
HAL Id: hal-01960464
https://hal.science/hal-01960464

Preprint submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proofs for Parametric Schema Inference for Massive
JSON Datasets

Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani

To cite this version:
Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani. Proofs for Parametric Schema
Inference for Massive JSON Datasets. 2018. �hal-01960464�

https://hal.science/hal-01960464
https://hal.archives-ouvertes.fr

Proofs for Parametric Schema Inference for Massive

JSON Datasets

Mohamed-Amine Baazizi1, Dario Colazzo2, Giorgio Ghelli3, and Carlo
Sartiani4

1Sorbonne Université, CNRS, LIP6, 75005 Paris, France
2PSL Research University, CNRS, LAMSADE, 75016 Paris, France

3Dipartimento di Informatica, Università di Pisa, Italy
4DIMIE - Università della Basilicata

1 Proofs of the properties of Reduce

We present here the proofs of the main lemmas and theorems.

Property 2 (Stability of
.
=) For any

.
=-reduced types T1 and T2 and any two

.
=-reduced structural types S1 and S2, the following properties hold:

T1
.
= T2 ⇒ Reduce(T1, T2,

.
=)

.
= T1

.
= T2 (1)

S1
.
= S2 ⇒ Fuse(S1,S2,

.
=)

.
= S1

.
= S2 (2)

Proof. By mutual induction and by cases on the common kind of S1 and
S2. Property (1): here we observe that every addend of ◦T1 has one

.
=-

equivalent addend in ◦T2, by definition of
.
=, and only one, because the

two types are
.
=-reduced. Hence, the result has one structural addend for

each structural addend of ◦T1, and the two addends are
.
=-equivalent by

induction. The other interesting case is the record type case of property (2).
Here, by definition of

.
=, two record types are only fused when they have

exactly the same keys and, for any key k in Keys(R1), the types associated
to k in R1 and R2 are

.
= equivalent, hence, by (1), the type associated in

the fused type is equivalent as well. The case for array types is immediate
by (1), and the cases for the base types are immediate.

1

Corollary 1 (Lossless reduction)
For any

.
=-reduced types T1 and T2:

Reduce(T1, T2,
.
=) ' T1 + T2

Proof. The reduction process substitutes, inside T1+T2, two equivalent ad-
dends S1

.
= S2 with Fuse(S1,S2,

.
=) which is, by Property 2 , syntactically

congruent to each of them, hence is '-equivalent to each of them, hence is
'-equivalent to their union.

We now introduce a bit of notation that will be used in all the proofs.

Notation 1.1 For any SKER E, and any two E-reduced sets of structural
types M1 and M2, and for any two sets F1, F2 of triples (ki, Ti, qi), where
each Ti is an E-reduced type, we define the following notation.

M1 \EM2
M
= ⦃ S1 ∈M1 |6 ∃S2 ∈M2. E(S1,S2) ⦄

M1 ∩EM2
M
= ⦃ S1 ∈M1 | ∃S2 ∈M2. E(S1,S2) ⦄

M1 ./EM2
M
= ⦃ Fuse(S1,S2, E)

| S1 ∈M1,S2 ∈M2, E(S1,S2) ⦄

F1 \::F2
M
= ⦃ (k1, T1, q1) ∈ F1

|6 ∃(k2, T2, q2) ∈ F2. k1 = k2 ⦄
F1 ∩::F2

M
= ⦃ (k1, T1, q1) ∈ F1

| ∃(k2, T2, q2) ∈ F2. k1 = k2 ⦄
?(F)

M
= ⦃ (k, T , ?) | (k, T , q) ∈ F ⦄

F1 ./::F2
M
= ⦃ (k1,Reduce(T1, T2, E), q1 · q2)

| (k1, T1, q1) ∈ F1, (k1, T2, q2) ∈ F2 ⦄

These operators allow us to rewrite the definition of Reduce and Fuse as
follows.

Lemma 1.2

Reduce(T1, T2, E)
.
= ⊕(◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1)

Fuse(R1,R2, E)
.
= { �R1 ./:: �R2 ∪ ?(�R1 \:: �R2) ∪ ?(�R2 \:: �R1) }

2

Lemma 1.3 For any SKER E, and any two E-reduced types T1 and T2,
the sets ◦T1 ∩E ◦T2, ◦T2 ∩E ◦T1, and ◦T1 ./E ◦T2, are all E-distinct, and, for
each pair of them, the E relation defines a bijective function between the
two.

Proof. The sets ◦T1 ∩E ◦T2 and ◦T2 ∩E ◦T1 are E-distinct since each is a
subset of a set that is E-distinct. The relation E defines an isomorphism
between these two sets: every element of ◦T1 ∩E ◦T2 E-corresponds to at
least one element of ◦T2 ∩E ◦T1 by construction, and it cannot E-correspond
to two of them because, by transitivity, they would be E-equivalent, and the
type T2 would then not be E-reduced. The same holds in the other direction,
hence E defines a bijection, and it also defines a bijection between ◦T1 ∩E ◦T2
and the following set of pairs, mapping every S1 to the only pair (S1,S2)
where E(S1,S2):

⦃ (S1,S2) | S1 ∈ ◦T1,S2 ∈ ◦T2, E(S1,S2) ⦄

To every pair of this set, the element Fuse(S1,S2, E) of ◦T1 ./E ◦T2 corre-
sponds and vice versa. By stability, Fuse(S1,S2, E) is E-equivalent to both
S1 and S2, hence we can reason as in the previous case to prove, by transi-
tivity, that no two distinct elements of ◦T1 ./E ◦T2 may be equivalent, hence
it is E-reduced, and E is a bijection between it and both of ◦T1 ∩E ◦T2 and
◦T2 ∩E ◦T1.

Proof of Lemmas 1 and 2 The following properties hold.

1. For any two E-reduced types T1, T2,
Reduce(T1, T2, E) is E-reduced

2. For any two E-reduced structural types S1, S2,
Fuse(S1,S2, E) is E-reduced

3. For any J , S,
`E J : S ⇒ S is E-reduced

4. For any J1, . . . , Jn, T ,
`E J1, . . . , Jn :c T ⇒ T is E-reduced

Proof. The first two items are proved my mutual induction. The only
interesting case is

Reduce(T1, T2, E)
.
= ⊕(◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1)

3

The set ◦T1 ./E ◦T2 is E-reduced by Lemma 1.3, and ◦T1 \E ◦T2 and ◦T2 \E ◦T1
are included in ◦T1 and ◦T2, which are E-reduced by hypothesis. We have
hence just to prove that two structural types coming from two different sets
among ◦T1 ./E ◦T2, ◦T1 \E ◦T2 and ◦T2 \E ◦T1 cannot be E-equivalent. If
one of them comes from ◦T1 ./E ◦T2 and the other from ◦T1 \E ◦T2, they
cannot be equivalent since the first is E-isomorphic to ◦T1 ∩E ◦T2, and ele-
ments from ◦T1 \E ◦T2 cannot be equivalent to any element of ◦T2. The same
holds for ◦T1 ./E ◦T2 and ◦T2 \E ◦T1. Finally, no element of ◦T1 \E ◦T2 may
be equivalent to one element of ◦T2 \E ◦T1 since ◦T1 \E ◦T2 only contains
types that are not equivalent to any element of ◦T2.

Properties (3) and (4) follow immediately, since all the union types that
are produced by the judgments for `E J : S and `E J :c T are actually
produced by a Reduce(T1, T2, E) operation applied to arguments that are
E-reduced by induction hypothesis.

We can now prove the inclusion theorem.

Theorem 3 (Inclusion)
For any SKER E and for any two E-reduced types T1 and T2:

T1 + T2 ≤ Reduce(T1, T2, E)

For any two E-reduced structural types S1 and S2:

E(S1,S2) ⇒ S1 + S2 ≤ Fuse(S1,S2, E)

Proof. By mutual induction.
We want to prove that:

T1 + T2
≤ ⊕(◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1)

That is:
⊕(◦(T1 + T2))
≤ ⊕(◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1)

That is:

S ∈ (◦(T1 + T2))⇒
JS K ⊆

⋃
S′∈(◦T1 ./E ◦T2 ∪ ◦T1 \E ◦T2 ∪ ◦T2 \E ◦T1)

JS ′ K

4

The set ◦(T1 + T2) can be decomposed as follows.

◦(T1 + T2) = (◦T1 ∩E ◦T2) ∪ (◦T1 \E ◦T2)
∪ (◦T2 ∩E ◦T1) ∪ (◦T2 \E ◦T1)

If S ∈ ◦T1 ∩E ◦T2, then there exists S2 ∈ ◦T2 with E(S,S2) such that
Fuse(S,S2, E) belongs to ◦T1 ./E ◦T2, and, by induction, we know that:

E(S,S2) ⇒ JS K ⊆ JS + S2 K ⊆ J Fuse(S,S2, E) K

The case for S ∈ ◦T2 ∩E ◦T1 is analogous. The other two cases, S ∈
◦T1 \E ◦T2 and S ∈ ◦T2 \E ◦T1, are trivial.

We move now to the proof of

E(S1,S2) ⇒ S1 + S2 ≤ Fuse(S1,S2, E)

by cases on the common kind of S1 and S2.
If they belong to an atomic kind, the thesis is immediate.
If they are of array type, then we have S1 = [T1] and S2 = [T2]. We want

to prove:
J [T1] K ∪ J [T2] K ⊆ J Fuse([T1], [T2], E) K

= J [Reduce(T1, T2, E)] K

That is,
J [T1] K ⊆ J [Reduce(T1, T2, E)] K

and
J [T2] K ⊆ J [Reduce(T1, T2, E)] K.

Let us prove the first. Assume that 〈〈V1, . . . , Vn〉〉 ∈ J [T1] K. This implies
that, for any i, we have that Vi ∈ J T1 K.

By induction, J T1 K ⊆ J Reduce(T1, T2, E) K, hence, for any i, we have
that Vi ∈ J Reduce(T1, T2, E) K, hence 〈〈V1, . . . , Vn〉〉 ∈ J [Reduce(T1, T2, E)] K.

The inclusion J [T2] K ⊆ J [Reduce(T1, T2, E)] K can be proved in the same
way.

The last case is that of record types, that is, S1 = { �S1 } and S2 =
{ �S2 }.

We want to prove:

J { �S1 } K ∪ J { �S2 } K ⊆ J Fuse({ �S1 }, { �S2 }, E) K

We prove the case for S1, the one for S2 being analogous.

J { �S1 } K ⊆ J Fuse({ �S1 }, { �S2 }, E) K

5

We rewrite it as follows:

J { S1 } K

⊆ J { (�S1 ./:: �S2) ∪ ?(�S1 \:: ◦S2) ∪ ?(�S2 \:: ◦S1) } K

Consider a record V ∈ J { S1 } K. By definition,

V = ⦃ (k1,V1), . . . , (kn,Vn) ⦄

such that:

1. for any i ∈ 1...n, ∃Ti, qi such that (ki, Ti, qi) belongs to �S1, and
Vi ∈ J Ti K

2. for any (kj , Tj , !) ∈ �S1, a pair (kj ,Vj) is in V.

We want to prove the same properties for V with respect to

{ (�S1 ./:: �S2) ∪ ?(�S1 \:: ◦S2) ∪ ?(�S2 \:: ◦S1) }

We first prove the first property. Assume that the pair (ki,Vi) belongs
to V. By (1) above, we have a triple (ki, Ti, qi) in �S1 with Vi ∈ J Ti K. If
a matching k exists in S2, then we have a triple (ki,Reduce(Ti, T2, E),) in
�S1 ./:: �S2. By induction, J Ti K ⊆ J Reduce(Ti, T2, E) K, hence Vi ∈ J Reduce(Ti, T2, E) K,
as required. If no matching k exists in S2, then we have a triple (ki, Ti, ?) in
�S1 \:: �S2, and Vi ∈ J Ti K holds by hypothesis.

For the second property, every triple (kj , Tj , !) in

(�S1 ./:: �S2) ∪ ?(�S1 \:: ◦S2) ∪ ?(�S2 \:: ◦S1)

comes from the �S1 ./:: �S2 component and, by definition of q1 · q2, it corre-
sponds to a triple (kj , , !) in �S1, hence V contains a field with the key kj
by hypothesis.

We can now prove that the Reduce(T1, T2, E) operator enjoys the com-
mutativity and associativity properties that enable an efficient distributed
map-reduce implementation.

Theorem 4 (Commutativity)

1. Given two E-reduced types T1, T2, we have:

Reduce(T1, T2, E)
.
= Reduce(T2, T1, E)

6

2. Given two structural E-reduced types S1 and S2 we have:

E(S1,S2) ⇒ Fuse(S1,S2, E)
.
= Fuse(S2,S1, E)

Proof. Immediate, since the definition is symmetric, modulo order, and E
enjoys symmetry.

We need a simple lemma before proving the main theorem.

Lemma 1.4 (Distributivity of join over set union) For any SKER E,
for any E-reduced sets of structural typesM1,M2,M, and for any sets F1,
F2, F of triples (ki, Ti, qi), where each Ti is an E-reduced type, the following
equalities hold.

(M1 ∪M2) ./E M = (M1 ./E M) ∪ (M2 ./E M)
(F1 ∪ F2) ./:: F = (F1 ./:: F) ∪ (F2 ./:: F)
M ./E (M1 ∪M2) = (M ./E M1) ∪ (M ./E M2)
F ./:: (F1 ∪ F2) = (F ./:: F1) ∪ (F ./:: F2)

Proof. By definition of ./E :

(M1 ∪M2) ./E M
= ⦃ Fuse(S,S ′, E) | S ∈ M1 ∪M2, S ′ ∈M, E(S,S ′) ⦄
= ⦃ Fuse(S,S ′, E) | S ∈ M1, S ′ ∈M, E(S,S ′) ⦄
∪⦃ Fuse(S,S ′, E) | S ∈ M2, S ′ ∈M, E(S,S ′) ⦄

= (M1 ./E M) ∪ (M2 ./E M)

By definition of ./:::

(F1 ∪ F2) ./:: F
= ⦃ (k,Reduce(T , T ′, E), q · q′)
| (k, T , q) ∈ (F1 ∪ F2), (k, T ′, q′) ∈ F ⦄

= ⦃ (k,Reduce(T , T ′, E), q · q′)
| (k, T , q) ∈ F1, (k, T ′, q′) ∈ F ⦄
∪ ⦃ (k,Reduce(T , T ′, E), q · q′)

| (k, T , q) ∈ ∪F2, (k, T ′, q′) ∈ F ⦄
= (F1 ./:: F) ∪ (F2 ./:: F)

The last two cases are analogous.

Theorem 4 (Associativity)

The following two properties hold, for any stable KER E.

7

1. Given three E-reduced types T1, T2 and T3, we have

Reduce(Reduce(T1, T2, E), T3, E)
.
= Reduce(T1,Reduce(T2, T3, E), E)

2. Given three E-reduced structural types S1, S2 and S3 that are mutually
E-equivalent, we have

Fuse(Fuse(S1,S2, E),S3, E)
.
= Fuse(S1,Fuse(S2,S3, E), E)

Proof. We proof (1) and (2) by mutual induction.
We first partition each of ◦T1, ◦T2 and ◦T3 in four parts, that correspond

to four possible combinations of ∩E and \E , as follows.

M23
1 = ⦃ S1 ∈ ◦T1 | ∃S2 ∈ ◦T2. E(S1,S2),

∃S3 ∈ ◦T3. E(S1,S3) ⦄
M23

1 = ⦃ S1 ∈ ◦T1 | ∃S2 ∈ ◦T2. E(S1,S2),
6 ∃S3 ∈ ◦T3. E(S1,S3) ⦄

M23
1 = ⦃ S1 ∈ ◦T1 | 6 ∃S2 ∈ ◦T2. E(S1,S2),

∃S3 ∈ ◦T3. E(S1,S3) ⦄
M23

1 = ⦃ S1 ∈ ◦T1 | 6 ∃S2 ∈ ◦T2. E(S1,S2),
6 ∃S3 ∈ ◦T3. E(S1,S3) ⦄

The partitions ⦃ M13
2 ,M13

2 ,M13
2 ,M13

2 ⦄ of ◦T2 and
⦃ M12

3 ,M12
3 ,M12

3 ,M12
3 ⦄ of ◦T3 are defined in the same way. Now we can

decompose ◦Reduce(T1, T2, E) as follows. In all of our computations we will
make use of distributivity of join over set union (Lemma 1.4).

◦Reduce(T1, T2, E) = ((M23
1 ∪M23

1) ./E (M13
2 ∪M13

2))
∪M23

1 ∪M23
1 ∪M13

2 ∪M13
2

= ((M23
1 ./E M13

2) ∪ (M23
1 ./E M13

2))
∪M23

1 ∪M23
1 ∪M13

2 ∪M13
2

Now we compute ◦Reduce(Reduce(T1, T2, E), T3, E). The first two lines join
the components of ◦Reduce(T1, T2, E) that match some component of ◦T3
with the corresponding component of ◦T3, while the last line lists all the
non-matching components of ◦Reduce(T1, T2, E) and ◦T3.

◦Reduce(Reduce(T1, T2, E), T3, E) =
((M23

1 ./E M13
2) ./E M12

3)
∪ (M23

1 ./E M12
3) ∪ (M13

2 ./E M12
3)

∪ (M23
1 ./E M13

2) ∪M23
1 ∪M13

2 ∪ M12
3

8

By reordering the components, we have the following equation for ◦Reduce(Reduce(T1, T2, E), T3, E).

◦Reduce(Reduce(T1, T2, E), T3, E) =
((M23

1 ./E M13
2) ./E M12

3)
∪(M23

1 ./E M13
2) ∪ (M23

1 ./E M12
3) ∪ (M13

2 ./E M12
3)

∪M23
1 ∪M13

2 ∪M12
3

The same computation for ◦Reduce(T1,Reduce(T2, T3, E), E) yields the same
result with the only exception of the first term.

◦Reduce(T1,Reduce(T2, T3, E), E) =
(M23

1 ./E (M13
2 ./E M12

3))
∪(M23

1 ./E M13
2) ∪ (M23

1 ./E M12
3) ∪ (M13

2 ./E M12
3)

∪M23
1 ∪M13

2 ∪M12
3

Hence, we only have to prove that

((M23
1 ./E M13

2) ./E M12
3) = (M23

1 ./E (M13
2 ./E M12

3))

By definition, we have the following equalities.

((M23
1 ./E M13

2) ./E M12
3)

= ⦃ Fuse(S1,S2, E)
| S1 ∈M23

1 ,S2 ∈M13
2 , E(S1,S2) ⦄ ./E M12

3

= ⦃ Fuse(Fuse(S1,S2, E),S3, E)
| S1 ∈M23

1 ,S2 ∈M13
2 ,S3 ∈M12

3 ,
E(S1,S2), E(Fuse(S1,S2, E),S3) ⦄

(M23
1 ./E (M13

2 ./E M12
3))

= ⦃ Fuse(S1,Fuse(S2,S3, E), E)
| S1 ∈M23

1 ,S2 ∈M13
2 ,S3 ∈M12

3 ,
E(S2,S3), E(S1,Fuse(S2,S3, E)) ⦄

By stability, both

E(S1,S2) ∧ E(Fuse(S1,S2, E),S3)

and
E(S2,S3) ∧ E(S1,Fuse(S2,S3, E))

can be rewritten as
E(S1,S2) ∧ E(S2,S3),

9

while Fuse(Fuse(S1,S2, E),S3, E) is equivalent to

Fuse(S1,Fuse(S2,S3, E), E)

by induction, hence we conclude.

(2) Observe that S1, S2, and S3 have the same kind, by the hypothesis
that they are mutually E-equivalent. We prove (2) by cases on their kind.

If they have an atomic kind, the thesis follows by definition of Reduce.
If they are of array type, then we have S1 = [T1], S2 = [T2], and S3 = [T3],

for some T1, T2, and T3, and we have:

Fuse(Fuse([T1], [T2], E), [T3], E)
.
= Fuse([Reduce(T1, T2, E)], [T3], E)
.
= [Reduce(Reduce(T1, T2, E), T3, E)]

Fuse([T1],Fuse([T2], [T3], E), E)
.
= Fuse([T1], [Reduce(T2, T3, E)], E)
.
= [Reduce(T1,Reduce(T2, T3, E), E)]

The thesis follows by case (1) and mutual induction.
The last case is that of record types, that is, S1 = { �S1 }, S2 = { �S2 },

and S3 = { �S3 }.
We will follow the same structure as in the proof of the first case, that

of Reduce(Reduce(T1, T2, E), T3, E).
As in the first case, we partition �S1 in four parts F 23

1 , F 23
1 , F 23

1 , F 23
1 ,

according to the existence of a matching field in �S2 and of a matching field
in �S3.

F 23
1 = (�S1 ∩:: �S2)∩:: �S3

F 23
1 = (�S1 ∩:: �S2) \:: �S3

F 23
1 = (�S1 \:: �S2)∩:: �S3

F 23
1 = (�S1 \:: �S2) \:: �S3

Now we can decompose �Fuse(S1,S2, E) as follows.

�Fuse(S1,S2, E) = ((M23
1 ∪M23

1) ./E (M13
2 ∪M13

2))
∪M23

1 ∪M23
1 ∪M13

2 ∪M13
2

= ((M23
1 ./E M13

2) ∪ (M23
1 ./E M13

2))
∪M23

1 ∪M23
1 ∪M13

2 ∪M13
2

Now we compute �Fuse(Fuse(S1,S2, E),S3, E). The first two lines join the
components of �Fuse(S1,S2, E) that match some component of �S3 with

10

the corresponding component of �S3, while the last line lists all the non-
matching components of �Fuse(S1,S2, E) and �S3.

�Fuse(Fuse(S1,S2, E),S3, E) =
((F 23

1 ./:: F
13
2) ./:: F

12
3)

∪ (F 23
1 ./:: F

12
3) ∪ (F 13

2 ./:: F
12
3)

∪ (F 23
1 ./:: F

13
2) ∪ F 23

1 ∪ F 13
2 ∪ F 12

3

By reordering the components, we have the following equation for �Fuse(Fuse(S1,S2, E),S3, E).

�Fuse(Fuse(S1,S2, E),S3, E) =
((F 23

1 ./:: F
13
2) ./:: F

12
3)

∪(F 23
1 ./:: F

13
2) ∪ (F 23

1 ./:: F
12
3) ∪ (F 13

2 ./:: F
12
3)

∪F 23
1 ∪ F 13

2 ∪ F 12
3

The same computation for �Fuse(S1,Fuse(S2,S3, E), E) yields the same re-
sult with the only exception of the first term.

�Fuse(S1,Fuse(S2,S3, E), E) =
(F 23

1 ./:: (F 13
2 ./:: F

12
3))

∪(F 23
1 ./:: F

13
2) ∪ (F 23

1 ./:: F
12
3) ∪ (F 13

2 ./:: F
12
3)

∪F 23
1 ∪ F 13

2 ∪ F 12
3

Hence, we only have to prove that

((F 23
1 ./:: F

13
2) ./:: F

12
3) = (F 23

1 ./:: (F 13
2 ./:: F

12
3))

By definition, we have the following equalities.

((F 23
1 ./:: F

13
2) ./:: F

12
3)

= ⦃ (k,Reduce(T1, T2, E), q1 · q2)
| (k, T1, q1) ∈ F 23

1 , (k, T2, q2) ∈ F 13
2 ⦄ ./:: F

12
3

= ⦃ (k,Reduce(Reduce(T1, T2, E), T3, E), (q1 · q2) · q3)
| (k, T1, q1) ∈ F 23

1 , (k, T2, q2) ∈ F 13
2 ,

(k, T3, q3) ∈ F 12
3 ⦄

(F 23
1 ./:: (F 13

2 ./:: F
12
3))

= ⦃ (k,Reduce(T1,Reduce(T2, T3, E), E), q1 · (q2 · q3))
| (k, T1, q1) ∈ F 23

1 , (k, T2, q2) ∈ F 13
2 ,

(k, T3, q3) ∈ F 12
3 ⦄

By induction Reduce(Reduce(T1, T2, E), T3, E) is equivalent to Reduce(T1,Reduce(T2, T3, E), E),
associativity of q′ · q′′ is immediate, hence we conclude.

11

Theorem 5
For any SKER E, for any JSON expressions J, J1, . . . , Jn:

`E J : S ⇒ J J K ∈ JS K
`E J1, . . . , Jn :c T ⇒ ⦃ J J1 K, . . . , J Jn K ⦄ ⊆ J T K

Proof. We prove it by mutual induction on the size of the inference proof
and by cases on the last applied rule. The base rules are trivial. The cases
for the record and array rules are an immediate consequence of the semantics
of records and arrays. The empty collection rule is trivial and the singleton
rule follows immediately by induction. For the crucial (TypeCollection)
rule, we know by induction that

⦃ J J1 K, . . . , J Ji K ⦄ ⊆ J T1 K
⦃ J Ji+1 K, . . . , J Jn K ⦄ ⊆ J T2 K

By Theorem 2,

T1 ≤ Reduce(T1, T2, E) and T2 ≤ Reduce(T1, T2, E)

Hence, by transitivity, we have that

⦃ J J1 K, . . . , J Ji K ⦄ ⊆ J Reduce(T1, T2, E) K
⦃ J Ji+1 K, . . . , J Jn K ⦄ ⊆ J Reduce(T1, T2, E) K

hence
⦃ J J1 K, . . . , J Jn K ⦄ ⊆ J Reduce(T1, T2, E) K.

12

