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ARTICLE

Curvotaxis directs cell migration through cell-scale
curvature landscapes
Laurent Pieuchot 1,2, Julie Marteau3, Alain Guignandon4, Thomas Dos Santos1,2, Isabelle Brigaud1,2,

Pierre-François Chauvy5, Thomas Cloatre1,2, Arnaud Ponche1,2, Tatiana Petithory1,2, Pablo Rougerie6,

Maxime Vassaux7, Jean-Louis Milan7, Nayana Tusamda Wakhloo1,2, Arnaud Spangenberg1,2,

Maxence Bigerelle3 & Karine Anselme1,2

Cells have evolved multiple mechanisms to apprehend and adapt finely to their environment.

Here we report a new cellular ability, which we term “curvotaxis” that enables the cells to

respond to cell-scale curvature variations, a ubiquitous trait of cellular biotopes. We develop

ultra-smooth sinusoidal surfaces presenting modulations of curvature in all directions, and

monitor cell behavior on these topographic landscapes. We show that adherent cells avoid

convex regions during their migration and position themselves in concave valleys. Live

imaging combined with functional analysis shows that curvotaxis relies on a dynamic inter-

play between the nucleus and the cytoskeleton—the nucleus acting as a mechanical sensor

that leads the migrating cell toward concave curvatures. Further analyses show that sub-

stratum curvature affects focal adhesions organization and dynamics, nuclear shape, and

gene expression. Altogether, this work identifies curvotaxis as a new cellular guiding

mechanism and promotes cell-scale curvature as an essential physical cue.
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In vivo, cells are evolving within complex three-dimensional
(3D) environments that exhibit various topographical features,
spanning several orders of size and organization. At the

nanometric scale, cells are in contact with collagen fibrils and
other protein polymers that compose the extracellular matrix
(ECM). A large body of studies have highlighted that cells are
sensitive to this scale of topographical organization. For example,
seminal work from Dalby et al. have shown that cell can recognize
nanometric pits on the substrate, and the organization of these
pits can channel cell differentiation toward a specific lineage1,2.
Nanometric grooves, nanotubes, or nanofibers of specific dia-
meters that mimic the polymers found in the ECM have also been
employed to control adhesion and differentiation of mesenchy-
mal or neural stem cells3–5. In addition to these nanometric
features, natural biotopes also exhibit larger topographical cues
that are often curved and smooth, such as walls of blood vessels,
bone cell cavities, acini, or other cell bodies.

The effect of cell-scale topographical architectures on cell
behavior has been initially explored using a variety of micro-
structured surfaces such as microgrooves and micropillars6,7. It
has been observed that cell-scale topographies could induce
morphological changes8,9, migratory patterns7,10,11, as well as
nuclear reorganization and cell differentiation12,13. For instance,
microgrooves have been employed to polarize and mature car-
diomyocytes, and reprogram fibroblasts into cardiomyocytes with
a better efficiency than by using biochemical cues14. Although
this research highlights the pleiotropic effect of cell-scale topo-
graphies, it is mostly based on geometrical model surfaces that are
not representing the curved and smoothed cell-scale shapes
encountered in vivo.

Pioneering work using glass tubes (constant convex curvature)
shows that cells orient themselves along the line of minimal
curvature, allowing them to minimize cytoskeletal deformation15.
More recently, Song et al.7 have shown that T-cell migration is
impacted by curvature, with cells migrating preferentially along
concave microgrooves. In the same line, Werner et al.16 have used
hemispherical structures to show that mesenchymal stem cells
(MSCs) respond differentially to constant concave or convex
curvatures, both in term of cell migration and differentiation.
Finally, Bade et al.17 have shown that actin stress fibers in
fibroblasts can be reorganized by curvature, affecting cell migra-
tion directionality.

Despite these recent efforts, our understanding of the specific
impact of cell-scale curvature on cell behavior remains elusive
and the involved mechanisms are unclear. Herein we develop a
series of large edge-free cell-scale sinusoidal landscapes with
minimized anisotropy and very low nanometric roughness, and
employ these new model surfaces to investigate specifically the
cell response to cell-scale curvature variations. We show that the
cell-nucleus and cytoskeleton cooperate to guide the migrating
cell toward concave valleys. In addition, substratum curvature
affects focal adhesion (FA) dynamics, nuclear shape, and gene
expression, demonstrating the important regulatory cue and its
role in vivo investigated in more details.

Results
3D sinusoids to probe the response to cell-scale curvature. A
first major challenge was to create new model surfaces to probe
specifically how cells react to cell-scale curved topography. This
requires a fully curved surface deprived of topographic noise such
as long-range anisotropy or nanometric roughness. We thus
opted for a 3D sinusoidal model (Fig. 1 and Supplementary
Figure 1). The shape of this surface can be described by the sum
of two sinusoidal functions that are mutually perpendicular in the
plane (Fig. 1a, b). The resulting function gives rise to an isotropic

cell-scale hills-and-valleys array on which the cells are exposed to
curvature gradients in all directions (Fig. 1c). To ensure the
smoothness of the surface, we developed a two-step process in
which angular 3D preforms were first created through mask
electrochemical micromachining18 and then smoothened by mass
transport-limited dissolution (Fig. 1d). Mask openings and dis-
solution charges were optimized by numerical simulations to
reach a sinusoidal topography (Supplementary Movie 1 and 2,
inspired by the work of West et al.19). Through this process, we
generated a first series of 100 µm period surfaces with 10 µm
amplitude (S10/100). To assess the geometrical quality of these
surfaces, experimental measurements (interferometry) were
compared to the corresponding closest mathematical functions
(obtained by minimization). A graphical representation of a S10/
100 surface before and after subtraction is shown in Fig. 1e. The
flatness of the residual topography highlights the geometrical
quality of the surface. Additional analysis reveals that the
resulting stainless steel masters exhibit very low nano-roughness.
Figure 1f shows an elemental surface before and after filtering for
the determination of nano-roughness. The average Sa values and
the corresponding standard deviation is below 1 nm (additional
measurements are shown in Table 1). These metal templates were
then replicated with polydimethylsiloxane (PDMS) to obtain a
series of identical surfaces for experimentation.

Mesenchymal cells position themselves on concave valleys. We
first screened a series of cell lines (MSCs, fibroblasts, macro-
phages, and epithelial cells) for their ability to respond to cell-
scale curvature variations. As a screening criterion, we quantified
their distribution with respect to surface topography 24 h after
seeding, using nuclei as a position marker (Fig. 2). We segmented
the surfaces into five height intervals (Fig. 2a) and counted the
number of nuclei for each corresponding area. This first screen
revealed that adherent cells (MSCs and fibroblasts) respond to
surface topography by positioning their nucleus close to topo-
graphical minima, which correspond to the most concave areas of
the surface (Fig. 2b). In regard to the topography, the strongest
response was observed with MSCs (human and murine), which
were not detected on convex areas, whereas macrophages were
evenly distributed. Interestingly, epithelial cells within a growing
colony exhibit a more complex pattern: in the leading edge, the
cells tend to position their nuclei on concave topographies,
whereas in the central part, their distribution is not impacted by
curvature (Fig. 2c). This suggests that a progressive embedding
into the epithelium modifies the cell response to topography.
(Fig. 2d). Cells in small clusters also respond to topography, even
for cell densities similar to those found within the epithelium.
One simple explanation is that in small clusters or in the leading
edge of a colony, cells have a high degree of freedom, whereas
within a mature epithelium, cell–cell interactions might impose
cell positioning regardless of the underneath topography.

Biophysical parameters important for curvature sensitivity. We
then tried to identify biophysical parameters important for cell
sensitivity to curvature. Since MSCs exhibited the strongest
response, we focused our analysis on this particular cell type. We
developed a series of surfaces with various amplitudes and peri-
ods in order to define a threshold for curvature sensing. We
designed homothetic surfaces with 30 or 300 µm periods, keeping
the original 1:10 aspect ratio (S3/30 and S30/300). The shortest
period tested—30 µm—still engages a strong response while the
cells evolving on the longest one—300 µm—are less responsive
over the same period of time (Fig. 2e). However, the distribution
bias slightly increases after 48 h (Fig. 2f), suggesting a progressive
cell positioning on concave. We also produced variants of the
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original S10/100 surface with 5, 3, or 1 µm peak-to-valley
amplitude (S5/100, S3/100, and S1/100). We found that the cell
response decreases with surface amplitude (Fig. 2g), following a
logarithmic relation with the maximal curvature radius of the
surface (Fig. 2h).

We also probed whether the bias in cell distribution was
depending on gravity field direction. We let the cells adhere for 2
h, flipped the surfaces upside down, and quantified nuclear

distribution 24 h after surface inoculation (Fig. 2i). We found that
cells on inverted surfaces exhibit the same response as the ones
with the regular surface orientation, demonstrating that cell
response to topography does not depend on a passive
sedimentation phenomenon.

Finally, we tested if the level of cell adhesion was an important
factor. We functionalized the surfaces with decreasing concentra-
tions of fibronectin while keeping the same incubation time, and
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Fig. 1 A two-step process for generation of ultra-smooth 3D sinusoidal topographies. a, b The surface can be described by the sum of two sinusoidal
functions that are perpendicular to each other in a plane. c The image shows the result with 1:1:1 aspect ratio. d The fabrication process, simulated in d,
consists in the creation of a preform through mask electrochemical micro machining (step 1) that is then smoothed out by mass transport-limited
dissolution (step 2). Interferometric measurements (e, experimental) were compared to the corresponding numerical function. The residual topography (e,
experimental minus numerical) shows that the surface is close to a sinusoidal function. Subtraction of long wavelength using a high-pass filter shows that
the surface has a very low nanometric roughness (f)

Table 1 Topographical measurements for S10/100 and S5/100 surfaces

Name Microrugosity (µm) Period quality (µm) Shape (µm) Amplitude (µm)

S10/100 0.0004 ± 0.0001 141.7 ± 0.7 0.0842 4.96 ± 0.12
S5/100 0.0005 ± 0.0002 141.6 ± 0.9 0.0748 2.65 ± 0.06
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assessed the protein density by infrared spectroscopy (Supple-
mentary figure 2a). We found that the cell response to curvature
decreases with ligand density, the response being negligible on
surfaces presenting the lowest amount of fibronectin (Fig. 2j).

On surfaces with low ligand density, cells are compact with
spherical nuclei, whereas those adhering on high ligand density
are well spread with strongly compressed nuclei (Supplementary
Figure 2b). Interestingly, cells on low ligand density present a

similar morphology to macrophages (Supplementary Figure 2c
and 2d), which are also unable to react to surface topography.
This suggests that cell spreading and compression of the nucleus
might play a role in the cell response to curvature.

Altogether, these results show that adherent cells are capable of
sensing variations in cell-scale curvature and position their nuclei
accordingly, the strength of the response increasing together with
ligand density, time, and surface aspect ratio. Hereafter, we will
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refer to the mechanism allowing the cells to migrate toward
negative curvatures as curvotaxis.

Cell-nucleus vectors point toward negative curvature minima.
The accumulation of nuclei on concave areas could also originate
from an impact of curvature on cell division rate. We performed a
Ki67 staining (cellular proliferation marker) and did not find any
correlation between marker intensity and surface curvature,
suggesting a dynamic positioning mechanism (Supplementary
Figure 3). To further test this hypothesis, we performed time-
lapse imaging of cells evolving on S3/30 and S/10/100 surfaces on
which we observed the strongest response. We first monitored
cells migrating on the S3/30 surfaces. Cells are particularly
responsive to this topography as they position their nuclei in the
valleys from the beginning of the interaction (Fig. 3a, b). Cells
explore dynamically their surroundings with peripheral protru-
sions while maintaining their nuclei close to the surface minima
(see nuclei tracking in Fig. 3c, Supplementary Movie 3 and 4). We
also observed that during their migration, cells quickly move their
nucleus from valley to valley in a saltatory manner (Fig. 3d,
Supplementary Movie 4). Nuclei velocities increase significantly
during concave-to-concave transitions, their speed being sig-
nificantly higher on convex topographies (Fig. 3e). Interestingly,
cells lose their sensitivity to curvature just before dividing and
regain it soon after they spread on the surface (Supplementary
Movie 5). We also noticed that cell’s nuclei are always closer to
the nearest valley than the center of the cell, the vector cell-
nucleus always pointing toward surface minima (Fig. 4f, Sup-
plementary Movie 4).

We then looked at cell migration dynamics on the S10/
100 surfaces. At early time of the interaction, the cells are
distributed randomly (Fig. 3g, h) and freely explore the surface
(Fig. 3i, Supplementary Movie 6). We noticed that during their
migration, cells manage to avoid convex bumps by modifying
their trajectories or slow down when approaching the surfaces
maxima (Fig. 3i). Later, cells tend to stabilize their position in
concave regions (Fig. 3j, Supplementary Movie 7), their nucleus
becoming closer to surface minima (Fig. 3k). At this stage, cells
are well spread and interact strongly with the surface, as
highlighted by the increase in apparent size of nuclei (Fig. 3l),
and move only from valley to valley through topographical cols
(Fig. 3j). Interestingly, when cells are entirely covering the
surfaces, their nuclei remain excluded from convex areas
(Fig. 3m–o), reaching three times higher densities than on flat
areas (Fig. 3p), further suggesting a role for the nucleus in
curvotaxis. Similarly, to what we observed on S3/30, the vector
cell-nucleus is always orientated toward the closest surface
minimum, suggesting that the nucleus is giving direction to the
cell (Fig. 3q).

Curvature affects FA organization and dynamics. We then
looked at FA distribution on both S3/30 and S10/100 to seek for
any correlation with surface topography. Although the distribu-
tion is variable from cell to cell, FA density seems maximal in the
convex regions of the sinus (Fig. 4a, b), whereas FA size is not
significantly impacted by curvature (Fig. 4c). We also investigated
whether substratum curvature was affecting FA tension using a
fluorescence resonance energy transfer (FRET) tension sensor
(VinTS)20. In this construct, the vinculin head and tail domains
are separated by a tensile chain peptide and flanked by FRET
donor and acceptor fluorophores (mTFP1 and venus, respec-
tively). Tension-dependent stretching of this molecule thus leads
to a drop in FRET signal in a graded and dynamic way21. FA
from cells on both on S3/30 and S10/100 surfaces are char-
acterized by an overall lower state of tension (higher FRET index)

compared to their flat control counterparts (Fig. 4d). However,
the FA positioned on the concave part of those surfaces exhibit
higher mechanical tension that the FA positioned on the convex
part (Fig. 4e, f). We also looked at FA dynamics and found that
FA longevity significantly increases on concave compare to
convex curvatures (Fig. 4g). Together, these findings show that
cells establish numerous but short-lived and less-tensed FA on
convex curvatures, whereas their anchoring points to concave
areas are subjected to higher intracellular tension and thus, get
more stable. This suggests that curvature-dependent asymmetry
in FA density and dynamics contribute to cell positioning on
concave areas.

Since cells tend to position their nucleus on concave, we next
asked how curvature might affect its shape. We grew MSCs on
flat or concave surfaces, performed 3D reconstruction of their
lamina and quantified nuclear shape and volume changes (Fig. 4h,
i). We found that nuclei of cells positioned on concave surfaces
become more spherical (sphericity index: 0.81) than those
cultivated on flat (sphericity index: 0.67), whereas their average
volume remained constant. This suggests that cell positioning on
concave curvatures lead to a mechanical relaxation of the nucleus.
When cells are in a concave region, the adhesions are more
elevated. The stress fibers, which are connected to the substrate
through the adhesions, might not compress the nucleus as much
as on flat surfaces.

Curvotaxis requires actomyosin dynamics, Lamin A, and Lin-
kers of the Nucleoskeleton to the Cytoskeleton. To get more
insights on the curvotaxis mechanism, we used a series of drugs
or small interfering RNAs (siRNAs) targeting cellular compo-
nents potentially involved in the cell response to topography
(Fig. 5). We first assessed the importance of the actin network and
its associated regulatory partners (Fig. 5, b). We found that drugs
depolymerizing actin (cytochalasin) or blocking myosin II activity
(blebbistatin) have a strong effect, leading to a homogeneous cell
distribution. The actin-myosin network pulls on FAs, generating
forces across the cell that tend to compress the nucleus on the
surface22. Blebbistatin reduces cell spreading, stress fiber density,
and lamellipodia formation23, leading to dendritic-like-shaped
cells (Supplementary Figure 4a). Complete disruption of the actin
network results in very low cortex tension and rounded nuclei
(Supplementary Figure 4b). The actin polymerization regulator
Cdc42 and the branched actin nucleator Arp2/3 complex are also
essential for the response (Fig. 5b). Cdc42 is involved in the
regulation of many processes related to cell migration, including
filopodial protrusion formation24, cell polarity25, actomyosin
contractility26, and FA assembly27. Arp2/3 is known to be
necessary for lamellipodia formation and cell responses to ECM
cues, including haptotaxis28,29. RNAi targeting RhoA do not have
a strong impact on the cell response, possibly due to incomplete
extinction at the protein level (Supplementary Figure 4c and 5b)
or redundancy with other Rho isoforms. However, the use of a
cell permeable inhibitor targeting all Rho GTPases (Rho Inhibitor
I) showed that treated cells do not respond to topography any-
more (Fig. 5b). This demonstrated that Rho activity is essential
for curvotaxis. RhoA, B, and C play essential roles in cell
migration, regulating the assembly of contractile actin-myosin
filaments and FA30.

Interestingly, depolymerization of microtubules using nocoda-
zole leads to an slight increase in the response, whereas
microtubule stabilization has no effect (Fig. 5c). We also observed
an increase in nuclear compression after depolymerization
(Supplementary Figure 4b). Microtubules influence cell shape and
mechanics by resisting to compressive forces exerted by the actin-
myosin contractile network31,32. Their depolymerization could
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therefore result in an overall increase in compression, explaining
the apparent flattening of nuclei. Alternatively, microtubule
disruption could increase contraction by stimulating RhoA
signaling and the mechanochemical activity of myosin33–35.

This first analysis shows that a fine tuning of actin dynamics is
necessary for curvature-guided migration to occur, and strongly
suggests that the actin-dependent compression of the nucleus is
important for curvature sensing. The nucleus is approximately
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5–10 times stiffer than the rest of the cell36 and this difference in
stiffness might be important for curvotaxis to occur. To test this,
we treated the cells with RNAi targeting Lamin A, the main
contributor to nuclear stiffness37. Lamin A silencing significantly
affected cells’ ability to respond to curvature (Fig. 5d). As an
internal control, we looked at the fraction of treated cells that
were still expressing high levels of Lamin A (Fig. 5d, Supple-
mentary Figure 4f and 4g). We found that this subgroup was as
responsive as untreated cells, confirming the correlation between
Lamin A expression and curvature sensing. We also observed a
direct correlation between cell positioning and Lamin A
expression level (Supplementary Figure 4h and i). These data
suggest that high lamin A levels are required for curvature-
induced nuclear movements and thus cell migration during
curvotaxis.

Intracellular displacement of the nucleus induced by its
compression on curvature gradients explains well its positioning
on S3/30 surfaces, on which concave minima can always be found

underneath the adhering cell. However, on S10/100 and 30/
300 surfaces, cells that adhere on convex curvatures have to
migrate to position their nuclei on the closest concave minima,
which is outside the cell body. When the nucleus moves within
the cell, its interconnections with the cytoskeleton are likely to
generate intracellular forces that might influence cell migration.
We indeed observed stress fibers pointing toward the nucleus
when it is strongly decentered (Supplementary Figure 4k),
suggesting intracellular tensions induced by its positioning.

In living cells, Linkers of the Nucleoskeleton to the Cytoske-
leton (LINC) are complexes bridging the nuclear lamina and the
cytoskeleton and enabling force transmission within the cell
through the nucleus38,39. They are formed by the interaction of
SUN proteins that span the nuclear envelope and nesprin
proteins that interact with cytoskeleton components. The N-
terminal part of SUN proteins interacts with lamins and nuclear
pore complexes whereas their C-terminal domain associates with
the KASH domain of nesprins. To assess the importance of LINC
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Fig. 3 Curvotaxis allows adherent cells to avoid convex hills during their migration. a, b, g, h Cells labeled with cell tracker adhering on S3/30 (a) or S10/
100 (g) surfaces and the distribution of their nuclei according to surface topography at the indicated time points (b and h). Nuclei are highlighted in red. c
Tracking of nuclei on a S3/30 surface. Arrowheads indicate movement direction. d Tracking of a single nucleus over the same period. Positions are
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the standard error of the mean of three independent experiments. Error bars in e and i represent the standard deviation from the mean. The total number of
cells is indicated for each condition. Scale bars: 100 µm
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complexes, we overexpressed a dominant negative (DN-KASH-
mCherry) that saturates available binding sites on SUN proteins,
resulting in the displacement of nesprins from the nuclear
envelope into the endoplasmic reticulum (Fig. 5e). We found that
overexpression of DN-KASH affects strongly the cell response to
curvature, the cells with highest expression presenting the
strongest phenotype (Fig. 5f). We also tested the role of LINC
complexes using siRNAs against SUN1 mRNAs (Supplementary
Figure 4e). We found that the silenced cells display a similar
phenotype as the ones overexpressing DN-KASH (Fig. 5g). These
last results show that nucleo-cytoskeletal coupling plays a central
role in curvotaxis.

3D sinusoids have distinct effects on hMSC transcriptome. We
then asked whether the sinusoidal surfaces, in addition to changes
in nuclear shape, intracellular tensions, and FA homeostasis,
could also affect gene expression. We compared the tran-
scriptome of hMSCs cultivated for 5 days on the homothetic
sinusoidal surfaces series (S10/100, S3/30, and s30/300), using flat
surfaces as a reference. We identified 637 genes differentially
regulated using standard cutoff (Fig. 6a). Among them, 361 genes
were characterized with biologically described functions (func-
tional enrichment shown in Fig. 6b), including 181 highly
expressed genes (green dots in Fig. 6c). Most identified genes
were found based on their downregulation on S10/100 surfaces
(expression profiles shown in Fig. 6d). On the other hand, S3/30
and S30/300 surfaces have moderate effects on gene expression.

The most strongly downregulated genes found on S10/100
encode proteins expressed in differentiated tissues such as KRT7
(keratin found in simple epithelia) or PALM (paralemmin
expressed in neurons) and transcription factors involved in

differentiation processes (GLIS2: neuronal differentiation and
kidney morphogenesis, CRIP2: differentiation of smooth muscle
tissue, GPRC5A: embryonic development and cell differentiation,
and NGF: neuron growth). Genes involved in response to stress,
cytoskeleton remodeling, and cell proliferation are also among the
most downregulated. Interestingly, a small subset of genes are
overexpressed on S30/300. Among them, EGR1, EGR2, and EGR3
are encoding transcription factors that regulate cellular programs
of differentiation, growth, and response to extracellular signals.
We also found several upregulated genes related to ECM
remodeling (e.g.: COL14A1, MXRA5, CHI3L1, and MGP). These
results suggest that sinusoidal surfaces have distinct impacts on
the transcriptomic activity of hMSCs, S10/100 having the
strongest effect by downregulating a large subset of genes
associated with differentiation processes.

Discussion
Taken together, our data show that curvotaxis relies on the
combination of two processes: surface exploration based on full
actin dynamics and asymmetrical FA distribution and dynamics,
and intracellular nuclear sliding triggered by actin-myosin-
dependent cortical compression, the displacement of the
nucleus giving direction toward the closest curvature minimum
(Fig. 7a, b). Curvotaxis also requires LINC complexes, suggesting
that nuclear sliding impacts the random walk of cells through
mechanical coupling with the cytoskeleton. Contrary to other
receptor-ligand-based directed migration mechanisms, curvotaxis
is therefore a holistic phenomenon involving the whole-cell
morphology and tensegrity. In fine, curvotaxis enables adherent
cells to react to curvature variations and self-position in the most
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concave part of their substratum, leading to nuclear relaxation
and changes in gene expression (Fig. 7c, d).

Cells can detect and respond to various environmental stimuli
and modify their migrating trajectories accordingly. For instance,
cells can integrate gradients of soluble factors and migrate toward
higher concentrations through chemotaxis40. Many eukaryotic
cell types can also detect gradients of molecules that are bound to
the ECM (haptotaxis)41,42 or sense graded substratum rigidity
(durotaxis)43,44 and migrate toward higher densities of ligand or
stiffer areas. More recently, it was shown that cancer cells can also
sense gradient of nanometric topographical cues via a process the
authors called topotaxis, which relies on PI(3)K–Akt and
ROCK–MLCK signaling pathways45. In these examples, the cel-
lular sensing and integration mechanisms involved rely on ECM-

triggered signaling. By contrast, we herein demonstrate the ability
for adherent cells to respond to cell-scale curvature variations on
their substratum through a mechanical module composed by the
interplay of an actomyosin compressive cortex and a stiff nucleus.
We thus extend our knowledge of the toolbox used by the cell to
apprehend its environment. As a consequence, we may predict
that cells progressing into curvy, fibrillary, or tubular environ-
ments will naturally follow the path of least nuclear mechanical
stress. Therefore, it might be interesting to revisit previous
observations of long-range cell migration and reinterpret them as
a consequence of the topography itself rather than the existence
of hypothetical chemical gradients46. Besides, ratchetaxis is a
novel mode of directed migration in which the cell is not guided
by a long-range gradient but by the repetition of cell-scale
asymmetrical patterns (adhesive patches for example)47. In
ratchetaxis and curvotaxis, the asymmetry impacts on the ran-
dom walk of the cell by making a direction more favorable. Local
asymmetry in the cell environment should therefore be con-
sidered as an important cue for directed migration and investi-
gated in the in vivo context.

Considering the actomyosin/nucleus interplay as a mechanical
sensor for curvature challenges how we usually conceive the role
of these cellular components. The actin cortex and its interaction
with the nucleus have already been implicated in cell polarization
during migration-related processes48 and it is known that actin
stress fibers are sensitive to local curvature15,17. However, the
nucleus is often seen as a steric constraint limiting cell degrees of
freedom and slowing down its movements, like in the context of
confined migration49. In addition, recent data suggest that the
nucleus is not necessary for establishing cell polarity or direc-
tional migration in two-dimensional but is important for cell
response to mechanical cues and migration in 3D50,51. Assessing
how enucleated cells react to curvature variations could be a way
to clarify the effective contribution of other cellular components
and reveal their role in nuclear-independent curvature sensing.

In our study, we show that cell-scale curvature modulations
impacts cell migration, nuclear shape, intracellular tensions, and
gene expression. The in vivo microenvironment present numer-
ous curvature of cellular of supracellular scales. Glandular (acini)
or tubular organs present typical curvature that may elicit a
skewed migration of surrounding cells. During bone remodeling,
the bone-degrading activity of osteoclasts creates cell-scale
Howship lacunae, which are subsequently colonized by bone-
producing bone-lining cells46. Similarly, extremity of long bones
are made of hollow and bone marrow-filled trabecular bones. The
behavior (migration or differentiation) of bone marrow pro-
genitors or bone-remodeling cells may thus be instructed by the
local curvatures of trabeculae. Matrix stiffness52, adhesive ligand
densities53 or with specific nano-topographies1,2 produce similar
effects to curvature. It would be interesting to determine whether
these very different biophysical cues are integrated in fine through
the same signaling hubs. The geometry of the nucleus imposes
spatial and geometric constraints that encompass protein–DNA
and protein–protein interactions54. It seems therefore particularly
relevant to have a closer look at how changes in nuclear shape
induced by cell-scale curvature affects the overall organization of
chromosomal territories and modulates genome expression.

Altogether, this work establishes curvotaxis as a new cellular
guiding mechanism. We propose that by affecting both cell
migration and gene expression, cell-scale curvature should be
considered an important regulatory cue and its role in vivo
investigated in more details.

Methods
Engineering of 3D sinusoidal surfaces. 3D sinusoidal surfaces were micro-
structured on 316L stainless steel coins (diameter 15 mm, thickness 1.5 mm) using
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Fig. 6 Sinusoidal homothetic surfaces have distinct effects on hMSC
transcriptome. a Venn diagram representation of the total up- and
downregulated genes (P value < 0.05 and Log2FC > 1) on sinusoidal
surfaces using flat as reference (637 genes total). b Functional enrichment
analysis using GO annotations of biologically described genes (361 genes).
c, d Volcano plot of all differentially expressed genes filtering out low
expressed genes (gray shaded area, reads < 100) (c), resulting in the
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a specifically designed two-step electrochemical process. The raw materials were
first mechanically polished to obtain a mirror finish before being spin-coated with a
polymeric resin (10 µm thick). The first process step mask pattern (diameter 8 mm)
was then created through local laser ablation of the resin coating. Mass transport-
limited electrochemical dissolution was performed under optimized hydrodynamic
conditions. During this process the electrical charge flown through the set-up was
constantly monitored. The experiment was stopped at a precise electrical charge
corresponding to the desired dissolution depth. For the second process step, the
remaining polymeric mask was laser ablated within a 10 mm diameter. The second
electrochemical dissolution step was then applied until the final sinusoidal topo-
graphy was reached. The geometric parameters of the first step mask and the
electrical stop charges of both steps were optimized using numerical simulations
(3D Laplace equation solver using a boundary elements method specifically
implemented in Labview™ code). Two types of surfaces (S1 and S2) were micro-
fabricated with a maximum amplitude of respectively 10 and 5 µm, both including
5027 peaks/valleys as expected for a sinus wave length of 100 µm on the two surface
axes.

Surface topography analysis and replication. Specimen topographies were
measured using a 3D optical profilometer (Zygo NewViewTM 7300, Zygo Corp.,
USA) with a ×100 objective. The lateral resolution is equal to 0.22 µm and the
vertical accuracy is about 1 nm. Measured surface areas are equal to 906 × 906 µm2

and are obtained by stitching 384 elemental surfaces of 69.5 µm × 52.1 µm. The
measured surface is rectified using a polynomial of degree 1. The quality of the sine
form is checked by minimizing the differences of shape between the experimental
data and the mathematical function Y= A × (cos(X/P+ phiX) × cos(X/p+ phiZ))
where X is the abscissa of in-plane directions, Y is the computed height and the
parameters determined by the minimization are the amplitude A, the parameter P
proportional to the period, and phiX and phiZ are the phase shifts in the in-plane
directions. The quality of the surface form is assessed by calculating the standard
deviation of the height of the computed surface subtracted by the height of the
measured surface i.e. the standard deviation of the residue. For microroughness
quantification, elemental images are used in order to avoid stitching artifacts. Each
elemental surface is rectified using a polynomial of degree 1 and then filtered using
a high-pass Spline filter (ISO 16610–62) with a cutoff length of 5 µm. The

arithmetic mean deviation Sa (ISO 25178) is computed for each surface and then
the average and standard deviation of Sa are calculated. Curvature is visualized
using a classical surface curvature measure: the mean curvature that is equal to the
average of the principal curvature: Kmean=½× (κ1+ κ2) where κ1 is the maximal
curvature and κ2 is the minimal curvature.

Metal surfaces were first replicated by hot embossing of 35 mm polystyrene
Petri dishes. Then, liquid PDMS (Sylgard® 184) was casted inside the dishes to
generate positive replicates (6 h incubation at 80 °C). The PDMS replicates were
then coated with fibronectin (50 µM in phosphate-buffered saline (PBS)).
Homogeneity of protein adsorption was verified by incubating fluorescent
fibronectin on the surfaces and visualizing the coating by confocal microscopy.

Imaging of cells and surfaces. Imaging was done on an upright Carl Zeiss LSM
700 confocal microscope (Germany), using ZEN software. For quantification of cell
distribution, cells were fixed with 4% paraformaldehyde (Electron Microscopy
Sciences, USA) for 10 min, labeled with Hoechst (5 µg/mL in PBS) for 10 min,
extensively washed with 1× PBS and imaged using a ×20 dipping lenses in PBS.
Surfaces were imaged in reflection mode with a 405 nm excitation laser. Topo-
graphical maps were generated from Z-stacks of the surfaces using TopoJ plugin
(Compute Topography function) in ImageJ (NIH, USA). For live imaging, cells
were stained with CellTracker™ Red CMTPX Dye (Thermoscientific, France) and
Z-stacks were acquired at regular time intervals using a ×20 and an open pinhole (2
airy units) in an incubation chamber (Okolab, Italy) at 37 °C, 5% CO2, and H2O
saturated. Surfaces were imaged at the end of the acquisition to reduce photo-
toxicity. Cell tracking was done on maximum projection Z-stack using Imaris
software (Bitplane). For immunostaining, the cells were fixed with 4% paraf-
ormaldehyde for 10 min, permeabilized using 0.1% Triton X-100 for 5 min and
blocked using 3% bovine serum albumin (BSA) for 30 min. Subsequently, the cells
were incubated 1 h at room temperature (RT) with the appropriate primary anti-
body or fluorescent probe followed by incubation with respective secondary anti-
bodies for 45 min and counterstained with Hoechst. 1× PBS washes were
performed before each step. Primary antibodies or fluorescent probes used were
Texas Red®-X Phalloidin (T7471, Molecular Probes, dilution 1:400), rabbit anti-
Lamin A antibody (L1293, Sigma-France, dilution: 1:500), mouse Nesprin 3 anti-
body (ab123031, Abcam-UK, dilution: 1:200), and mouse anti-Vinculin hVIN-1
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antibody (V9131, Sigma-France, dilution: 1:200). Secondary antibodies purchased
from Abcam, UK used were goat anti-mouse (A-21151) or anti-rabbit (A-11008)
conjugated with Alexa 488 (dilution: 1:400). For FA analysis, Z-stacks were pro-
cessed using ImageJ software. Briefly, binary masks were created from max pro-
jections and quantified using particle analysis function with the corresponding
topographical map as a reference. Image acquisition was done using a ×63 with
optimal Z-sectioning parameters. For nuclear shape quantification, nuclear
volumes were reconstructed from Z-stacks of Lamin A immunostained cells using
Imaris suite software (all steps were performed at RT unless and otherwise stated).

FA tension and dynamics. C3H10T1/2 cells were transiently transfected with the
vinculin tension sensor VinTS20 (Addgene plasmid ID#: 26019). Transfected cells
were plated at low density on sinusoidal surfaces and imaged using a Zeiss Axio-
Observer Z1 inverted microscope. VinTS FRET channel images (excitation: 458
nm, emission: 533–587 nm), and VinTS donor channel images (excitation: 458 nm,
emission: 469–501 nm) were obtained with a ×40 water-dipping objective
(numerical aperture= 0.8). Signal from concave, convex, and transition areas were
separated from Z-stacks and analyzed using FRET Analyser ImageJ plugin. FA
were segmented using the water algorithm55. Briefly, each image was high-pass
filtered using a round averaging of 10 pixels and segmented using the ImageJ
morphological segmentation plugin MorphoLibJ. Contacts touching the edge of
area of interest were systematically eliminated. Extremely low (<0.1) and high
(>0.8) FRET indexes were not considered for the analysis as they can represent
false-positive/-negative indexes. A minimum of 30 cells were recorded for each
condition. For FA dynamics measurements, Z-stacks of VinTS donor channel were
recorded every minute over a 45 min period. Maximal projections representing
concave, convex, and transitional areas were send onto the Focal Adhesion Ana-
lysis Server56 to quantify the dynamics of FA. Dynamic parameter measurements
were extracted after tracking of individual contacts using the software described in
Berginski et al.57. The last version of the software is available on the Gomez lab
website (http://gomezlab.bme.unc.edu/tools). Online analysis of FA dynamics can
be done at http://faas.bme.unc.edu/.

RNAi, overexpression, and drug treatments. Sequence-specific siRNAs were
used to transiently knock down RhoA, Rac1, and Cdc42. We purchased MISSION®

Predesigned esiRNA for RhoA (EMU148751), Rac1 (EMU028841), CDC42
(EMU052411), and negative control #1 siRNA from Sigma-Aldrich. Briefly, cells at
60–70% confluency were transiently transfected with 50 or 100 nM siRNA (final
concentration). After 6 h, the transfection mixture was removed and the cells were
replenished with fresh Dulbecco’s modified Eagle medium containing 10% fetal
bovine serum. The cells were then allowed to grow for the next 48 h prior to being
used for subsequent experiments. The efficiency of RNAi treatments was assessed
by quantitative PCR (qPCR). For DN-KASH overexpression, cells were cultured up
to 60–70% confluency and then transfected with DN-KASH-mCherry plasmid (a
kind gift from Dr. Nicolas Borghi, Jacques Monod Institute-France). Plasmid and
RNAi transfections were carried out by using Lipofectamine 3000 (Thermo-
scientific, France) following the manufacturer’s protocol. For drug treatments, the
optimum non-cytotoxic concentration was determined for each drug by standard
MTT assay using 5 mg/mL thiazolyl blue tetrazolium bromide (Sigma, France). All
the drugs were purchase from Sigma-Aldrich and employed using the following
final concentrations: blebbistatine: 50 µM, cytochalasin D: 50 µM, rohdblock 6: 50
µM, nocodazole: 5 µg/mL, Paclitaxel: 50 nM, Rho inhibitor 1: 2 µg/mL, EHop0–16:
50 µM, CK-666: 100 µM, and ML141: 10 µM.

Gene expression analysis. Total RNA was extracted from cell cultures reaching
50% confluency using the RNeasy Micro Kit (Qiagen) according to the manu-
facturer’s instructions. RNAs purity and concentration were evaluated using a
Nanodrop spectrophotometer. For RNA-sequencing experiments, libraries were
generated using TruSeq Stranded mRNA LT Sample Preparation Kit (Illumina). All
samples were sequenced on the GenomEast genomic platform (IGBMC, Illkirch).
Reads were mapped onto the hg38 of the Homo sapiens genome using STAR
version 2.5.3a. Quantification of gene expression was performed using HTSeq
version 0.6.1p1 with annotations coming from Ensembl version 91. Comparisons
of interest were carried out using DESeq 1.16.1. Differentially expressed genes were
first defined as those with an absolute log2FC ≥ 1 and an adjusted P value ≤ 0.05.
Genes with a null raw read count were removed. The TSV file providing read
counts for each genes together with P value and log fold-change was treated using
FileMakerPro (version 14.0.1). For qPCR analysis, cDNAs were synthesized using
the iScriptTM cDNA synthesis Kit (Bio-Rad) and 300 ng of total RNA. Real-Time
PCR detection was carried out using SYBR Green reagents (Bio-Rad) on a CFX96
TouchTM system (Bio-Rad) using standard procedures. Three reference genes
(gapdh, rplp0, and emgll) were used to normalize the target gene expression and
correct sample-to-sample variations. Primer sequences and corresponding gene
accession numbers are listed in Table 2. Gene expression levels were analyzed based
on the ΔΔCT method58.

Western blot analysis. Unless specified, instruments and supplies were all
purchased from Bio-Rad (Germany). Western blots were performed according to
standard procedures. Briefly, cell lysis and protein resuspension were achieved in
radioimmunoprecipitation assay (RIPA) buffer. Then, total protein amount was
estimated using the colorimetric Micro BCA™ Protein Assay (Thermoscientific,
USA). Fifteen micrograms of total protein sample were loaded on a precast
Mini-protean TGX stain-free gels and separated by electrophoresis. Protein gel
images for normalization were acquired using ChemiDoc™ Imaging Systems
before transfer. Proteins were transferred from the gel to 0.2μm polyvinylidene
difluoride pre-activated membranes using the Transfer Blot turbo system.
Afterwards, membranes were saturated with 3% BSA (Sigma, France) for 1 h at
RT. Primary antibody incubation was performed overnight at 4 °C using the
following antibody concentrations: Lamin A/C (1:2000, L1293, Sigma, France),
Sun1 (1:1000, ab103021, Abcam-UK), and RhoA (1:500, 1B8-1C7, ThermoFisher
Scientific). After short rinses, blots were incubated with the horseradish per-
oxidase secondary antibody (1:3000) for 1 h at RT. Protein bands were revealed
using a chemiluminescent substrate (Clarity™ Western ECL Blotting Substrates)
and digitally acquired using the ChemiDoc™ Imaging Systems. Relative protein
levels were quantified using ImageJ software by normalizing the levels of
knockdown proteins with total proteins. Uncropped blots are shown in Sup-
plementary figure 5.

Data analysis. Unless otherwise stated in the figure legend, the data presented
herein are expressed as the mean ± standard error of the mean, the number of
sample being displayed on the figures. Each experiment was repeated at least three
times. Statistical analysis was performed using Student’s t-test and P values < 0.05
were considered significant, unless otherwise stated on the figure. All statistical
tests and graphs were generated using Excel (Microsoft), DataGraph (Visual Data
Tool), or Prism (GraphPad).

Table 2 Nucleotide sequences of primers used for quantitative qPCR detection. “F” indicates the forward primer and “R” the
reverse primer. Gapdh, rplp0, and Emg1 were used for normalization

Gene name Sequences (5′→3′) Genbank accession number qPCR product size (nucleotides)

Gapdh F-TTCAACAGCAACTCCCACTC
R-ATGTAGGCCATGAGGTCCAC

NM_008084.3 137

Rplp0 F-AACGGCAGCATTTATAACCC
R-CGATCTGCAGACACACACTG

NM_007475.5 106

Emg1 F-ACGGCCCTCAGAAGCTATT
R-TCACTACTGGGCACCAACTC

NM_013536.2 133

RhoA F-CTCATAGTCTTCAGCAAGGACC
R-GGCGGTCATAATCTTCCTGTC

NM_001313961 147

Rac1 F-TTATGACAGATTGCGTCCCC
R-TGTCATAATCCTCTTGCCCTG

NM_009007 143

Cdc42 F-CATGTCTCCTGATATCCTACACAAC
R-TGTCATAATCCTCTTGCCCTG

NM_009861 93

Sun1 F-CTGGGACGGTTCACCTATGA
R-CCCGGAGCTCTACTATCTGGA

NM_024451 97

LmnA F-CCGCTCTCATCAACTCCACT
R-TCTCCATCCTCGTCGTCATC

NM_001111102 100
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Data availability
The data and materials generated and/or analyzed during the study are available from the
corresponding author on reasonable request. The dataset related to the RNA-sequencing
analysis that supports the findings presented Fig. 6 is available online using the following
link: https://figshare.com/s/a18af5562974f4e63c44. The antibodies used in the study are
the following: anti-Lamin A/C (1:2000, L1293, Sigma), Sun1 (1:1000, ab103021, Abcam),
anti-RhoA (1:500, 1B8-1C7, ThermoFisher Scientific), and anti-Nesprin3 (1:1000,
ab123031, Abcam). Validation statements are available on manufacturer’s websites
(Sigma: https://www.sigmaaldrich.com, Abcam: http://www.abcam.com/, ThermoFisher:
https://www.thermofisher.com/). C3h 10t1/2 and hMSC (StemPro™ BM Mesenchymal
Stem Cells) cell lines were purchased from ThermoFisher.
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