the matrix A satisfy (HA)
and

D := (a− d)2 + 4bc = 0.

Of course this implies bc < 0 and since b > 0 , then c < 0: we have a non
cooperative system. Now ξ1 = ξ2 = ξ = a+d

2 . We prove here

Theorem 5 Assume (H ′
q) and (HA) with (a − d)2 + 4bc = 0; assume also

that f1, f2 satisfy (H ′
f ) and :

(a− d)

2
f1
1 + bf1

2 > 0.

If µ < ν = Λ− ξ, ν − µ < δ, small enough, there exists a positive constant
γ such that

u1 ≥
γ

ν − µ
φ, u2 ≤ − γ

ν − µ
φ.

If ν = Λ− ξ < µ < ν + δ, (δ small enough), there exists a positive constant
γ′ such that

u1 ≤ − γ

ν − µ
φ, u2 ≥

γ

ν − µ
φ.

Remark 5 Note that the condition (a−d)
2 f1

1 + bf1
2 > 0 in the theorem above

is the same than in theorem 4 (ξ2−a)f1
1 < bf1

2 , since in theorem 5 ξ2 = ξ =
a−d
2 .

Prrof The eigenvector associated to eigenvalue ξ is

X =

(

b
d−a
2

)

.

The vector Xφ is thus an eigenvector for L−A,

L(Xφ)−AXφ = (Λ− ξ)Xφ = νXφ.

We use again J the associated Jordan matrix and P the change of basis
matrix; we have

A = PJP−1.

Here

P =

(

b 2b
a−d

d−a
2 0

)

, P−1 =
1

b

(

0 − 2b
a−d

a−d
2 b

)

.
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J =

(

ξ 1
0 ξ

)

.

As above, setting Ũ = P−1U and F̃ = P−1F , we derive from System (S)

LŨ = JŨ + µŨ + F̃ .

We do not have anymore a decoupled system but

{

Lũ1 = (ξ + µ)ũ1 + ũ2 + f̃1
Lũ2 = + (ξ + µ)ũ2 + f̃2

(21)

If ξ + µ < Λ (that is µ < ν) and if f̃2 =
(a− d)

2b
f1 + f2 and f̃1 = −2

a−df2

satisfies (H ′
f ), hence are in X and (a−d)

2b f1
1 + f1

2 > 0. By Theorem 3 applied

to the second equation, there exists a constant K > 0, such that ũ2 >
K

ν−µφ.

Hence, for ν − µ small enough fo any f̃1 ∈ X , ũ2 + f̃1 > 0 and is in X; then
again Theorem 3 for the first equation implies that there exists a constant
K ′ > 0, such that ũ1 >

K ′

ν−µφ.
Since here a > d., there exists a constant γ > 0,

U = PŨ =

{

u1 = bũ1 +
2b
a−d ũ2 > γ

ν−µφ

u2 = d−a
2 ũ1 < − γ

ν−µφ

Again u1 → +∞ as ν − µ → 0 and u2 → −∞ as ν − µ → 0.
If µ > Λ ( and µ− ν > 0 small enough we have analogous calculation with
signs reversed.

Remark 6 The results in theorem 5 coincide with those of theroem 4 in the
case D = 0.
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