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Combining the results of a recent paper by Fleckinger-Hernández-deThélin [14] for a non cooperative 2 × 2 system with the method of PhD Thesis of MH Lecureux we compute the sign of the solutions of a n × n non-cooperative systems when the parameter varies near the lowest principal eigenvalue of the system.

Introduction

Many results have been obtained since decades on Maximum Principle and Antimaximum principle for second order elliptic partial differential equations involving e.g. Laplacian, p-Laplacian, Schrödinger operator, ... or weighted equations. Then most of these results have been extended to systems. The maximum principle (studied since centuries) has many applications in various domains as physic, chemistry, biology,...Usually it shows that for positive data the solutions are positive (positivity is preserved). It is generally valid for a parameter below the "principal" eigenvalue (the smallest one). The Antimaximum principle, introduced in 1979 by Clément and Peletier ([8]), shows that, for one equation, as this parameter goes through this principal eigenvalue, the sign are reversed; this holds only for a small interval. The original proof relies on a decomposition into the groundstate (principal eigenfunction of the operator) and its orthogonal. It is the same idea which has been used in [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF] (combined with a bootstrap method) to derive a precise estimate for the validity interval of the Antimaximum principle for one equation. By use of this result, Fleckinger-Hernández-deThélin ( [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF]) deduce results on the sign of solution for some 2 × 2 non-cooperative systems. Indeed many papers have appeared for cooperative systems involving various elliptic operators: ([1], [START_REF] Alziary | An extension of maximum and antimaximum principles to a Schrödinger equation in IR[END_REF], [START_REF] Amann | Maximum Principles and Principal Eigenvalues[END_REF], [START_REF] De Figueiredo | A Maximum Principle for an Elliptic System and Applications to semilinear Problems[END_REF], [START_REF] De Figueiredo | Maximum principles for cooperative elliptic systems[END_REF], [START_REF] De Figueiredo | Maximum principles for linear elliptic systems[END_REF], [START_REF] Fleckinger | Existence, nonexistence et principe de l'antimaximum pour le p-laplacien[END_REF], [START_REF] Fleckinger | On maximum principles and existence of positive solutions for some cooperative elliptic systems[END_REF], ...). Concerning non cooperative systems the literature is more restricted ( [START_REF] Caristi | Maximum principles for a class of noncooperative elliptic systems[END_REF], [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF],..). In this paper we extend the results obtained in [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF], valid for 2 × 2 noncooperative systems involving Dirichlet Laplacian, to n×n ones. Recall that a system is said to be "cooperative" if all the terms outside the diagonal of the associated square matrix are positive. For this aim we combine the precise estimate for the validity interval of the antimaximum principle obtained in [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF] with the method used in [START_REF] Lécureux | Au-delà du principe du maximum pour des systèmes d'opérateurs elliptiques[END_REF], [START_REF] Alziary | Positivity and negativity of solutions to n×n weighted systems involving the Laplace operator defined on IR N , N ≥ 3 Electron[END_REF] for systems.

In Section 2 we are concerned with one equation. We first recall the precise estimate for the validity interval for the antimaximum principle ( [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF]); then we give some related results used in the study of systems. In Section 3 we first state our main results for a n × n system (eventually non-cooperative) and then we prove them. Finally, in Section 4, we compare our results with the ones of [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF]. Our method, which uses the matricial calculus and in particular Jordan decomposition, allows us to have a more general point of view, even for a 2 × 2 system.

2 Results for one equation:

In [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF], the authors consider a non-cooperative 2 × 2 system with constant coefficients. Before studying the system they consider one equation and establish a precise estimate of the validity interval for the antimaximum principle. We recall this result that we use later.

A precise Antimaximum for the equation [14]

Let Ω be a smooth bounded domain in IR N . Consider the following Dirichlet boundary value problem

-∆z = σz + h in Ω , z = 0 on ∂Ω, (2.1) 
where σ is a real parameter.

The associated eigenvalue problem is

-∆φ = λφ in Ω , φ = 0 on ∂Ω. (2.2)
As usual, denote by 0 < λ 1 < λ 2 ≤ ... the eigenvalues of the Dirichlet Laplacian defined on Ω and by φ k a set of orthonormal associated eigenfunctions, with φ 1 > 0.

Hypothesis 1 Assume h ∈ L q , q > N if N ≥ 2 and q = 2 if N = 1. Hypothesis 2 Assume h 1 := hφ 1 > 0. Writing h = h 1 φ 1 + h ⊥ (2.3)
where Ω h ⊥ φ 1 = 0 one has:

Lemma 2.1 [14] We assume λ 1 < σ ≤ Λ < λ 2 and h ∈ L q , q > N ≥ 2.
We suppose that there exists a constant C 1 depending only on Ω, q, and Λ such that z satisfying (2.1) is such that

z L 2 ≤ C 1 h L 2 . (2.4) 
Then there exist constants C 2 and C 3 , depending only on Ω, q and Λ such that

z C 1 ≤ C 2 h L q and z L q ≤ C 3 h L q .
(2.5)

Remark 2.1 The same result holds for Λ < σ < λ 1 where Λ is any given constant < λ 1 , with the same proof.

Remark 2.2 Inequality (2.4) cannot hold, for all λ 1 < σ ≤ Λ, unless h is orthogonal to φ 1 .

Theorem 1 [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF]: Assume Hypotheses 1 and 2; fix Λ such that λ 1 < σ ≤ Λ < λ 2 . There exists a constant K depending only on Ω, Λ and q such that, for

λ 1 < σ < λ 1 + δ(h) with δ(h) = Kh 1 h ⊥ L q , ( 2.6) 
the solution z to (2.1) satisfies the antimaximum principle, that is

z < 0 in Ω; ∂z/∂ν > 0 on ∂Ω, (2.7) 
where ∂/∂ν denotes the outward normal derivative.

Other remarks for one equation

Consider again Equation (2.1). For σ = λ k , z solution to (2.1) is

z = z 1 φ 1 + z ⊥ = h 1 λ 1 -σ φ 1 + z ⊥ , (2.8) 
with z ⊥ satisfying

-∆z ⊥ = σz ⊥ + h ⊥ in Ω ; z ⊥ = 0 on ∂Ω.
(2.9)

In the next section, our proofs will use the following result.

Lemma 2.2 We assume Hypothesis 1 and σ < λ 1 . Then z ⊥ (and its first derivatives) is bounded: There exits a positive constant C 0 , independent of σ such that

z ⊥ C 1 ≤ C 0 h L q .
(2.10)

Moreover, if σ < Λ < λ 1 ,
where Λ is some given constant < λ 1 , z is bounded and there exits a positive constant C 0 , independent of σ such that

z C 1 ≤ C 0 h L q . (2.

11)

Proof: This is a simple consequence of the variational characterization of λ 2 :

λ 2 Ω |z ⊥ | 2 ≤ Ω |∇z ⊥ | 2 = σ Ω |z ⊥ | 2 + Ω z ⊥ h ⊥ ≤ λ 1 Ω |z ⊥ | 2 + Ω z ⊥ h ⊥ .
By Cauchy-Schwarz we deduce

z ⊥ L 2 ≤ 1 λ 2 -λ 1 h ⊥ L 2 .
(2.12)

This does not depend on σ < λ 1 .

Then one can deduce (2.10), that is z ⊥ (and its derivatives) is bounded. This can be found e.g. in [START_REF] Brezis | Analyse Fonctionnelle Masson[END_REF] (for σ < λ 1 and λ 1 -σ small enough) or it can be derived exactly as in [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF] (where the case σ > λ 1 and σ -λ 1 small enough is considered). Finally we write z = z 1 φ 1 + z ⊥ and deduce (2.11).

Remark 2.3 Note that in (2.8), since

h 1 > 0, h 1 λ 1 -σ → +∞ as σ → λ 1 , σ < λ 1 .
3 Results for a n × n system:

We consider now a n × n (eventually non-cooperative) system defined on Ω a smooth bounded domain in IR N :

-∆U = AU + µU + F in Ω , U = 0 on ∂Ω, (S)
where F is a column vector with components f i , 1 ≤ i ≤ n. Matrix A is not necessarily cooperative, that means that its terms outside the diagonal are not necessarily positive. First we introduce some notations concerning matrices. Then, with these notations we can state our results and prove them.

The matrix of the system and and the eigenvalues

Hypothesis 3 A is a n × n matrix which has constant coefficients and has only real eigenvalues. Moreover, the largest one which is denoted by ξ 1 is positive and algebrically and geometrically simple. The associated eigenvectors X 1 has only non zero components.

Of course some of the other eigenvalues can be equal. Therefore we write them in decreasing order

ξ 1 > ξ 2 ≥ . . . ≥ ξ n . (3.13)
The eigenvalues of A = (a ij ) 1≤i,j≤n , denoted , ξ 1 , ξ 2 ,..., ξ n , are the roots of the associated characteristic polynomial

p A (ξ) = det(ξI n -A) = (ξ -ξ k ), (3.14) 
where I n is the n × n identity matrix.

Remark 3.1 By above, ξ > ξ 1 ⇒ p A (ξ) > 0.
Denote by X 1 ... X n the eigenvectors associated respectively to eigenvalue ξ 1 , ..., ξ n . Jordan decomposition Matrix A can be expressed as A = P JP -1 , where P = (p ij ) is the change of basis matrix of A and J is the Jordan canonical form (lower triangular matrix) associated with A. The diagonal entries of J are the ordered eigenvalues of A and p A (ξ) = p J (ξ). Notation : In the following, set

U = P Ũ ⇔ Ũ = P -1 U, F = P F ⇔ F = P -1 F. (3.15)
Here U and F are column vectors with components u i and f i .

Eigenvalues of the system: µ is an eigenvalue of the system if there exists a non zero solution U to

-∆U = AU + µU in Ω , U = 0 on ∂Ω. (S 0 )
We also say that µ is a "principal eigenvalue" of System (S) if it is an eigenvalue with components of the associated eigenvector which does not change sign. (Note that the components do not change sign but are not necessarily positive as claimed in [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF]). Then φ j X k is an eigenvector associated to eigenvalue

µ jk = λ j -ξ k . (3.16)

Results for |µ -µ 11 | → 0

We study here the sign of the component of

U as µ → µ 11 = λ 1 -ξ 1 .
For this purpose we use the methods in [START_REF] Lécureux | Au-delà du principe du maximum pour des systèmes d'opérateurs elliptiques[END_REF] or [START_REF] Alziary | Positivity and negativity of solutions to n×n weighted systems involving the Laplace operator defined on IR N , N ≥ 3 Electron[END_REF] combined with [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF]. Note that by (3.13),

µ 11 < µ 1k = λ 1 -ξ k , for all 2 ≤ k ≤ n.
Hypothesis 4 F is with components f i ∈ L q , q > N > 2, q = 2 if N = 1, 1 ≤ i ≤ n; moreover we assume that the first component f1 of

F = P -1 F is ≥ 0, ≡ 0.
Theorem 2 Assume Hypothesis 3 and 4. Assume also µ < µ 11 . Then, there exists δ > 0 independant of µ, such that for µ 11 -δ < µ < µ 11 , the components u i of the solution U have the sign of p i1 and the outside normal derivatives ∂u i ∂ν have the sign of -p i1 .

Theorem 3 Assume Hypothesis 3 and 4 are satisfied; then, there exists δ > 0 independant of µ such that for µ 11 < µ < µ 11 + δ the components u i of the solution U have the sign of -p i1 and their outgoing normal derivatives have opposite sign.

Remark 3.2

The results of Theorems 2 and 3 are still valid if we assume only Ω f1 φ 1 > 0 instead of f1 ≥ 0 ≡ 0.

Proofs

We start with the proof of Theorem 2 where µ < µ 11 ; assume Hypotheses 3 and 4.

Step 1: An equivalent system

We follow [START_REF] Lécureux | Au-delà du principe du maximum pour des systèmes d'opérateurs elliptiques[END_REF] or [START_REF] Alziary | Positivity and negativity of solutions to n×n weighted systems involving the Laplace operator defined on IR N , N ≥ 3 Electron[END_REF]. As above set U = P Ũ and F = P F .

Starting from -∆U = AU + µU + F, multiplying by P -1 , we obtain

-∆ Ũ = J Ũ + µ Ũ + F .
Note that everywhere we have the homogeneous Dirichlet boundary conditions, but we do not write them for simplicity. The Jordan matrix J has p Jordan blocks

J i (1 ≤ i ≤ p ≤ n) which are k i × k i matrices of the form J i =        ξ i 0 . . . 0 1 ξ i 0 . . . . . . . . . . . . 0 . . . 1 ξ i 0 0 . . . 1 ξ i       
.

By Hypothesis 3, the first block is 1 × 1 : J 1 = (ξ 1 ). Hence we obtain the first equation

-∆ u 1 = ξ 1 u 1 + µ u 1 + f1 . (3.17) 
Since f1 ≥ 0, ≡ 0, ξ 1 + µ < λ 1 and by Hypothesis 4, f1 ∈ L 2 , we have the maximum principle and

u 1 > 0 on Ω. u 1 ∂ν | ∂Ω < 0. (3.18) 
Then we consider the second Jordan blocks J 2 which is a k 2 × k 2 matrix with first line ξ 2 , 0, 0, ...

The first equation of this second block is

-∆ũ 2 = ξ 2 ũ2 + µũ 2 + f2 . Since µ < µ 11 = λ 1 -ξ 1 < λ 1 -ξ 2 ≤ λ 1 -ξ k , k ≥ 2.
Hence, by Lemma 2.2, u 2 stays bounded as µ → µ 11 . and this holds for all the u k , k > 1. By induction u k is bounded for all k.

3.3.2

Step 2: End of the proof of Theorem 2

Now we go back to the functions u i : U = P Ũ = (u i ) implies that for each u i , 1 ≤ i ≤ n, we have

u i = p i1 u 1 + n j=2 p ij u j . (3.19)
The last term in (3.19) stays bounded according to Lemma 2.2; indeed n j=2 p ij u j is bounded by a constant which does not depend on µ. By Remark 2.3, u 1 → +∞ as µ → λ 1 -ξ 1 . Hence, each u i has the same sign than p i1 (the first coefficient of the i -th line in matrix P which is also the i-th coefficient of the first eigenvector X 1 ) for λ 1 -ξ 1 -µ > 0 small enough. Analogously, ∂u i ∂ν behaves as p i1 ∂ ũi ∂ν which has the sign of -p i1 . It is noticeable that only u 1 plays a role!! • 3.4 Proof of Theorem 3 ( µ > µ 11 ) Now µ 11 < µ < µ 11 + where ≤ min{ξ 1 -ξ 2 , λ 2 -λ 1 } and f i ∈ L q , q > N . We proceed as above but deduce immediately that for µ -µ 11 small enough [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF], Theorem 1), u 1 < 0 by the antimaximum principle. From now on choose µ -µ 11 < δ, with δ < min{ , δ 1 }.

(µ -µ 11 < δ 1 := δ( f 1 ) < K f 1 1 f ⊥ 1 L q ) defined in
(3.20)

For the other equations, by Lemma 2.1, u k > 0 is bounded as above.

We consider now U . We notice that F = P F which can also be written

f i = n k=1 p ik f k implies f ⊥ i = n k=1 p ik f ⊥ k .
With the same argument as above, the components u i of the solution U have the sign of -p i1 for µ -µ 11 sufficiently small (µ -µ 11 < δ). The normal derivatives of the u i are of opposite sign. • 4 Annex: The 2 × 2 non-cooperative system

We apply now our results to the 2 × 2 system, considered in [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF]. Consider the 2 × 2 non-cooperative system depending on a real parameter µ

-∆U = AU + µU + F in Ω , U = 0 on ∂Ω, (S) 
which can also be written as

-∆u = au + bv + µu + f in Ω, ( S 1 ) 
The matrix A is

A = a b c d , with eigenvalues ξ 2 = a+d- √ D 2 < ξ 1 = a+d+ √ D 2
where D = (a-d) 2 +4bc > 0. The eigenvectors are

X k = b ξ k -a , P = b b ξ 1 -a ξ 2 -a .
Note that the characteristic polynomial is P(s) = (a -s)(d -s) -bc. Since P(a) = P(d) = -bc > 0, a and d are outside [ξ 2 , ξ 1 ]. For d > a both p i1 > 0 and for d < a p 11 > 0, p 21 < 0.

P -1 = 1 b(ξ 1 -ξ 2 ) a -ξ 2 b ξ 1 -a -b . f1 = 1 b(ξ 1 -ξ 2 ) [(a -ξ 2 )f + bg]. (4.22) 
In Theorem 2 of [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF] d < a, f, g ≥ 0 so that f1 > 0 and u has the sign of -p 11 = -b < 0; v has the sign of -p 21 = a -ξ 1 > 0.

In Theorem 3 of [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF] d > a, f ≤ 0 and g ≥ 0 implies f1 > 0. So that u has the sign of -p 11 = -b < 0; v has the sign of -p 12 = a -ξ 2 < 0. Finally the hypothesis f1 ≥ 0 is sufficient for having the sign of the solutions and the maximum principle holds (all u i > 0) iff p i1 > 0.

Our results can conclude for other cases; e.g, as in Theorem 2, d < a, f ≥ 0, but now g < 0 with f1 = 1 b(ξ 1 -ξ 2 ) [(a -ξ 2 )f + bg] > 0. Analogously, in Theorem 4, f, g ≥ 0 and f1 > 0 implies for having u, v > 0 that necessarily ξ 2 -a > 0 so that a < d. But again we can conclude for the sign in other cases (e.g. a > d) if only f1 > 0, ( which is precisely the added condition in Theorem 4). •

-∆v = cu + dv + µv + g in Ω, (S 2 ) u = v = 0 on ∂Ω.

(S 3 )

Hypothesis 5 Assume b > 0 , c < 0, and D := (a -d) 2 + 4bc > 0.

Here System (S) has (at least) two principal eigenvalues µ - 1 and µ + 1 where

where ξ 1 and ξ 2 . are the eigenvalues of Matrix A and we choose ξ 1 > ξ 2 .

The main theorems in [START_REF] Fleckinger | Estimate of the validity interval for the Antimaximum Principle and application to a non-cooperative system Rostock Math[END_REF] are:

Then there exists δ > 0, independent of µ, such that µ < µ -

Theorem 5 ([14]) Assume Hypothesis 5, µ - 1 < µ < µ + 1 and a < d. Assume also

Then there exists δ > 0, independent of µ, such that i µ < µ -

Theorem 6 ([14]) Assume Hypothesis 5 and a < d. Assume also that the parameter µ satisfies: µ < µ - 1 , and

Assume also t * g -f ≥ 0, t * g -f ≡ 0 with

.

Then u > 0, v > 0 in Ω; ∂u ∂ν < 0, ∂v ∂ν < 0 on ∂Ω.