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Abstract—SCADE is an environment for developing critical
embedded software that is used for more than twenty years
in various application domains like avionics, nuclear plants,
transportation, automotive. It comes with a language and a code
generator which complies with the highest safety standards like
DO-178C, IEC 61508, EN 50128, IEC 60880 and ISO 26262.

The language has been founded on the pioneering work by
Caspi and Halbwachs on Lustre. In 2008, a major revision of
the language and compiler, named ‘Scade 6’, was released. One
of its novelty was a smooth integration of the traditional data-
flow style of Lustre with control-structures inspired from those
of Esterel and SyncCharts, with static/dynamic semantics and
a compilation inspired from Lucid Synchrone. In particular, it
relies on four dedicated type systems — typing, clock calculus,
causality analysis, initialization analysis — and a compilation
through source-to-source transformations into a minimal clocked
data-flow language, based on a Kahn semantics, that is translated
to imperative code.

One ongoing work is the generation of code for multi-core
architectures. Because of the intrinsic deterministic parallelism
of Scade, we propose a solution that relies on annotations that
specify what must be executed concurrently but do not change
the semantics.

The paper is a survey of past to ongoing work on Scade 6
language definition and implementation.

Index Terms—synchronous languages, compiler, multi-core.

I. INTRODUCTION

Synchronous languages were introduced about thirty years
ago by the works on three academic languages: SIGNAL [1],
ESTEREL [2] and LUSTRE [3]. These domain-specific lan-
guages were targeted at real-time control software, allowing
users to write modular and mathematically precise system
specifications, to simulate, test and verify them, and to au-
tomatically translate them into embedded code.

These languages were all founded on the synchronous
approach [4] where a system is modeled ideally, with com-
munications and computations supposed to be instantaneous,
with (1) a priori guaranteed important safety properties (de-
terminism, deadlock freedom, bounded execution time and
space) and (2) an a posteriori verification that the generated
implementation is fast enough.

These foundations immediately raised interest in industries
having to deal with safety-critical applications implemented in
software or hardware, and in particular, those assessed by in-
dependent authorities and following certification standards [5].

This is the context in which SCADE1 was initiated in the mid
nineties, with the support of two companies, Airbus and Merlin
Gerin, and in collaboration with the research laboratory VER-
IMAG in Grenoble, and the software publisher VERILOG [6].
Since 2000, SCADE is developed by ANSYS/ESTEREL-
TECHNOLOGIES.2

SCADE is an integrated development environment (IDE)
with a graphical block diagram editor and tool support to
represent synchronous programs. In the first versions, the
underlying language of the SCADE tool was essentially
LUSTRE V3 [7], augmented with a few specific features
requested by users but minor in terms of expressiveness. This
situation persisted until version 5 of SCADE. To support the
development of critical applications without having to verify
the consistency between the model and the generated code, a
‘qualified code generator’ called KCG was developed. Its first
version was released in 1999 and has been used, since then,
in software projects with the most demanding safety levels of
many standards (DO-178C, IEC 61508, EN 50128, IEC 60880
and ISO 26262), where high confidence in automation is
expected. It is unique in the field of safety critical embedded
software and contributed to the industrial success of SCADE.
It also demonstrates the interest of a semantically well-defined
language in the context of qualification processes.

In 2008, a new language named ‘SCADE 6‘ and its compiler
were released 3. The objective was to widen the scope of
applications developed with SCADE, yet keeping the abil-
ity to certify its code generator with the highest standards.
SCADE 6 introduced several new language features, like the
mix of data-flow equations and hierarchical state machines,
new compile-time checks expressed by four different dedicated
type systems, and a compilation through a sequence of source-
to-source transformations into a minimal clocked data-flow
language. The language features and its design are described
in [8]. The qualified code generator (KCG) for this new version
of the language was developed from scratch using state-of-the-
art techniques in language design and implementation.

1SCADE stands for Safety-Critical Development Environment
2http://www.ansys.com/products/embedded-software/ansys-scade-suite
3To distinguish between the environment and its underlying programming

language, we write SCADE for the former and SCADE (with small capitals)
for the later.978-1-5386-6418-6/18/$31.00 © 2018 IEEE



On the embedded target side, the use of multi-core ar-
chitectures is now considered for safety critical systems and
there is a pressing demand for a SCADE compiler that targets
those architectures. The implicit (deterministic) parallelism of
synchronous block diagrams make them good candidates for a
parallel implementation. This is not at all a new observation:
several works have addressed the automatic distribution of
synchronous programs [9], the implementation of synchronous
models on a multi-task OS either running on a single core [10],
[11] or multi-core [12] to cite a few.

In this paper, we informally go through the main design
decisions of SCADE 6 and show how they were used in the
development of KCG. We then report on an approach we
have followed for targeting a multi-core platform. Its principle
is to rely on annotations on the model that no not affect
the semantics but tells the compiler to generate independent
tasks that communicate through channels. The generated set
of tasks form a Kahn process network (KPN) [13] which
computes the very same streams as the source model. The
actual implementation of this set of tasks on the final platform,
as well as its timing analysis, is done afterwards and outside
of the language.

The paper is organized in the following way. Section II
reminds the Kahn semantics of the core data-flow kernel of
SCADE 6 and the purpose of the type-based static checks.
Section III presents the qualified compiler KCG. Section IV
presents the way we propose to address multi-core program-
ming in SCADE. We conclude in Section V.

II. SCADE 6 INTUITIVE SEMANTICS

The main extension introduced in SCADE 6 compared to
LUSTRE is the mix of dataflow equations and hierarchical
state-machines [14]. Its design goes further with the definition
of all the static and sufficient conditions for a program to be
correct, conditions that are expressed as type systems, in the
style of LUCID SYNCHRONE [15]. Code generation is done
when all static conditions are fulfilled. The language is built
on top of a small dataflow language kernel, reminiscent of
LUSTRE. High level constructs are progressively rewritten into
this language kernel which is then compiled into sequential
code.

The type systems have been formalized for the whole
SCADE 6 language but their correction has been proved only
on the dataflow kernel. These proofs can be found in the
related papers quoted below.

In this section we remind the reader of the stream semantics
of the dataflow kernel of SCADE 6, we give some insights of
the way we defined the state machine semantics, and then go
through its four type systems.

A. A dataflow kernel

The kernel language used in SCADE 6 is essentially that
of [16]. It is a variant of LUSTRE, with the operator current
replaced by merge and extended with a reset construct. Here,

we consider a simpler version to remind its semantics over
streams.

e ::= i | x | op(e, ..., e) | f(e, ..., e)
| pre(e) | e -> e
| e when e | merge(e, e, e)

The language of expressions (e) is made of constants (i)
like integers or Booleans, identifiers (x), imported operator
(op) (e.g., arithmetic operators like +, −) applied point-
wise to streams, the application of an operator (f ), an un-
initialized unit delay (pre) and a stream initialization operator
(->), the filtering of a stream according to a Boolean stream
(when) or the combination of two streams according to a
boolean condition (merge). Note that these Boolean conditions
appearing in when and merge are called clocks.

A system is defined by an operator (denominated a ‘node’
in LUSTRE and SCADE), that is, a function that transforms a
set of input streams into a set of output streams. The body of
the function is made of a set of equations of the form x = e
where defined variables are either outputs of the function or
local to the function. E.g., the following definition computes
the cumulative function of input u, that is, its n-th value is the
number of true values of input u up to instant n. Expression
0 -> pre o is a unit delay o whose first output is 0 and its n-
th value is the n−1-th value of o. The conditional if/then/else
and + apply point-wise.

node counting_events(u:bool)
r e t u r n s (o: bool)

var o: i n t;
l e t
v = i f u then 1 e l s e 0;
o = v + (0 -> pre o);

t e l ;

There are several useful semantics for LUSTRE and its
variants. The simplest one is based on the semantics for
dataflow networks given by Kahn in his seminal paper [13]
that we remind below. Let T be a set, nil a particular value
of this set. Let Tn be the set of sequences of length n
made by concatenating elements from T . ε is the empty
sequence. T ? = ∪∞n=0T

n is the Kleene star operation. We
write v.s for a sequence whose first element is v and tail
is s. T∞ is the set of finite and infinite sequences of type
T , that is, T∞ = T ∗ ∪ Tω . The set (T∞,≤, ε), with ≤ the
prefix order between sequences, ε the minimum element, is a
complete partial order (cpo). Then the Kleene theorem applies:
if f : T∞ → T∞ is a continuous function, an equation
x = f(x) defines the sequence x∞ = limn→∞(fn(ε)) which
is the smallest fixpoint of f . This construction generalizes to
the case of mutually recursive equations. Hence, a function
from sequences to sequences whose outputs are defined by
a set of mutually recursive equations over sequences is also
continuous, provided all the functions it calls are continuous.

An expression e with (free) variables x1, ..., xn that are
sequences is interpreted as a continuous function of these
variables [17]. For that, we define the semantics of primitives
in Figure 1. They are all continuous functions. A constant i is



lift0(v) = v.lift0(v)

lift1(op)(v.s) = op(v).lift1(op)(s)

lift1(op)(ε) = ε

lift2(op)(v1.s1, v2.s2) = op(v1, v2).lift
2(op)(s1, s2)

lift2(op)(s1, s2) = ε if s1 = ε or s2 = ε
(v1.s1)→ (v2.s2) = v1.s2
(s1)→ (s2) = ε if s1 = ε or s2 = ε
pre(s) = nil .s
when(v.s, true.c) = v.when(s, c)
when(v.s, false.c) = when(s, c)
when(s1, s2) = ε if s1 = ε or s2 = ε
merge(true.c, v.s1, s2) = v.merge(c, s1, s2)
merge(false.c, s1, v.s2) = v.merge(c, s1, s2)
merge(true.c, ε, s2) = ε
merge(false.c, s1, ε) = ε
merge(ε, s1, s2) = ε

Fig. 1. The stream interpretation for primitives

interpreted as an infinite sequence made of that constant, that
we write lift0(i). Function lift1(.)(.) defines the semantics of
the pointwise application of a unary operator op; lift2(.)(.) de-
fines the case for a binary operator. Function pre(.) defines the
semantics of the un-initialized unit delays. Function (.)→ (.)
defines the semantics of the stream initialization. Function
when(., .) defines the semantics of the filtering operator when;
merge(., ., .) defines the semantics of the operator merge.

The interest of this semantics is its simplicity: a system
is a function over sequences, hiding implementation details.
However it is not well-adapted to express operational proper-
ties like the existence of an execution with bounded memory,
synchronization issues and the actual size of a buffer and
the ability to produce statically scheduled code. 4 To address
those questions, the Kahn semantics can be turned into a
synchronous Kahn semantics that use explicit present/absent
values [18]–[20].

B. The hierarchical state machines of SCADE 6

In the language kernel we have considered, the body of a
function is defined by a set of equations. In SCADE 6, those
equations can be arbitrarily composed with state machines. A
state machine is a special form of equation: it is defined by
a set of states, each of them containing a set of equations
(possibly containing state machines themselves) and condi-
tions to go from an active state to an other one. The variables
defined in one state can either be local to the state or global
to the automaton. The full language preserves the static single
assignment (SSA) property of the language kernel: only one
state is active per synchronous cycle. If a variable is defined
in two different states, only one equation defines its value for
a given cycle. Moreover, an automaton introduces a set of

4Using length arguments, it is enough to justify the so-called clock calculus
of LUSTRE to ensure that the composition of two bounded memory networks
is a bounded one [17].

scopes, one per state allowing to define variables that only
exist when this state is active. 5

The semantics of state machines is defined by their trans-
lation to the dataflow kernel. This is done by capturing the
structure of scopes with clocks based on an enumeration: one
enumerated value per state and one enumerated type per state
machine. The exclusivity between states is ensured by a simple
encoding: the stream that defines the current active state has a
single value at every reaction. Its current value depends on the
previous active state and the transitions in the current state.

The merge operator generalizes to n streams on n clocks
derived from the same enumeration. Once these items are
introduced, each local variable declared in a scope becomes
a variable (with the appropriate renaming to avoid collisions)
declared at the top level of the encompassing operator with the
clock introduced for its scope. Then all the right-hand sides
of the different exclusive definitions are on exclusive clocks
and can be merged. A bottom up application of this principle
allows to translate arbitrary nested scopes.

These translation principles shows that scopes and their ac-
tivation are, in SCADE 6, just an alternative way to manipulate
clocks. This specification is given in [14] with all the necessary
details for an implementation.

C. Static semantics

The static semantics encompasses the invariants that a
program must satisfy before considering its execution. For
SCADE 6 we express them as typing problems so that, quoting
Robin Milner, “well-typed programs cannot go wrong” [21].
Without going into the details of the types, we give for each
of them what “going wrong” means. The type systems are
applied in the order they are presented below.

1) Type checking: This analysis checks types, in the usual
sense. For SCADE 6, the following design choices have been
taken:

• The type of variables must be declared; a type is either an
enumerated set of values, a record, an array parameterized
by a size expression whose value has to be known at
compile time, or an abstract type.

• Type equivalence is based on structural equality.
• The language provides a number of built-in type classes,

like numeric and integer. E.g., int8, int16, int32, etc., are
elements of the class integer.

• Types can be polymorphic and possibly constrained
by the type classes numeric, float , integer, signed, or
unsigned.

• Functions may be parameterized by a size. This parameter
can be used in an array type, for example.

Well-typed programs satisfy the following properties:

• function arguments have the expected type so that the
program does not have type errors at run-time;

• array accesses are within array bounds.

5Remember that only the body of a node introduce a scope in LUSTRE.



2) Clock checking: The clock analysis ensures that pro-
grams can be executed synchronously, that is, the corre-
sponding Kahn process network does not need any, possibly
unbounded, buffering mechanism. Said differently, the imple-
mentation of a stream of values of type t only needs to store
the current value. As SCADE 6 forbids recursion (e.g., the
Kahn process network defining the sieve of Eratosthene [13]
is forbidden), then a well-clocked program defines a network
that can be implemented with a bounded memory, provided
that functions (imported or not) applied point-wise to a stream
also run in bounded memory.

This property can be formulated as:
• a well-clocked program can be implemented in bounded

memory, provided that all the imported functions it uses
do so.

This property is fundamental for safety-critical embedded
applications.

3) Causality analysis: The purpose is to ensure that
the synchronous Kahn process network does not deadlock.
SCADE 6 adopts the same simple policy as LUSTRE: all cycles
defined by the read/write dependences between variables must
cross a unit delay (pre) [22]. This dependence relation is
syntactical, in the sense that it does not depend on actual
values of signals or their clock, contrary to ESTEREL [23]
and SIGNAL [24], for example. The main property the analysis
ensures is:
• The streams in a causally correct SCADE 6 program are

such that the definition of the value of a stream neither
depends on itself nor on values that appear after in this
stream.

The causality implemented by the compiler is actually
a bit stronger and is such that the stream definitions can
be evaluated in a statically chosen order. This leads to the
corollary that:
• A causally correct program can be compiled into stati-

cally scheduled sequential code that runs in bounded time
provided that all imported functions do so.

As for clock checking, the causality analysis guarantees the
existence of an upper bound on the time necessary to compute
a reaction also known as Worst Case Execution Time (WCET).

4) Initialization analysis: In LUSTRE, the unit delay oper-
ator pre returns a sequence that is un-initialized at the first
instant. The un-initialized delay is used in combination with
the initialization operator -> which allows to define the first
value for a stream. A typical use being in an equation:

x = x0 -> f(pre x)

which defines the stream x whose first value is the first value
of x0 and following values (non-first ones) are equal to the
corresponding values of f(pre x) i.e. all the values but the
first.

The un-initialized delay is thus a source of non determinism
in the program since the actual implementation for a nil is
not defined by the language. The purpose of the initialization

analysis is to ensure that the outputs of the main operator6

never depend on those values. The analysis is also expressed as
a dedicated type system, applied modularily to every function
definition and computing a type signature for each of them.
• A main SCADE 6 program that has passed the initializa-

tion analysis is deterministic, i.e., applied to two equal
sequences of inputs, it returns two equal sequences of
outputs

This property focuses on the main operator outputs because
this is where determinism matters; the property is weaker for
internal flows to allow the use of operator (like pre) able
to produce a nil . Determinism is an important property for
critical systems, certification standards require in general to
provide evidence of the determinism of the software. The KCG
compiler of SCADE guarantees this property.

III. SCADE 6 COMPILER

The SCADE 6 code generator is qualified for the main
standards of safety critical industry (DO-178C, IEC 61508,
EN 50128, IEC 60880 and ISO 26262). This means that it can
be used in the software development of a safety critical system
without having to verify that the code produced actually
implements the SCADE model. The present section gives a
few facts about this code generator and its development as a
qualified tool.

A. Compiler Organization

The organization of the compiler (KCG) is rather classic.
Static analyses are applied in sequence right after parsing,
in the order they have been presented in section II-C. If
they all succeed, code generation starts with a sequence
of source-to-source transformations that progressively rewrite
high-level constructs (e.g., hierarchical state machines, activa-
tion conditions) into the clocked data-flow kernel. Then, the
data-flow kernel is translated into an intermediate sequential
language. Finally, target imperative code (C or Ada) is emitted.
Figure 2 summarizes these steps at a high level; bibliographic
references are given on the arrows.

Within the transformations, many optimizations are per-
formed on the data-flow form (dead-code elimination, constant
propagation, common sub-expression elimination, etc.). The
scheduling in the data-flow compilation implements heuristics
aiming at minimizing memory size. Control structures are
merged in the sequential representation.

B. Qualified Development

Qualification is based on traceability between a specification
and implementation. The source and intermediate languages
have been formally specified together with the static semantics
(defined by inference rules) and source-to-source transforma-
tions (defined by rewrite rules). Those specifications are used
by the development team to implement the compiler and by
an independent verification team to test it.

6The main of a SCADE application is also called root node.
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Fig. 2. SCADE 6 Compiler Organization.

For the implementation, we chose OCAML [27] which in
2005 presented quite a challenge for a qualified tool. Indeed,
certification standards often push companies to use well es-
tablished technologies. We thus had to provide convincing
evidence that OCAML was well adapted to write a compiler.
The argumentation was built on the small distance between
the formal specification and its implementation in OCAML.
This industrial use of OCAML in a certified context is detailed
in [28] and [29].

The current version of SCADE KCG comprises approxi-
mately fifty thousands lines of code (50 KLoC) and uses a
simplified OCAML runtime to satisfy the objectives of the
standards. The formalized static semantics for the whole input
language is about one hundred pages long and has been
updated over more than ten years to integrate new language
features. The detailed design is more than one thousand pages
long.

IV. CODE GENERATION FOR MULTI-CORE TARGETS

Multi-core targets are starting to be considered for safety-
critical applications because of their better power efficiency,
the limited availability of single-core targets and the need for
more computing power.

This section describes a flow to generate a code that can
be integrated on a multi-core target. We only give here an
overview of the flow adopting a SCADE user point of view.
The details of this code generation will be the subject of a
future communication.

As a first step, we have decided not to extend the language
with dedicated constructs and just provide some compiler
pragmas to exploit the intrinsic parallelism of SCADE pro-
grams. The main advantage of this approach is that it applies
on legacy SCADE 6 models. On the target side, we generate
C code and make no hypothesis on the architecture. Our goal
is to allow SCADE users to take their model and generate
a code structured to exploit computational resources of their
target.

A. Overview

The objective of this ongoing work is to:
• generate code that can be executed efficiently on multi-

core or many-core targets;
• preserve the deterministic semantics of the language;
• be target-independent since the hardware and software

architectures used in critical embedded systems differ
widely from one domain to another (with or without OS,
with or without shared memory, number of cores, . . . ).

Note that this work focuses on the structure of the generated
code to satisfy these objectives, in the vein of the work on
automatic distribution of synchronous programs [9]. We are
not looking at performance issues (like scheduling or efficient
implementation of communications). We are also not focusing
on memory interferences [30], which can impact the ability
to compute the Worst Case Execution Time (WCET) of the
code, as they are specific to a platform. Our goal is to provide
a flow to make sure that these issues can be dealt with at
integration level, with no impact on the functional model. This
is important for industrial use, where, in general, the team in
charge of the design is different than the team in charge of
the integration on the target platform.

The proposed flow is the following:

1) The user designs the SCADE model or reuses an existing
model.

2) The user annotates the model to express potential paral-
lelism. An operator instance is annotated with a ded-
icated pragma to indicate that it should be extracted
into a task. The call to this operator will be replaced
with channel operations, so that this instance can be
executed separately, eg. in another thread. Note that this
annotation does not change the semantics of the model,
only the shape of the generated code.

3) The Multicore Code Generator (MCG) generates C code
for each task as well as traceability information mapping
the C code to the input model and a complete description
of the generated KPN.

4) A target-specific integration script generates code (based
on the generated KPN) to allocate and schedule the
generated tasks to threads/cores and to implement com-
munications.

Steps 2 to 4 are done during integration.
Tasks can be extracted from any instance in the model. For

instance, it is possible to extract instances inside an activate
block or a state machine. Tasks are not restricted to instances
in the root operator. Tasks can also be nested, meaning that
a task can be extracted from an instance inside an operator
which is already itself a task.

This flow ensures a clear separation of concerns between the
different activities involved in running the code on a multi-core
target. In particular, the functional architecture of the model
can remain independent of target integration matters, in the
sense that its organization does not need to know about the
final code mapping to available cores.

The model focuses on what is the function to implement,



Fig. 3. Rosace in SCADE

not where the necessary computation takes place. The code
generator takes care of splitting parts of the model into tasks
ready for integration on the target.

B. Generated code

MCG generates tasks that communicate via one-to-one
channels, that is, a Kahn process network [13]. One task
executes the root operator of the SCADE model. One task is
generated for each operator instance annotated in the input
model. This task receives data on an input channel, calls the
operator and then sends the result on an output channel.

Tasks are similar to the objects described in [16]. Each task
has a context, containing its memories and several methods:
• a reset method to initialize the memories;
• one or several cycle methods.

The main difference with KCG generated code and [16] is
that the cycle method can be split into several methods. The
objective of this splitting is to reject communication out of
the sequential code and to not over-constrain the possible
schedules. A contribution of MCG is to preserve the possible
schedules in order not to interfere with the efficiency of
the multi-core integration. This problem is similar to the
issue of modular compilation discussed in LUSTRE [31]. The
methods of the same task can communicate directly through
the context. Each cycle method has input and output channels
to communicate with other tasks. The body of each method
contains sequential code, generated as usual from the SCADE
model.

Figure 3 shows a SCADE version of the ROSACE case
study [12]. Annotated instances, that is, specifying that an
independent task must be generated, are colored in blue. The
corresponding generated KPN is depicted in Figure 4. One
task is created for each annotated instance. The root task
is made of three methods (root 1, root 2 and root 3). The
channels to implement are identified (c1 to c9) with their
source and destination. Figure 5 shows a possible schedule for
the thread implementing the root node; the communications

(green boxes) are part of the integration code to be written by
the user (may be automated by platform specific scripts).

The KPN model, or more generally the usage of isolated
tasks communicating through message passing, is pretty com-
mon for multi-core execution, especially for safety-critical
system. It guarantees isolation between tasks, which only
communicate through channels. Communication points be-
tween cores are also well-identified and separated from regular
computations. This allows for more control over memory
interferences.

MCG itself does not provide a solution to mitigate memory
interferences. It does however make sure that it remains an
integration problem, with no impact on the functional model.
Properties such as isolation are guaranteed provided that
the integration code respects the usage conditions of MCG
generated code.

C. Target integration

The target integration consists in allocating the tasks gener-
ated by MCG to threads/cores and to implement communica-
tions. The KPN is described in the traceability information
generated by MCG. [32] describes an implementation for
the PXROS operating system on Infineon Aurix platform. It
is also straightforward to implement communications using
traditional data structures like semaphores or C11 atomics.

The KPN model gives a formal model of the code generated
by MCG. It is used to specify the usage conditions of this code,
for instance how communications should be implemented or
the dependencies between tasks. The target integration must
ensure that these conditions are verified, to ensure that the
behavior of the code is the same as the sequential code. For
instance, we guarantee that the generated KPN only needs
buffers of size one. We can also rely on the literature for
scheduling and allocation algorithms for KPNs [33].
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D. Impact on the code generator

As we said above, the language considered by MCG and
its semantics is SCADE 6, thus all the front-end is shared
with KCG. The only additional checks are relative to the
added pragmas and their compatibility with other compiling
directives like operator inlining.

The communication channels are then introduced in the
core dataflow form. The splitting of the operator bodies is
done in a new intermediate language that allows several cycle
methods per operator; this is a kind of declarative version
of the imperative simple object-based language introduced
in [16]. The algorithm that implements this step is inspired
by the modular compilation of LUSTRE proposed in [31].

The sequential parts of the code i.e. the body of the
different methods that implement an operator are scheduled
and generated the same way KCG does.

E. An extension: pipelining

In some cases, it may not be possible to parallelize an
existing SCADE model because of the sequentiality of the
computations. A classic solution in that case is to use pipelin-
ing and to add memories between the different parts of the
computation. It takes more steps to compute the result, but
the different parts of the pipeline can be executed in parallel.

Pipelining can be achieved in the same way in SCADE, by
adding a unit delay (fby), between different operators. This
results in a channel with an initial token, containing the initial
value of the fby operator. It is interesting to note that for this
extension the KPN model once again allows to describe the
generated code using existing concepts and algorithms.

V. CONCLUSION

This paper illustrates the relevance of Kahn process net-
works to address parallelism; it is used here for both language
design and as an execution model used to abstract multi-core
architectures. These two parallelisms correspond to different
phases of a system design:
• its functional definition with SCADE 6 and

root 1

send on c1
send on c2
send on c3
send on c4

receive on c5

root 2

receive on c9
receive on c8

root 3

send on c7

Fig. 5. A schedule for the Rosace root

• its implementation on a multi-core architecture with the
help of MCG.

When designing a function it is good to concentrate on
what has to be computed regardless on when it has to be
scheduled; that is what synchronous languages allow. And
when implementing on a multi-core it is not necessary to
know what the pieces of code to integrate are computing
but only timing aspects (worst-case execution time, worst-case
communication time) to make the placement choices.

The originality of the proposition is to not correlate these
two steps and allow to have a functional architecture that
differs from the implementation one.

Another interesting point is the preservation of the seman-
tics. The language itself is not changed to adapt to multi-
core targets; it is still the same and thus deterministic with
all the appreciated properties when it comes to verification or



maintenance. The annotations introduced to identify the tasks
are just compiler directives that affect the organization of the
generated code, not the behavior of the model.

This separation is also interesting from an industrial point
of view because it allows to have different implementation
strategies depending on the actual hardware. It often happens
that a given embedded function is implemented on different
micro-controllers with different number of cores and different
computation power per core. In automotive for instance, top-
end cars can have more expensive hardware and share some
functions with lower-end ones.

MCG will be part of the next release of SCADE. It is not
qualified yet and the use of multi-core on the most critical
systems is still a work in progress for both industry and
certification authorities. This work is a contribution to this
reflection. It provides a partial answer to the questions raised
by these architectures when used in a safety critical context.
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