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On self-adjoint realizations of sign-indefinite Laplacians

Let Ω ⊂ R d be a domain and Σ a hypersurface cutting Ω into two parts Ω ± . For µ > 0, consider the function h whose value is (-µ) in Ω -and 1 in Ω + . In the present contribution we discuss the construction and some properties of the self-adjoint realizations of the operator L = -∇ • (h∇) in L 2 (Ω) with suitable (e.g. Dirichlet) on the exterior boundary. We give first a detailed study for the case when Ω ± are two rectangles touching along a side, which is based on operator-valued differential operators, in order to see in an elementary but an abstract level the principal effects such as a loss of regularity and unusual spectral properties. Then we give a review of available approaches and results for more general geometric configurations and formulate some open problems.

Introduction

The present contribution discusses some approaches to the strict mathematical definition of non-elliptic self-adjoint differential operators of a special form. Namely, let Ω ⊂ R d be bounded open set and Σ be a hypersurface (called interface) splitting Ω into two parts Ω -and Ω + (for the moment we do not discuss the precise regularity assumptions). Let µ > 0 be a parameter and h : Ω → R takes the value (-µ) in Ω -and is equal to 1 in Ω + . We will be interested in operators L acting in L 2 (Ω) and at least formally given by the differential expression u → -∇ • (h∇)u in Ω and the Dirichlet boundary condition u = 0 on ∂ Ω. Such operators appear in the mathematical theory of negative-index metamaterials arised from the pioneering works by Veselago [START_REF] Veselago | The electrodynamics of substances with simultaneously negative values of ε and µ[END_REF]. At the naive level, if one identifies L 2 (Ω) L 2 (Ω -) ⊕ L 2 (Ω + ), u (u -, u + ) with u ± being the restrictions of u to Ω ± , then the above operator L is expected to act as (u -, u + ) → (µ∆u -, -∆u + ) while the functions u ± should satisfy the boundary conditions u ± = 0 on ∂ Ω, u -= u + on Σ, µ∂ -u -= ∂ + u + on Σ, with ∂ ± being the outward normal (with respect to Ω ± ) derivative on Σ. As will be explained below, understanding the precise regularity properties of the functions u ± appears to be a non-trivial task depending on a combination of the value µ and the geometric properties of Ω ± . In some cases, a very low regularity of u ± is needed in order to have an operator with reasonable properties, and this is an essential feature of the problem which is of relevance for various effects such as the presence of an anomalous localized resonance and the cloaking, see [START_REF] Ammari | Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance[END_REF][START_REF] Bouchitté | Cloaking of small objects by anomalous localized resonance[END_REF][START_REF] Kohn | A variational perspective on cloaking by anomalous localized resonance[END_REF][START_REF] Nicorovici | Optical and dielectric properties of partially resonant composites[END_REF][START_REF] Nguyen | Negative index materials and their applications: recent mathematics progress[END_REF][START_REF] Nguyen | Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coefficients[END_REF], and the critical value of the parameter µ = 1 appears to be of a special importance.

Remark that if one has a self-adjoint operator A in a Hilbert space, then solving the equation Au = f with a given f can be understood in terms of the domain of A and of its spectral properties. As the above differential expression for L is formally symmetric, it is natural to look for self-adjoint realizations of the differential expression, which then may provide a rigorous reformulation of the above equation.

In the present text we collect some known results and approaches to the study of such self-adjoint differential operators.

It seems that the problem was first addressed in [START_REF] Bonnet-Ben Dhia | Analyse spectrale et singularités d'un problème de transmission non-coercive[END_REF] for the case when Ω -⊂ Ω, both Ω ± are smooth and µ = 1, which was then extended to the case of domains with corners, see a detailed discussion in Section 5. The question of selfadjointness for the critical case µ = 1 was first addressed in the very recent paper [START_REF] Behrndt | An indefinite Laplacian on a rectangle[END_REF], in which the very particular case of Ω = (-1, 1) × (0, 1), Ω -= (-1, 0) × (0, 1), Ω + = (0, 1) × (0, 1), h = ±1 in Ω ± . was considered. An interesting feature of the model is the fact that the resulting self-adjoint operator appears to have an infinitely degenerate zero eigenvalue, hence, it is not with compact resolvent, although the domain Ω is bounded. This comes from the fact that the functions in the operator domain can be very irregular near the interface {0} × (0, 1), and a precise description of the resulting operator domain is given as well. On the other hand, the construction appears to be very sensible to the symmetries, in particular, the approach had no easy extension to configurations consisting of two non-congruent rectangles touching along a side.

In fact we use the paper [START_REF] Behrndt | An indefinite Laplacian on a rectangle[END_REF] as our starting point and use the situation with two rectangles as a toy example illustrating the main features of the problem and the special role of the value µ = 1, which allows for a rather complete spectral analysis and may provide us with some intuition for the general case. Therefore, we prefer to give first a detailed study of this situation, which is done in the following three sections. In Section 2 we recall the basic notions of the theory of self-adjoint extensions. In Section 3 we give some facts related to operator-valued differential equations, which represents an abstract version of the so-called modal analysis, see e.g. [START_REF] Vinoles | Regularity results for transmission problems with sign-changing coefficients: a modal approach[END_REF] and can also be obtained in a much more general setting, see e.g. [START_REF] Gesztesy | Initial value problems and Weyl-Titchmarsh theory for Schrödinger operators with operator-valued potentials[END_REF][START_REF] Gesztesy | On spectral theory for Schrödinger operators with operator-valued potentials[END_REF][START_REF] Gorbachuk | Boundary value problems for operator differential equations[END_REF][START_REF] Malamud | Sturm-Liouville boundary value problems with operator potentials and unitary equivalence[END_REF][START_REF] Post | On a generalisation of Krein's example[END_REF], but we prefer to provide complete "manual" proofs in order to keep the presentation at an elementary level. In Section 4, the preceding constructions are used to study the self-adjointness of indefinite Laplacians on rectangles, which gives the sought extension of the result of [START_REF] Behrndt | An indefinite Laplacian on a rectangle[END_REF]. In the last section 5 we give a review of available approaches and results for more general geometries and state some open questions, in the hope that the present text will attract the attention of the spectral community to this relatively new class of problems.

2 Basic constructions for self-adjoint extensions

Notation

The scalar product in a Hilbert space H will be denoted as •, • H or simply as •, • if there is no ambiguity. The scalar produce will be assumed anti-linear with respect to the first argument. If B is a linear operator in a Hilbert space, then by dom B, ker B, ran B, σ (B) and ρ(B) we denote its domain, kernel, range, spectrum and resolvent set, and B and B * stand for the closure of B and for its adjoint, respectively. If B is self-adjoint, then σ ess (B) and σ p (B) stand respectively for its essential spectrum and point spectrum (defined as the set of eigenvalues). By B(G , H ) we mean the Banach space of the bounded linear operators from a Hilbert space G to a Hilbert space H , and we will denote B(H ) := B(H , H ).

Boundary triples

Let us briefly recall the key points of the boundary triple approach to self-adjoint extensions following the first sections of [START_REF] Brüning | Spectra of self-adjoint extensions and applications to solvable Schrödinger operators[END_REF]. A detailed discussion can also be found in [START_REF] Derkach | Generalized resolvents and the boundary value problems for Hermitian operators with gaps[END_REF][START_REF] Gorbachuk | Boundary value problems for operator differential equations[END_REF].

Let S be a closed densely defined symmetric operator in a Hilbert space H . A triple (Ξ, Γ, Γ ), where Ξ is a Hilbert space and Γ, Γ : dom S * → Ξ are linear maps, is called a boundary triple for S if the following three conditions are satisfied:

(a) f , S * g H -S * f , g H = Γ f , Γ g Ξ -Γ f , Γg Ξ for f , g ∈ dom S * , (b) the map dom S * f → (Γ f , Γ f ) ∈ Ξ × Ξ is surjective, (c) ker Γ ∩ ker Γ = dom S.
A boundary triple for S exists if and only if S admits self-adjoint extensions, i.e. if its deficiency indices are equal, dim ker(S *i) = dim ker(S * + i) =: n(S). A boundary triple is not unique, but for any choice of a boundary triple (Ξ, Γ, Γ ) for S one has dim Ξ = n(S), and the maps Γ, Γ are bounded with respect to the graph norm of S * . Assume from now on that the deficiency indices of S are equal and pick a boundary triple (Ξ, Γ, Γ ). Let Π : Ξ → Ξ Π := ran Π ⊆ Ξ be an orthogonal projector in Ξ and Θ be a linear operator in the Hilbert space Ξ Π carrying the induced scalar product. Denote by A Π,Θ the restriction of

S * onto dom A Π,Θ = f ∈ dom S * : Γ f ∈ dom Θ, ΠΓ f = ΘΓ f ,
then the closedness, the symmetry and the self-adjointness of A Π,Θ in H are equivalent to the closedness, the symmetry and the self-adjointness of the operator Θ in Ξ Π , and for the closures one has A Π,Θ = A Π,Θ . Finally, any self-adjoint extension of S writes as A Π,Θ .

The spectral analysis of the self-adjoint extensions can be carried out using the associated Weyl function. Namely, let A be the restriction of S * to ker Γ, i.e. corresponds to (Π, Θ) = (0, 0) in the above notation, which is therefore a self-adjoint operator. For z ∈ ρ(A) the restriction Γ : ker(S *z) → Ξ is a bijection, and we denote its inverse by G(z). In other word, for ξ ∈ Ξ, one has G(z)ξ := f with f ∈ dom S * uniquely determined by the conditions (S *z) f = 0 and Γ f = ξ . The map z → G(z), called the associated γ-field, is then a holomorphic map from ρ(A) to B(Ξ, H ), and one has the identity

G(z) -G(w) = (z -w)(A -z) -1 G(w) for any z, w ∈ ρ(A). (1) 
The associated Weyl function is then the holomorphic map z → M(z) := Γ G(z) ∈ B(Ξ) defined for z ∈ ρ(A). The above maps M and G satisfy a number of identities, in particular,

M (z) = G(z) * G(z) > 0, 0 ∈ σ M (z) for any z ∈ R ∩ ρ(A). (2) 
To describe the spectral properties of the self-adjoint operators A Π,Θ let us consider first the case Π = 1, then Θ is a self-adjoint operator in H , and the following holds, see Theorems 1.29 and Theorem 3.3 in [START_REF] Brüning | Spectra of self-adjoint extensions and applications to solvable Schrödinger operators[END_REF]:

Proposition 1. For any z ∈ ρ(A) ∩ ρ(A 1,Θ ) one has 0 ∈ ρ Θ -M(z) and (A 1,Θ -z) -1 = (A -z) -1 + G(z) Θ -M(z) -1 G(z) * . (3) 
For any z ∈ ρ(A) one has 

(1) z ∈ σ (A 1,Θ ) if and only if 0 ∈ σ Θ -M(z) , (2) z ∈ σ ess (A 1,Θ ) if and only 0 ∈ σ ess Θ -M(z) , (3) 
G(z) : ker Θ -M(z) → ker(A 1,Θ -z) is an isomorphism, hence, z ∈ σ p (A 1,Θ ) if and only if 0 ∈ σ p Θ -M(z) .
2. For any z ∈ ρ(A) ∩ ρ(A Π,Θ ) one has 0 ∈ ρ Θ -M Π (z) and (A Π,Θ -z) -1 = (A -z) -1 + G Π (z) Θ -M Π (z) -1 G Π (z) * . (4) 
For any z ∈ ρ(A) one has:

(1) z ∈ σ (A Π,Θ ) if and only if 0 ∈ σ Θ -M Π (z) , (2) z ∈ σ ess (A Π,Θ ) if and only if 0 ∈ σ ess Θ -M Π (z) , ( 3 
) G Π (z) : ker Θ -M Π (z) → ker(A Π,Θ -z) is an isomorphism, hence, z ∈ σ p (A Π,Θ ) if and only if 0 ∈ σ p Θ -M Π (z) .

Construction of boundary triples using trace maps

In various situations one deals with a symmetric operator obtained by restricting a self-adjoint operator with well-known properties to the kernel of an explicitly given linear map. This observation may be used to construct a boundary triple and to study other self-adjoint extensions of the symmetric operator. We present here very briefly the respective construction, which is described in detail e.g. in [START_REF] Posilicano | Self-adjoint extensions of restrictions[END_REF] or in [9, Section 1.4.2].

Let A be a self-adjoint operator in a Hilbert space H , then one denotes by H (A) the Hilbert space given by the linear space dom A equipped with the scalar product u, v H (A) = u, v H + Au, Av H . Let a Hilbert space Ξ and a bounded surjective linear operator τ : H (A) → Ξ be such that the kernel ker τ is a dense linear subspace of H . Such a map τ will be referred to as a trace map for A. It follows that the restriction S of A to ker τ (i.e. the restriction to the vectors with zero traces) is a closed densely defined symmetric operator in H . To avoid some technicalities we additionally assume that ρ(A) ∩ R = / 0 and pick an arbitrary value λ ∈ ρ(A) ∩ R. For z ∈ ρ(A) consider the maps

G(z) := τ(A -z) -1 * ∈ B(Ξ, H ), M(z) := τ G(z) -G(λ ) ∈ B(Ξ), then the adjoint S * is given by dom S * := u = u λ + G(λ ) f u : u λ ∈ dom A and f u ∈ Ξ , (S * -λ )u = (A -λ )u λ .
Furthermore, the triple (Ξ, Γ, Γ ) with Γu := f u and Γ u := τu λ is a boundary triple for S, and z → G(z) and z → M(z) are the associated γ-field and Weyl function, respectively.

Trace maps for direct sums

In what follows we will be interested in boundary triples for infinite direct sums of operators. In view of the preceding considerations it is useful to understand how to construct a trace map for a direct sum of operators. The construction below follows [START_REF] Kostenko | 1D Schrödinger operators with local point interactions on a discrete set[END_REF][START_REF] Posilicano | Direct sums of trace maps and self-adjoint extensions[END_REF].

Let A n be non-negative self-adjoint operators in Hilbert spaces H n , n ∈ N. For each n we consider a trace map τ n : H (A n ) → Ξ n for A n , where Ξ n is a Hilbert space. Due to the constructions of the preceding subsection this gives rise to closed densely defined symmetric operators S n := A n | ker τ n and the associated γ-fields and Weyl functions z → G n (z) and z → M n (z). To construct a trace map for the selfadjoint operator A := n∈N A n we use [START_REF] Posilicano | Direct sums of trace maps and self-adjoint extensions[END_REF]Theorem 2.5], which gives the following result:

For n ∈ N set R n := M n (-1) ∈ B(Ξ n ), then the linear operator τ : H (A) (u n ) n∈N → (R -1 n τ n u n ) n∈N ∈ n∈N Ξ n , (5) 
is bounded and surjective. This construction can be adjusted as follows:

Proposition 3. Let K n ∈ B(Ξ n ) be strictly positive and such that for some a ≥ 1 one has a -1 K 2 n ≤ M n (-1) ≤ aK 2 n for any n ∈ N. ( 6 
)
then the linear operator

τ : H (A) (u n ) → (K -1 n τ n u n ) ∈ n∈N Ξ n
is bounded and surjective.

Proof. Representing K -1 n = (K -1 n R n )R -1
n and comparing with ( 5) one sees that it is sufficient to show that for some b > 0 there holds

K -1 n R n ≤ b and (K -1 n R n ) -1 ≤ b for all n ∈ N, which is due to the self-adjointness of R n and B n equivalent to R n K -1 n ≤ b and (R n K -1 n ) -1 ≤ b for all n ∈ N, (7) 
Remark that the condition (6) takes the form

a -1 K 2 n ≤ R 2 n ≤ aK 2 n . Therefore, for any ξ ∈ Ξ n one has R n K -1 n ξ 2 Ξ n = K -1 n ξ , R 2 n K -1 n ξ Ξ n ≤ a K -1 n , K 2 n K -1 n ξ Ξ n = a ξ 2 Ξ n , R n K -1 n ξ 2 Ξ n = K -1 n ξ , R 2 n K -1 n ξ Ξ n ≥ 1 a K -1 n , K 2 n K -1 n ξ Ξ n = 1 a ξ 2 Ξ n ,
which gives the estimates ( 7) with b := √ a.

3 Sign-changing operator-valued Sturm-Liouville operators

Sturm-Liouville operator on a bounded interval

In order to illustrate the constructions of the preceding section let us consider first a simple one-dimensional situation. Let (a, b) ⊂ R be a non-empty bounded interval.

In the Hilbert space H = L 2 (a, b) consider the self-adjoint Dirichlet Laplacian

A : f → -f , dom A = f ∈ H 2 (a, b) : f (a) = f (b) = 0 ,
whose spectrum consists of the simple eigenvalues

π 2 n 2 /(b -a) 2 , n ∈ N. For the subsequent computations we choose λ = 0 ∈ ρ(A) ∩ R. The resolvent (A -z) -1 is an integral operator, (A -z) -1 f (t) = b a K z (t, s) f (s)ds,
where the integral kernel K z is given by

K z (t, s) = 1 √ -z sinh √ -z(b -a) × sinh √ -z(t -a) sinh √ -z(b -s) , t < s, sinh √ -z(s -a) sinh √ -z(b -t) , t > s.
The map

τ : H (A) f → f (a) -f (b) ∈ C 2
is surjective and bounded due to the Sobolev embedding theorem, and the restriction of A to ker τ is the closed symmetric operator

S : f → -f , dom S = H 2 0 (a, b).
A direct computation shows that the operators G(z)

:= τ(A -z) -1 * : C 2 → H are given by G(z) ξ a ξ b (s) = ∂ t K z(a, s)ξ a -∂ t K z(b, s)ξ b = sinh √ -z(b -s) sinh √ -z(b -a) ξ a + sinh √ -z(s -a) sinh √ -z(b -a) ξ b ,
and the associated map

M(z) = τ G(z) -G(0) : C 2 → C 2 is M(z) = m(z, b -a) -m(0, b -a) with m(z, ) := √ -z sinh( √ -z) -cosh( √ -z) 1 1 -cosh( √ -z) . (8) 
In order to construct a boundary triple for S we remark first that the adjoint S * acts as f →f on the domain dom

S * = H 2 (a, b). Each f ∈ dom S * can be uniquely represented as f = f 0 + G(0)(ξ a , ξ b ) with f 0 ∈ dom A and (ξ a , ξ b ) ∈ C 2 , i.e. f (s) = f 0 (s) + b -s b -a ξ a + s -a b -a ξ b , s ∈ (a, b),
and as a boundary triple (C 2 , Γ, Γ ) for S one can take

Γ f = ξ a ξ b = f (a) f (b) , Γ f = τ f 0 = f 0 (a) -f 0 (b) = f (a) -f (b) -m(0, b -a) f (a) f (b) .
For a later use we remark that, by a direct computation,

M (z) = 1 2 √ -z • 1 sinh 2 ζ sinh ζ cosh ζ -ζ ζ cosh ζ -sinh ζ ζ cosh ζ -sinh ζ sinh ζ cosh ζ -ζ , (9) 
ζ := (b -a) √ -z.

Direct sums of Sturm-Liouville operators on a bounded interval

Consider an infinite number sequence (λ n ) n∈N such that λ n ≥ 0 for all n ∈ N and that lim

n→+∞ λ n = +∞.
Let (a, b) ⊂ R be a non-empty bounded interval. For each n ∈ N, in the Hilbert space H n := L 2 (a, b) consider the closed densely defined symmetric operators

S n : f n → -f n + λ n f n , dom S n = H 2 0 (a, b).
For each S n one can construct a boundary triple as in the preceding subsection, and the associated γ-fields G n and the Weyl functions M n are then given by 

G n (z) = G(z -λ n ) and M n (z) = m(z -λ n , b -a) -m(-λ n , b - 
τ : H (A) → 2 (N) ⊗ C 2 , τ( f n ) = 1 + λ n ) 1 4 f n (a) -f n (b) n∈N ,
is bounded and surjective.

Proof. An elementary computation with the help of [START_REF] Brüning | Spectra of self-adjoint extensions and applications to solvable Schrödinger operators[END_REF] shows that

(λ n + 1) 1 2 M n (-1) ≡ (λ n + 1) 1 2 M -(λ n + 1) → 1 2 Id for n → +∞,
and it is sufficient to use Proposition 3 with

K n = (λ n + 1) -1 4 .
Using the map τ from Lemma 4 and the constructions of Subsection 2.3 one then easily computes a boundary triple (G , Γ, Γ ) for the operator S ≡ A| ker τ ,

G := 2 (N) ⊗ C 2 , Γ( f n ) = (1 + λ n ) -1 4 f n (a) f n (b) n∈N , Γ ( f n ) = (1 + λ n ) 1 4 f n (a) -f n (b) -m(-λ n , b -a) f n (a) f n (b) n∈N .
In particular, in view of the asymptotic behavior m(-λ ) -√ λ Id for λ → +∞ it follows that the linear maps

f → (1 + λ n ) -1 4 f n (a) f n (b) n∈N ∈ 2 (N) ⊗ C 2 , f → (1 + λ n ) -3 4 f n (a) -f n (b) n∈N ∈ 2 (N) ⊗ C 2 ,
are bounded with respect to the graph norm of S * . It is instructive to look at the self-adjoint operator B from the point of view of the above boundary triple:

Lemma 5. The linear map τ : H (B) → 2 (N) ⊗ C 2 , τ( f n ) = 1 + λ n ) 3 4 f n (a) f n (b) n∈N ,
is bounded and surjective.

Proof. In terms of the above boundary triple, the boundary condition for B take the form For a later use we give two additional estimates: Proposition 6. On dom A and dom B, the graph norm of S * is equivalent to the norm

Γ f = LΓ f with Γ f ∈ dom L, where L(ξ n ) = -(1 + λ n ) 1 4 m(-λ n , b -a)ξ n n∈N , i.e. the map H (B) f → Γ f ∈ H (L)
f H 2 := ∑ n∈N f n 2 L 2 (a,b) + (1 + λ n ) 2 f n 2 L 2 (a,b) < ∞.
Proof. The graph norm of S * for f = ( f n ) ∈ dom S * is given by

∑ n∈N f n + λ n f n 2 L 2 (a,b) + f n 2 L 2 (a,b) ,
and

f n + λ n f n 2 L 2 (a,b) = f n 2 L 2 (a,b) + λ 2 n f n 2 L 2 (a,b) + 2λ n ℜ f n , f n L 2 (a,b)
. Using the integration by parts and the Cauchy-Schwarz inequality, for f ∈ dom A or f ∈ dom B we obtain

0 ≤ 2λ n f n 2 L 2 (a,b) = 2λ n ℜ f n , f n L 2 (a,b) ≤ f n 2 L 2 (a,b) + λ 2 n f n 2 L 2 (a,b) ,
which gives the result.

Sturm-Liouville operator with an operator-valued potential

Let G be a Hilbert space and T be a non-negative self-adjoint operator in G with a compact resolvent. Let us pick an orthonormal basis (e n ) of G consisting of eigenfunctions of T :

Te n = λ n e n , λ n ∈ R, n ∈ N, e k , e n = δ k,n .
For s ≥ 0 we will consider the Hilbert spaces

G s ≡ G s (T ) = dom(T + 1) s 2 equipped with the scalar product u, v s = (T + 1) s 2 u, (T + 1) s 2 v G , then, in particular, G 0 = G ,
and G 2 coincides with H (T ) algebraically and topologically. By G -s ≡ G -s (T ) we denote then the dual of G s realized as the completion of G with respect to the scalar product u, v -s = (T + 1) -s 2 u, (T + 1) -s 2 G and introduce the subspace G ∞ := t>0 G t which is then dense in any G s , s ∈ R. With these definitions, the operator T : G ∞ → G ∞ extends uniquely to a bounded linear map T : G s → G s-2 for any s ∈ R, while the operator 1 + T : G s → G s-2 becomes unitary.

Furthermore, let I = (a, b) ⊂ R be a non-empty bounded interval and H = L 2 (I, G ). Each function f ∈ H can then be uniquely represented as

f (t) = ∑ n∈N f n (t)e n , f n (•) := f (•), e n G ∈ L 2 (a, b).
Denote by S 0 the operator f →f + T f defined on the domain

dom S 0 = f : f (t) = N ∑ n=1 f n (t)e n : N ∈ N, f n ∈ H 2 0 (a, b)
and let S be its closure, which will be called the minimal operator generated by the differential expression -d 2 /dt 2 + T on (a, b), and its adjoint S * will be called the associated maximal operator. Using the unitary transform U :

H → ⊕ n L 2 (a, b), f → ( f n )
, one easily sees that S is unitarily equivalent to ⊕S n with S n defined as in the preceding section 3.2, which gives a choice of a boundary triple. For what follows is will be more instructive to not to use directly the eigenbasis (e n ) and the unitary transform U associated with T and to reformulate the preceding constructions using the above spaces G s as follows:

Lemma 7. The domain of the adjoint S * consists of the functions f ∈ L 2 (I, G ) such that (f + T f ) ∈ L 2 (I, G ), where f is computed in G -2 , and the operator S * acts by f →f + T f . For any f ∈ dom S * , there exist boundary values

f (a), f (b) ∈ G -1 2 , f (a), f (b) ∈ G -3 2 ,
which are bounded with respect to the graph norm of S * , and 

(G ⊗ C 2 , Γ, Γ ) with Γ f = D -1 f (a) f (b) , Γ f = D f (a) -f (b) -m(-T, b -a) f (a) f ( 
H 2 T (I) f → f (a), f (b) ∈ G3 2 × G3 2 , H 2 
T (I) f → f (a), -f (b) ∈ G1 2 × G1 2 are surjective. Furthermore, if f ∈ dom S * , then f ∈ H 2 T (I) if and only if f (a), f (b) ∈ G3
:= f -g satisfies f 0 (a) = f 0 (b) = 0, hence, f 0 ∈ dom A ⊂ H 2 T (I).
As a direct consequence we obtain:

Corollary 9. dom S = H 2 T,0 (I) := f ∈ H 2 T (I) : f (a) = f (b) = 0, f (a) = f (b) = 0 .

Sign-changing operator on an interval

Let T be as in the preceding subsection 3. We would like to construct and study self-adjoint realizations of the operator L in L 2 (I, G ) formally given by the differential expression 

(L f )(t) = -µ -f (t) + T f (t) , t ∈ I -, -f (t) + T f (t) , t ∈ I + , the transmission conditions f (0 -) = f (0 + ) and -µ f (0 -) = f ( 
L f - f + = -µ(-f -+ T f -) -f + + T f + , dom L = f ± ∈ H 2 T (I ± ) : f -(-a) = f -(0) -f + (0) = f + (b) = 0, -µ f -(0) = f + (0) .
We will consider the operator L as an extension of another closed densely defined symmetric operator. Namely, let A ± be the Dirichlet realizations of -d 2 /dt 2 + T in I ± , which are both self-adjoint in L 2 (I ± , G ) and with compact resolvents. Consider the operator A := (-µA -) ⊕ A + and the linear map

τ : H (A) → G 4 , τ f - f + = D 0 0 D     -µ 0 0 0 0 -µ 0 0 0 0 1 0 0 0 0 1         f -(-a) -f -(0) f + (0) -f + (b)     ,
where

D := (T + 1) 1 4 0 0 (T + 1) 1 4
which is bounded and surjective due to the above constructions, and consider the restriction S of A to ker τ. Indeed, the operator S decomposes as S = (-µS -) ⊕ S + , where S ± are closed densely defined symmetric operators in L 2 (I ± , G ) covered by the constructions of Lemma 7, and the adjoint is similarly decomposed as S * = (-µS * -) ⊕ S * + . As a result, we obtain a boundary triple (G 4 , Γ, Γ ) for S with

Γ f =      (T + 1) -1 4 f -(-a) (T + 1) -1 4 f -(0) (T + 1) -1 4 f + (0) (T + 1) -1 4 f + (b)      , Γ f =      -µD f -(-a) -f -(0) -m(-T, a) f -(-a) f -(0) D f + (0) -f + (b) -m(-T, b) f + (0) f + (b)     
, the associated Weyl function is

M(z) = D 0 0 D N(z) D 0 0 D , N(z) := -µ m(-z µ -T, a) -m(-T, a) 0 0 m(z -T, b) -m(-T, b)
, and the expression of the respective γ-fields z → G(z) will have no importance, we just remark that due to (1) the only possible singularities of z → G(z) at the points of σ (A) are poles with finite-dimensional residues.

In view of Lemma 8, the domain of L can be rewritten as

dom L = f = ( f -, f + ) ∈ dom S * : f ± (0) ∈ G3 2 , -µ f -(0) = f + (0), f -(-a) = f -(0) -f + (0) = f + (b) = 0 . ( 10 
)
The last boundary condition in [START_REF] Cacciapuoti | Self-adjoint indefinite Laplacians[END_REF] can be rewritten as Γ f = ΠΓ f , or, equivalently, as Γ f ∈ ran Π, where Π : G 4 → G 4 is the orthogonal projector given by

Π( f 1 , f 2 , f 3 , f 4 ) = 1 2 (0, f 2 + f 3 , f 2 + f 3 , 0 .
In the subsequent constructions it will be convenient to use the unitary map U : G → ran Π given by Ug = 1 √ 2 (0, g, g, 0), then U * (0, g, g, 0) = √ 2g, and (10) takes the form

dom L = f = ( f -, f + ) ∈ dom S * : Γ f ∈ U(dom Θ), U * ΠΓ f = ΘU * Γ f . (11)
where Θ is a linear operator in G given by

Θ = 1 2 (T + 1) 1 4 √ T coth(b √ T ) -µ coth(a √ T ) (T + 1) 1 4 , (12) 
dom Θ = G 2 .
Therefore, in terms of boundary triples one represents L = A Π,UΘU * (see Subsection 2.2), and we remark that

M (z) := U * ΠM(z)Π * U = 1 2 (T + 1) 1 4 √ T coth(b √ T ) -µ coth(a √ T ) (T + 1) 1 4 - 1 2 (T + 1) 1 4 √ T -z coth(b √ T -z ) -µ T + z µ coth a T + z µ (T + 1) 1 4 .
Proposition 10. For µ = 1, the operator L is self-adjoint and has a compact resolvent.

Proof. According to the discussion of Subsection 2.2, the self-adjointness of L is equivalent to the self-adjointness of Θ in G . One easily sees that on dom Θ one has Θ = 1-µ 2 T +C with a bounded self-adjoint operator C. As T defined on G 2 ≡ dom T is self-adjoint, the operators Θ and then L are self-adjoint too. Furthermore, for nonreal z the operator Θ -M (z) has a compact inverse. As A is with compact resolvent as well, it follows from the resolvent formula (4) that the resolvent of L is a compact operator.

Proposition 11. For µ = 1, the operator L is not closed, but it is essentially selfadjoint. Its closure L is the restriction of S * to the domain

dom L = f = ( f -, f + ) ∈ dom S * : f -(-a) = f (b) = 0, f -(0) = f + (0), -f -(0) = f + (0) . (13)
and the essential spectrum of L is {0}. If a = b, the zero is an isolated infinitely degenerate eigenvalue of L . If a = b, then 0 is not an eigenvalue of L . In this case, there exist ε > 0 and N > 0 such that there exist a bijection E between the set {n : n ≥ N} and the set of the eigenvalues of L in (-ε, ε) such that for n → +∞ there holds

E(n) ∼ -2λ n e -2a √ λ n if a < b, E(n) ∼ 2λ n e -2b √ λ n if a > b. (14) 
Proof. One easily sees that Θ = Φ(T )| G 2 with a bounded function Φ : R + → R satisfying Φ(+∞) = 0. Therefore, Θ is a compact operator in G . As its domain G 2 is dense in G , it has a unique self-adjoint extension, which is just the closure Θ defined on the the whole space. According to the constructions of subsection 2.2 it implies that L is essentially self-adjoint, and the domain of the closure L = L = A Π,UΘU * is given as in [START_REF] Chesnel | Bilaplacian problems with a sign-changing coefficient[END_REF] with Θ replaced by Θ, and by using the explicit expressions for Γ and Γ one arrives at [START_REF] Chesnel | Spectrum of a diffusion operator with coefficient changing sign over a small inclusion[END_REF].

In order to study the essential spectrum of L let us remark first that one has 0 ∈ σ ess (Θ) due to the compactness of Θ, hence, by Corollary 2 one has 0 ∈ σ ess (L ). Therefore, it remains to show that L has no essential spectrum in R \ {0}. To see this, remark first that M (z) -z 2 Id is a compact operator for z / ∈ σ (A). Denote

Σ := σ (A) ∪{0}, then for z ∈ C \ Σ one can represent M (z) -Θ = 1 2 z Id + K (z)
, where K (z) are compact operators meromorphically depending on z ∈ C \ {0} and having at most simple poles with finite-dimensional residues at the points of σ (A). Due to the meromorphic Fredholm alternative, see e. [START_REF] Behrndt | An indefinite Laplacian on a rectangle[END_REF]. It follows that there exists ε > 0 such that 0 ∈ ρ M (z)-Θ for 0 < |z| < ε, and in view of Corollary 2 this shows that 0 is an isolated point in the spectrum of L .

For a = b we represent

Θ = √ T sinh (b -a) √ T sinh(a √ T ) sinh(b √ T ) ,
which shows that dim ker Θ = 0. Now it remains to show the asymptotics [START_REF] Claeys | Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner[END_REF].

Let us take a small ρ > 0, then by Corollary 2 the eigenvalues of L are exactly the values E ∈ (-ρ, ρ) for which 0 is an eigenvalue of M (E) -Θ (with same multiplicities), i.e. iff for some n ∈ N one has

λ n -E coth(b λ n -E ) -λ n + E coth a λ n + E .
Remark for each fixed n this equation admits at most finitely many solutions in (-ρ, ρ), hence, in order to study the accumulation it is sufficient to look at large values of n. Then one can assume without loss of generality that λ n + E = 0, and the equation rewrites as F λ n (E) = 0, where

F λ (z) = λ -z λ + z coth(b λ -z) -coth(a λ + z).
An elementary analysis shows that there exists λ 0 such that for λ > λ 0 > 0 one has (F λ ) < 0 in (-ρ, ρ) with F λ (-ρ) > 0 and F λ (-ρ) < 0. Therefore, for λ > λ 0 there is a unique z λ ∈ (-ρ, ρ) with F λ (z λ ) = 0. Then one has

λ -z λ λ + z λ = coth(a λ + z λ ) coth(b λ -z λ )
and taking Taylor expansions with respect to z λ /λ for large λ one obtains

1 - z λ λ + O z λ λ 2 = 1 + 2e -2a √ λ + o(e -2a √ λ ) 1 + 2e -2b √ λ + o(e -2b √ λ )
,

which shows that z λ = 2λ (e -2b √ λ -e -2a √ λ ) + o(e -2a √ λ + e -2b √ λ ) as λ → +∞. Using E(n) = z λ n we arrive at the result.
4 Indefinite Laplacians with separated variables

Indefinite Laplacian on a cylinder

Let us see how the preceding apply to a simple two-dimensional example. Let a, b, be strictly positive constants. Let C be a circle of length 2 > 0, i.e. C = R/(2 Z), and Ω := (-a, b) × C . We define a function h : Ω → R by h(t, s) = -µ for t < 0 and h(t, s) = 1 for t > 0. Our objective is to find self-adjoint realizations of the operator u → -∇ • (h∇)u in Ω with the Dirichlet boundary condition u = 0 on ∂ Ω.

We denote I -= (-a, 0), I + := (0, b), I := (-a, b) and Ω ± := I ± × C . By setting G := L 2 (C ), we obtain the identifications L 2 (Ω ± ) L 2 (I ± , G ). Furthermore, we will identify L 2 (Ω) L 2 (Ω -) × L 2 (Ω + ), u (u -, u + ), where u ± is the restriction of u to Ω ± . With these conventions, let us consider the following operator L in

L 2 (Ω ± ) L 2 (I ± , G ) acting as L(u -, u + ) = (µ∆u -, -∆u + ) on the domain dom L = (u -, u + ) : u ± ∈ H 2 (Ω ± ), u -(-a, •) = u + (b, •) = 0, u -(0, •) = u + (0, •), -µ ∂ u - ∂t (0, •) = ∂ u + ∂t (0, •) .
In order to make a link with the constructions of the preceding section we denote by T the self-adjoint Laplacian in L 2 (C ) acting as f →f on the domain dom T = H 2 (C ). The associated spaces G s (T ) are then the usual Sobolev spaces H s (C ). Furthermore, we introduce the minimal operators S ± generated by -d 2 /dt 2 + T in L 2 (I ± , G ), defined on H 2 T,0 (I ± , G ), and their adjoints, i.e. the maximal operators, S * ± . Proposition 12. There holds H 2 T,0 (I ± ) = H 2 0 (Ω ± ), and the operators S ± act by u ± → -∆u ± .

Proof. As Ω ± have smooth boundaries, the space

H 2 0 (Ω ± ) is the closure of C ∞ 0 (Ω ± ) in the norm u 2 H 2 (Ω ± ) = Ω ± |∆u| 2 + |u| 2 dx.
On the other hand, the space H 2 T,0 (I ± ) is the closure, with respect to the graph norm • ± of S ± , of the set

D ±,0 := u(t, s) = N ∑ n=-N u ± n (t)e 2πins/ : N ∈ N, u ± n ∈ C ∞ 0 (I ± ) ⊂ C ∞ 0 (Ω ± ),
and for u ∈ D ±,0 one has

u 2 ± = u 2 H 2 (Ω ± )
. The classical theory of Fourier series shows that each function from C ∞ 0 (Ω ± ) can be approximated by functions from D ±,0 in any C k -norm, hence, also in the • ± norms, which shows the equality between the spaces.

In view of Proposition 12, the maximal operators S * ± are defined as in the classical PDE theory, i.e. they act as

dom S * ± = u ± ∈ L 2 (Ω ± ) : ∆u ± ∈ L 2 (Ω ± ) , S * ± u ± = -∆u ± ,
and the functions u ± ∈ dom S * ± admit boundary values

u ± | ∂ Ω ± ∈ H -1 2 (∂ Ω) H -1 2 (C ) × H -1 2 (C ), ∂ ± u ± | ∂ Ω ± ∈ H -3 2 (∂ Ω ± ) H -3 2 (C ) × H -3 2 (C ), (15) 
where ∂ ± is the outward normal derivative on the boundary of Ω ± , and these boundary values are bounded with respect to the graph norm of S * ± , see [31, Chapter 2, Section 6.5].

Lemma 13. For u ± ∈ dom S * ± , the values of u ± and ∂ u ± /∂t at the endpoints of I ± defined as in Lemma 7 coincide with the Sobolev boundary values in [START_REF] Costabel | A direct boundary intergal equation method for transmission problems[END_REF].

Proof. Recall that by construction the sets

D ± := u ± (t, s) = N ∑ n=-N u ± n (t)e 2πins/ : N ∈ N, u ± n ∈ C ∞ (I ± ) ⊂ C ∞ (Ω ± ).
are dense in dom S * ± in the respective graph norms. For u ± ∈ D ± , the two trace versions coincide. As the traces are bounded with respect to the graph norm of S * ± , the result follows.

Finally we arrive at the following identification:

Lemma 14. H 2 T (I ± ) = H 2 (Ω ± ). Proof. As the boundary of ∂ Ω ± is smooth, it is a standard elliptic regularity result that, if u ± ∈ dom S * ± , then u ∈ H 2 (Ω ± ) iff u ± | ∂ Ω ± ∈ H 3 2 (∂ Ω ± )
. Now it is sufficient to substitute the result of Lemma 13 into the second assertion of Lemma 8.

With the above Lemmas at hand, the study of the operator L is reduced to the constructions of the subsection 3.4 by considering it as an extension of the operator S := (-µS -) ⊕ S + , and by using Propositions 10 and 11 one arrives at the following results:

Proposition 15. If µ = 1, then the above operator L is self-adjoint and has a compact resolvent. For µ = 1, the above operator L is essentially self-adjoint, and its closure L acts as (u -, u + ) → (µ∆u -, -∆u + ) on the domain

dom L = (u -, u + ) : u ± ∈ L 2 (Ω ± ), ∆u ± ∈ L 2 (Ω ± ), u -(-a, •) = u + (b, •) = 0, u -(0, •) = u + (0, •), - ∂ u - ∂t (0, •) = ∂ u + ∂t (0, •) ,
where the boundary values are understood as the Sobolev traces. One has σ ess (L ) = {0}. If a = b, then 0 is an isolated infinitely degenerate eigenvalue of L . If a = b, then 0 is not an eigenvalue of L , and the eigenvalues accumulate to the zero from below (respectively, from above) if a < b (respectively, a > b).

Indefinite Laplacian on a rectangle

Let us modify the example of the preceding section. Let a, b, be strictly positive constants and R := (-a, b) × (0, ). We define a function h : R → R by h(t, s) = -µ for t < 0 and h(t, s) = 1 for t > 0. Our objective is to find self-adjoint realizations of the operator u → -∇ • (h∇)u in R with the Dirichlet boundary condition u = 0 on ∂ R.

We denote I -= (-a, 0), I + := (0, b), I := (-a, b), R ± := I ± × (0, ) and use the natural identification

L 2 (R) L 2 (R -) × L 2 (R + ), u (u -, u + )
, where u ± is the restriction of u to R ± . Let us consider the following operator

L 0 in L 2 (R -) × L 2 (R + ) acting as L 0 (u -, u + ) = (µ∆u -, -∆u + ) on the domain dom L 0 = (u -, u + ) : u ± ∈ H 2 (R ± ), u -(-a, •) = u + (b, •) = 0, u ± (•, 0) = u ± (•, ) = 0, u -(0, •) = u + (0, •), -µ ∂ u - ∂t (0, •) = ∂ u + ∂t (0, •) .
In order to simplify the construction, we can reduce the study to the case of a cylinder. Namely, let C := R/(2 Z) and Ω := I × C . In L 2 (Ω) consider the orthogonal projector P onto the subspace Λ := u : u(t, s) = -u(t, 2s) ⊂ L 2 (Ω) and the unitary operator

U : L 2 (R) → Λ, (Uu)(t, s) = 1 √ 2 u(t, s), s ∈ (0, ), -u(t, 2 -s), s ∈ ( , 2 )
.

One easily checks that Λ is an invariant subspace of the operator L from the preceding subsection and that L 0 = U * PLP * U. Furthermore, if one denotes by T 0 the Dirichlet Laplacian in L 2 (0, ) and by S 0,± the minimal realizations of -d 2 /dt 2 + T 0 on I ± and S 0 := (-µS 0,-) ⊕ S 0,+ , then one also has S 0 = U * PSP * U with the operator S from the preceding subsection, and the similar representation holds for the maximal operator as well. Therefore, a minor variation of the preceding constructions gives the following result:

Proposition 16. If µ = 1, then the above operator L 0 is self-adjoint and has a compact resolvent. For µ = 1, the operator L 0 is not closed but is essentially selfadjoint, and its closure L 0 acts as

(u -, u + ) → (µ∆u -, -∆u + )
on the domain

dom L 0 = (u -, u + ) : u ± ∈ L 2 (R ± ), ∆u ± ∈ L 2 (R ± ), u -(-a, •) = u + (b, •) = 0, u(•, 0) = u(•, ) = 0, u -(0, •) = u + (0, •), - ∂ u - ∂t (0, •) = ∂ u + ∂t (0, •) ,
where the boundary values are understood as the Sobolev traces. One has σ ess (L 0 ) = {0}. If a = b, then 0 is an isolated infinitely degenerate eigenvalue of L 0 . If a = b, then 0 is not an eigenvalue of L 0 , and the eigenvalues accumulate to zero from below (respectively, from above) if a < b (respectively, a > b).

Remark that for a = b = = 1 and µ = 1 one recovers exactly the result of [START_REF] Behrndt | An indefinite Laplacian on a rectangle[END_REF].

5 Self-adjoint indefinite Laplacians in general domains: a review

Smooth domains

The construction of the preceding discussion looks heavily depending on the presence of the special geometry and of the separation of variables. Nevertheless, the general construction and the use of boundary triples appear to useful in a much more general context. Let d ≥ 2 and Ω ⊂ R d be a bounded open set. Furthermore, let Ω -be a subset of Ω having a boundary Σ and such that Ω -⊂ Ω, and we set Ω + := Ω \ Ω -, whose boundary is ∂ Ω + = Σ ∪ ∂ Ω, and we denote by ∂ ± the outward normal derivatives on ∂ Ω ± . For µ > 0, consider the function h : Ω → R, h = -µ in Ω -and h = 1 in Ω + . It seems that the first result discussing the self-adjointness of -∇ • (h∇) in Ω in such a setting was obtained in [START_REF] Bonnet-Ben Dhia | Analyse spectrale et singularités d'un problème de transmission non-coercive[END_REF]: Proposition 17. Assume that d = 2, that the boundaries of ∂ Ω ± are C 2 , and that µ = 1, then the operator L = -∇ • (h∇) with

dom L = u ∈ H 1 0 (Ω) : ∇ • (h∇)u ∈ L 2 (Ω)
is self-adjoint with compact resolvent in L 2 (Ω).

The study was based on a reformulation using a boundary integral equation and used a compactness result from [START_REF] Costabel | A direct boundary intergal equation method for transmission problems[END_REF]. The case µ = 1 was not covered by the machinery, but it was clearly seen that the above operator L is not self-adjoint for this case. In the author's joint work [START_REF] Cacciapuoti | Self-adjoint indefinite Laplacians[END_REF] the study was extended to a more general combination of parameters using the machinery of boundary triples. Namely, for s ≥ 0 introduce the sets

D s ⊂ L 2 (Ω -) ⊕ L 2 (Ω + ), D s := u = (u -, u + ) ∈ H s (Ω -) ⊕ H s (Ω + ) : ∆u ± ∈ L 2 (Ω ± ) , u -= u + and µ∂ -u -= ∂ + u + on Σ , u + = 0 on ∂ Ω , and the operator L in L 2 (Ω -) ⊕ L 2 (Ω + ) acting as dom L = D 2 , L(u -, u + ) = (µ∆u -, -∆u + ),
then the following results were obtained: Proposition 18. Assume that the boundaries of Ω ± are C ∞ . If µ = 1, the operator L is self-adjoint with a compact resolvent. Assume now that µ = 1, then L is not closed but is essentially self-adjoint, and the following assertions hold for its closure L : At first sight, the domain of L given in Proposition 17 is strictly larger than the set D 2 appearing as the self-adjointness domain in the first part of Proposition 18, but in fact they coincide due to the maximality property of self-adjoint operators. A more direct proof of the equality can be found in [START_REF] Dauge | Problèmes de transmission non coercifs dans des polygones[END_REF].

Open question 2 Assume that µ = 1 and d ≥ 3. Are there Ω ± such that the essential spectrum of the associated L is strictly larger than {0}? Can the essential spectrum contain an interval or cover the whole real axis?

It seems that so far there were no works dealing with self-adjoint realizations in the case of unbounded Ω, in particular, simply with Ω = R d and a bounded Ω -. While the results concerning the Sobolev regularity of the functions in the domain seem to be easily transferable, it would be interesting to understand whether the loss of regularity for µ = 1 has any consequence for the spectral properties. In fact, the point 0 would always be in the essential spectrum of the resulting operator L due to the presence of the non-compact part Ω + , so the study of the density of states of L near 0 could be a more appropriate tool.

Indeed, one can study the dependence of the eigenvalues of L and L on parameters of a particular configuration. In this connection we mention the paper [START_REF] Chesnel | Spectrum of a diffusion operator with coefficient changing sign over a small inclusion[END_REF] studying the asymptotics of the eigenvalues of L when the domain Ω -contracts to a point.

Non-smooth domains

In [START_REF] Bonnet-Ben Dhia | Analyse spectrale et singularités d'un problème de transmission non-coercive[END_REF][START_REF] Dauge | Problèmes de transmission non coercifs dans des polygones[END_REF] the case of planar domains with non-smooth interfaces was studied. Namely, let d = 2 and Ω ± and h be as in the preceding section, and assume that the interface Σ is C 2 smooth except a single point O (vertex). Denote by (r, θ ) the polar coordinates centered at O, then we assume in addition that in a neighborhood of O the domain Ω -coincides with the sector 0 < θ < ω with some ω = π, and denote

µ ω = max ω 2π -ω , 2π -ω ω .
Consider the operator

L = -∇ • (h∇), dom L = u ∈ H 1 0 (Ω) : ∇ • (h∇)u ∈ L 2 (Ω) ,
then the following results were obtained:

Proposition 19. If µ / ∈ [µ -1 ω , µ ω ],
then the operator L is self-adjoint with compact resolvent. For µ ∈ [µ -1 ω , µ ω ] the operator L is closed, has deficiency indices (1, 1), and any of its self-adjoint extensions has compact resolvent.

In addition, it is shown in [START_REF] Dauge | Problèmes de transmission non coercifs dans des polygones[END_REF] that if (u -, u + ) ∈ dom L, then the functions u ± are in fact H 2 near each regular point of Σ. As shown in [START_REF] Bonnet-Ben Dhia | Analyse spectrale et singularités d'un problème de transmission non-coercive[END_REF][START_REF] Dauge | Problèmes de transmission non coercifs dans des polygones[END_REF], if µ ∈ (µ -1 ω , µ ω ), then the domain of each self-adjoint extension of L contains functions behaving near O as r ±iη with some non-zero η ∈ R, and we refer to [START_REF] Bonnet-Ben Dhia | Radiation condition for a non-smooth interface between a dielectric and a metamaterial[END_REF] for an interpretation of such a behavior. Furthermore, this very special singularity is responsible for an unusual behavior of eigenvalues if one smoothens Ω ± near the vertex, see [START_REF] Chesnel | A curious instability phenomenon for a rounded corner in presence of a negative material[END_REF][START_REF] Claeys | Oscillating behaviour of the spectrum for a plasmonic problem in a domain with a rounded corner[END_REF].

A number of 3D situations with a non-smooth interface Σ were studied in [START_REF] Bonnet-Ben Dhia | T -coercivity for scalar interface problems between dielectrics and metamaterials[END_REF]. While the self-adjointness in the L 2 -setting was not addressed explicitly, the analysis suggests that for a large class of domains Ω -with corners there is a set M Σ such that the above operator L is self-adjoint iff µ / ∈ M Σ . It would be interesting to carry out a precise analysis in such a setting and to charactzerize the critical set M Σ in terms of geometric quantities. To our knowledge, the (essential) self-adjointness of the above operator L for µ = 1 was never studied for the case of non-smooth interfaces.

Further results

The approaches presented were mostly based on the PDE machinery. In order to mention alternative ways of dealing with the problem, let us return back to the situation discussed in the introduction (Section 1) and consider the sesquilinear form q(u, u) = Ω h|∇u| 2 dx, dom q = H 1 0 (Ω).

Remark that by Lax-Milgram theorem for h > c > 0 there would exist a unique selfadjoint operator L in L 2 (Ω) associated with the form q, i.e. such that dom L ⊂ dom q and u, Lv L 2 (Ω) = q(u, v) for all u ∈ dom q and v ∈ dom L, and under suitable regularity assumption this operator would act as -∇ • (h∇). The initial assumption about the positivity of h is not satisfied in our case, i.e. the form q is not semibounded from below, and the classical theory is not applicable, but a manual adaptation may work in some special situations, see e.g. [START_REF] Bonnet-Bendhia | A non elliptic spectral problem related to the analysis of superconducting transmission lines[END_REF]. On the other hand, there are a number of works dealing with systematic extensions of the classical theory to indefinite sesquilinear forms, see e.g. [START_REF] Grubišić | Representation theorems for indefinite quadratic forms revisited[END_REF][START_REF] Schmitz | Representation theorems for indefinite quadratic forms and applications[END_REF] and references there-in. The theses [START_REF] Hussein | Spectral theory of differential operators on finite metric graphs and on bounded domains[END_REF] and [START_REF] Schmitz | Representation theorems for indefinite quadratic forms without spectral gap[END_REF] contain a number of results to be presented in the papers in preparation [START_REF] Grubišić | Indefinite quadratic forms and weak solutions to the Riccati equation[END_REF][START_REF] Hussein | The div A grad operator without ellipticity: A quadratic form approach[END_REF].

At the moment we are now aware of the publication of the announced papers, but we mention a part of the results in order to have a more complete vision of the state of art in the domain.

Let Ω ⊂ R d , d ≥ 2 be a bounded Lipschitz domain and D : H 1 0 (Ω) → L 2 (Ω) d be defined by Du = ∇u. We denote Λ := ran D ⊂ L 2 (Ω) d , which appears to be a closed subspace, and let Q : L 2 (Ω) d → Λ be the orthogonal projector, then as a particular case of Theorem 8.2.2 in [START_REF] Schmitz | Representation theorems for indefinite quadratic forms without spectral gap[END_REF] one has the following result: Proposition 20. Assume that QhQ * : Λ → Λ has a bounded inverse, [START_REF] Dauge | Problèmes de transmission non coercifs dans des polygones[END_REF] then there exists a unique self-adjoint operator L associated with the above form q. This operator L is boundedly invertible and has compact resolvent.

In fact, the results presented in [START_REF] Schmitz | Representation theorems for indefinite quadratic forms without spectral gap[END_REF] are more general and cover functions h taking more than two distinct values as well as some matrix operators, and it also gives Schatten-type estimates for the eigenvalues of L. On the other hand, they do not cover all possible cases: as already seen in some situations the resulting operator L does not have compact resolvent. Furthermore, the initial assumption on QhQ * appears to be rather involved as it needs some information on the Dirichletto-Neumann maps, see [START_REF] Schmitz | Representation theorems for indefinite quadratic forms without spectral gap[END_REF]Theorem 8.2.8]. Nevertheless, we mention one of the situations which can be handled and which complements the examples considered in the preceding sections, see Corollary 8.4.9 in [START_REF] Schmitz | Representation theorems for indefinite quadratic forms without spectral gap[END_REF]: Corollary 21. Let Ω ⊂ R d be a Lipschitz domain symmetric with respect to the hyperplane x 1 = 0 and Ω ± := Ω ∩ (x 1 , x 2 ) : ±x 1 > 0 , then the condition (16) is satsfied iff µ = 1.

We remark that counterparts of the two above results for the operators with Neumann boundary condition on the exterior boundary ∂ Ω can be found in Chapter 9 of [START_REF] Schmitz | Representation theorems for indefinite quadratic forms without spectral gap[END_REF].

For the situations in which Proposition 20 is applicable, some results on the spectral properties of L were obtained in [START_REF] Hussein | Spectral theory of differential operators on finite metric graphs and on bounded domains[END_REF]Section 6.2]. Namely, for λ > 0 denote by N ± (λ ) the number of the eigenvalues of L in (-λ , λ ) ∩ R ± , counting with multilplicities, then it is shown that N ± (λ ) c ± λ d/2 with some c ± > 0 as λ → +∞. Some estimates for c ± were also obtained, and the main conjecture is that the main term of the asymptotics should be the same as in the Weyl asymptotics for the Dirichlet Laplacian in Ω + for N + and for µ times the Dirichlet Laplacian in Ω + for N -. This conjecture holds true at least for the cases when Ω is convex or has a C 2 boundary, see [START_REF] Kostrykin | The div(A grad) operator without ellipticity. Self-adjointness and spectrum[END_REF] and [START_REF] Hussein | Spectral theory of differential operators on finite metric graphs and on bounded domains[END_REF]Proposition 6.13].

At last we mention that the above class of sign-changing operators can be extended and modified in various directions, which gives rise to new classes of nonclassical spectral problems, see e.g. [START_REF] Bonnet-Ben Dhia | T-coercivity for the Maxwell problem with sign-changing coefficients[END_REF][START_REF] Chesnel | Bilaplacian problems with a sign-changing coefficient[END_REF][START_REF] Grieser | The plasmonic eigenvalue problem[END_REF][START_REF] Hazard | Spectral analysis of polygonal cavities containing a negative-index material[END_REF].

  Now consider a self-adjoint extensionA Π,Θ for an arbitrary orthogonal projector Π. Denote by S Π the restriction of S * to dom S Π = {u ∈ dom S * : Γu = ΠΓ u = 0}, which is a closed densely defined symmetric operator whose adjoint S * Π is the restriction of S * to dom S * Π = {u ∈ dom S * : Γu ∈ ran Π}, then (Ξ Π , Γ Π , Γ Π ) with Ξ Π = ran Π, Γ Π := ΠΓ and Γ Π := ΠΓ , is a boundary triple for S Π , while the restriction of S * Π to ker Γ Π is still the original operator A = S * | ker Γ . The associated γ-field G Π and Weyl function M Π take the form z → G Π (z) := G(z)Π * and z → M Π (z) := ΠM(z)Π * , and dom A Π,Θ := {u ∈ dom S * Π : Γ Π u = ΘΓ Π u}, see [9, Remark 1.30]. A direct application of Proposition 1 gives the following assertions:

Corollary

  

  a) with m as in[START_REF] Bouchitté | Cloaking of small objects by anomalous localized resonance[END_REF].We would like to construct a boundary triple for the direct sum S = n S n . Remark that we clearly have S * = n S * n . By A n we denote the self-adjoint extension of S n defined by the Dirichlet boundary condition f n (a) = f n (b) = 0, and B n will stand for the self-adjoint extension of S n defined by the Neumann boundary condition f n (a) = f n (b) = 0. In addition, denote A := n∈N A n , B := n∈N B n , then both A and B are self-adjoint with compact resolvents.

Lemma 4 .

 4 The linear map

  is bounded and surjective. Using the asymptotics lim λ →+∞ λ -1 2 m(-λ , ba) = -Id we obtain the result.

. 2 H 2 Tn 2 L 2 ( 2 L 2 (

 222222 b) , is a boundary triple for S, and the respective Weyl function is M(z) = D m(z -T, ba)m(-T, ba) D, The minimal operator S is exactly the restriction of S * to the functions f satisfying f (a) = f (b) = f (a) = f (b) = 0. Let A be the extension of S corresponding to the boundary condition f (a) = f (b) = 0, which will be called the Dirichlet realization of -d 2 /dt 2 + T on (a, b), and B be the extension corresponding to the boundary condition f (a) = f (b) = 0, called then the Neumann realization. By construction of the previous subsection, the both operators are self-adjoint and with compact resolvents. We introduce the operator Sobolev space H 2 T (I) := L 2 (I, G 2 )∩H 2 (I, G ). In other words, H 2 T (I) consists of the functions f ∈ L 2 (I, G ) satisfying f (I) := ∑ n∈N f I) + (1 + λ n ) 2 f n I) < +∞, and one has the obvious inclusion H 2 T (I) ⊂ dom S * . Lemma 8. The linear maps

2 . 2 ,

 22 Proof. By Proposition 6, one has dom A ⊂ H 2 T (I) and dom B ⊂ H 2 T (I), and the surjectivity follows from Lemmas 4 and 5. Now let f ∈ dom S * with f (a), f (b) ∈ G3 then due to the surjectivity there exists g ∈ H 2 T (I) with g(a) = f (a) and g(b) = f (b). The function f 0

3 .

 3 Consider three parameters a > 0, b > 0, µ = 0, and the intervals I -:= (-a, 0), I + := (0, b), I := (-a, b).

  0+) at zero and the Dirichlet boundary condition f (-a) = f (b) = 0 at the endpoints. To be more precise, one uses the natural identification L 2 (I, G ) L 2 (I -, G ) ⊕ L 2 (I + , G ) and considers the following linear operator L in L 2 (I -, G ) ⊕ L 2 (I + , G ):

  g. [40, Theorem XIII.13], only two situations are possible: (a) 0 ∈ σ (M (z) -Θ) for all z ∈ C \ Σ, (b) there exists a subset B ⊂ C \ {0}, without accumulation points in C \ {0}, such that the inverse (M (z) -Θ) -1 exists and is bounded for z ∈ C \ {0} ∪ B ∪ σ (A) and extends to a meromorphic function in C \ {0} ∪ B such that the coefficients in the Laurent series of (M (z) -Θ) -1 at the points of B are finite-dimensional operators. The case (a) is impossible, in fact, by Corollary 2 this would imply the presence of a non-empty non-real spectrum for the self-adjoint operator L . Therefore, the case (b) is realized. It follows then from the resolvent formula (4) that the only possible singularities of the resolvent of L ≡ A Π,UΘU * in C \ {0} are poles with finite-dimensional residues, which shows that L has no essential spectrum in C \ {0}. By Corollary 2 one has dim ker L = dim ker Θ. For a = b one has simply Θ = 0, which gives dim ker Θ = ∞. For z close to 0 one can represent M (z) -Θ ≡ M (z) = zM (0) + z 2 B(z) and the norms of B(z) are uniformly bounded, and M (0) has a bounded inverse by

•

  (a) If d = 2, then dom L = D 0 and σ ess (L ) = {0}. (b) If d ≥ 3, then D 1 ⊂ dom L , and • If on each maximal connected component of Σ the principal curvatures are either all strictly positive or all strictly negative (in particular, if each maximal connected component of Σ is strictly convex), then dom L = D 1 , and L has compact resolvent. If a subset of the interface Σ is isometric to a non-empty open subset of R d-1 , then dom L ⊂ D s for any s > 0, and {0} ⊆ σ ess (L ).

 

Let us compare the scheme of proof of Proposition 18 given in [START_REF] Cacciapuoti | Self-adjoint indefinite Laplacians[END_REF] with the above proof for rectangles. The construction starts by considering the Dirichlet Laplacians A ± in L 2 (Ω ± ) and the direct sum A = (-µA -) ⊕ A + . Let ∆ Σ ≤ 0 be the Laplace-Beltrami operator on Σ and ∆ ∂ Ω ≤ 0 be the Laplace-Beltrami operator on ∂ Ω. We set Λ := √ 1 -∆ Σ , Λ ∂ := 1 -∆ ∂ Ω considered first on smooth functions and then extended to unitary operators H s (Σ) → H s-1 (Σ) and H s (∂ Ω) → H s-1 (∂ Ω). Consider now the trace maps

and the closed symmetric operator S := A| ker τ . Proceeding as above one constructs a boundary triple for S and then represents the above operator L as an extension of S by representing in in the form L = A Π,Θ . We remark that the orthogonal projector Π in question is of the form

, and its range will be identified with L 2 (Σ) with the help of the unitary operator

In order to introduce the respective operator parameter Θ one needs additional objects. Namely, for z ∈ ρ(A) introduce the Dirichlet-to-Nuemann maps

, where u ± are the unique solutions of the following problems:

, dom Θ 0 = H 2 (Σ), and the (essential) self-adjointness of L is then equivalent to the (essential) self-adjointness of Θ 0 . Up to this point one may observe some similarity with the case of rectangles, see e.g. [START_REF] Chesnel | A curious instability phenomenon for a rounded corner in presence of a negative material[END_REF]. But, contrary to the construction for separated variables, the further analysis is less explicit and uses the pseudodifferential calculus: for µ = 1 the operator Θ 0 is second order elliptic, hence is self-adjoint. For µ = 1 it is at most first order and its closure is self-adjoint and it defined at least on H 1 (Σ). Furthermore, the principal symbol can be then computed explicitly, and it depends on the dimension and the principal curvatures of Σ, which allows for the study of the two particular cases mentioned (strictly convex or partially flat interface). One should mention that similar geometric conditions on the interface appeared previously in the context of the well-posedness of related transmission problems, see e.g. [START_REF] Ola | Remarks on a transmission problem[END_REF][START_REF] Kettunen | On absence and existence of the anomalous localized resonance without the quasi-static approximation[END_REF].

To our knowledge, there are no more precise results on the spectrum of L for µ = 1. The following aspects seem to be relevant for the original applications, and we formulate them as open questions:

Open question 1 Assume that µ = 1 and d = 2. Describe the accumulation of the eigenvalues near 0. In particular, under which conditions do the eigenvalue accumulate to zero from above/from below only?