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Blow up of the solutions to a linear elliptic system involving Schrödinger operators

We show how the solutions to a 2 × 2 linear system involving Schrödinger operators blow up as the parameter µ tends to some critical value which is the principal eigenvalue of the system; here the potential is continuous positive with superquadratic growth and the square matrix of the system is with constant coefficients and may have a double eigenvalue.

Introduction

We study here the behavior of the solutions to a 2 × 2 system (considered in its variational formulation):

(S)

LU := (-∆ + q(x))U = AU + µU

+ F (x) in R N , U (x) |x|→∞ → 0
where q is a continuous positive potential tending to +∞ at infinity with superquadratic growth; U is a column vector with components u 1 and u 2 and A is a 2 × 2 square matrix with constant coefficients. F is a column vector with components f 1 and f 2 . Such systems have been intensively studied mainly for µ = 0 and for A with 2 distinct eigenvalues; here we consider also the case of a double eigenvalue.

In both cases, we show the blow up of solutions as µ tends to some critical value ν which is the principal eigenvalue of System (S). This extends to systems involving Schrödinger operators defined on R N earlier results valid for systems involving the classical Laplacian defined on smooth bounded domains with Dirichlet boundary conditions. This paper is organized as follows: In Section 2 we recall known results for one equation. In Section 3 we consider first the case where A has two different eigenvalues and then we study the case of a double eigenvalue.

The equation

We shortly recall the case of one equation

(E) Lu := (-∆ + q(x))u = σu + f (x) ∈ R N , lim |x|⇒+∞ u(x) = 0.
σ is a real parameter.

Hypotheses (H q ) q is a positive continuous potential tending to +∞ at infinity.

(H f ) f ∈ L 2 (R N
), f ≥ 0 and f > 0 on some subset with positive Lebesgue measure.

It is well knwon that if (H q ) is satisfied, L possesses an infinity of eigenvalues tending to +∞: 0 < λ 1 < λ 2 ≤ . . . .

Notation:

(Λ, φ) Denote by Λ the smallest eigenvalue of L; it is positive and simple and denote by φ the associated eigenfunction, positive and with

L 2 -norm φ = 1.
It is classical ( [START_REF] De | Spectral Theory and Differential Operators Oxford Scoence Publ[END_REF], [START_REF] Reed | Methods of modern mathematical physics IV. Analysis of operators[END_REF]) that if f > 0 and σ < Λ the positivity is improved, or in other words, the maximum principle (MP) is satisfied:

(M P ) f ≥ 0, ≡ 0 ⇒ u > 0.
Lately, for potentials growing fast enough (faster than the harmonic oscillator), another notion has been introduced ([4], [START_REF] Alziary | An extension of maximum and antimaximum principles to a Schrödinger equation in[END_REF], [START_REF] Alziary | Compactness for a Schrödinger operator in the groundstate space over R N Electr[END_REF], [START_REF] Alziary | Intrinsic ultracontractivity of a Schrödinger semigroup in R N[END_REF]) which improves the maximum (or antimaximum principle): the "groundstate positivity" (GSP) (resp. " negativity" (GSN)) which means that there exists k > 0 such that u > kφ (GSP) (resp. u < -kφ (GSN)) . We also say shortly "fundamenal positivity" or" negativity", or also "φpositivity" or "negativity". The first steps in this direction use a radial potential. Here we consider a small perturbation of a radial one as in [START_REF] Alziary | Compactness for a Schrödinger operator in the groundstate space over R N Electr[END_REF].

The potential q We define first a class P of radial potentials:

P := {Q ∈ C(R + , (0, ∞))/ ∃R 0 > 0, Q ′ > 0 a.e. on [R 0 , ∞), ∞ R 0 Q(r) -1/2 < ∞}. (1) 
The last inequality holds if Q is growing sufficiently fast (> r 2 ). Now we give results of GSP or GSN for a potential q which is a small perturbation of Q; we assume: (H ′ q ) q satisfies (H q ) and there exists two functions Q 1 and Q 2 in P, and two positive constants R 0 and C 0 such that

Q 1 (|x|) ≤ q(x) ≤ Q 2 (|x|) ≤ C 0 Q 1 (|x|), ∀x ∈ R N , ( 2 
) ∞ R 0 (Q 2 (s) -Q 1 (s)) s R 0 exp - s r [Q 1 (t) 1/2 + Q 2 (t) 1/2 ]dt drds < ∞. (3) 
Denoting by Φ 1 (resp. Φ 2 ) the groundstate of [START_REF] Alziary | Compactness for a Schrödinger operator in the groundstate space over R N Electr[END_REF] says that all these groundstates are "comparable" that is there exists constants 0

L 1 := -∆ + Q 1 (resp. L 2 = -∆ + Q 2 ), Corollary 3.3 in
< k 1 ≤ k 2 ≤ ∞ such that k 1 φ ≤ Φ 1 , Φ 2 ≤ k 2 φ. Finally Theorem 1 (GSP) ([9]) If (H ′ q )
and (H f ) are satisfied, then, for σ < Λ, there is a unique solution u to (E) which is positive, and there exists a constant c > 0, such that u > cφ.

Moreover, if also f ≤ Cφ with some constant C > 0, then

u ≤ C Λ -σ φ. (5) 
The space X It is convenient for several results to introduce the space of "groundstate bounded functions":

X := {h ∈ L 2 (R N ) : h/φ ∈ L ∞ (R N )}, (6) 
equipped with the norm h X = ess sup R n (|h|/φ). For a potential satisfying (H ′ q ) and a function f ∈ X , there is also a result of "groundstate negativity" (GSN) for (E); it is is an extension of the antimaximum principle, introduced by Clément and Peletier in 1978 ( [START_REF] Clément | An anti-maximum principle for second order elliptic operators[END_REF]) for the Laplacian when the parameter σ crosses Λ.

Theorem 2 (GSN) ( [START_REF] Alziary | Compactness for a Schrödinger operator in the groundstate space over R N Electr[END_REF] ) Assume (H ′ q ) and (H f ) are satisfied and f ∈ X ; then there exists δ(f ) > 0 and a positive constant c ′ > 0 such that for all σ ∈ (Λ, Λ + δ), u ≤ -c ′ φ.

Remark 1 This holds also if we only assume

f 1 := f φ > 0.
Hypothesis (H ′ f ) We consider now functions f which are such that (H ′ f ): f ∈ X and f 1 := f φ > 0.

Theorem 3 Assume (H ′ q ) and (H ′ f ) are satisfied. Then there exists δ > 0 such that for Λ -δ < σ < Λ there exists positive constants k ′ and K ′ , depending on f and δ such that

0 < k ′ Λ -σ φ < u < K ′ Λ -σ φ. ( 8 
)
If Λ < σ < Λ + δ, there exists positive constants k" and K", depending on f and δ such that

- k" Λ -σ φ < -u < - K" Λ -σ φ < 0. ( 9 
)
This result extends earlier one in [START_REF] Lécureux | Comparison with groundstate for solutions of non cooperative systems for Schrödinger operators in R N[END_REF] and a a close result is Theorem 2.03 in [START_REF] Besbas | Principe d'antimaximum pour des equations et des systmes de type Schrödinger dans R N[END_REF]. It shows in particular that u ∈ X and |u| → ∞ as |ν -µ| → 0.

Proof: Decompose u and f on φ and its orthogonal:

u = u 1 φ + u ⊥ ; f = f 1 φ + f ⊥ . (10) 
We derive from (E) Lu = σu + f :

Lu ⊥ = σu ⊥ + f ⊥ (11) 
Lu

1 φ = Λu 1 φ = σu 1 φ + f 1 φ. ( 12 
)
We notice that since q is smooth; so is u. Also, since f ∈ X , f ⊥ , u and u ⊥ are also in X and hence are bounded. Choose σ < Λ and assume (H ′ f ). We derive from Equation (11) (by [START_REF]Groundstate positivity, negativity, and compactness for Schrödinger operator in R N[END_REF]Thm 3.2) that : ||u ⊥ || X < K 1 . Therefore |u ⊥ | is bounded by some cste.φ > 0. From Equation [START_REF] Cardoulis | Problèmes elliptiques:applications de la théorie spectrale et étude des systèmes[END_REF] we derive

u 1 = f 1 (Λ -σ) → ±∞ as (Λ -σ) → 0. ( 13 
)
Choose Λ -δ small enough and σ ∈ (Λ -δ, Λ). Hence

K ′ Λ -σ φ < u; u < K" Λ -σ φ.
For σ > Λ. we do exactly the same, except that the signs are changed for u 1 in (13).

A 2 × 2 Linear system

Consider now a linear system with constant coefficients.

(S)

LU = AU + µU + F (x) in R N .
As above, L := -∆ + q where the potential q satisfies (H ′ q ), and where µ is a real parameter. L can be detailed as 2 equations:

(S)

Lu 1 = au 1 + bu 2 + µu 1 + f 1 (x) Lu 2 = cu 1 + du 2 + µu 2 + f 2 (x) in R N , . u 1 (x), u 2 (x) |x|→∞ → 0. Assume (H A ) A = a b c d with b > 0 and D := (a -d) 2 + 4bc ≥ 0.
Note that b > 0 does not play any role since we can always change the order of the equations. The eigenvalues of A are

ξ 1 = a + d + √ D 2 ≥ ξ 2 = a + d - √ D 2 .
As far as we know, all the previous studies suppose that the largest eigenvalue ξ 1 is simple (i.e. D = (a -d) 2 + 4bc > 0). Here we also study, in the second subsection, the case of a double eigenvalue ξ 1 = ξ 2 , that is D = 0; this implies necessarily bc < 0 and necessarily the matrix is not cooperative.

Case

ξ 1 > ξ 2
This is the classical case where ξ 1 is simple. Set ξ 1 > ξ 2 . The eigenvectors are

X k = b ξ k -a , Set X := X 1 .
As above, denote by (Λ, φ), φ > 0, the principal eigenpair of the operator L = (-∆ + q(x)).

It is easy to see that

L(Xφ) -AXφ = (Λ -ξ 1 )Xφ.
Hence

ν = Λ -ξ 1 ( 14 
)
is the principal eigenvalue of (S) with associated eigenvector Xφ. Note that the components of Xφ do not change sign, but, in the case of a non cooperative matrix they are not necessarily both positive. We prove:

Theorem 4 Assume (H ′ q )and (H A ); f 1 and f 2 satisfy (H ′ f ); assume also

D > 0 and d -a > 0. If (ξ 2 -a)f 1 1 < bf 1 2
, there exists δ > 0, independant of µ, such that if ν -δ < µ < ν, there exists a positive constant γ depending only on F such that

u 1 , u 2 ≥ γ ν -µ φ > 0. ( 15 
)
If ν < µ < ν + δ, the sign are reversed:

u 1 , u 2 ≤ - γ ν -µ φ < 0. ( 16 
) Remark 2 If (H ′ q ) and (H A ) are satisfied; if f 1 and f 2 satisfy (H ′ f ) as in Theorem 4, but if d-a < 0 we have, if (a-ξ 2 )f 1 1 +bf 1 2 > 0 and ν -δ < µ < ν u 1 ≥ γ ν -µ φ > 0, u 2 ≤ - γ ν -µ φ < 0 Remark 3 It is noticeable that for all these cases, |u 1 |, |u 2 | → +∞ as |ν -µ| → 0.
These results extend Theorem 4.2 in [START_REF] Alziary | Maximum and anti-maximum principles for some systems involving Schrödinger operator[END_REF].

Proof: As in [START_REF] Alziary | Fleckinger Sign of the solution to a non-cooperative system Ro-MaKo[END_REF], we use J the associated Jordan matrix (which in this case is diagonal) and P the change of basis matrix which are such that

A = P JP -1 .
Here

P = b b ξ 1 -a ξ 2 -a , P -1 = 1 b(ξ 1 -ξ 2 ) a -ξ 2 b ξ 1 -a -b . ( 17 
) J = ξ 1 0 0 ξ 2 .
Denoting Ũ = P -1 U and F = P -1 F , we derive from System (S) (after multiplication by P -1 U to the left):

L Ũ = J Ũ + µ Ũ + F .
Since J is diagonal we have two independant equations:

Lũ k = (ξ k + µ)ũ k + fk , k = 1 or 2. ( 18 
)
The projection on φ and on its orthogonal for k = 1 and 2 gives

ũk = (ũ k ) 1 φ + ũ⊥ k , fk = ( fk ) 1 φ + f ⊥ k ; hence L(ũ k ) 1 φ = Λ(ũ k ) 1 φ = ξ k (ũ k ) 1 φ + µ(ũ k ) 1 φ + ( fk ) 1 φ, (19) 
Lũ ⊥ k = ξ k ũ⊥ k + µũ ⊥ k + f ⊥ k . ( 20 
)
If both f k verify (H ′ f ) , they are are in X and bounded and hence both f ⊥ k are bounded; therefore, by (20) both ũ⊥ k are also bounded. We derive from ( 19) that

(ũ k ) 1 = ( fk ) 1 Λ -ξ k -µ = ( fk ) 1 ν -µ .
Consider again Equation ( 19) for k = 2; obviously, (ũ 2 ) 1 stays bounded as µ → ν = Λ -ξ 1 and therefore ũ2 stays bounded. .

For k = 1, (ũ 1 ) 1 = ( f1 ) 1 ν-µ → ∞ as µ → ν = Λ -ξ 1 , since ( f1 ) 1 = 1 ξ 1 -ξ 2 ((a - ξ 2 )f 1 1 + bf 1 
2 ) > 0,; this is the condition which appears in Theorem 4. Then, we simply apply Theorem 3 to (18) for k = 1 and deduce that there existes δ > 0, such that, for |Λ -ξ 1 -µ| = |ν -µ| < δ, there exists a positive constant C > 0 such that ũ1 φ ≥ C ν-µ φ. Now, it follows from U = P Ũ , that

u 1 = b(ũ 1 + ũ2 ), u 2 = (ξ 1 -a)ũ 1 + (ξ 2 -a)ũ 2 . As ν -µ → 0, since ũ2 stays bounded, u 1 behaves as b(ũ 1 ) 1 φ, u 2 as (ξ 1 - a)(ũ 1 ) 1 φ. More precisely, if |µ -ν| small enough (ũ 1 ) 1 ≥ K ν -µ if µ < ν ; ũ1 1 ≤ - K ν -µ if µ > ν
where K is a positive constant depending only on F .

Remark 4 Indeed, we always assume that b > 0, hence u 1 > 0 for ν -µ > 0 small enough. For the sign of u 2 we remark that (ξ 1 -a) and (d -a) have the same sign. Of course this implies bc < 0 and since b > 0 , then c < 0: we have a non cooperative system. Now ξ 1 = ξ 2 = ξ = a+d 2 . We prove here Theorem 5 Assume (H ′ q ) and (H A ) with (a -d) 2 + 4bc = 0; assume also that f 1 , f 2 satisfy (H ′ f ) and :

(a -d) 2 f 1 1 + bf 1 2 > 0.
If µ < ν = Λ -ξ, ν -µ < δ, small enough, there exists a positive constant γ such that

u 1 ≥ γ ν -µ φ, u 2 ≤ - γ ν -µ φ.
If ν = Λ -ξ < µ < ν + δ, (δ small enough), there exists a positive constant γ ′ such that

u 1 ≤ - γ ν -µ φ, u 2 ≥ γ ν -µ φ.
Remark 5 Note that the condition (a-d) 2 f 1 1 + bf 1 2 > 0 in the theorem above is the same than in theorem 4 (ξ 2 -a)f 1 1 < bf 1 2 , since in theorem 5

ξ 2 = ξ = a-d 2 .
Prrof The eigenvector associated to eigenvalue ξ is

X = b d-a 2 .
The vector Xφ is thus an eigenvector for L -A, L(Xφ) -AXφ = (Λ -ξ)Xφ = νXφ.

We use again J the associated Jordan matrix and P the change of basis matrix; we have A = P JP -1 . 

Here

3. 2 Case ξ 1 = ξ 2

 22 Consider now the case where the coefficients of the matrix A satisfy (H A ) and D := (a -d) 2 + 4bc = 0.

As above, setting Ũ = P -1 U and F = P -1 F , we derive from System (S)

We do not have anymore a decoupled system but

By Theorem 3 applied to the second equation, there exists a constant K > 0, such that ũ2 > K ν-µ φ. Hence, for ν -µ small enough fo any f1 ∈ X , ũ2 + f1 > 0 and is in X; then again Theorem 3 for the first equation implies that there exists a constant K ′ > 0, such that ũ1 > K ′ ν-µ φ. Since here a > d., there exists a constant γ > 0,

Again u 1 → +∞ as ν -µ → 0 and u 2 → -∞ as ν -µ → 0. If µ > Λ ( and µ -ν > 0 small enough we have analogous calculation with signs reversed.

Remark 6

The results in theorem 5 coincide with those of theroem 4 in the case D = 0.