
HAL Id: hal-01960412
https://hal.science/hal-01960412

Submitted on 10 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Load Balancing at the Edge of Chaos: How
Self-Organized Criticality Can Lead to Energy-Efficient

Computing
Juan Luis Jiménez Laredo, Frédéric Guinand, Damien Olivier, Pascal Bouvry

To cite this version:
Juan Luis Jiménez Laredo, Frédéric Guinand, Damien Olivier, Pascal Bouvry. Load Balancing at the
Edge of Chaos: How Self-Organized Criticality Can Lead to Energy-Efficient Computing. IEEE Trans-
actions on Parallel and Distributed Systems, 2017, 28 (2), pp.517-529. �10.1109/TPDS.2016.2582160�.
�hal-01960412�

https://hal.science/hal-01960412
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Load Balancing at the Edge of Chaos:
How Self-Organized Criticality Can Lead to

Energy-Efficient Computing
Juan Luis Jiménez Laredo, Frédéric Guinand, Damien Olivier, and Pascal Bouvry

Abstract—This paper investigates a self-organized critical approach for dynamically load-balancing computational workloads. The
proposed model is based on the Bak-Tang-Wiesenfeld sandpile: a cellular automaton that works in a critical regime at the edge of
chaos. In analogy to grains of sand, tasks arrive and pile up on the different processing elements or sites of the system. When a pile
exceeds a certain threshold, it collapses and initiates an avalanche of migrating tasks, i.e. producing load-balancing. We show that the
frequency of such avalanches is in power-law relation with their sizes, a scale-invariant fingerprint of self-organized criticality that
emerges without any tuning of parameters. Such an emergent pattern has organic properties such as the self-organization of tasks into
resources or the self-optimization of the computing performance. The conducted experimentation also reveals that the system has a
critical attractor in the point in which the arrival rate of tasks equals the processing power of the system. Taking advantage of this fact,
we hypothesize that the processing elements can be turned on and off depending on the state of the workload as to maximize the
utilization of resources. An interesting side effect is that the overall energy consumption of the system is minimized without
compromising the quality of service.

Index Terms—Energy efficiency, Nonlinear dynamical systems, Distributed computing, Scheduling algorithms.

F

1 INTRODUCTION

ENERGY EFFICIENCY is nowadays one of the main areas
of research in Computer Science. With the advent of

flourishing technologies such as cloud computing, power
demands in large-scale computing infrastructures have ex-
ploded and the energy consumption has turned into a
limiting factor to a further development of the industry:
in 2010, volume servers and data centers worldwide [1]
consumed approx. 270 billions of KWh, enough to cover
the electricity demands of entire countries such as Australia
or Spain [2]. Part of the problem is in current technology
which has not yet devised the ways to maintaining the
energy consumption proportional to the volume of services
provided. However, researchers are embarked in this task:
energy awareness has become a major technology driver in
the design of large-scale distributed systems.

The case of proportional computing [3] has already
opened frontiers towards more energy-efficient computing.
The approach relies on the idea that the energy consumed by
a server should be kept proportional to its utilization. In this
line, current devices are implementing power management
techniques, such as dynamic scaling [4], to modulate the
voltage and frequency of CPUs according to the state of
the workloads. Nonetheless, power management is not the
final solution to energy efficiency but a mere mechanism
that requires a higher-level control to save energy; the same

• J.L.J. Laredo, F. Guinand and D. Olivier are with LITIS, University of Le
Havre, Le Havre, France.
E-mails: {jimenezj,frederic.guinand,damien.olivier}@univ-lehavre.fr

• P. Bouvry is with CSC/SnT, University of Luxembourg, Luxembourg.
E-mail: pascal.bouvry@uni.lu

Manuscript received April 19, 2005; revised September 17, 2014.

way that light switches need to be operated by a human
(smart entity) to turn lights on and off.

Brown and Reams [5] state that a control mechanism of
this kind is best approached as an optimization problem
where “a system consumes the minimum amount of energy
required to perform any task”. The importance of such a
statement is that it allows to formally describe energy ef-
ficiency in terms of a scheduling problem, including specific
–and potentially conflicting– objective functions such as en-
ergy consumption, resource utilization or quality of service
(QoS), i.e. energy-efficient computing can be formulated as
a multi-objective scheduling problem [6].

Alongside the difficulty of tackling several objectives,
this type of problem is particularly challenging because
of the high-dimensionality that it may involve, e.g. exas-
cale systems can reach millions of nodes and billions of
tasks [7], [8]. That implies analytical intractability of real
solutions as the curse of dimensionality [9] prevents to
solve high-dimensional instances to optimality. Similarly,
meta-heuristics find extreme difficulties to track down high-
dimensional solutions in a reasonable time; especially be-
cause granting convergence requires to iterate over globally
computed solutions (see e.g. [6], [10], [11]). Achieving en-
ergy efficiency is therefore calling for further investigations
beyond the state of the art. In this scenario, complex systems
may hold the key to describing large-scale dynamics of
energy-efficient distributed systems.

This paper aims at exploring these potentials in the con-
text of dynamic load-balancing: a scheduling approach that
tackles the problem of reassigning tasks between resources
at runtime [12]. We envision a large-scale computational
system as a living organism able to self-organize locally

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

and acquire emergent properties such as maximizing the
energy efficiency. Our proposal relies on a simple idea:
turning off resources when they do not have any more tasks
to process. This simple power management technique is
commonly employed in exploratory investigations [13] like
the one presented here. However, more interesting is that
it naturally drives to a subsequent (and more challenging)
question: when should a computing resource, which has
been turned off, be turned on again?. Intuitively, if there
are too many active resources in a system, the energy
consumption will explode. However, if the system turns off
too many resources, the QoS will dramatically drop down.

In order to explore such a trade-off, we investigate the
properties of self-organized criticality systems [15] when
applied to energy-efficient dynamic balancing: an investi-
gation that to the best of our knowledge is the first of its
class. In particular, we propose a model based on the Bak-
Tang-Wiesenfeld (BTW) sandpile [14]: a cellular automaton
that displays self-organized criticality by mimicking the
behavior of avalanches of sand. Typically grains of sand are
deposited at randomly chosen sites in a 2-dimensional grid
lattice, one grain at a time. When the system reaches a cer-
tain critical state, small disturbances can lead to avalanches
that can propagate spatially and temporally and recon-
figure the system. Here, the analogy with dynamic load-
balancing is straightforward: the same way that avalanches
scatter sand throughout the lattice, they can produce load-
balancing when applied to tasks queuing in a distributed
system.

With the issue of energy efficiency in mind, this paper
builds up starting from the original sandpile model as
described by Bak, Tang and Wiesenfeld. The aim is finding
an answer to the following research question:

• What is the trade-off between the energy consumed
and the QoS delivered by a sandpile distributed
system?

Trying to respond to the previous question, the rest of the
paper is organized as follows: section 2 reviews some related
works in both fields, complex systems and energy-aware
load-balancing. Section 3 outlines the problem of scheduling
workloads arriving in the form of independent tasks and
introduces some metrics to evaluate the performance of
computational systems. Section 4 presents an algorithmic
description of our load-balancing proposal. The basic dy-
namics of the approach are then described in section 5.
Section 6 introduces a theoretical framework where the
sandpile is able to display organic load-balancing. Section 7
analyzes the trade-offs between the energy consumption
and the QoS delivered by the system. Finally, conclusions
are drawn in section 8 and some future lines of research are
presented.

2 RELATED WORKS

This section starts with a description of the BTW sandpile
model that will be employed later on as the baseline method
in our proposal. Then, it continues with a survey of works
tackling dynamic load-balancing from both perspectives,
complex systems and energy awareness.

2.1 The BTW Sandpile
The theory of self-organized criticality (SOC) [15] offers a
well-defined explanation on how the interactions of sparse
elements can lead a complex system to a critical point
in which the elements percolate and give rise to a global
pattern, a so-called avalanche. This phenomenon is observed
in a myriad of dynamical systems including earthquakes
[16], mass extinctions in biological evolution [17] or the
branching process of neocortical cirtuits [18], but it was
not until Per Bak, Chao Tang and Kurt Wiesenfeld pub-
lished in 1987 an artificial system called the sandpile [14]
that the concept of SOC was postulated. Overall, SOC
describes a critical non-equilibrium state of complex sys-
tems where the frequency and size of the events follow a
power-law relation independently of the scale of the system,
i.e. small avalanches occur very often while large catas-
trophic avalanches happen very rarely. This paper aims at
investigating such features in the context of dynamic load-
balancing. To that end, we propose a decentralized load-
balancing approach based on the original BTW sandpile
model.

The sandpile is a cellular automaton in which grains of
“sand” are randomly dropped over a grid lattice. Grains
accumulate in the different sites until they exceed a certain
threshold leading to avalanches. That way, depending on
the state of the system, the single drop of a grain may
change nothing or start an avalanche that reconfigures the
system. In fact, the sandpile is a class IV cellular automaton
(Wolfram [19]) in the region between order (classes I and
II) and chaos (class III). This kind of cellular automaton
can exhibit universality in the sense of being Turing com-
plete, something that led the American scientist Christopher
Langton [20] to analyze criticality as a universal machine.
Langton shows how the criticality phenomenology supports
basic operations of information transmission, storage and
modification to perform computation at the edge of chaos.

Fig. 1 exemplifies the basic dynamics of an avalanche
in a small sandpile. Initially, adding a grain at a site (x, y)
results in a simple modification on the height h(x, y) of the
site, such that:

h(x, y) �! h(x, y) + 1

However, the model states that if the height exceeds a
certain threshold value (e.g. h(x, y) � 4) the site collapses
and loses a number of grains:

h(x, y) �! h(x, y)� 4

which are then reassigned to its neighbors. If we consider
a von Neumann neighborhood, such a reassignment will
modify the state of the neighbors in the following way:

h(x ± 1, y) �! h(x ± 1, y) + 1

h(x, y ± 1) �! h(x, y ± 1) + 1

This starting avalanche can propagate if the respective
neighbors also exceed the threshold as a consequence of the
new reassignment. Therefore, and despite the simplicity of
the rules, avalanches of all sizes may take place. In fact,
as a SOC system, the sandpile evolves in the long term
into a non-equilibrium critical state where the frequency

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

x,y

x,y-1

x,y+1

x-1,y x+1,y

(a) Von Neumann neighbor-
hood.

3 2 2 1 2

2 3 3 3 2

1 1 4 1 1

0 1 2 1 2

3 1 3 2 3

(b) (Step 1) Initial state. A
grain is deposited at central
site.

3 2 2 1 2

2 3 4 3 2

1 2 0 2 1

0 1 3 1 2

3 1 3 2 3

(c) (Step 2) Avalanche
spreads.

3 2 3 1 2

2 4 0 4 2

1 2 1 2 1

0 1 3 1 2

3 1 3 2 3

(d) (Step 3) Avalanche con-
tinues spreading.

3 3 3 2 2

3 0 2 0 3

1 3 1 3 1

0 1 3 1 2

3 1 3 2 3

(e) (Step 4) Final state of
equilibrium.

3 2

1 1

0 1 1 2

3 1 3 2 3

(f) Sites taking part in the
avalanche.

Fig. 1. Example of sandpile dynamics in a small cellular automaton.
Sites are arranged in von Neumann neighborhoods as depicted in (a).
From left to right and from top to bottom, (b) to (e) show the propagation
of an avalanche. The sites involved in the avalanche are colored in gray
in (f).

of avalanches keeps a power-law proportion to their sizes.
Intuitively such a behavior has a load-balancing effect on
the different heights of the sites that we aim at adapting
to the problem of dynamic load-balancing computational
workloads.

2.2 Dynamic Load-balancing and Energy Awareness
Complex systems have been devised for a long time as
an effective mechanism for dynamic load-balancing. In the
early 90s, Willebeck-Lemair and Reeves [21] proposed two
dynamic load-balancing methods based on diffusion and
gradient models. Both methods follow the principle of
decentralization allowing local interactions between neigh-
boring processors: in the diffusion approach the workload
spreads from overloaded to underloaded processors and, in
the gradient approach, the underloaded resources request
for tasks. Despite such differences, the main goal of the
work was to provide new scalable means to support large-

scale distributed computing since (as the authors pointed
out) “only a few strategies have been designed, or are scalable,
to support highly parallel multi-computer systems”, a problem
that still persists nowadays.

In the line of diffusion models, Jelasity et al. [22] propose
a dynamic load-balancing approach based on peer-to-peer
systems. Rather than a fully-operative scheduling system,
the authors aim at illustrating the application potentials of
gossiping protocols. They describe the problem of dynamic
load-balancing as an equivalent to the problem of averaging
a set of distributed numbers using decentralized aggregation.
Despite its simplicity, this work is an inspiring reading
on the potentialities of complex networks in distributed
load-balancing. In this line, Salman et al. [23] analyze the
impact of several interconnection topologies in distinct load-
balancing strategies concluding that, independently of the
strategy, the structure of the network has a significant im-
pact on the performance of the system.

Inspired by the dynamics of liquids, Hu and Klefstad
[24] propose a dynamic load-balancing approach which has
a strong connection with the one presented here. Both meth-
ods are based on self-organization and both try to mimic
the way gravity has to flatten different elements. However,
there is a key difference concerning the critical state (i.e.
the “C” in SOC). While our approach behaves at the border
of chaos, the liquid-based approach only recognizes two
states: either the system is in equilibrium, which means
that the workload is evenly balanced, or the system is in
a non-equilibrium state. Therefore, no matter how small a
perturbation is, it will always lead to a non-equilibrium state
with the subsequent reallocation of tasks.

Although previous works represent a step forward in
the understanding of how a complex system may lead to
dynamic load-balancing, none of them tackles the issue of
energy efficiency. In fact, and to the best of our knowledge,
little is known about whether energy efficiency can emerge
bottom up from decentralized processes based on local
interacting rules, something that we aim at analyzing in
this paper. Up to now, the simultaneous optimization of
the energy and performance of the system has been mainly
approached from the perspective of problem solving, where
global (centralized) optimization methodologies have been
coupled with power-management techniques.

Pinheiro et al. [13] propose to balance/unbalance clus-
ters of workstations by dynamically turning nodes on and
off1. The authors propose a centralized algorithm in which
decisions are made by monitoring the workload and per-
formance of the system. Although the study only involves
8 nodes, the work succeeds in describing the potentials of
simple power-management mechanisms in the performance
vs. energy trade-off: the energy consumption is reduced by a
43% while the performance degradation is kept below 20%.

Khan and Ahmad [25] were the first in applying game
theory to the problem of optimizing both objectives: en-
ergy consumption and system performance. The problem is
modelled as a multi-objective extension of the generalized
assignment problem, where the authors are able to prove

1. Like in this paper, the simplest assumption that can be made on
power management is that of a system with two possible states in which
nodes can be powered on and off.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

the Pareto optimality of an optimization approach based on
the Nash bargaining solution.

In recent works [6], [10], [11], researchers have found a
powerful ally in meta-heuristics such as genetic algorithms
or tabu search. This kind of optimization algorithms are
widely employed in multi-objective optimization, where
they have proven a good compromise between the quality
of the solutions and the time of convergence. However,
meta-heuristics can only afford instances of relatively low
dimensionality, e.g.: the largest instance in all previous
works involves 256 machines and 4096 tasks. While this
may suffice to optimizing specific types of workloads such
as DAGs (directed acyclic graphs), it also prevents the ap-
plicability of meta-heuristics to larger systems with exascale
dimensions.

In [26], [27], we envisioned the sandpile as a dynamic
load-balancing mechanism for the first time. Experiments
were conducted for very large problems with up to 2048
heterogeneous computing nodes and more than 2 million
tasks, showing that the approach was able to achieve near-
optimal solutions in terms of makespan, throughput and
flowtime. In order to achieve such results the canonical BTW
sandpile model was extended with these three new features:

• The transition rule (the one leading to avalanches),
was only triggered if the height of a given pile was
larger than the accumulated heights of two neigh-
bors, i.e. establishing a gradient.

• The interconnection topology was designed as a
small-world graph. The advantage of using such
a topology is that “the system releases the potential
of building up catastrophic avalanches more easily and
produces fewer catastrophic avalanches” [28].

• Avalanches were implemented virtually using a gos-
siping protocol, i.e. nodes negotiate a state of equi-
librium before the real migration of tasks takes place.

Our current proposal is inspired by previous results
and aims at investigating the performance of the sandpile
when the energetic efficiency of the model is also taken into
account. Unlike in our previous works, the BTW sandpile is
implemented as it is to maintain the self-organized criticality
features of the model unaltered. This paper is therefore
a proof-of-concept on the energetic efficiency of the BTW
sandpile without further artefacts. In other words, the sand-
pile is not conceived as the pilot of an efficient load-balancer
(e.g. trying to minimize the communications of the model)
but rather as a mean to conduct an exploratory investigation
on SOC systems in energy-efficient load balancing. In future
works, all previous improvements will be incrementally
tested from which we may elucidate optimal settings for
the model.

3 SCHEDULING INDEPENDENT TASKS
In Computer Architecture, scheduling is the problem of as-
signing tasks to resources. Despite simple in its formulation,
scheduling is a multi-faceted problem that may involve
many possible objectives and constraints, and has been
proven a high-dimensional NP-hard problem [29].

This paper aims to be a proof-of-concept on the poten-
tialities of the sandpile as an effective load-balancing mech-
anism. To that end, the problem is intentionally simplified

and assumes certain conditions such as a negligible cost
of communications or the homogeneity on the workload
and computing architecture. The interested reader may refer
to [26] for a more realistic characterization that includes
heterogeneous settings and a model for communications. In
general, the problem of scheduling independent tasks has
two main components:

• A workload consisting of a set N =
{hn1, a1i . . . , hnv, avi} of v independent tasks,
such that:

– ni is the length in terms of computing instruc-
tions of the ith task in N.

– ai is the respective arrival time.

• A computing architecture is a set P = {p1, . . . , pq}
of q interconnected processors able to process tasks
with a given speed. At this early stage of the research,
we propose a simple architecture that consists of:

– Resources: Let us denote pi as the ith processor
in the architecture P. We assume that every
processor pi has a homogeneous speed pi =
1 instruction

cycle and can be turned off (p�i) and on
(p+i).

– A topology: The q processors are arranged in a
grid lattice such that pi,j refers to the processor
at position (i, j) in a square matrix:

P =

0

B@

p1,1 . . . p1,pq
...

. . .
...

ppq,1 . . . ppq,pq

1

CA.

3.1 Metrics
In order to assess our load-balancing approach, we consider
a representative set of metrics taking into account different
aspects of the problem such as the efficient utilization of the
infrastructure or the QoS delivered. The proposed metrics
can be analyzed separately although they represent together
a set of conflicting objectives, e.g.: increasing the size of a
computing infrastructure may enhance some QoS criteria
but will certainly increase the overall energetic requirements
of the system. All in all, the aim is finding the schedule
that maximizes the utilization of a computing infrastructure
while guaranteeing a certain QoS to users.

3.1.1 Flowtime as QoS measure

The flowtime is the average waiting time of an item in a
system [30]. Therefore, it represents a good QoS indicator
as it relates to the waiting time of users: the shorter the
flowtime, the better the user satisfaction.

Let us define W as a v ⇥ q matrix where wi,j 2 W is
either zero or the global timestamp for the ith task at the
moment of being fetched for non-preemptive execution in
a processor pj 2 P. Hence, the flowtime of a task ni in a
system P can be defined as:

f (i, P) = ni + max
8j2[1,...,q]

(wi,j)� ai (1)

where ai is the arrival time of the ith task in the system. In
general, we may also talk about the average flowtime as:

F(N, P) = Âv
i=1 f (i, P)

v
(2)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

3.1.2 Resource utilization

In addition to minimizing the flowtime, we also seek to
maximize the utilization of resources: a metric that relates
resources with the time they are occupied doing some
effective job. Hence, this metric is defined in the subset of
active resources P+ ✓ P : {P+ \ P� = ∆ ^ P+ [P� = P}.
At a given time t the utilization of a resource p+j 2 P+ can
be expressed as:

u(p+j , t) =
⇢

1 i f ¬idle(p+j , t)
0 otherwise

(3)

where idle(p+j , t) is a function indicating whether p+j is idle
at time t or busy. For the entire system P+, the utilization of
resources can be defined as:

U(P+, T) =
ÂT

t=1 Âq+
j=1 u(p+j , t)

Tq+
(4)

which provides an averaged value for active resources com-
posing P+ (q+ = |P+|) during a period of time T.

3.1.3 Energy consumption

To assess the energetic efficiency of our proposal, we pro-
pose a simple model where the energetic consumption of
the system is in linear proportion to the number of active
resources (see [31] for more realistic energy models). In a
period of time T the energy consumption of a system P is:

E(P, T) =
T

Â
t=1

q

Â
j=1

e(pj, t) (5)

where:

e(pj, t) =
⇢

1 i f pj 2 P+

0 i f pj 2 P� (6)

After this part that describes the problem of scheduling
independent tasks, we now focus on our proposed method
for dynamic load-balancing.

4 MODEL DESCRIPTION

This section presents a decentralized approach for dynami-
cally load-balancing workloads in distributed systems. The
proposed model is based on the BTW sandpile (see sec-
tion 2.1), from which we expect it inherits the features
of SOC systems, i.e. scale-invariance of the critical point,
and robustness to the tuning of parameters. Overall, there
is a main difference between the canonical BTW sandpile
and our extended version for dynamic load-balancing. In
analogy to grains of sand, tasks also arrive and pile up
in the different sites of a grid lattice. However, unlike in
the original sandpile, every site is a processing element
that can consume tasks with a certain speed. Therefore, the
analogy can be pushed forward by thinking about a sieve,
with grains piling up but also slipping through the gaps as
depicted in Fig. 2.

We find that these new features are comprised in the
functionality of a double-ended queue (dequeue) that we
propose here as an efficient data structure to implement
the decentralized algorithm. Table 1 presents a reduce set
of functions to that end:

Processing tasks

Grid

Arriving tasks

Fig. 2. Sandpile in a sieve.

• The neighbors() function returns a list with all the
processing elements in the neighborhood2 of a given
resource px,y which are arranged in a toroidal grid:

px,y.neighbors() = {pi,j : |i � x|pq + |j � y|pq r}

where r is the range of a neighborhood as depicted
in Fig. 3. Hence, for a given r, the function returns a
list with 2r(r + 1) neighbors.

• The push and pop functions act at the back of the
queue so that task migrations can be implemented
using both. Note that, while push (m) inserts m tasks
to the back of a queue, pop (m) removes m ⇥ 2r(r + 1)
tasks, i.e. m tasks for each of the 2r(r + 1) neighbors.

• The h function monitors the state of the queue and
returns its height.

• The idle function checks the flags of the processing
element to determine whether its current status is
(idle) or (busy).

• Finally, the shift function acts at the front of the queue
and is the only way for the processor to retrieve tasks;
this function assumes a non-preemptive operational
mode for the sake of simplicity.

x,y

x,y-1

x,y+1

x-1,y x+1,y

x,y-2

x,y+2

x-2,y x+2,y

x+1,y-1x-1,y-1

x+1,y+1x-1,y+1

Fig. 3. Von Neumann neighborhood of range r = 2. The neighbors of
a site (x, y) are those ones contained within a manhattan distance r.
Hence, the size of a neighborhood is 2r(r + 1).

2. For the sake of simplicity, this study focuses on von Neumann
neighborhoods although other types of neighborhoods, such as Moore,
should also be applicable without any loss of generality.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Function Description Pre-/Postconditions

neighbors() Returns the 2r(r + 1) adjacent queues r is the von Neumann range
push(i) Inserts a task with index i at the back The task i is fetched at time ai
push(m) Inserts m tasks at the back m is a list of tasks
pop(m) Removes m ⇥ 2r(r + 1) tasks at the back Returns a list with the removed tasks

h() Counts the no. of tasks in the queue Returns the size/height of the pile
idle() Verifies that the current processor is not busy Returns true if the processor is idle
shift() Removes/processes one task at the front of the queue Returns the removed element

TABLE 1
Double-ended queue (dequeue) functions at a given site px,y. Please, note that the function Push is a polymorphic function which can accept two

different types (i = the index of a single task) or (m = a list of tasks).

Algorithm 1 PSEUDO-CODE OF THE SANDPILE MODEL

1: for all N = {hn1, a1i, . . . , hnv, avi} tasks do

Task arrival:

2: Choose randomly a processor px,y 2 P
3: px,y.push(i) . drop the i-th task in px,y at time ai

Load-balancing phase:

4: while 9pi,j : pi,j.h() � hc do

5: pi,j.pop(m)
6: for all pi0 ,j0 2 pi,j.neighbors() do

7: pi0 ,j0 .push(m)
8: end for

9: end while

Processing phase:

10: for all pi,j 2 P do

11: if pi,j.idle() then

12: pi,j.shi f t()
13: end if

14: end for

15: end for

4.1 Algorithmic description
Using the previous set of functions, the sandpile algorithm
can be easily built according to Algorithm 1. By every site
implementing a double-ended queue, the emergent behav-
ior of the system is expected to display SOC properties and
act as a decentralized load-balancing system.

The algorithm can be divided into three different phases:
task arrival, load-balancing and processing. These phases
include all the necessary steps for the processing of all tasks
in N = {hn1, a1i, . . . , hnv, avi}.

• Task arrival (lines 1-3): Tasks in N are sorted in order
of arrival and fetched iteratively in line 1. Every
selected task ni is then assigned to a resource px,y by
calling its queue function px,y.push(i). To reproduce
the canonical sandpile behavior, the resource px,y is
randomly selected from the pool of resources (P).

• Load-balancing phase (lines 4-9): These lines implement
the actual functionality of the sandpile. After a new
task has been assigned to the queue px,y, the transi-

tion rule in line 4 verifies that the height of every
queue pi,j is below a critical value hc. Otherwise,
every pi,j violating the transition rule triggers an
avalanche by calling pi,j.pop(m):

h(i, j) ! h(i, j)� m ⇥ 2r(r + 1)

and pushing the tasks into its 2r(r + 1) neighbors
with pi0 ,j0 .push(m):

h(i0, j0) ! h(i0, j0) + m : 8i0, j0 2 pi,j.neighbors()

This avalanche will propagate throughout the system
until 8pi,j : pi,j.h() < hc. However, to avoid endless
loops, we add a hop counter to every task and set
a hop limit in 10000 hops, which is reasonably large.
If a dequeue detects a task which has reached the
hop limit, the threshold condition is ignored and the
avalanche is locally cancelled. That implies that we
allow some temporal configurations in which there
may exist some processors with a load greater than
the threshold. Otherwise, every processor pi,j resets
to zero the hop counter of all tasks in the dequeue
when pi,j.h() < hc.

• Processing phase (lines 10-14): This last phase takes
place after the system has found a state of equi-
librium in the load-balancing phase. Every site
pi,j 2 P retrieves one task at the front of the queue
(pi,j.shi f t()) iff the processor is not busy and the
queue is not empty.

This algorithm establishes the basic structure of our
model. However, the dynamics of the system will depend
on a number of decision variables that we aim at analyzing
in the following sections.

4.2 Parametrization
Recalling from the algorithmic description, there are three
basic parameters that will establish the dynamics of the
sandpile:

• hc, the threshold.
• r, the range of the von Neumann neighborhood.
• m, the number of tasks to be migrated to every

neighbor.

These parameters are subject to the following constraint:

hc � m ⇥ 2r(r + 1)

which means that the threshold must be equal to (or greater
than) the number of tasks to be reallocated. Proof. If we

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

assume hc < m ⇥ 2r(r + 1), a computing node pi,j may
attempt to pop (line 5 in Algorithm 1) more tasks than those
piling up in its own queue (i.e. pi,j.h() < m ⇥ 2r(r + 1))
causing an error at runtime. Therefore, hc � m ⇥ 2r(r + 1).

Given that the minimum range of a von Neumann
neighborhood is r = 1 and the minimum number of tasks
migrating to neighbors is m = 1, hc must always be � 4.
Such a parametrization (hc = 4, r = 1 and m = 1) is the
one employed in the canonical model [14] and will be the
default setting in this paper. Table 2 shows some constraints
for different settings of r and m.

r = 1 r = 2 r = 3
m = 1 hc � 4 hc � 12 hc � 24
m = 2 hc � 8 hc � 24 hc � 48
m = 3 hc � 12 hc � 36 hc � 72

TABLE 2
Constraints on hc for different values of r and m.

5 BASIC DYNAMICS

The dynamics of a load-balancer are associated with the
migration of tasks. In short, the migration mechanism tries
to minimize the completion time of an incoming workload
by maximizing the utilization of the available resources at
runtime. However, migrations also generate a certain over-
head –due to the limited capacity of physical resources such
as the bandwidth– that may undermine the performance of
the results. Dynamic load-balancing consists therefore in a
trade-off between maximizing the utilization of resources
and minimizing the required migrations to that end.

This section proposes simple simulations to analyze the
runtime dynamics of the sandpile in the previous terms. The
aim is to gain insights into the emergent properties of the
load-balancer in the trade-off of maximizing the utilization
of resources and minimizing the migration of tasks. We
consider the following experimental setup:

• A computer architecture P of q = 100 resources
arranged in a 10 ⇥ 10 toroidal grid topology.

• A set of workloads {N1, . . . , N120}, each workload
Ni being composed of 10000 tasks hn, ai of length (n)
and increasing time of arrival (a) such that:

Ni = {hn1, 1i, . . . , hn10000, 10000i}

where 8nk 2 Ni : {nk = i instructions}, i.e. the
length of the tasks in a given workload Ni is homo-
geneous and depends on the index i.

• The sandpile implements default settings: a von
Neumann neighborhood r = 1, a threshold hc = 4
and a migration rate of one task per neighbor m = 1.

• As a counterpart for comparisons, we establish op-
timal boundaries using a round-robin (RR) job as-
signment policy [32] where tasks are assigned to
processors in cyclical order. Note that the optimality
condition holds on the homogeneity of the tasks and
processing elements.

Under these settings, the maximum throughput of P
can be reached at 10 ⇥ 10 = 100 instructions/cycle, which

coincides with the incoming ratio of instructions per cycle
in N100. Therefore, for workloads Ni<100 the architecture P
will be necessarily under-utilized; while for Ni>100, P will
be necessarily overloaded.

5.1 Phase Transitions and Power Laws
Simulations were conducted in the sandpile simulator3,
where the utilization of P is monitored according to equa-
tion 4 in addition to the total amount of migrations M. Given
that workloads are composed of 10000 tasks, we refer to the
average number of migrations per task (AMT) as M/10000.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

A
vg

.u
til

iz
at

io
n

Ni

ov
er

lo
ad

optimal
sandpile

(a) Average utilization of resources.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0 20 40 60 80 100 120

A
M

T

Ni

C

A

B

(b) Average number of migrations per task (AMT). In dotted lines, the AMT
of avalanches involving task migrations of less than 100 hops. Note the
logscale in the y-axis.

Fig. 4. Sandpile dynamics for increasing workloads (Ni) in a 10 ⇥ 10
toroidal grid topology. Results are averaged over 20 independent runs.

Fig. 4 depicts the response of the sandpile to the dif-
ferent workloads N1i120 in terms of resource utilization
and AMT. In Fig. 4a it can be seen how the utilization of
resources scales linearly with the increasing size of the tasks
when Ni100. This trend turns into a plateau for Ni>100
indicating that the processing elements are overloaded so

3. The source-code for the simulations is publicly available at https:
//sandpile-scheduler.googlecode.com published under GNU public
licence.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

that tasks must queue in the system before completion. Such
results represent a near-optimal solution to the given test-
case if compared to the optimal allocation of tasks produced
by the round-robin assignment policy. Therefore we can con-
clude that, without any central control, the self-organizing
dynamics of the sandpile maximize the utilization of the
architecture.

The price to a high utilization is, however, the amount of
migrations required. In this sense, Fig. 4b shows the AMT
associated with previous results. The figure reveals distinct
trends that are framed in boxes for a more detailed analysis.
The first trend, in box A, holds for Ni.90 and shows a
graceful increase of the AMT which always remains below
1. That means that the system is able to yield utilizations of
up to U ' 0.9 by migrating tasks less than once. This trend
changes in box B as approaching Ni=100: a critical point
giving rise to a phase transition, i.e. between the graceful
role of migrations in box A and the frenetic activity in box
C, the system has entered in a state of self-organized criticality
in a very thin region between order and chaos.

0
10
20
30
40
50
60
70
80
90

100

0 2000 4000 6000 8000 10000

Si
ze

of
m

ig
ra

tio
ns

Simulation cycles

N96

Fig. 5. Runtime dynamics of migrations for N96. The size of avalanches
is not homogeneously distributed along the run.

1

10

100

1000

10000

1 10 100 1000 10000

Fr
eq

ue
nc

y

Size of avalanches

g = 1

N96
N100
N104

Fig. 6. Distributions of avalanches for N96(+), N100(�) and N104(M).
The SOC phenomenom [14], [33] is typically associated to the g = 1
exponent in a power-law cx�g.

To gain further insights into this particular state, let us
investigate the runtime dynamics of the workloads N96,
N100 and N104 at the phase transition. As exemplified in
Fig. 5, a first thing to be noticed is that migrations are not
homogeneously distributed along the run but they come in
bursts or avalanches. A fingerprint of SOC systems is that the
frequency of such avalanches is in power-law proportion to
their sizes: a behavior that emerges without any tuning of
parameters but as an inherent property of the system (see
e.g. [14]). Fig. 6 compiles these frequency-size curves for the
respective workloads under study. The results provide some
hints about the dynamics on the phase transition: strictly
speaking, neither N96 nor N104 exhibit the characteristics of
a true power-law. On the one hand, N96 lacks the repre-
sentative long tail of such a kind of distribution. On the
other hand, N104 presents an U-shaped distribution with an
attractor in large avalanches. In other words, we may say
that only the N100 scenario is working in a self-organized
criticality regime. If we recall that the system evolves to such
configuration without any central control, the inference is
that the sandpile converges to a self-organized critical state
when the incoming rate of instructions and the throughput
of the system are in balance (e.g. the incoming rate of
instruction in N100 is 100 instruction per cycle while the
throughput of the architecture 10⇥ 10 is also 100 instruction
per cycle); a fact from which we can extract a first analytical
conclusion of the model:
Conclusion 1. The sandpile load-balancer is naturally driven to

critical states when the incoming workload is equal to the
maximum throughput of the system.
The question arising from the previous conclusion is:

how can we use this property to perform energy-efficient
computing? The following sections present boundless sys-
tems as the framework to answer this question.

6 INTRODUCING BOUNDLESS SYSTEMS

Let us define a computational boundless system (boundless
system for short) as a computing architecture P� that has
an unlimited number of resources P� = {p1, . . . , p•} and
where every resource pj 2 P� has two possible states, p+i 2
P+ (activated) or p�j 2 P� (deactivated), holding that:

{P+ [P� = P�} ^ {P+ \ P� = ∆}

Although the definition poses a strong theoretical as-
sumption on the availability of resources, many real sys-
tems, such as the scale-on-demand services in cloud com-
puting, suffice to support the claim in practice: a boundless
system is simply an oversized infrastructure granting access
to more resources than those potentially needed.

A system of this kind offers a unique theoretical frame-
work to investigate different operational modes of the sand-
pile. In particular, we propose a boundless system as an
ideal platform for dealing with the previously presented
problems of under- and overloads. In order to adapt the
sandpile model to a boundless system, algorithm 1 will
require the following modifications:

1) Instead of being randomly dropped, tasks must be
initially assigned to a single resource which acts as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

0

100

200

300

400

500

0 2000 4000 6000 8000 10000

N
o.

of
re

so
ur

ce
s
|P

+
|

Simulation cycles

N400
N200
N100
N50
N25

(a) Different workloads acting on an equally parameterized sandpile with r = 1, hc = 4 and m = 1.

0

100

200

300

400

500

0 2000 4000 6000 8000 10000

N
o.

of
re

so
ur

ce
s
|P

+
|

Simulation cycles

N100
r = 1, hc = 4, m = 1

r = 1, hc = 12, m = 1
r = 1, hc = 24, m = 4
r = 3, hc = 24, m = 1

(b) Same workload acting on different parameterized sandpiles.

Fig. 7. Number of active resources P+ ⇢ P� for different workloads and settings of the sandpile. In all workloads one new task arrives every cycle
during the first 10000 cycles of simulation; the i index in Ni stands for the length of tasks, e.g. in N25 the length of every task is n = 25 instructions.

an entry point to the system, i.e. line 3 in algorithm 1
must be modified by e.g. p0,0.push(i).

2) Calling the shi f t function must return some ele-
ment. Otherwise the processor p+j is turned off p�j .

3) At the calling of the push function, a deactivated
processor p�j is turned on again p+j .

4) As a boundless system is not toroidal, there is no
chance for endless avalanches and therefore, we do
not require to implement a hop limit control.

As a first approach to investigate the sandpile dynamics
in a boundless system, Fig. 7 shows the number of active
resources P+ as the sandpile is turning them off and on at
runtime. In particular, Fig. 7a analyzes the case in which
different workloads arrive to an equally parametrized sand-
pile. The aim is showing the self-organizing abilities of the
sandpile model for adapting the size of the system to the
requirements of the workload. In fact, the system remains in
dynamic equilibrium around the sizes where the incoming
workload and the throughput of the system are in balance
(see conclusion 1).

In a second test case, the response of four different
parametrized sandpiles is analyzed over the same work-
load. The parametrization follows the constraint hc � m ⇥
2r(r + 1) established in Table 2 for different r, m and hc
parameters. The aim is at analyzing the sensibility of the
model to parametrization. Fig. 7b displays the robustness
of the model to parametrization: for any of the settings,
the only remarkable difference is on the granularity of a

dynamical equilibrium that stabilizes the number of active
resources around those values where the incoming ratio of
instructions and throughput cancel each other. Hence, we
may conclude that robustness is an organic property of the
sandpile:
Conclusion 2. In boundless systems, the sandpile model robustly

converges to self-organized states where the number of active
resources are proportional to the workload (P+ µ N).

7 TRADING-OFF ENERGY AND QOS IN BOUND-
LESS SYSTEMS

The self-organizing capacities of the sandpile are an efficient
mechanism for adapting the size of the system to the char-
acteristics of the incoming workload in boundless systems.
In this section, we aim at investigating the implications of
such a behavior in the energy consumption and the QoS
delivered by the system. With this in mind, a new type
of workload N⇠ is designed such that the tasks follow a
sinusoidal pattern of arrival (see Fig. 8).

The energy consumption of the boundless system is
analyzed according to equation 6, where the energy E relates
to the number of active resources P+. Furthermore, as a
baseline for comparisons, we establish a set of conventional
architectures where the number of resources remains fixed
throughout the entire run (P+ = P). The sizes in such a
set go from a 5 ⇥ 5 to a 10 ⇥ 10 architecture. In order to
produce a fair comparison, the baseline set implements the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

N
o.

of
ta

sk
s

Simulation cycles

8n 2 N⇠ : {n = 1 inst.}

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

N
o.

of
re

so
ur

ce
s
|P

+
|

Simulation cycles

r = 1, hc = 4, m = 1

Fig. 8. Sinusoidal pattern of arriving tasks N⇠ (top) and respective
response of the sandpile model in P�(bottom). Every task has a length
of one instruction, i.e. 8n 2 N⇠ : n = 1 instruction.

previously presented round-robin (RR) job assignment policy
which is optimal when the processing elements and the
workloads are homogeneous.

Fig. 9 shows the accumulated energy consumption of
the different architectures until completion of all tasks in
N⇠. The results point out a conflicting relationship between
the two objectives: the time required to process N⇠ and
the energy consumed. In that sense, the 7 ⇥ 7 configuration
dominates all the rest of round-robin counterparts and only
the sandpile is able to drive the boundless system to the
same results in energy and time. In fact, the average number
of active resources in the boundless system is q+ ' 50 while
in the 7 ⇥ 7 architecture is q = 49. A remarkable difference
is that the sandpile is able to converge to such results in a
self-organizing way.

Such results offer a preliminary insight into the trade-off
that the sizing of a system represents to the consumption
of energy and the QoS delivered. However, the flowtime
(F) defined in equation 1 provides a more accurate metric
to measure the actual QoS. According to the flowtime,
Fig. 10 shows how the sandpile is able to outperform the
round-robin counterparts in terms of QoS. Even though the
sandpile has been shown energetically equivalent to RR

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 5000 10000 15000 20000

A
cc

um
ul

at
ed

en
er

gy

Simulation cycles

RR 10 ⇥ 10
RR 9 ⇥ 9
RR 8 ⇥ 8
RR 7 ⇥ 7
RR 6 ⇥ 6
RR 5 ⇥ 5
sandpile

Fig. 9. Energy consumption required for completing the N⇠ work-
load. The different regular architectures implement a round-robin (RR)
scheduling policy, while the sandpile works in a boundless system.

0.1

1

10

100

1000

10000

0 5000 10000 15000 20000

Q
oS

–
A

vg
.fl

ow
tim

e
(c

yc
le

s)

Simulation cycles

RR 10 ⇥ 10
RR 9 ⇥ 9
RR 8 ⇥ 8
RR 7 ⇥ 7
RR 6 ⇥ 6
RR 5 ⇥ 5
sandpile

Fig. 10. Average flowtime (F) of tasks in the different architectures.
Please note the log-scale in the y axis.

7 ⇥ 7, the smart activation and deactivation of resources
leverages in a better flowtime: the flowtime of the sandpile
holds around F ' 3 while the RR 7 ⇥ 7 architecture does
around F ' 100. More surprisingly, the sandpile is also
superior to higher energy consuming alternatives such as
the RR 9 ⇥ 9 architecture. In fact, the only configuration
proving a better QoS is the 10x10 architecture where F = 1
but where the energy consumption is double. This winning
energy/QoS trade-off of the sandpile can be formulated as a
third analytical conclusion, which also serves as an answer
to the main research question of this paper4:

Conclusion 3. In boundless systems, the sandpile model finds
near-optimal trade-offs between the energetic efficiency and
the QoS delivered.

4. Recall that this question is posed at the Introduction: “What is the
trade-off between the energy consumed and the QoS delivered by a
sandpile distributed system?”.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

7.1 Test case using a real trace
In order to gain further insights on the runtime dynamics of
the sandpile under realistic conditions, we have conducted
additional simulations using a real trace from the Grid
Workloads Archive5. In particular we have considered the
100000 initial tasks from the Auver Grid trace6. The parsing
of the trace is done straightforwardly by assuming that a
second in the trace is equivalent to a simulation cycle.

As a baseline for comparisons, we use the non-blocking
implementation of the work-stealing algorithm proposed
by Arora, Blumofe and Plaxton in [34] which is a well-
established approach in dynamic load-balancing. Further-
more, we also derive optimal boundaries for the trace lever-
aging on the assumption of a boundless system with infinite
homogeneous resources. Specifically, optimality is easy to
derive by implementing the following three rules:

1) All resources are deactivated by default 8pj 2 P� :
{pj = p�j }.

2) At arrival (ai), every task (i) is assigned to a dif-
ferent and unique resource which is turned on for
processing the task (p+j .push(i)).

3) After processing the task, the resource p+j is turned
off again p�j .

On the one hand, it can be seen that the energy consump-
tion derived by this method is minimal as the resources
are only activated when they are doing an effective job by
processing the assigned task. On the other hand, these three
rules guarantee a minimal flowtime as the queuing time
of every task is zero and thus, the flowtime reduces to the
processing time. Substituting in equation 1:

f (i, P) = ni +

aiz }| {
max(wi,j)�ai| {z }

0

Fig. 11 shows the response of the sandpile to the Au-
ver Grid trace and compares it with the optimal number
of resources |P+| established by the method above. Both
trends show a strong correlation (r = 0.915) which indicates
that the sandpile is able to self-organizingly converge to
near-optimal states where the number of active resources
depends on the incoming workload, i.e. supporting conclu-
sion 2.

As for the QoS delivered, the sandpile is compared
against the work-stealing approach in Fig. 12. In the case
of work stealing, we assume an architecture with a finite
number of 510 resources (which was the maximum number
of optimal resources required in Fig. 11). The reason to
employ a finite architecture and not a boundless system
is that, by design, workers are always awake as they need
to pro-actively check the status of their respective queues.
Thus, work stealing must run in a finite number of resources
or otherwise they would consume an infinite amount of
energy.

With respect to the obtained results, Fig. 12 shows
that both approaches –the sandpile and work stealing– are
able to dynamically yield near-optimal solutions showing

5. http://gwa.ewi.tudelft.nl/ Accessed on April 2016
6. Available at ⇠/datasets/gwa-t-4-auvergrid

0

100

200

300

400

500

600

0 2 4 6 8 10 12

N
o.

of
re

so
ur

ce
s
|P

+
|

Simulation cycles (⇥106)

Optimal
Sandpile

Fig. 11. Adaptive behavior of the sandpile for the Auver Grid trace
compared with the optimal number of resources. The peak of active
resources is 510, reached around the simulation cycle 9.5 ⇥ 106.

a strong correlation with the optimal flowtime, i.e. the re-
spective correlation coefficients are r = 0.764 and r = 0.778.
Although work stealing seems to yield slightly better results
than the sandpile, it has to be noted that the optimal size of
the architecture has required to be fine-tuned beforehand
to that end while the sandpile yields such values in a self-
organized manner.

101

102

103

104

105

106

0 2 4 6 8 10 12

Q
oS

-A
vg

.fl
ow

tim
e

(c
yc

le
s)

Simulation cycles (⇥106)

Optimal
Work Stealing (510 workers)

Sandpile

Fig. 12. Average flowtime (F) of tasks for the sandpile and the work
stealing approaches compared against the optimal flowtime. Please
note the log-scale in the y axis.

Finally, Fig. 13 shows the energy consumption of the
different approaches until the completion of the Auver Grid
trace. As the working mechanism of work stealing requires
that all resources are always awake and pro-actively check-
ing the status of their piles, the energy consumption of the
approach grows linearly with respect to the simulation time.
Meanwhile, the self-organizing dynamics of the sandpile are
able to yield an optimal energy consumption by turning
resources on and off at runtime. For a real trace like the
one presented here, that can add up to an energy saving
factor of 2.65.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

0 ⇥ 100

1 ⇥ 109

2 ⇥ 109

3 ⇥ 109

4 ⇥ 109

5 ⇥ 109

6 ⇥ 109

0 2 4 6 8 10 12

A
cc

um
ul

at
ed

en
er

gy

Simulation cycles (⇥106)

Optimal
Work Stealing (510 workers)

Sandpile

Fig. 13. Energy consumption of the different approaches for completing
the Auver Grid workload. The optimal and the sandpile trends overlap to
the naked eye.

Overall, the presented test case (which assumes realistic
conditions for the workload) supports conclusion 3 on the
near-optimal trade-off that the sandpile yields in terms of
energetic efficiency and QoS. Nonetheless, more interesting
is that these results provide some evidence on the poten-
tialities of SOC systems when applied to energy-efficient
dynamic load-balancing, which is the main motivation of
this exploratory investigation.

8 CONCLUSIONS

In this paper, we present a self-organized criticality
approach for dynamically load-balancing computational
workloads. The model is inspired by the Bak-Tang-
Wiesenfeld sandpile: a cellular automaton reaching critical
states at the edge of chaos that are released in the form of
avalanches.

With some minimal modifications, the sandpile model is
extended to deal with the problem of scheduling indepen-
dent tasks. To that end, we consider the case of a boundless
system: a topology with an infinite number of sites. All
sites are initially deactivated, so that the system does not
consume energy, however every site can be turned on at
runtime in order to process some tasks.

We show that the decentralized execution of the sandpile
is able to self-organizingly adapt the number of active
resources to the particularities of incoming workloads with
a simple mechanism: when the number of tasks in a site
exceed a certain threshold, the site reassigns those tasks
to its neighbors. Given that all sites implement the same
rule, a simple reassignment of tasks may start an avalanche
that will propagate until the system finds a new state of
equilibrium. This emergent load-balancing response of the
system is analyzed in terms of two conflicting objectives:
minimizing the energy consumption (i.e. number of active
resources through time) and maximizing the QoS (i.e. the
average waiting time of tasks in the system). In this context,
the conducted experimentation shows that the approach is
able to converge towards near-optimal trade-offs where the
energetic efficiency and the QoS are maximized.

In future works, we aim at investigating the applica-
bility of the sandpile in real computing systems. We will
consider the most suitable domain from a set of candidate
applications such as the consolidation of virtual machines
in cloud computing systems, or the scheduling of scientific
applications in modern HPC centers. Either way, the chal-
lenging part will be minimizing the costs associated to the
migration of tasks for which we envision two complemen-
tary strategies. On the one hand, the exploratory character
of the current investigation leaves much room for further
improvements on the model, including the study of optimal
interconnection topologies or different migration policies.
On the other hand, one of the major potentials of the model
lies on its hybridization with other scheduling approaches
where, for instance, the sandpile could serve as a mere
signalling protocol to control the power states of the system.

ACKNOWLEDGMENTS

This work was supported by the Upper Normandy Re-
gion GRR-MRT PROTEC project, the scientific network
TERA-MRT, and the Luxembourg INTER/CNRS/11/03
Green@Cloud project.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010,”
Oakland, CA: Analytics Press, 2011, accessed on June 2015.
[Online]. Available: http://www.analyticspress.com/datacenters.
html

[2] CIA, “The world factbook,” accessed on June 2015. [Online].
Available: https://www.cia.gov/library/publications/resources/
the-world-factbook/

[3] L. Barroso and U. Holzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, Dec 2007.

[4] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage
and frequency scaling for precise energy and performance tradeoff
based on the ratio of off-chip access to on-chip computation
times,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 24, no. 1, pp. 18–28, 2005.

[5] D. J. Brown and C. Reams, “Toward energy-efficient computing,”
Commun. ACM, vol. 53, no. 3, pp. 50–58, Mar. 2010. [Online].
Available: http://doi.acm.org/10.1145/1666420.1666438

[6] M. Guzek, J. E. Pecero, B. Dorronsoro, and P. Bouvry, “Multi-
objective evolutionary algorithms for energy-aware scheduling on
distributed computing systems,” Applied Soft Computing, vol. 24,
no. 0, pp. 432 – 446, 2014. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1568494614003408

[7] V. Sarkar, S. Amarasinghe, D. Campbell, W. Carlson, A. Chien,
W. Dally, E. Elnohazy, M. Hall, R. Harrison, W. Harrod et al.,
“Exascale software study: Software challenges in extreme scale
systems,” ExaScale Computing Study, DARPA IPTO, 2009.

[8] K. Wang and I. Raicu, “Paving the road to exascale with many-task
computing,” Doctoral Showcase, IEEE/ACM Supercomputing/SC,
2012.

[9] W. B. Powell, Approximate Dynamic Programming: Solving the curses
of dimensionality. John Wiley & Sons, 2007, vol. 703.

[10] J. Kołodziej, S. U. Khan, L. Wang, and A. Y. Zomaya, “Energy
efficient genetic-based schedulers in computational grids,” Con-
currency and Computation: Practice and Experience, vol. 27, pp. 809–
829, 2012.

[11] H. Sheikh, I. Ahmad, and D. Fan, “An evolutionary technique for
performance-energy-temperature optimized scheduling of parallel
tasks on multi-core processors,” Parallel and Distributed Systems,
IEEE Transactions on, 2015.

[12] K. D. Devine, E. G. Boman, R. T. Heaphy, B. A. Hendrickson,
J. D. Teresco, J. Faik, J. E. Flaherty, and L. G. Gervasio, “New
challenges in dynamic load balancing,” Appl. Numer. Math.,
vol. 52, no. 2-3, pp. 133–152, Feb. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.apnum.2004.08.028

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

[13] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, “Load
balancing and unbalancing for power and performance in cluster-
based systems,” in Workshop on compilers and operating systems for
low power, vol. 180. Barcelona, Spain, 2001, pp. 182–195.

[14] P. Bak, C. Tang, and K. Wiesenfeld, “Self-organized criticality:
An explanation of the 1/f noise,” Phys. Rev. Lett., vol. 59, pp.
381–384, Jul 1987. [Online]. Available: http://link.aps.org/doi/
10.1103/PhysRevLett.59.381

[15] P. Bak, How nature works: the science of self-organized criticality.
Springer Science & Business Media, 2013.

[16] Z. Olami, H. J. S. Feder, and K. Christensen, “Self-organized
criticality in a continuous, nonconservative cellular automaton
modeling earthquakes,” Phys. Rev. Lett., vol. 68, pp. 1244–1247,
Feb 1992. [Online]. Available: http://link.aps.org/doi/10.1103/
PhysRevLett.68.1244

[17] R. V. Solé and S. C. Manrubia, “Extinction and self-organized
criticality in a model of large-scale evolution,” Phys. Rev.
E, vol. 54, pp. R42–R45, Jul 1996. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.54.R42

[18] J. M. Beggs and D. Plenz, “Neuronal avalanches in neocortical
circuits,” The Journal of neuroscience, vol. 23, no. 35, pp. 11 167–
11 177, 2003.

[19] S. Wolfram, “Universality and complexity in cellular automata,”
Physica D: Nonlinear Phenomena, vol. 10, no. 1, pp. 1–35, 1984.

[20] C. G. Langton, “Computation at the edge of chaos: phase transi-
tions and emergent computation,” Physica D: Nonlinear Phenomena,
vol. 42, no. 1, pp. 12–37, 1990.

[21] M. Willebeek-LeMair and A. Reeves, “Strategies for dynamic load
balancing on highly parallel computers,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 4, no. 9, pp. 979 –993, sep 1993.

[22] M. Jelasity, A. Montresor, and O. Babaoglu, “A modular paradigm
for building self-organizing peer-to-peer applications,” in In Engi-
neering Self-Organising Systems, G. Di Marzo Serugendo. Springer,
2003, pp. 265–282.

[23] M. Salman, C. Bertelle, and E. Sanlaville, “The behavior of load
balancing strategies with regard to the network structure in
distributed computing systems,” in Signal-Image Technology and
Internet-Based Systems (SITIS), 2014 Tenth International Conference
on, Nov 2014, pp. 432–439.

[24] J. Hu and R. Klefstad, “Decentralized load balancing on unstruc-
tured peer-2-peer computing grids,” in Network Computing and
Applications, 2006. NCA 2006. Fifth IEEE International Symposium
on, july 2006, pp. 247 –250.

[25] S. Khan and I. Ahmad, “A cooperative game theoretical technique
for joint optimization of energy consumption and response time
in computational grids,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 20, no. 3, pp. 346–360, March 2009.

[26] J. Laredo, P. Bouvry, F. Guinand, B. Dorronsoro, and
C. Fernandes, “The sandpile scheduler,” Cluster Computing,
vol. 17, no. 2, pp. 191–204, Jun. 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10586-013-0328-x

[27] J. Laredo, B. Dorronsoro, J. Pecero, P. Bouvry, J. Durillo, and C. Fer-
nandes, “Designing a self-organized approach for scheduling bag-
of-tasks,” in P2P, Parallel, Grid, Cloud and Internet Computing, 2012
Seventh International Conference on, Nov 2012, pp. 315–320.

[28] C.-C. Chen, L.-Y. Chiao, Y.-T. Lee, H. wen Cheng, and Y.-M. Wu,
“Long-range connective sandpile models and its implication to
seismicity evolution,” Tectonophysics, vol. 454, no. 4, pp. 104–107,
2008.

[29] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[30] J. D. C. Little, “A proof for the queuing formula: l = lw,”
Operations Research, vol. 9, no. 3, pp. 383–387, 1961.

[31] M. Guzek, S. Varrette, V. Plugaru, J. Pecero, and P. Bouvry,
“A holistic model of the performance and the energy-efficiency
of hypervisors in an hpc environment,” in Energy Efficiency in
Large Scale Distributed Systems, ser. Lecture Notes in Computer
Science, J.-M. Pierson, G. Da Costa, and L. Dittmann, Eds.
Springer Berlin Heidelberg, 2013, pp. 133–152. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-40517-4 13

[32] M. Harchol-Balter, M. E. Crovella, and C. D. Murta, “On choosing
a task assignment policy for a distributed server system,” Journal
of Parallel and Distributed Computing, vol. 59, no. 2, pp. 204
– 228, 1999. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0743731599915770

[33] P. Bak and K. Sneppen, “Punctuated equilibrium and criticality
in a simple model of evolution,” Phys. Rev. Lett., vol. 71, pp.
4083–4086, Dec 1993. [Online]. Available: http://link.aps.org/
doi/10.1103/PhysRevLett.71.4083

[34] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread scheduling
for multiprogrammed multiprocessors,” in Proceedings of the Tenth
Annual ACM Symposium on Parallel Algorithms and Architectures,
ser. SPAA ’98. New York, NY, USA: ACM, 1998, pp. 119–129.
[Online]. Available: http://doi.acm.org/10.1145/277651.277678

