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Abstract

Let Ω ⊂ Rd be a domain and Σ a hypersurface cutting Ω into two parts Ω±.
For µ > 0, consider the function h whose value is (−µ) in Ω− and 1 in Ω+. In
the present contribution we discuss the construction and some properties of the
self-adjoint realizations of the operator L =−∇ · (h∇) in L2(Ω) with suitable
(e.g. Dirichlet) on the exterior boundary. We give first a detailed study for
the case when Ω± are two rectangles touching along a side, which is based
on operator-valued differential operators, in order to see in an elementary but
an abstract level the principal effects such as a loss of regularity and unusual
spectral properties. Then we give a review of available approaches and results
for more general geometric configurations and formulate some open problems.

Contribution to the proceedings of the conference “Spectral theory and mathematical physics”,
Université de Lorraine, Metz (France), May 16–18, 2017, to be published in Revue Roumaine de
Mathématiques Pures et Appliquées in the special issue “Spectral theory and applications in
mathematical physics” edited by J. Faupin, M. Măntoiu and V. Nistor

1 Introduction
The present contribution discusses some approaches to the strict mathematical def-
inition of non-elliptic self-adjoint differential operators of a special form. Namely,
let Ω⊂Rd be bounded open set and Σ be a hypersurface (called interface) splitting
Ω into two parts Ω− and Ω+ (for the moment we do not discuss the precise regu-
larity assumptions). Let µ > 0 be a parameter and h : Ω→ R takes the value (−µ)
in Ω− and is equal to 1 in Ω+. We will be interested in operators L acting in L2(Ω)
and at least formally given by the differential expression u 7→ −∇ · (h∇)u in Ω and
the Dirichlet boundary condition u = 0 on ∂Ω. Such operators appear in the math-
ematical theory of negative-index metamaterials arised from the pioneering works
by Veselago [43]. At the naive level, if one identifies L2(Ω) ' L2(Ω−)⊕L2(Ω+),
u' (u−,u+) with u± being the restrictions of u to Ω±, then the above operator L is
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expected to act as (u−,u+) 7→ (µ∆u−,−∆u+) while the functions u± should satisfy
the boundary conditions

u± = 0 on ∂Ω, u− = u+ on Σ, µ∂−u− = ∂+u+ on Σ,

with ∂± being the outward normal (with respect to Ω±) derivative on Σ. As will be
explained below, understanding the precise regularity properties of the functions u±
appears to be a non-trivial task depending on a combination of the value µ and the
geometric properties of Ω±. In some cases, a very low regularity of u± is needed in
order to have an operator with reasonable properties, and this is an essential feature
of the problem which is of relevance for various effects such as the presence of an
anomalous localized resonance and the cloaking, see [1, 8, 28, 35, 34, 33], and the
critical value of the parameter µ = 1 appears to be of a special importance.

Remark that if one has a self-adjoint operator A in a Hilbert space, then solving
the equation Au = f with a given f can be understood in terms of the domain of A
and of its spectral properties. As the above differential expression for L is formally
symmetric, it is natural to look for self-adjoint realizations of the differential ex-
pression, which then may provide a rigorous reformulation of the above equation.
In the present text we collect some known results and approaches to the study of
such self-adjoint differential operators.

It seems that the problem was first addressed in [6] for the case when Ω− ⊂Ω,
both Ω± are smooth and µ 6= 1, which was then extended to the case of do-
mains with corners, see a detailed discussion in Section 5. The question of self-
adjointness for the critical case µ = 1 was first addressed in the very recent paper
[2], in which the very particular case of Ω = (−1,1)×(0,1), Ω− = (−1,0)×(0,1),
Ω+ = (0,1)× (0,1), h = ±1 in Ω±. was considered. An interesting feature of the
model is the fact that the resulting self-adjoint operator appears to have an infinitely
degenerate zero eigenvalue, hence, it is not with compact resolvent, although the
domain Ω is bounded. This comes from the fact that the functions in the operator
domain can be very irregular near the interface {0}× (0,1), and a precise descrip-
tion of the resulting operator domain is given as well. On the other hand, the con-
struction appears to be very sensible to the symmetries, in particular, the approach
had no easy extension to configurations consisting of two non-congruent rectangles
touching along a side.

In fact we use the paper [2] as our starting point and use the situation with
two rectangles as a toy example illustrating the main features of the problem and
the special role of the value µ = 1, which allows for a rather complete spectral
analysis and may provide us with some intuition for the general case. Therefore, we
prefer to give first a detailed study of this situation, which is done in the following
three sections. In Section 2 we recall the basic notions of the theory of self-adjoint
extensions. In Section 3 we give some facts related to operator-valued differential
equations, which represents an abstract version of the so-called modal analysis, see
e.g. [44] and can also be obtained in a much more general setting, see e.g. [18,
19, 20, 32, 39], but we prefer to provide complete “manual” proofs in order to keep
the presentation at an elementary level. In Section 4, the preceding constructions
are used to study the self-adjointness of indefinite Laplacians on rectangles, which

2



gives the sought extension of the result of [2]. In the last section 5 we give a review
of available approaches and results for more general geometries and state some open
questions, in the hope that the present text will attract the attention of the spectral
community to this relatively new class of problems.

2 Basic constructions for self-adjoint extensions

2.1 Notation
The scalar product in a Hilbert space H will be denoted as 〈·, ·〉H or simply as 〈·, ·〉
if there is no ambiguity. The scalar produce will be assumed anti-linear with respect
to the first argument. If B is a linear operator in a Hilbert space, then by domB, kerB,
ranB, σ(B) and ρ(B) we denote its domain, kernel, range, spectrum and resolvent
set, and B and B∗ stand for the closure of B and for its adjoint, respectively. If B
is self-adjoint, then σess(B) and σp(B) stand respectively for its essential spectrum
and point spectrum (defined as the set of eigenvalues). By B(G ,H ) we mean the
Banach space of the bounded linear operators from a Hilbert space G to a Hilbert
space H , and we will denote B(H ) := B(H ,H ).

2.2 Boundary triples
Let us briefly recall the key points of the boundary triple approach to self-adjoint
extensions following the first sections of [9]. A detailed discussion can also be
found in [17, 20].

Let S be a closed densely defined symmetric operator in a Hilbert space H . A
triple (Ξ,Γ,Γ′), where Ξ is a Hilbert space and Γ,Γ′ : domS∗→ Ξ are linear maps,
is called a boundary triple for S if the following three conditions are satisfied:

(a) 〈 f ,S∗g〉H −〈S∗ f ,g〉H = 〈Γ f ,Γ′g〉Ξ−〈Γ′ f ,Γg〉Ξ for f ,g ∈ domS∗,
(b) the map domS∗ 3 f 7→ (Γ f ,Γ′ f ) ∈ Ξ×Ξ is surjective,

(c) kerΓ∩kerΓ
′ = domS.

A boundary triple for S exists if and only if S admits self-adjoint extensions, i.e. if its
deficiency indices are equal, dimker(S∗− i) = dimker(S∗+ i) =: n(S). A boundary
triple is not unique, but for any choice of a boundary triple (Ξ,Γ,Γ′) for S one has
dimΞ = n(S), and the maps Γ,Γ′ are bounded with respect to the graph norm of S∗.

Assume from now on that the deficiency indices of S are equal and pick a bound-
ary triple (Ξ,Γ,Γ′). Let Π : Ξ→ ΞΠ := ranΠ ⊆ Ξ be an orthogonal projector in Ξ

and Θ be a linear operator in the Hilbert space ΞΠ carrying the induced scalar prod-
uct. Denote by AΠ,Θ the restriction of S∗ onto

domAΠ,Θ =
{

f ∈ domS∗ : Γ f ∈ domΘ, ΠΓ
′ f = ΘΓ f

}
,

then the closedness, the symmetry and the self-adjointness of AΠ,Θ in H are equiv-
alent to the closedness, the symmetry and the self-adjointness of the operator Θ in
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ΞΠ, and for the closures one has AΠ,Θ = A
Π,Θ. Finally, any self-adjoint extension

of S writes as AΠ,Θ.
The spectral analysis of the self-adjoint extensions can be carried out using the

associated Weyl function. Namely, let A be the restriction of S∗ to kerΓ, i.e. cor-
responds to (Π,Θ) = (0,0) in the above notation, which is therefore a self-adjoint
operator. For z ∈ ρ(A) the restriction Γ : ker(S∗− z)→ Ξ is a bijection, and we
denote its inverse by G(z). In other word, for ξ ∈ Ξ, one has G(z)ξ := f with
f ∈ domS∗ uniquely determined by the conditions (S∗− z) f = 0 and Γ f = ξ . The
map z 7→ G(z), called the associated γ-field, is then a holomorphic map from ρ(A)
to B(Ξ,H ), and one has the identity

G(z)−G(w) = (z−w)(A− z)−1G(w) for any z,w ∈ ρ(A). (1)

The associated Weyl function is then the holomorphic map z 7→ M(z) := Γ′G(z) ∈
B(Ξ) defined for z∈ ρ(A). The above maps M and G satisfy a number of identities,
in particular,

M′(z) = G(z)∗G(z)> 0, 0 ∈ σ
(
M′(z)

)
for any z ∈ R∩ρ(A). (2)

To describe the spectral properties of the self-adjoint operators AΠ,Θ let us con-
sider first the case Π = 1, then Θ is a self-adjoint operator in H , and the following
holds, see Theorems 1.29 and Theorem 3.3 in [9]:

Proposition 1. For any z ∈ ρ(A)∩ρ(A1,Θ) one has 0 ∈ ρ
(
Θ−M(z)

)
and

(A1,Θ− z)−1 = (A− z)−1 +G(z)
(
Θ−M(z)

)−1G(z)∗. (3)

For any z ∈ ρ(A) one has

(1) z ∈ σ(A1,Θ) if and only if 0 ∈ σ
(
Θ−M(z)

)
,

(2) z ∈ σess(A1,Θ) if and only 0 ∈ σess
(
Θ−M(z)

)
,

(3) G(z) : ker
(
Θ−M(z)

)
→ ker(A1,Θ− z) is an isomorphism, hence,

z ∈ σp(A1,Θ) if and only if 0 ∈ σp
(
Θ−M(z)

)
.

Now consider a self-adjoint extension AΠ,Θ for an arbitrary orthogonal projector
Π. Denote by SΠ the restriction of S∗ to domSΠ = {u ∈ domS∗ : Γu = ΠΓ′u =
0}, which is a closed densely defined symmetric operator whose adjoint S∗

Π
is the

restriction of S∗ to domS∗
Π
= {u ∈ domS∗ : Γu ∈ ranΠ}, then (ΞΠ,ΓΠ,ΓΠ) with

ΞΠ = ranΠ, ΓΠ := ΠΓ and Γ′
Π

:= ΠΓ′ , is a boundary triple for SΠ, while the
restriction of S∗

Π
to kerΓΠ is still the original operator A = S∗|kerΓ. The associated

γ-field GΠ and Weyl function MΠ take the form z 7→ GΠ(z) := G(z)Π∗ and z 7→
MΠ(z) :=ΠM(z)Π∗, and domAΠ,Θ := {u∈ domS∗

Π
: Γ′

Π
u=ΘΓΠu}, see [9, Remark

1.30]. A direct application of Proposition 1 gives the following assertions:
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Corollary 2. For any z ∈ ρ(A)∩ρ(AΠ,Θ) one has 0 ∈ ρ
(
Θ−MΠ(z)

)
and

(AΠ,Θ− z)−1 = (A− z)−1 +GΠ(z)
(
Θ−MΠ(z)

)−1(GΠ(z)
)∗
. (4)

For any z ∈ ρ(A) one has:

(1) z ∈ σ(AΠ,Θ) if and only if 0 ∈ σ
(
Θ−MΠ(z)

)
,

(2) z ∈ σess(AΠ,Θ) if and only if 0 ∈ σess
(
Θ−MΠ(z)

)
,

(3) GΠ(z) : ker
(
Θ−MΠ(z)

)
→ ker(AΠ,Θ − z) is an isomorphism, hence, z ∈

σp(AΠ,Θ) if and only if 0 ∈ σp
(
Θ−MΠ(z)

)
.

2.3 Construction of boundary triples using trace maps
In various situations one deals with a symmetric operator obtained by restricting a
self-adjoint operator with well-known properties to the kernel of an explicitly given
linear map. This observation may be used to construct a boundary triple and to
study other self-adjoint extensions of the symmetric operator. We present here very
briefly the respective construction, which is described in detail e.g. in [38] or in [9,
Section 1.4.2].

Let A be a self-adjoint operator in a Hilbert space H , then one denotes by
H (A) the Hilbert space given by the linear space domA equipped with the scalar
product 〈u,v〉H (A) = 〈u,v〉H + 〈Au,Av〉H . Let a Hilbert space Ξ and a bounded
surjective linear operator τ : H (A)→ Ξ be such that the kernel kerτ is a dense
linear subspace of H . Such a map τ will be referred to as a trace map for A. It
follows that the restriction S of A to kerτ (i.e. the restriction to the vectors with
zero traces) is a closed densely defined symmetric operator in H . To avoid some
technicalities we additionally assume that ρ(A)∩R 6= /0 and pick an arbitrary value
λ ∈ ρ(A)∩R. For z ∈ ρ(A) consider the maps

G(z) :=
(
τ(A− z)−1)∗ ∈B(Ξ,H ), M(z) := τ

(
G(z)−G(λ )

)
∈B(Ξ),

then the adjoint S∗ is given by

domS∗ :=
{

u = uλ +G(λ ) fu : uλ ∈ domA and fu ∈ Ξ

}
,

(S∗−λ )u = (A−λ )uλ .

Furthermore, the triple (Ξ,Γ,Γ′) with Γu := fu and Γ′u := τuλ is a boundary triple
for S, and z 7→ G(z) and z 7→ M(z) are the associated γ-field and Weyl function,
respectively.

2.4 Trace maps for direct sums
In what follows we will be interested in boundary triples for infinite direct sums of
operators. In view of the preceding considerations it is useful to understand how to
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construct a trace map for a direct sum of operators. The construction below follows
[29, 37].

Let An be non-negative self-adjoint operators in Hilbert spaces Hn, n ∈ N. For
each n we consider a trace map τn : H (An)→ Ξn for An, where Ξn is a Hilbert
space. Due to the constructions of the preceding subsection this gives rise to closed
densely defined symmetric operators Sn := An|kerτn and the associated γ-fields and
Weyl functions z 7→ Gn(z) and z 7→ Mn(z). To construct a trace map for the self-
adjoint operator A :=

⊕
n∈NAn we use [37, Theorem 2.5], which gives the following

result: For n ∈ N set Rn :=
√

M′n(−1) ∈B(Ξn), then the linear operator

τ : H (A) 3 (un)n∈N 7→ (R−1
n τnun)n∈N ∈

⊕
n∈N

Ξn, (5)

is bounded and surjective. This construction can be adjusted as follows:

Proposition 3. Let Kn ∈B(Ξn) be strictly positive and such that for some a ≥ 1
one has

a−1K2
n ≤M′n(−1)≤ aK2

n for any n ∈ N. (6)

then the linear operator

τ : H (A) 3 (un) 7→ (K−1
n τnun) ∈

⊕
n∈N

Ξn

is bounded and surjective.

Proof. Representing K−1
n = (K−1

n Rn)R−1
n and comparing with (5) one sees that it is

sufficient to show that for some b > 0 there holds

‖K−1
n Rn‖ ≤ b and

∥∥(K−1
n Rn)

−1∥∥≤ b for all n ∈ N,

which is due to the self-adjointness of Rn and Bn equivalent to

‖RnK−1
n ‖ ≤ b and

∥∥(RnK−1
n )−1∥∥≤ b for all n ∈ N, (7)

Remark that the condition (6) takes the form a−1K2
n ≤ R2

n ≤ aK2
n . Therefore, for any

ξ ∈ Ξn one has

‖RnK−1
n ξ‖2

Ξn
= 〈K−1

n ξ ,R2
nK−1

n ξ 〉Ξn ≤ a〈K−1
n ,K2

n K−1
n ξ 〉Ξn = a‖ξ‖2

Ξn
,

‖RnK−1
n ξ‖2

Ξn
= 〈K−1

n ξ ,R2
nK−1

n ξ 〉Ξn ≥
1
a
〈K−1

n ,K2
n K−1

n ξ 〉Ξn =
1
a
‖ξ‖2

Ξn
,

which gives the estimates (7) with b :=
√

a.

3 Sign-changing operator-valued Sturm-Liouville
operators

3.1 Sturm-Liouville operator on a bounded interval
In order to illustrate the constructions of the preceding section let us consider first a
simple one-dimensional situation. Let (a,b)⊂ R be a non-empty bounded interval.
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In the Hilbert space H = L2(a,b) consider the self-adjoint Dirichlet Laplacian

A : f 7→ − f ′′, domA =
{

f ∈ H2(a,b) : f (a) = f (b) = 0
}
,

whose spectrum consists of the simple eigenvalues π2n2/(b− a)2, n ∈ N. For the
subsequent computations we choose λ = 0 ∈ ρ(A)∩R. The resolvent (A− z)−1 is
an integral operator,

[
(A− z)−1 f

]
(t) =

∫ b

a
Kz(t,s) f (s)ds,

where the integral kernel Kz is given by

Kz(t,s) =
1√

−zsinh
(√
−z(b−a)

)
×

{
sinh

(√
−z(t−a)

)
sinh

(√
−z(b− s)

)
, t < s,

sinh
(√
−z(s−a)

)
sinh

(√
−z(b− t)

)
, t > s.

The map

τ : H (A) 3 f 7→
(

f ′(a)
− f ′(b)

)
∈ C2

is surjective and bounded due to the Sobolev embedding theorem, and the restriction
of A to kerτ is the closed symmetric operator

S : f 7→ − f ′′, domS = H2
0 (a,b).

A direct computation shows that the operators G(z) :=
(
τ(A− z̄)−1)∗ : C2 →H

are given by

G(z)
(

ξa
ξb

)
(s) = ∂tKz̄(a,s)ξa−∂tKz̄(b,s)ξb

=
sinh

(√
−z(b− s)

)
sinh

(√
−z(b−a)

) ξa +
sinh

(√
−z(s−a)

)
sinh

(√
−z(b−a)

) ξb,

and the associated map M(z) = τ
(
G(z)−G(0)

)
: C2→ C2 is

M(z) = m(z,b−a)−m(0,b−a)

with m(z, `) :=
√
−z

sinh(`
√
−z)

(
−cosh(`

√
−z) 1

1 −cosh(`
√
−z)

)
. (8)

In order to construct a boundary triple for S we remark first that the adjoint S∗ acts
as f 7→ − f ′′ on the domain domS∗ = H2(a,b). Each f ∈ domS∗ can be uniquely
represented as f = f0 +G(0)(ξa,ξb) with f0 ∈ domA and (ξa,ξb) ∈ C2, i.e.

f (s) = f0(s)+
b− s
b−a

ξa +
s−a
b−a

ξb, s ∈ (a,b),
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and as a boundary triple (C2,Γ,Γ′) for S one can take

Γ f =
(

ξa
ξb

)
=

(
f (a)
f (b)

)
,

Γ
′ f = τ f0 =

(
f ′0(a)
− f ′0(b)

)
=

(
f ′(a)
− f ′(b)

)
−m(0,b−a)

(
f (a)
f (b)

)
.

For a later use we remark that, by a direct computation,

M′(z) =
1

2
√
−z
· 1

sinh2
ζ

(
sinhζ coshζ −ζ ζ coshζ − sinhζ

ζ coshζ − sinhζ sinhζ coshζ −ζ

)
, (9)

ζ := (b−a)
√
−z.

3.2 Direct sums of Sturm-Liouville operators on a bounded
interval

Consider an infinite number sequence (λn)n∈N such that λn ≥ 0 for all n ∈ N and
that

lim
n→+∞

λn =+∞.

Let (a,b)⊂ R be a non-empty bounded interval. For each n ∈ N, in the Hilbert
space Hn := L2(a,b) consider the closed densely defined symmetric operators

Sn : fn 7→ − f ′′n +λn fn, domSn = H2
0 (a,b).

For each Sn one can construct a boundary triple as in the preceding subsection, and
the associated γ-fields Gn and the Weyl functions Mn are then given by Gn(z) =
G(z−λn) and Mn(z) = m(z−λn,b−a)−m(−λn,b−a) with m as in (8). We would
like to construct a boundary triple for the direct sum S =

⊕
n Sn. Remark that we

clearly have S∗ =
⊕

n S∗n. By An we denote the self-adjoint extension of Sn defined
by the Dirichlet boundary condition fn(a) = fn(b) = 0, and Bn will stand for the
self-adjoint extension of Sn defined by the Neumann boundary condition f ′n(a) =
f ′n(b) = 0. In addition, denote

A :=
⊕
n∈N

An, B :=
⊕
n∈N

Bn,

then both A and B are self-adjoint with compact resolvents.

Lemma 4. The linear map

τ : H (A)→ `2(N)⊗C2, τ( fn) =

((
1+λn)

1
4

(
f ′n(a)
− f ′n(b)

))
n∈N

,

is bounded and surjective.
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Proof. An elementary computation with the help of (9) shows that

(λn +1)
1
2 M′n(−1)≡ (λn +1)

1
2 M′
(
− (λn +1)

)
→ 1

2
Id for n→+∞,

and it is sufficient to use Proposition 3 with Kn = (λn +1)−
1
4 .

Using the map τ from Lemma 4 and the constructions of Subsection 2.3 one
then easily computes a boundary triple (G ,Γ,Γ′) for the operator S≡ A|kerτ ,

G := `2(N)⊗C2, Γ( fn) =

(
(1+λn)

− 1
4

(
fn(a)
fn(b)

))
n∈N

,

Γ
′( fn) =

(
(1+λn)

1
4

[(
f ′n(a)
− f ′n(b)

)
−m(−λn,b−a)

(
fn(a)
fn(b)

)])
n∈N

.

In particular, in view of the asymptotic behavior m(−λ )'−
√

λ Id for λ →+∞ it
follows that the linear maps

f 7→
(
(1+λn)

− 1
4

(
fn(a)
fn(b)

))
n∈N
∈ `2(N)⊗C2,

f 7→
(
(1+λn)

− 3
4

(
f ′n(a)
− f ′n(b)

))
n∈N
∈ `2(N)⊗C2,

are bounded with respect to the graph norm of S∗.
It is instructive to look at the self-adjoint operator B from the point of view of

the above boundary triple:

Lemma 5. The linear map

τ : H (B)→ `2(N)⊗C2, τ( fn) =

((
1+λn)

3
4

(
fn(a)
fn(b)

))
n∈N

,

is bounded and surjective.

Proof. In terms of the above boundary triple, the boundary condition for B take the
form Γ′ f = LΓ f with Γ f ∈ domL, where

L(ξn) =−
[
(1+λn)

1
4 m(−λn,b−a)ξn

]
n∈N,

i.e. the map H (B)3 f 7→ Γ f ∈H (L) is bounded and surjective. Using the asymp-
totics limλ→+∞ λ−

1
2 m(−λ ,b−a) =−Id we obtain the result.

For a later use we give two additional estimates:

Proposition 6. On domA and domB, the graph norm of S∗ is equivalent to the
norm

‖ f‖H2 := ∑
n∈N

(
‖ f ′′n ‖2

L2(a,b)+(1+λn)
2‖ fn‖2

L2(a,b)

)
< ∞.
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Proof. The graph norm of S∗ for f = ( fn) ∈ domS∗ is given by

∑
n∈N

(
‖ f ′′n +λn fn‖2

L2(a,b)+‖ fn‖2
L2(a,b)

)
,

and ‖ f ′′n + λn fn‖2
L2(a,b) = ‖ f ′′n ‖2

L2(a,b)+ λ 2
n ‖ fn‖2

L2(a,b)+ 2λnℜ〈 f ′′n , fn〉L2(a,b). Using
the integration by parts and the Cauchy-Schwarz inequality, for f ∈ domA or f ∈
domB we obtain

0≤ 2λn‖ f ′n‖2
L2(a,b) = 2λnℜ〈 f ′′n , fn〉L2(a,b) ≤ ‖ f ′′n ‖2

L2(a,b)+λ
2
n ‖ fn‖2

L2(a,b),

which gives the result.

3.3 Sturm-Liouville operator with an operator-valued potential
Let G be a Hilbert space and T be a non-negative self-adjoint operator in G with
a compact resolvent. Let us pick an orthonormal basis (en) of G consisting of
eigenfunctions of T :

Ten = λnen, λn ∈ R, n ∈ N, 〈ek,en〉= δk,n.

For s≥ 0 we will consider the Hilbert spaces Gs ≡ Gs(T ) = dom(T +1)
s
2 equipped

with the scalar product 〈u,v〉s =
〈
(T +1)

s
2 u,(T +1)

s
2 v
〉
G

, then, in particular, G0 =
G , and G2 coincides with H (T ) algebraically and topologically. By G−s ≡ G−s(T )
we denote then the dual of Gs realized as the completion of G with respect to the
scalar product 〈u,v〉−s =

〈
(T + 1)−

s
2 u,(T + 1)−

s
2
〉
G

and introduce the subspace
G∞ :=

⋂
t>0 Gt which is then dense in any Gs, s ∈ R. With these definitions, the

operator T : G∞→ G∞ extends uniquely to a bounded linear map T : Gs→ Gs−2 for
any s ∈ R, while the operator 1+T : Gs→ Gs−2 becomes unitary.

Furthermore, let I = (a,b) ⊂ R be a non-empty bounded interval and H =
L2(I,G ). Each function f ∈H can then be uniquely represented as

f (t) = ∑
n∈N

fn(t)en, fn(·) :=
〈

f (·),en
〉
G
∈ L2(a,b).

Denote by S0 the operator f 7→ − f ′′+T f defined on the domain

domS0 =
{

f : f (t) =
N

∑
n=1

fn(t)en : N ∈ N, fn ∈ H2
0 (a,b)

}
and let S be its closure, which will be called the minimal operator generated by the
differential expression −d2/dt2 +T on (a,b), and its adjoint S∗ will be called the
associated maximal operator. Using the unitary transform U : H → ⊕nL2(a,b),
f 7→ ( fn), one easily sees that S is unitarily equivalent to ⊕Sn with Sn defined as
in the preceding section 3.2, which gives a choice of a boundary triple. For what
follows is will be more instructive to not to use directly the eigenbasis (en) and the
unitary transform U associated with T and to reformulate the preceding construc-
tions using the above spaces Gs as follows:
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Lemma 7. The domain of the adjoint S∗ consists of the functions f ∈ L2(I,G ) such
that (− f ′′+T f ) ∈ L2(I,G ), where f ′′ is computed in G−2, and the operator S∗ acts
by f 7→ − f ′′+T f . For any f ∈ domS∗, there exist boundary values

f (a), f (b) ∈ G− 1
2
, f ′(a), f ′(b) ∈ G− 3

2
,

which are bounded with respect to the graph norm of S∗, and (G ⊗C2,Γ,Γ′) with

Γ f = D−1
(

f (a)
f (b)

)
, Γ

′ f = D
[(

f ′(a)
− f ′(b)

)
−m(−T,b−a)

(
f (a)
f (b)

)]
,

is a boundary triple for S, and the respective Weyl function is

M(z) = D
(

m(z−T,b−a)−m(−T,b−a)
)

D,

D :=

(
(T +1)

1
4 0

0 (T +1)
1
4

)
.

The minimal operator S is exactly the restriction of S∗ to the functions f satisfying
f (a) = f (b) = f ′(a) = f ′(b) = 0.

Let A be the extension of S corresponding to the boundary condition f (a) =
f (b) = 0, which will be called the Dirichlet realization of −d2/dt2 +T on (a,b),
and B be the extension corresponding to the boundary condition f ′(a) = f ′(b) = 0,
called then the Neumann realization. By construction of the previous subsection,
the both operators are self-adjoint and with compact resolvents.

We introduce the operator Sobolev space H2
T (I) := L2(I,G2)∩H2(I,G ). In other

words, H2
T (I) consists of the functions f ∈ L2(I,G ) satisfying

‖ f‖2
H2

T (I)
:= ∑

n∈N

(
‖ f ′′n ‖2

L2(I)+(1+λn)
2‖ fn‖2

L2(I)

)
<+∞,

and one has the obvious inclusion H2
T (I)⊂ domS∗.

Lemma 8. The linear maps

H2
T (I) 3 f 7→

(
f (a), f (b)

)
∈ G 3

2
×G 3

2
,

H2
T (I) 3 f 7→

(
f ′(a),− f ′(b)

)
∈ G 1

2
×G 1

2

are surjective. Furthermore, if f ∈ domS∗, then f ∈H2
T (I) if and only if f (a), f (b)∈

G 3
2
.

Proof. By Proposition 6, one has domA⊂ H2
T (I) and domB⊂ H2

T (I), and the sur-
jectivity follows from Lemmas 4 and 5. Now let f ∈ domS∗ with f (a), f (b) ∈ G 3

2
,

then due to the surjectivity there exists g ∈ H2
T (I) with g(a) = f (a) and g(b) =

f (b). The function f0 := f − g satisfies f0(a) = f0(b) = 0, hence, f0 ∈ domA ⊂
H2

T (I).

As a direct consequence we obtain:

Corollary 9. domS = H2
T,0(I) :=

{
f ∈ H2

T (I) : f (a) = f (b) = 0, f ′(a) = f ′(b) =
0
}

.
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3.4 Sign-changing operator on an interval
Let T be as in the preceding subsection 3.3. Consider three parameters a > 0, b > 0,
µ 6= 0, and the intervals

I− := (−a,0), I+ := (0,b), I := (−a,b).

We would like to construct and study self-adjoint realizations of the operator L in
L2(I,G ) formally given by the differential expression

(L f )(t) =
{
−µ
[
− f ′′(t)+T f (t)

]
, t ∈ I−,

− f ′′(t)+T f (t) , t ∈ I+,

the transmission conditions f (0−) = f (0+) and −µ f ′(0−) = f ′(0+) at zero and
the Dirichlet boundary condition f (−a) = f (b) = 0 at the endpoints. To be more
precise, one uses the natural identification L2(I,G ) ' L2(I−,G )⊕ L2(I+,G ) and
considers the following linear operator L in L2(I−,G )⊕L2(I+,G ):

L
(

f−
f+

)
=

(
−µ(− f ′′−+T f−)
− f ′′++T f+

)
,

domL =
{

f± ∈ H2
T (I±) : f−(−a) = f−(0)− f+(0) = f+(b) = 0,

−µ f ′−(0) = f ′+(0)
}
.

We will consider the operator L as an extension of another closed densely defined
symmetric operator. Namely, let A± be the Dirichlet realizations of −d2/dt2+T in
I±, which are both self-adjoint in L2(I±,G ) and with compact resolvents. Consider
the operator A := (−µA−)⊕A+ and the linear map

τ : H (A)→ G 4, τ

(
f−
f+

)
=

(
D 0
0 D

)
−µ 0 0 0
0 −µ 0 0
0 0 1 0
0 0 0 1




f ′−(−a)
− f ′−(0)

f ′+(0)
− f ′+(b)

 ,

where

D :=

(
(T +1)

1
4 0

0 (T +1)
1
4

)
which is bounded and surjective due to the above constructions, and consider the
restriction S of A to kerτ . Indeed, the operator S decomposes as S = (−µS−)⊕S+,
where S± are closed densely defined symmetric operators in L2(I±,G ) covered by
the constructions of Lemma 7, and the adjoint is similarly decomposed as S∗ =

12



(−µS∗−)⊕S∗+. As a result, we obtain a boundary triple (G 4,Γ,Γ′) for S with

Γ f =


(T +1)−

1
4 f−(−a)

(T +1)−
1
4 f−(0)

(T +1)−
1
4 f+(0)

(T +1)−
1
4 f+(b)

 ,

Γ
′ f =


−µD

[(
f ′−(−a)
− f ′−(0)

)
−m(−T,a)

(
f−(−a)

)
f−(0)

)]
D
[(

f ′+(0)
− f ′+(b)

)
−m(−T,b)

(
f+(0)
f+(b)

)]
 ,

the associated Weyl function is

M(z) =
(

D 0
0 D

)
N(z)

(
D 0
0 D

)
,

N(z) :=

(
−µ

[
m(− z

µ
−T,a)−m(−T,a)

]
0

0 m(z−T,b)−m(−T,b)

)
,

and the expression of the respective γ-fields z 7→ G(z) will have no importance, we
just remark that due to (1) the only possible singularities of z 7→ G(z) at the points
of σ(A) are poles with finite-dimensional residues.

In view of Lemma 8, the domain of L can be rewritten as

domL =
{

f = ( f−, f+) ∈ domS∗ : f±(0) ∈ G 3
2
, −µ f ′−(0) = f ′+(0),

f−(−a) = f−(0)− f+(0) = f+(b) = 0
}
. (10)

The last boundary condition in (10) can be rewritten as Γ f = ΠΓ f , or, equivalently,
as Γ f ∈ ranΠ, where Π : G 4→ G 4 is the orthogonal projector given by

Π( f1, f2, f3, f4) =
1
2
(0, f2 + f3, f2 + f3,0

)
.

In the subsequent constructions it will be convenient to use the unitary map U :
G → ranΠ given by Ug = 1√

2
(0,g,g,0), then U∗(0,g,g,0) =

√
2g, and (10) takes

the form

domL =
{

f = ( f−, f+) ∈ domS∗ : Γ f ∈U(domΘ),

U∗ΠΓ
′ f = ΘU∗Γ f

}
. (11)

where Θ is a linear operator in G given by

Θ =
1
2
(T +1)

1
4
√

T
(

coth(b
√

T )−µ coth(a
√

T )
)
(T +1)

1
4 , (12)

domΘ = G2.
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Therefore, in terms of boundary triples one represents L = AΠ,UΘU∗ (see Subsec-
tion 2.2), and we remark that

M (z) :=U∗ΠM(z)Π∗U

=
1
2
(T +1)

1
4
√

T
(

coth(b
√

T )−µ coth(a
√

T )
)
(T +1)

1
4

− 1
2
(T +1)

1
4

[√
T − zcoth(b

√
T − z)

−µ

√
T +

z
µ

coth
(

a
√

T +
z
µ

)]
(T +1)

1
4 .

Proposition 10. For µ 6= 1, the operator L is self-adjoint and has a compact resol-
vent.

Proof. According to the discussion of Subsection 2.2, the self-adjointness of L is
equivalent to the self-adjointness of Θ in G . One easily sees that on domΘ one has
Θ= 1−µ

2 T +C with a bounded self-adjoint operator C. As T defined on G2≡ domT
is self-adjoint, the operators Θ and then L are self-adjoint too. Furthermore, for non-
real z the operator Θ−M (z) has a compact inverse. As A is with compact resolvent
as well, it follows from the resolvent formula (4) that the resolvent of L is a compact
operator.

Proposition 11. For µ = 1, the operator L is not closed, but it is essentially self-
adjoint. Its closure L is the restriction of S∗ to the domain

domL =
{

f = ( f−, f+) ∈ domS∗ : f−(−a) = f (b) = 0,

f−(0) = f+(0), − f ′−(0) = f ′+(0)
}
. (13)

and the essential spectrum of L is {0}. If a = b, the zero is an isolated infinitely
degenerate eigenvalue of L . If a 6= b, then 0 is not an eigenvalue of L . In this
case, there exist ε > 0 and N > 0 such that there exist a bijection E between the set
{n : n ≥ N} and the set of the eigenvalues of L in (−ε,ε) such that for n→ +∞

there holds

E(n)∼−2λne−2a
√

λn if a < b, E(n)∼ 2λne−2b
√

λn if a > b. (14)

Proof. One easily sees that Θ = Φ(T )|G2 with a bounded function Φ : R+ → R
satisfying Φ(+∞) = 0. Therefore, Θ is a compact operator in G . As its domain G2 is
dense in G , it has a unique self-adjoint extension, which is just the closure Θ defined
on the the whole space. According to the constructions of subsection 2.2 it implies
that L is essentially self-adjoint, and the domain of the closure L = L = A

Π,UΘU∗

is given as in (11) with Θ replaced by Θ, and by using the explicit expressions for
Γ and Γ′ one arrives at (13).

In order to study the essential spectrum of L let us remark first that one has 0 ∈
σess(Θ) due to the compactness of Θ, hence, by Corollary 2 one has 0 ∈ σess(L ).
Therefore, it remains to show that L has no essential spectrum in R \ {0}. To
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see this, remark first that M (z)− z
2 Id is a compact operator for z /∈ σ(A). Denote

Σ := σ(A)∪{0}, then for z ∈C\Σ one can represent M (z)−Θ = 1
2 z
(
Id+K (z)

)
,

where K (z) are compact operators meromorphically depending on z ∈C\{0} and
having at most simple poles with finite-dimensional residues at the points of σ(A).
Due to the meromorphic Fredholm alternative, see e.g. [40, Theorem XIII.13], only
two situations are possible:

(a) 0 ∈ σ(M (z)−Θ) for all z ∈ C\Σ,

(b) there exists a subset B ⊂ C \ {0}, without accumulation points in C \ {0},
such that the inverse (M (z)−Θ)−1 exists and is bounded for z ∈ C\

(
{0}∪

B∪σ(A)
)

and extends to a meromorphic function in C\
(
{0}∪B

)
such that

the coefficients in the Laurent series of (M (z)−Θ)−1 at the points of B are
finite-dimensional operators.

The case (a) is impossible, in fact, by Corollary 2 this would imply the presence
of a non-empty non-real spectrum for the self-adjoint operator L . Therefore, the
case (b) is realized. It follows then from the resolvent formula (4) that the only
possible singularities of the resolvent of L ≡ A

Π,UΘU∗ in C \ {0} are poles with
finite-dimensional residues, which shows that L has no essential spectrum in C \
{0}.

By Corollary 2 one has dimkerL = dimkerΘ. For a = b one has simply Θ = 0,
which gives dimkerΘ = ∞. For z close to 0 one can represent M (z)−Θ≡M (z) =
zM ′(0)+ z2B(z) and the norms of B(z) are uniformly bounded, and M ′(0) has a
bounded inverse by (2). It follows that there exists ε > 0 such that 0∈ ρ

(
M (z)−Θ

)
for 0 < |z| < ε , and in view of Corollary 2 this shows that 0 is an isolated point in
the spectrum of L .

For a 6= b we represent

Θ =

√
T sinh

(
(b−a)

√
T
)

sinh(a
√

T )sinh(b
√

T )
,

which shows that dimkerΘ = 0. Now it remains to show the asymptotics (14).
Let us take a small ρ > 0, then by Corollary 2 the eigenvalues of L are exactly
the values E ∈ (−ρ,ρ) for which 0 is an eigenvalue of M (E)−Θ (with same
multiplicities), i.e. iff for some n ∈ N one has√

λn−E coth(b
√

λn−E )−
√

λn +E coth
(

a
√

λn +E
)
.

Remark for each fixed n this equation admits at most finitely many solutions in
(−ρ,ρ), hence, in order to study the accumulation it is sufficient to look at large
values of n. Then one can assume without loss of generality that λn +E 6= 0, and
the equation rewrites as Fλn(E) = 0, where

Fλ (z) =

√
λ − z
λ + z

coth(b
√

λ − z)− coth(a
√

λ + z).
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An elementary analysis shows that there exists λ0 such that for λ > λ0 > 0 one has
(Fλ )

′ < 0 in (−ρ,ρ) with Fλ (−ρ) > 0 and Fλ (−ρ) < 0. Therefore, for λ > λ0
there is a unique zλ ∈ (−ρ,ρ) with Fλ (zλ ) = 0. Then one has√

λ − zλ

λ + zλ

=
coth(a

√
λ + zλ )

coth(b
√

λ − zλ )

and taking Taylor expansions with respect to zλ/λ for large λ one obtains

1− zλ

λ
+O

((zλ

λ

)2)
=

1+2e−2a
√

λ +o(e−2a
√

λ )

1+2e−2b
√

λ +o(e−2b
√

λ )
,

which shows that zλ = 2λ (e−2b
√

λ − e−2a
√

λ )+ o(e−2a
√

λ + e−2b
√

λ ) as λ → +∞.
Using E(n) = zλn we arrive at the result.

4 Indefinite Laplacians with separated variables

4.1 Indefinite Laplacian on a cylinder
Let us see how the preceding constructions apply to a simple two-dimensional ex-
ample. Let a,b, ` be strictly positive constants. Let C be a circle of length 2` > 0,
i.e. C = R/(2`Z), and Ω := (−a,b)×C . We define a function h : Ω→ R by
h(t,s) =−µ for t < 0 and h(t,s) = 1 for t > 0. Our objective is to find self-adjoint
realizations of the operator u 7→ −∇ · (h∇)u in Ω with the Dirichlet boundary con-
dition u = 0 on ∂Ω.

We denote I−= (−a,0), I+ := (0,b), I := (−a,b) and Ω± := I±×C . By setting
G := L2(C ), we obtain the identifications L2(Ω±) ' L2(I±,G ). Furthermore, we
will identify L2(Ω) ' L2(Ω−)×L2(Ω+), u ' (u−,u+), where u± is the restriction
of u to Ω±. With these conventions, let us consider the following operator L in
L2(Ω±)' L2(I±,G ) acting as L(u−,u+) = (µ∆u−,−∆u+) on the domain

domL =
{
(u−,u+) : u± ∈ H2(Ω±),

u−(−a, ·) = u+(b, ·) = 0, u−(0, ·) = u+(0, ·),

−µ
∂u−
∂ t

(0, ·) = ∂u+
∂ t

(0, ·)
}
.

In order to make a link with the constructions of the preceding section we denote by
T the self-adjoint Laplacian in L2(C ) acting as f 7→ − f ′′ on the domain domT =
H2(C ). The associated spaces Gs(T ) are then the usual Sobolev spaces Hs(C ).
Furthermore, we introduce the minimal operators S± generated by −d2/dt2 +T in
L2(I±,G ), defined on H2

T,0(I±,G ), and their adjoints, i.e. the maximal operators,
S∗±.

Proposition 12. There holds H2
T,0(I±) = H2

0 (Ω±), and the operators S± act by
u± 7→ −∆u±.
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Proof. As Ω± have smooth boundaries, the space H2
0 (Ω±) is the closure of C∞

0 (Ω±)
in the norm

‖u‖2
H2(Ω±)

=
∫

Ω±

(
|∆u|2 + |u|2

)
dx.

On the other hand, the space H2
T,0(I±) is the closure, with respect to the graph norm

‖ · ‖± of S±, of the set

D±,0 :=
{

u(t,s) =
N

∑
n=−N

u±n (t)e
2πins/` :

N ∈ N, u±n ∈C∞
0 (I±)

}
⊂C∞

0 (Ω±),

and for u ∈D±,0 one has ‖u‖2
± = ‖u‖2

H2(Ω±)
. The classical theory of Fourier series

shows that each function from C∞
0 (Ω±) can be approximated by functions from

D±,0 in any Ck-norm, hence, also in the ‖ · ‖± norms, which shows the equality
between the spaces.

In view of Proposition 12, the maximal operators S∗± are defined as in the clas-
sical PDE theory, i.e. they act as

domS∗± =
{

u± ∈ L2(Ω±) : ∆u± ∈ L2(Ω±)
}
, S∗±u± =−∆u±,

and the functions u± ∈ domS∗± admit boundary values

u±|∂Ω± ∈ H−
1
2 (∂Ω)' H−

1
2 (C )×H−

1
2 (C ),

∂±u±|∂Ω± ∈ H−
3
2 (∂Ω±)' H−

3
2 (C )×H−

3
2 (C ),

(15)

where ∂± is the outward normal derivative on the boundary of Ω±, and these bound-
ary values are bounded with respect to the graph norm of S∗±, see [31, Chapter 2,
Section 6.5].

Lemma 13. For u± ∈ domS∗±, the values of u± and ∂u±/∂ t at the endpoints of I±
defined as in Lemma 7 coincide with the Sobolev boundary values in (15).

Proof. Recall that by construction the sets

D± :=
{

u±(t,s) =
N

∑
n=−N

u±n (t)e
2πins/` :

N ∈ N, u±n ∈C∞(I±)
}
⊂C∞(Ω±).

are dense in domS∗± in the respective graph norms. For u± ∈ D±, the two trace
versions coincide. As the traces are bounded with respect to the graph norm of S∗±,
the result follows.

Finally we arrive at the following identification:
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Lemma 14. H2
T (I±) = H2(Ω±).

Proof. As the boundary of ∂Ω± is smooth, it is a standard elliptic regularity result
that, if u± ∈ domS∗±, then u ∈H2(Ω±) iff u±|∂Ω± ∈H

3
2 (∂Ω±). Now it is sufficient

to substitute the result of Lemma 13 into the second assertion of Lemma 8.

With the above Lemmas at hand, the study of the operator L is reduced to the
constructions of the subsection 3.4 by considering it as an extension of the operator
S := (−µS−)⊕S+, and by using Propositions 10 and 11 one arrives at the following
results:

Proposition 15. If µ 6= 1, then the above operator L is self-adjoint and has a com-
pact resolvent. For µ = 1, the above operator L is essentially self-adjoint, and its
closure L acts as (u−,u+) 7→ (µ∆u−,−∆u+) on the domain

domL =
{
(u−,u+) :u± ∈ L2(Ω±), ∆u± ∈ L2(Ω±),

u−(−a, ·) = u+(b, ·) = 0, u−(0, ·) = u+(0, ·),

− ∂u−
∂ t

(0, ·) = ∂u+
∂ t

(0, ·)
}
,

where the boundary values are understood as the Sobolev traces. One has
σess(L ) = {0}. If a = b, then 0 is an isolated infinitely degenerate eigenvalue
of L . If a 6= b, then 0 is not an eigenvalue of L , and the eigenvalues accumulate
to the zero from below (respectively, from above) if a < b (respectively, a > b).

4.2 Indefinite Laplacian on a rectangle
Let us modify the example of the preceding section. Let a,b, ` be strictly positive
constants and R := (−a,b)× (0, `). We define a function h : R→R by h(t,s) =−µ

for t < 0 and h(t,s) = 1 for t > 0. Our objective is to find self-adjoint realizations
of the operator u 7→ −∇ · (h∇)u in R with the Dirichlet boundary condition u = 0 on
∂R.

We denote I− = (−a,0), I+ := (0,b), I := (−a,b), R± := I±× (0, `) and use
the natural identification L2(R)' L2(R−)×L2(R+), u' (u−,u+), where u± is the
restriction of u to R±. Let us consider the following operator L0 in L2(R−)×L2(R+)
acting as L0(u−,u+) = (µ∆u−,−∆u+) on the domain

domL0 =
{
(u−,u+) : u± ∈ H2(R±),

u−(−a, ·) = u+(b, ·) = 0, u±(·,0) = u±(·, `) = 0,

u−(0, ·) = u+(0, ·), −µ
∂u−
∂ t

(0, ·) = ∂u+
∂ t

(0, ·)
}
.

In order to simplify the construction, we can reduce the study to the case of a cylin-
der. Namely, let C := R/(2`Z) and Ω := I×C . In L2(Ω) consider the orthogonal
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projector P onto the subspace Λ :=
{

u : u(t,s) = −u(t,2`− s)
}
⊂ L2(Ω) and the

unitary operator

U : L2(R)→ Λ, (Uu)(t,s) =
1√
2

{
u(t,s), s ∈ (0, `),
−u(t,2`− s), s ∈ (`,2`)

.

One easily checks that Λ is an invariant subspace of the operator L from the pre-
ceding subsection and that L0 = U∗PLP∗U . Furthermore, if one denotes by T0 the
Dirichlet Laplacian in L2(0, `) and by S0,± the minimal realizations of−d2/dt2+T0
on I± and S0 := (−µS0,−)⊕S0,+, then one also has S0 =U∗PSP∗U with the oper-
ator S from the preceding subsection, and the similar representation holds for the
maximal operator as well. Therefore, a minor variation of the preceding construc-
tions gives the following result:

Proposition 16. If µ 6= 1, then the above operator L0 is self-adjoint and has a
compact resolvent. For µ = 1, the operator L0 is not closed but is essentially self-
adjoint, and its closure L0 acts as

(u−,u+) 7→ (µ∆u−,−∆u+)

on the domain

domL0 =
{
(u−,u+) : u± ∈ L2(R±), ∆u± ∈ L2(R±),

u−(−a, ·) = u+(b, ·) = 0, u(·,0) = u(·, `) = 0,

u−(0, ·) = u+(0, ·), −∂u−
∂ t

(0, ·) = ∂u+
∂ t

(0, ·)
}
,

where the boundary values are understood as the Sobolev traces. One has
σess(L0) = {0}. If a = b, then 0 is an isolated infinitely degenerate eigenvalue
of L0. If a 6= b, then 0 is not an eigenvalue of L0, and the eigenvalues accumulate
to zero from below (respectively, from above) if a < b (respectively, a > b).

Remark that for a = b = `= 1 and µ = 1 one recovers exactly the result of [2].

5 Self-adjoint indefinite Laplacians in general
domains: a review

5.1 Smooth domains
The construction of the preceding discussion looks heavily depending on the pres-
ence of the special geometry and of the separation of variables. Nevertheless, the
general construction and the use of boundary triples appear to useful in a much more
general context.

Let d ≥ 2 and Ω⊂ Rd be a bounded open set. Furthermore, let Ω− be a subset
of Ω having a boundary Σ and such that Ω− ⊂Ω, and we set Ω+ := Ω\Ω−, whose
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boundary is ∂Ω+ = Σ∪ ∂Ω, and we denote by ∂± the outward normal derivatives
on ∂Ω±. For µ > 0, consider the function h : Ω→ R, h =−µ in Ω− and h = 1 in
Ω+. It seems that the first result discussing the self-adjointness of −∇ · (h∇) in Ω

in such a setting was obtained in [6]:

Proposition 17. Assume that d = 2, that the boundaries of ∂Ω± are C2, and that
µ 6= 1, then the operator L =−∇ · (h∇) with

domL =
{

u ∈ H1
0 (Ω) : ∇ · (h∇)u ∈ L2(Ω)

}
is self-adjoint with compact resolvent in L2(Ω).

The study was based on a reformulation using a boundary integral equation
and used a compactness result from [15]. The case µ = 1 was not covered by the
machinery, but it was clearly seen that the above operator L is not self-adjoint for
this case. In the author’s joint work [10] the study was extended to a more general
combination of parameters using the machinery of boundary triples. Namely, for
s≥ 0 introduce the sets D s ⊂ L2(Ω−)⊕L2(Ω+),

D s :=
{

u = (u−,u+) ∈ Hs(Ω−)⊕Hs(Ω+) : ∆u± ∈ L2(Ω±) ,

u− = u+ and µ∂−u− = ∂+u+ on Σ , u+ = 0 on ∂Ω

}
,

and the operator L in L2(Ω−)⊕L2(Ω+) acting as

domL = D2, L(u−,u+) = (µ∆u−,−∆u+),

then the following results were obtained:

Proposition 18. Assume that the boundaries of Ω± are C∞. If µ 6= 1, the operator L
is self-adjoint with a compact resolvent. Assume now that µ = 1, then L is not closed
but is essentially self-adjoint, and the following assertions hold for its closure L :

(a) If d = 2, then domL = D0 and σess(L ) = {0}.

(b) If d ≥ 3, then D1 ⊂ domL , and

• If on each maximal connected component of Σ the principal curva-
tures are either all strictly positive or all strictly negative (in particu-
lar, if each maximal connected component of Σ is strictly convex), then
domL = D1, and L has compact resolvent.

• If a subset of the interface Σ is isometric to a non-empty open subset of
Rd−1, then domL 6⊂D s for any s > 0, and {0} ⊆ σess(L ).

At first sight, the domain of L given in Proposition 17 is strictly larger than the
set D2 appearing as the self-adjointness domain in the first part of Proposition 18,
but in fact they coincide due to the maximality property of self-adjoint operators. A
more direct proof of the equality can be found in [16].
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Let us compare the scheme of proof of Proposition 18 given in [10] with the
above proof for rectangles. The construction starts by considering the Dirichlet
Laplacians A± in L2(Ω±) and the direct sum A = (−µA−)⊕ A+. Let ∆Σ ≤ 0
be the Laplace-Beltrami operator on Σ and ∆∂Ω ≤ 0 be the Laplace-Beltrami
operator on ∂Ω. We set Λ :=

√
1−∆Σ, Λ∂ :=

√
1−∆∂Ω considered first on

smooth functions and then extended to unitary operators Hs(Σ)→ Hs−1(Σ) and
Hs(∂Ω)→ Hs−1(∂Ω). Consider now the trace maps

τ : H (A)→ L2(Σ)⊕L2(Σ)⊕L2(∂Ω), τ(u−,u+) =

−µΛ
1
2
(
∂−u−|Σ

)
Λ

1
2
(
∂+u+|Σ

)
Λ

1
2
∂

(
∂+u+|∂Ω

)
 ,

and the closed symmetric operator S := A|kerτ . Proceeding as above one constructs
a boundary triple for S and then represents the above operator L as an extension of S
by representing in in the form L = AΠ,Θ. We remark that the orthogonal projector Π

in question is of the form Π(ϕ−,ϕ+,ϕ∂ ) =
1
2(ϕ−+ϕ+,ϕ−+ϕ+,0), and its range

will be identified with L2(Σ) with the help of the unitary operator U : ranΠ→ L2(Σ),
U(ϕ,ϕ,0) =

√
2ϕ . In order to introduce the respective operator parameter Θ one

needs additional objects. Namely, for z ∈ ρ(A) introduce the Dirichlet-to-Nuemann
maps D±z : Hs(Σ)→ Hs−1(Σ) by setting D±z f = ∂±u±|Σ, where u± are the unique
solutions of the following problems:

{
(−∆− z)u− = 0 in Ω−,

u− = f on Σ,


(−∆− z)u+ = 0 in Ω+,

u+ = f on Σ,

u+ = 0 on ∂Ω,

then Θ :=U∗Θ0U , Θ0 := 1
2Λ

1
2 (D+

0 −µD−0 )Λ
1
2 , domΘ0 =H2(Σ), and the (essential)

self-adjointness of L is then equivalent to the (essential) self-adjointness of Θ0. Up
to this point one may observe some similarity with the case of rectangles, see e.g.
(12). But, contrary to the construction for separated variables, the further analysis
is less explicit and uses the pseudodifferential calculus: for µ 6= 1 the operator Θ0
is second order elliptic, hence is self-adjoint. For µ = 1 it is at most first order
and its closure is self-adjoint and it defined at least on H1(Σ). Furthermore, the
principal symbol can be then computed explicitly, and it depends on the dimension
and the principal curvatures of Σ, which allows for the study of the two particular
cases mentioned (strictly convex or partially flat interface). One should mention that
similar geometric conditions on the interface appeared previously in the context of
the well-posedness of related transmission problems, see e.g. [36, 27].

To our knowledge, there are no more precise results on the spectrum of L for
µ = 1. The following aspects seem to be relevant for the original applications, and
we formulate them as open questions:

Open question 1 Assume that µ = 1 and d = 2. Describe the accumulation of the
eigenvalues near 0. In particular, under which conditions do the eigenvalue
accumulate to zero from above/from below only?
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Open question 2 Assume that µ = 1 and d ≥ 3. Are there Ω± such that the essen-
tial spectrum of the associated L is strictly larger than {0}? Can the essential
spectrum contain an interval or cover the whole real axis?

It seems that so far there were no works dealing with self-adjoint realizations
in the case of unbounded Ω, in particular, simply with Ω = Rd and a bounded Ω−.
While the results concerning the Sobolev regularity of the functions in the domain
seem to be easily transferable, it would be interesting to understand whether the loss
of regularity for µ = 1 has any consequence for the spectral properties. In fact, the
point 0 would always be in the essential spectrum of the resulting operator L due
to the presence of the non-compact part Ω+, so the study of the density of states of
L near 0 could be a more appropriate tool.

Indeed, one can study the dependence of the eigenvalues of L and L on param-
eters of a particular configuration. In this connection we mention the paper [13]
studying the asymptotics of the eigenvalues of L when the domain Ω− contracts to
a point.

5.2 Non-smooth domains
In [6, 16] the case of planar domains with non-smooth interfaces was studied.
Namely, let d = 2 and Ω± and h be as in the preceding section, and assume that
the interface Σ is C2 smooth except a single point O (vertex). Denote by (r,θ) the
polar coordinates centered at O, then we assume in addition that in a neighborhood
of O the domain Ω− coincides with the sector 0 < θ < ω with some ω 6= π , and
denote

µω = max
{

ω

2π−ω
,
2π−ω

ω

}
.

Consider the operator

L =−∇ · (h∇), domL =
{

u ∈ H1
0 (Ω) : ∇ · (h∇)u ∈ L2(Ω)

}
,

then the following results were obtained:

Proposition 19. If µ /∈ [µ−1
ω ,µω ], then the operator L is self-adjoint with compact

resolvent. For µ ∈ [µ−1
ω ,µω ] the operator L is closed, has deficiency indices (1,1),

and any of its self-adjoint extensions has compact resolvent.

In addition, it is shown in [16] that if (u−,u+)∈ domL, then the functions u± are
in fact H2 near each regular point of Σ. As shown in [6, 16], if µ ∈ (µ−1

ω ,µω), then
the domain of each self-adjoint extension of L contains functions behaving near O
as r±iη with some non-zero η ∈ R, and we refer to [5] for an interpretation of such
a behavior. Furthermore, this very special singularity is responsible for an unusual
behavior of eigenvalues if one smoothens Ω± near the vertex, see [12, 14].

A number of 3D situations with a non-smooth interface Σ were studied in [3].
While the self-adjointness in the L2-setting was not addressed explicitly, the analysis
suggests that for a large class of domains Ω− with corners there is a set MΣ such that
the above operator L is self-adjoint iff µ /∈MΣ. It would be interesting to carry out
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a precise analysis in such a setting and to charactzerize the critical set MΣ in terms
of geometric quantities. To our knowledge, the (essential) self-adjointness of the
above operator L for µ = 1 was never studied for the case of non-smooth interfaces.

5.3 Further results
The approaches presented were mostly based on the PDE machinery. In order to
mention alternative ways of dealing with the problem, let us return back to the situ-
ation discussed in the introduction (Section 1) and consider the sesquilinear form

q(u,u) =
∫

Ω

h|∇u|2 dx, domq = H1
0 (Ω).

Remark that by Lax-Milgram theorem for h > c > 0 there would exist a unique self-
adjoint operator L in L2(Ω) associated with the form q, i.e. such that domL⊂ domq
and 〈u,Lv〉L2(Ω) = q(u,v) for all u ∈ domq and v ∈ domL, and under suitable regu-
larity assumption this operator would act as−∇ ·(h∇). The initial assumption about
the positivity of h is not satisfied in our case, i.e. the form q is not semibounded
from below, and the classical theory is not applicable, but a manual adaptation may
work in some special situations, see e.g. [7]. On the other hand, there are a num-
ber of works dealing with systematic extensions of the classical theory to indefinite
sesquilinear forms, see e.g. [22, 42] and references there-in. The theses [25] and
[41] contain a number of results to be presented in the papers in preparation [23, 26].
At the moment we are now aware of the publication of the announced papers, but
we mention a part of the results in order to have a more complete vision of the state
of art in the domain.

Let Ω⊂Rd , d ≥ 2 be a bounded Lipschitz domain and D : H1
0 (Ω)→ L2(Ω)d be

defined by Du = ∇u. We denote Λ := ranD⊂ L2(Ω)d , which appears to be a closed
subspace, and let Q : L2(Ω)d → Λ be the orthogonal projector, then as a particular
case of Theorem 8.2.2 in [41] one has the following result:

Proposition 20. Assume that

QhQ∗ : Λ→ Λ has a bounded inverse, (16)

then there exists a unique self-adjoint operator L associated with the above form q.
This operator L is boundedly invertible and has compact resolvent.

In fact, the results presented in [41] are more general and cover functions h
taking more than two distinct values as well as some matrix operators, and it also
gives Schatten-type estimates for the eigenvalues of L. On the other hand, they
do not cover all possible cases: as already seen in some situations the resulting
operator L does not have compact resolvent. Furthermore, the initial assumption
on QhQ∗ appears to be rather involved as it needs some information on the Dirichlet-
to-Neumann maps, see [41, Theorem 8.2.8]. Nevertheless, we mention one of the
situations which can be handled and which complements the examples considered
in the preceding sections, see Corollary 8.4.9 in [41]:
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Corollary 21. Let Ω ⊂ Rd be a Lipschitz domain symmetric with respect to the
hyperplane x1 = 0 and

Ω± := Ω∩
{
(x1,x2) : ±x1 > 0

}
,

then the condition (16) is satsfied iff µ 6= 1.

We remark that counterparts of the two above results for the operators with
Neumann boundary condition on the exterior boundary ∂Ω can be found in Chapter
9 of [41].

For the situations in which Proposition 20 is applicable, some results on the
spectral properties of L were obtained in [25, Section 6.2]. Namely, for λ > 0
denote by N±(λ ) the number of the eigenvalues of L in (−λ ,λ )∩R±, counting
with multilplicities, then it is shown that N±(λ ) ' c±λ d/2 with some c± > 0 as
λ →+∞. Some estimates for c± were also obtained, and the main conjecture is that
the main term of the asymptotics should be the same as in the Weyl asymptotics for
the Dirichlet Laplacian in Ω+ for N+ and for µ times the Dirichlet Laplacian in Ω+

for N−. This conjecture holds true at least for the cases when Ω is convex or has a
C2 boundary, see [30] and [25, Proposition 6.13].

At last we mention that the above class of sign-changing operators can be ex-
tended and modified in various directions, which gives rise to new classes of non-
classical spectral problems, see e.g. [4, 11, 21, 24].
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[23] L. Grubišić, V. Kostrykin, K. A. Makarov, S. Schmitz, K. Veselić, Indefinite
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