
HAL Id: hal-01960404
https://hal.science/hal-01960404v1

Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic Concurrency: A Clock-Synchronised
Shared Memory Approach

Joaquín Aguado, Michael Mendler, Marc Pouzet, Partha Roop, Reinhard von
Hanxleden

To cite this version:
Joaquín Aguado, Michael Mendler, Marc Pouzet, Partha Roop, Reinhard von Hanxleden. Deter-
ministic Concurrency: A Clock-Synchronised Shared Memory Approach. ESOP 2018 - European
Symposium on Programming, Apr 2018, Thessaloniki, Greece. �hal-01960404�

https://hal.science/hal-01960404v1
https://hal.archives-ouvertes.fr

Deterministic Concurrency:
A Clock-Synchronised Shared Memory Approach

Joaqúın Aguado1, Michael Mendler1, Marc Pouzet2,
Partha Roop3, and Reinhard von Hanxleden4

1 Otto-Friedrich-Universität Bamberg, Germany
2 École Normale Supérieure Paris, France
3 University of Auckland, New Zealand

4 Christian-Albrechts-Universität zu Kiel, Germany

Abstract. Synchronous Programming (SP) is a universal computational
principle that provides deterministic concurrency. The same input se-
quence with the same timing always results in the same externally ob-
servable output sequence, even if the internal behaviour generates uncer-
tainty in the scheduling of concurrent memory accesses. Consequently,
SP languages have always been strongly founded on mathematical se-
mantics that support formal program analysis. So far, however, commu-
nication has been constrained to a set of primitive clock-synchronised
shared memory (csm) data types, such as data-flow registers, streams
and signals with restricted read and write accesses that limit modularity
and behavioural abstractions.

This paper proposes an extension to the SP theory which retains the
advantages of deterministic concurrency, but allows communication to
occur at higher levels of abstraction than currently supported by SP data
types. Our approach is as follows. To avoid data races, each csm type
publishes a policy interface for specifying the admissibility and prece-
dence of its access methods. Each instance of the csm type has to be
policy-coherent, meaning it must behave deterministically under its own
policy—a natural requirement if the goal is to build deterministic sys-
tems that use these types. In a policy-constructive system, all access
methods can be scheduled in a policy-conformant way for all the types
without deadlocking. In this paper, we show that a policy-constructive
program exhibits deterministic concurrency in the sense that all policy-
conformant interleavings produce the same input-output behaviour. Poli-
cies are conservative and support the csm types existing in current SP
languages. Technically, we introduce a kernel SP language that uses ar-
bitrary policy-driven csm types. A big-step fixed-point semantics for this
language is developed for which we prove determinism and termination
of constructive programs.

Keywords: synchronous programming, data abstraction, clock-synchronised shared
memory, determinacy, concurrency, constructive semantics.

1 Introduction

Concurrent programming is challenging. Arbitrary interleavings of concurrent
threads lead to non-determinism with data races imposing significant integrity
and consistency issues [1]. Moreover, in many application domains such as safety-
critical systems, determinism is indeed a matter of life and death. In a medical-
device software, for instance, the same input sequence from the sensors (with the
same timing) must always result in the same output sequence for the actuators,
even if the run-time software architecture regime is unpredictable.

Synchronous programming (SP) delivers deterministic concurrency out of
the box1 which explains its success in the design, implementation and validation
of embedded, reactive and safety-critical systems for avionics, automotive, energy
and nuclear industries. Right now SP-generated code is flying on the Airbus 380
in systems like flight control, cockpit display, flight warning, and anti-icing just
to mention a few. The SP mathematical theory has been fundamental for imple-
menting correct-by-construction program-derivation algorithms and establishing
formal analysis, verification and testing techniques [2]. For SCADE2, the SP in-
dustrial modelling language and software development toolkit, the formal SP
background has been a key aspect for its certification at the highest level A of
the aerospace standard DO-178B/C. This SP rigour has also been important for
obtaining certifications in railway and transportation (EN 50128), industry and
energy (IEC 61508), automotive (TÜV and ISO 26262) as well as for ensuring
full compliance with the safety standards of nuclear instrumentation and control
(IEC 60880) and medical systems (IEC 62304) [3].

Synchronous Programming in a Nutshell. At the top level, we can imagine an
SP system as a black-box with inputs and outputs for interacting with its en-
vironment. There is a special input, called the clock, that determines when the
communication between system and environment can occur. The clock gets an
input stimulus from the environment at discrete times. At those moments we
say that the clock ticks. When there is no tick, there is no possible communica-
tion, as if system and environment were disconnected. At every tick, the system
reacts by reading the current inputs and executing a step function that delivers
outputs and changes the internal memory. For its part, the environment must
synchronise with this reaction and do not go ahead with more ticks. Thus, in
SP, we assume (Synchrony Hypothesis) that the time interval of a system re-
action, also called macro-step or (synchronous) instant, appears instantaneous
(has zero-delay) to the environment. Since each system reaction takes exactly
one clock tick, we describe the evolution of the system-environment interaction
as a synchronous (lock-step) sequence of macro-steps. The SP theory guarantees

1 Milner’s distinction between determinacy and determinism is that a computation
is determinate if the same input sequence produces the same output sequence, as
opposed to deterministic computations which in addition have identical internal
behaviour/scheduling. In this paper we use both terms synonymously to mean de-
terminacy in Milner’s sense, i. e., observable determinism.

2 SCADE is a product of ANSYS Inc. (http://www.esterel-technologies.com/)

http://www.esterel-technologies.com/

that all externally observable interaction sequences derived from the macro-step
reactions define a functional input-output relation.

The fact that the sequences of macro-steps take place in time and space
(memory) has motivated two orthogonal developments of SP. The data-flow
view regards input-output sequences as synchronous streams of data changing
over time and studies the functional relationships between streams. Dually, the
control-flow approach projects the information of the input-output sequences
at each point in time and studies the changes of this global state as time pro-
gresses, i. e., from one tick to the next. The SP paradigm includes languages
such as Esterel [4], Quartz [5] and SC [6] in the imperative control-flow style
and languages like Signal [7], Lustre [8] and Lucid Synchrone [9] that support
the declarative data-flow view. There are even mixed control-data flow language
such as Esterel V7 [10] or SCADE [3]. Independently of the execution model, the
common strength to all of these SP languages is a precise formal semantics—an
indispensable feature when dealing with the complexities of concurrency.

At a more concrete level, we can visualise an SP system as a white-box where
inside we find (graphical or textual) code. In the SP domain, the program must
be divided into fragments corresponding to the macro-step reactions that will
be executed instantaneously at each tick. Declarative languages usually organise
these macro-steps by means of (internally generated) activation clocks that pre-
scribe the blocks (nodes) that are performed at each tick. Instead, imperative
textual languages provide a pause statement for explicitly delimiting code exe-
cution within a synchronous instant. In either case, the Synchrony Hypothesis
conveniently abstracts away all the, typically concurrent, low-level micro-steps
needed to produce a system reaction. The SP theory explains how the micro-step
accesses to shared memory must be controlled so as to ensure that all internal
(white-box) behaviour eventually stabilises, completing a deterministic macro-
step (black-box) response. For more details on SP, the reader is referred to [2].

State of the Art. Traditional imperative SP languages provide constructs to
model control-dominated systems. Typically, these include a concurrent compo-
sition of threads (sequential processes) that guarantees determinism and offers
signals as the main means for data communication between threads. Signals be-
have like shared variables for which the concurrent accesses occurring within a
macro-step are scheduled according to the following principles: A pure signal has
a status that can be present (1) or absent (0). At the beginning of each macro-
step, pure signals have status 0 by default. In any instant, a signal s can be
explicitly emitted with the statement s. emit() which atomically sets its status
to 1. We can read the status of s with the statement s. pres(), so the control-flow
can branch depending on run-time signal statuses. Specifically, inside programs,
if-then-else constructions await for the appropriate combination of present and
absent signal statuses to emit (or not) more signals. The main issue is to avoid
inconsistencies due to circular causality resulting from decisions based on absent
statuses. Thus, the order in which the access methods emit, pres are sched-
uled matters for the final result. The usual SP rule for ensuring determinism is
that the pres test must wait until the final signal status is decided. If all sig-

nal accesses can be scheduled in this decide-then-read way then the program is
constructive. All schedules that keep the decide-then-read order will produce the
same input-output result. This is how SP reconciles concurrency and observable
determinism and generates much of its algebraic appeal. Constructiveness of
programs is what static techniques like the must-can analysis [4,11,12,13] verify
although in a more abstract manner. Pure signals are a simple form of clock-
synchronised shared memory (csm) data types with access methods (operations)
specific to this csm type. Existing SP control-flow languages also support other
restricted csm types such valued signals and arrays [10] or sequentially construc-
tive variables [6].

Contribution. This paper proposes an extension to the SP model which retains
the advantages of deterministic concurrency while widening the notion of con-
structiveness to cover more general csm types. This allows shared-memory com-
munication to occur at higher levels of abstraction than currently supported. In
particular, our approach subsumes both the notions of Berry-constructiveness [4]
for Esterel and sequential constructiveness for SCL [14]. This is the first time
that these SP communication principles are combined side-by-side in a single
language. Moreover, our theory permits other predefined communication struc-
tures to coexist safely under the same uniform framework, such as data-flow
variables [8], registers [15], Kahn channels [16], priority queues, arrays as well as
other csm types currently unsupported in SP.

Synopsis and Overview. The core of our approach is presented in Sec. 2 where
policies are introduced as a (constructive) synchronisation mechanism for ar-
bitrary abstract data types (ADT). For instance, the policy of a pure signal is
depicted in Fig. 1. It has two control states 0 and 1 corresponding to the two
possible signal statuses. Transitions are decorated with method names pres,
emit or with σ to indicate a clock tick.

prec

ߪ tickߪ	tick

prec

߬	tick

߬	tick

Esterel pure signal

Esterel value‐only signal

߬	tick

prec

Fig. 1: Pure Signal Policy.

The policy tells us whether a
given method or tick is admissible,
i. e., if it can be scheduled from
a particular state3. In addition,
transitions include a blocking set
of method names as part of their
action labels. This set determines
a precedence between methods from a given state. A label m : L specifies that
all methods in L take precedence over m. An empty blocking set ∅ indicates no
precedences. To improve visualisation, we highlight precedences by dotted (red)
arrows tagged prec4. The policy interface in Fig. 1 specifies the decide-then-
read protocol of pure signals as follows. At any instant, if the signal status is 0

3 The signal policy in Fig. 1 does not impose any admissibility restriction since meth-
ods pres and emit can be scheduled from every policy state.

4 We tacitly assume that the tick transitions σ have the lowest priority since only
when the reaction is over, the clock may tick. We could be more explicit and write
σ : {pres, emit} as action labels for these transitions.

then the pres test can only be scheduled if there are no more potential emit
statements that can still update the status to 1. This explains the precedence
of the emit transition over the self loop with action label pres : {emit} from
state 0. Conversely, transitions pres and emit from state 1 have no precedences,
meaning that the pres and emit methods are confluent so they can be freely
scheduled (interleaved). The reason is that a signal status 1 is already decided
and can no longer be changed by either method in the same instant. In general,
any two admissible methods that do not block each other must be confluent in
the sense that the same policy state is reached independently of their order of
execution. Note that all the σ transition go to the initial state 0 since at each
tick the SP system enters a new macro-step where all pure signals get initialised
to the 0 status.

Sec. 2 describes in detail the idea of a scheduling policy on general csm types.
This leads to a type-level coherence property, which is a local form of determin-
ism. Specifically, a csm type is policy-coherent if it satisfies the (policy) specifi-
cation of admissibility and precedence of its access methods. The point is that
a policy-coherent csm type per se behaves deterministically under its own pol-
icy—a very natural requirement if the goal is to build deterministic systems
that use this type. For instance, the fact that Esterel signals are determinis-
tic (policy-coherent) in the first place permits techniques such as the must-can
analysis to get constructive information about deterministic programs. We show
how policy-coherence implies a global determinacy property called commutation.
Now, in a policy-constructive program all access methods can be scheduled in a
policy-conforming way for all the csm types without deadlocking. We also show
that, for policy-coherent types, a policy-constructive program exhibits determin-
istic concurrency in the sense that all policy-conforming interleavings produce
the same input-output behaviour.

To implement a constructive scheduling mechanism parameterised in arbi-
trary csm type policies, we present the synchronous kernel language, called De-
terministic Concurrent Language (DCoL), in Sec. 2.1. DCoL is both a minimal
language to study the new mathematical concepts but can also act as an in-
termediate language for compiling existing SP Sec. 3 presents its policy-driven
operational semantics for which determinacy and termination is proven. Sec. 3
also explains how this model generalises existing notions of constructiveness. We
discuss related work in Sec. 4 and present our conclusions in Sec. 5.

A companion of this paper is the research report [17] which contains detailed
proofs and additional examples of csm types.

2 Synchronous Policies

This section introduces a kernel synchronous Deterministic Concurrent Lan-
guage (DCoL) for policy-conformant constructive scheduling which integrates
policy-controlled csm types within a simple syntax. DCoL is used to discuss the
behavioural (clock) abstraction limitations of current SP. Then policies are in-

https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf

troduced as a mechanism for specifying the scheduling discipline for csm types
which, in this form, can encapsulate arbitrary ADTs.

2.1 Syntax

The syntax of DCoL is given by the following operators:

P ::= skip instantaneous termination
| pause wait for next instant (clock tick)
| P ||P parallel composition
| P ;P sequential composition
| letx = c.m(e) inP access method call, x value variable
| if e then P else P conditional branching, e value expression
| rec p. P recursive closure
| p process variable

The first two statements correspond to the two forms of immediate comple-
tion: skip terminates instantaneously and pause waits for the logical clock to
terminate. The operators P||Q and P ;Q are parallel interleaving and imper-
ative sequential composition of threads with the standard operational interpre-
tation. Reading and destructive updating is performed through the execution
of method calls c.m(e) on a csm variable c ∈ O with a method m ∈ Mc. The
sets O and Mc define the granularity of the available memory accesses. The con-
struct letx = c.m(e) inP calls m on c with an input parameter determined by
value expression e. It binds the return value to variable x and then executes
program P , which may depend on x, sequentially afterwards. The execution of
c.m(e) in general has the side-effect of changing the internal memory of c. In
contrast, the evaluation of expression e is side-effect free. For convenience we
write x = c.m(e);P for letx = c.m(e) inP . When P does not depend on x then
we write c.m(e);P and c.m(e); for c.m(e); skip. The exact syntax of value
expressions e is irrelevant for this work and left open. It could be as simple as
permitting only constant value literals or a full-fledged functional language. The
conditional if e then P else P has the usual interpretation. For simplicity, we
may write if c.m(e) then P else Q to mean x = c.m(e); if x then P else Q.
The recursive closure rec p. P binds the behaviour P to the program label p so
it can be called from within P . Using this construct we can build iterative be-
haviours. For instance, loopP end =df rec p. P; pause ;p indefinitely repeats P
in each tick. We assume that in a closure rec p. P the label p is (i) clock guarded,
i. e., it occurs in the scope of at least one pause (meaning no instantaneous
loops) and (ii) all occurrences of p are in the same thread. Thus, rec p. p is illegal
because of (i) and rec p. (pause ;p || pause ;p) is not permitted because of (ii).

This syntax seems minimalistic compared to existing SP languages. For in-
stance, it does not provide primitives for pre-emption, suspension or traps as in
Quartz or Esterel. Recent work [18] has shown how these control primitives can
be translated into the constructs of the SCL language, exploiting destructive up-
date of sequentially constructive (SC) variables. Since SC variables are a special
case of policy-controlled csm variables, DCoL is at least as expressive as SCL.

2.2 Limited Abstraction in SP

The pertinent feature of standard SP languages is that they do not permit the
programmer to express sequential execution order inside a tick, for destructive
updates of signals. All such updates are considered concurrent and thus must
either be combined or concern distinct signals. For instance, in languages such
as Esterel V7 or Quartz, a parallel composition

(v = xs.read() ; ys. emit(v + 1)) ||(xs. emit(1) ; xs. emit(5)) (1)

of signal emissions is only constructive if a commutative and associative function
is defined on the shared signal xs to combine the values assigned to it. But then,
by the properties of this combination function, we get the same behaviour if we
swap the assignments of values 1 and 5, or execute all in parallel as in

v = xs.read() || ys. emit(v + 1) || xs. emit(1) || xs. emit(5).

If what we intended with the second emission xs. emit(5) in (1) was to override
the first xs. emit(1) like in normal imperative programming so that the concur-
rent thread v = xs.read() ; ys. emit(v + 1) will read the updated value as v = 5?
Then we need to introduce a pause statement to separate the emissions by a
clock tick and delay the assignment to ys as in

(pause ; v = xs.read() ; ys. emit(v + 1)) ||(xs. emit(1) ; pause ; xs. emit(5)).

This makes behavioural abstraction difficult. For instance, suppose nats is a syn-
chronous reaction module, possibly composite and with its own internal clock-
ing, which returns the stream of natural numbers. Every time its step func-
tion nats.step() is called it returns the next number and increments its inter-
nal state. If we want to pair up two successive numbers within one tick of an
outer clock and emit them in a single signal ys we would write something like
x1 = nats.step() ;x2 = nats.step() ; y. emit(x1, x2) where x1, x2 are thread-
local value variables. This over-clocking is impossible in traditional SP because
there is no imperative sequential composition by virtue of which we can call the
step function of the same module instance twice within a tick. Instead, the two
calls nats.step() are considered concurrent and thus create non-determinacy in
the value of y.5 To avoid a compiler error we must separate the calls by a clock as
in x1 = nats.step() ; pause ;x2 = nats.step() ; y. emit(x1, x2) which breaks
the intended clock abstraction.

The data abstraction limitation of traditional SP is that it is not directly pos-
sible to encapsulate a composite behaviour on synchronised signals as a shared
synchronised object. For this, the simple decide-then-read signal protocol must
be generalised, in particular, to distinguish between concurrent and sequential
accesses to the shared data structure. A concurrent access x1 = nats.step() ||

5 In Esterel V7 it is possible to use a module twice in a “sequential” composition x1 =
nats.step();x2 = nats.step(). However, the two occurrences of nats are distinct
instances with their own internal state. Both calls will thus return the same value.

x2 = nats.step() must give the same value for x1 and x2, while a sequential access
x1 = nats.step() ;x2 = nats.step() must yield successive values of the stream. In
a sequence x = xs.read() ; xs. emit(v) the x does not see the value v but in a par-
allel x = xs.read() || xs. emit(v) we may want the read to wait for the emission.
The rest of this section covers our theory on policies in which this is possible.
The modularity issue is reconsidered in Sec. 2.6.

2.3 Concurrent Access Policies

In the white-box view of SP, an imperative program consists of a set of threads
(sequential processes) and some csm variables for communication. Due to con-
currency, a given thread under control (tuc) has the chance to access the shared
variables only from time to time. For a given csm variable, a concurrent ac-
cess policy (cap) is the locking mechanism used to control the accesses of the
current tuc and its environment. The locking is to ensure that determinacy of
the csm type is not broken by the concurrent accesses. A cap is like a policy
which has extra transitions to model potential environment accesses outside the
tuc. Concretely, a cap is given by a state machine where each transition label
a : L codifies an action a taking place on the shared variable with blocking set
L, where L is a set of methods that take precedence over a. The action is either
a method m : L, a silent action τ : L or a clock tick σ : L. A transition m : L
expresses that in the current cap control state, the method m can be called by
the tuc, provided that no method in L is called concurrently. There is a Deter-
minacy Requirement that guarantees that each method call by the tuc has a
blocking set and successor state. Additionally, the execution of methods by the
cap must be confluent in the sense that if two methods are admissible and do
not block each other, then the cap reaches the same policy state no matter the
order in which they are executed. This is to preserve determinism for concur-
rent variable accesses. A transition τ : L internalises method calls by the tuc’s
concurrent environment which are uncontrollable for the tuc. In the sequel, the
actions in Mc ∪ {σ} will be called observable. A transition σ : L models a clock
synchronisation step of the tuc. Like method calls, such clock ticks must be
determinate as stated by the Determinacy Requirement. Additionally, the clock
must always wait for any predicted concurrent τ -activity to complete. This is the
Maximal Progress Requirement. Note that we do not need confluence for clock
transitions since they are not concurrent.

Definition 1. A concurrent access policy (cap) c of a csm variable c with
(access) methods Mc is a state machine consisting of a set of control states Pc,
an initial state ε ∈ Pc and a labelled transition relation → ⊆ Pc × Ac × Pc with
action labels Ac = (Mc ∪ {τ, σ}) × 2Mc . Instead of (µ1, (a, L), µ2)∈ → we write
µ1 −a:L→ µ2. We then say action a is admissible in state µ1 and blocked by
all methods m ∈ L ⊆ Mc. When the blocking set L is irrelevant we drop it and
write µ1 −a→ µ2. A cap must satisfy the following conditions:

– Determinacy. If µ −a:L1→ µ1 and µ −a:L2→ µ2 then L1 = L2 and µ1 = µ2

provided a is observable, i. e., a 6= τ .

– Confluence. If µ −m1:L1→ µ1 and µ −m2:L2→ µ2 do not block each other,
i. e., m1 ∈ Mc \ L2 and m2 ∈ Mc \ L1, then for some µ′ both µ1 −m2→ µ′

and µ2 −m1→ µ′.
– Maximal Progress. µ −a:L1→ µ1 and µ −σ:L2→ µ2 imply a is observable

and a ∈ L2 ∪ {σ}.

A policy is a cap without any (concurrent) τ activity, i. e., every µ −a→ µ′

implies that a is observable. ut

The use of a cap as a concurrent policy arises from the notion of enabling.
Informally, an observable action a ∈ Mc ∪ {σ} is enabled in a state µ of a cap if
it is admissible in µ and in all subsequent states reachable under arbitrary silent
steps not blocked by a. To formalise this we define weak transitions µ1 =L⇒ µ2

inductively to express that either µ1 = µ2 and L = ∅ or µ1 =L1⇒ µ′ and
µ′ −τ :L2→ µ2 and L = L1 ∪ L2. We exploit the determinacy for observable
actions a ∈ Mc ∪ {σ} and write µ� a for the unique µ′ such that µ −a→ µ′, if
it exists.

Definition 2. Given a cap c= (Pc, ε,−→), an observable action a ∈ Mc∪{σ}
is enabled in state µ ∈ Pc, written µ c ↓ a, if µ′ � a exists for all µ′ such that
µ =L⇒ µ′ and a 6∈ L. A sequence a ∈ (Mc ∪ {σ})∗ of observable actions is
enabled in µ ∈ Pc, written µ c ↓a, if (i) a = ε or (ii) a = a b, µ c ↓ a and
µ� a c ↓ b. ut

simple single writer, multi‐reader data flow variable

tick

tick

tick

Fig. 2: Synchronous IVar.

Example 1. Consider the policy s in
Fig. 1 of an Esterel pure signal s. An
edge labelled a:L from state µ1 to µ2

corresponds to a transition µ1 −a:L→
µ2 in s. The start state is ε = 0 and
the methods Ms = {pres, emit} are
always admissible, i. e., µ � m is de-
fined in each state µ for all methods m. The presence test does not change the
state and any emission sets it to 1, i. e., µ � pres = µ and µ � emit = 1 for
all µ ∈ Ps. Each signal status is reset to 0 with the clock tick, i. e., µ � σ = 0.
Clearly, s satisfies Determinacy. A presence test on a signal that is not emit-
ted yet has to wait for all pending concurrent emissions, that is emit blocks
pres in state 0, i. e., 0 −pres :{emit}→ 0. Otherwise, no transition is blocked.
Also, all competing transitions µ −m1:L1→ µ1 and µ −m2:L2→ µ2 that do not
block each other, are of the form µ1 = µ2, from which Confluence follows. As
the clock transitions σ are implicitly blocked by all methods and since there
are no silent transitions, Maximal Progress is always fulfilled too. Moreover, an
action sequence is enabled in a state µ (Def. 2) iff it corresponds to a path in
the automaton starting from µ. Hence, for m ∈ M∗s we have 0 s ↓m iff m is
in the regular language6 pres∗+ pres∗ emit(pres+ emit)∗ and 1 s ↓m for all
m ∈ M∗s .

6 We are more liberal than Esterel where emit cannot be called sequentially after pres.

Contrast s with the policy c of a synchronous immutable variable (IVar) c
shown in Fig. 2 with methods Mc = {get, put}. During each instant an IVar can
be written (put) at most once and cannot be read (get) until it has been written.
No value is stored between ticks, which means the memory is only temporary and
can be reused, e. g., IVars can be implemented by wires. Formally, µ c ↓ put iff
µ = 0, where 0 is the initial empty state and µ c ↓ get iff µ = 1, where 1 is the
filled state. The transition 0 −put:{put}→ 1 switches to filled state where get

is admissible but put is not, anymore. The blocking {put} means there cannot
be other concurrent threads writing c at the same time. ut

2.4 Enabling and Policy Conformance

A policy describes what a single thread can do to a csm variable c when it
operates alone. In a cap all potential activities of the environment are added as τ -
transitions to block the tuc’s accesses. To implement this τ -locking we define an
operation that generates a cap [µ, γ] out of a policy. In this construction, µ ∈ Pc

is a policy state recording the history of methods that have been performed on c

so far (must information). The second component γ ⊆ M∗c is a prediction for the
sequences of methods that can still potentially be executed by the concurrent
environment (can information).

Definition 3. Let (Pc, ε,→) be a policy. We define a cap c where states are
pairs [µ, γ] such that µ ∈ Pc is a policy state and γ ⊆ M∗c is a prediction. The
initial state is [ε,M∗c] and the transitions are as follows:

1. The observable transitions [µ1, γ1] −m:L→ [µ2, γ2] are such that γ1 = γ2
and µ1 −m:L→ µ2 provided that for all sequences nn ∈ γ1 with µ1 −n→ µ′

we have n 6∈ L.
2. The silent transitions are [µ1, γ1] −τ :L→ [µ2, γ2] such that ∅ 6= mγ2 ⊆ γ1

and µ1 −m:L→ µ2.
3. The clock transitions are [µ1, γ1] −σ:L→ [µ2, γ2] such that γ1 = ∅ and

µ1 −σ:L→ µ2. ut

Silent steps arise from the concurrent environment: A step [µ1, γ1] −τ :L→
[µ2, γ2] removes some prefix method m from the environment prediction γ1,
which contracts to an updated suffix prediction γ2 with mγ2 ⊆ γ1. This method
m is executed on the csm variable, changing the policy state to µ2 = µ1�m. A
method m is enabled, [µ, γ] c ↓m, if for all [µ1, γ1] which are τ -reachable from
[µ, γ] and not blocked by a, method m is admissible, i. e., [µ1, γ1] −m→ [µ2, γ1]
for some µ2.

Example 2. Consider concurrent threads P1 ||P2, where P2 = zs.put(5) ;u =
ys.get() and P1 = v = zs.get() ; ys.put(v + 1) with IVars zs, ys according to
Ex. 1. Under the IVar policy the execution is deterministic, so that first P2

writes on zs, then P1 reads from zs and writes to ys, whereupon finally P1

reads ys. Suppose the variables have reached policy states µzs and µys and the

threads are ready to execute the residual programs P ′i waiting at some method
call ci.mi(vi), respectively. Since thread P ′i is concurrent with the other P ′3−i, it
can only proceed if mi is not blocked by P ′3−i, i. e., if [µci , canci(P

′
3−i)] ci ↓mi,

where canc(P) ⊆ M∗c is the set of method sequences predicted for P on c.
Initially we have µzs = 0 = µys. Since method get is not admissible in state

0, we get [0, canzs(P2)] 1zs ↓ get by Def. 3 and Def. 2. So, P1 is blocked. The
zs.put of P2, however, can proceed. First, since no predicted method sequence
canzs(P1) = {get} of P1 starts with put, the transition 0 −put:{put}→ 1
implies that [0, canzs(P1)] −put:{put}→ [1, canzs(P1)] by Def. 3(1). Moreover,
since get of P1 is not admissible in 0, there are no silent transitions out of
[0, canzs(P1)] according to Def. 3(2). Thus, [0, canzs(P1)] zs ↓ put, as claimed.

When the zs.put is executed by P2 it turns into P ′2 = u = ys.get() and the
policy state for zs advances to µ′zs = 1, while ys is still at µys = 0. Now ys.get
of P ′2 blocks for the same reason as zs was blocked in P1 before. But since P2

has advanced, its prediction on zs reduces to canzs(P
′
2) = ∅. Therefore, the tran-

sition 1 −get:∅→ 1 implies [1, canzs(P
′
2)] −get:∅→ [1, canzs(P

′
2)] by Def. 3(1).

Also, there are no silent transitions out of [1, canzs(P
′
2)] by Def. 3(2) and so

[µ′zs, canzs(P
′
2)] zs ↓ get by Def. 2. This permits P1 to execute zs.get() and pro-

ceed to P ′1 = ys.put(5+1). The policy state of zs is not changed by this, neither is
the state of ys, whence P ′2 is still blocked. Yet, we have [µys, canzs(P

′
2)] ys ↓ put

which lets P ′1 complete ys.put. It reaches P ′′1 with canys(P
′′
1) = ∅ and changes

the policy state of ys to µ′ys = 1. At this point, [µ′ys, canzs(P
′′
1)] ys ↓ get which

means P ′2 unblocks to execute ys.get. ut

Definition 4. Let c be a policy for c. A method sequence m1 blocks another
m2 in state µ, written µ c m1 →m2, if µ c ↓m2 but [µ, {m1}] 1c ↓m2. Two
method sequences m1 and m2 are concurrently enabled, denoted µ c m1 � m2

if µ c ↓m1, µ c ↓m2 and both µ 1c m1 →m2 and µ 1c m2 →m1. ut

Our operational semantics will only let a tuc execute a sequence m provided
[µ, γ] c ↓m, where µ is the current policy state of c and γ the predicted
activity in the tuc’s concurrent environment. Symmetrically, the environment
will execute any n ∈ γ only if it is enabled with respect to m, i. e., if [µ, {m}]
↓n. This means µ c m � n. Policy coherence (Def. 5 below) then implies that
every interleaving of the sequences m and any n ∈ γ leads to the same return
values and final variable state (Prop. 1).

2.5 Coherence and Determinacy

A method call m(v) combines a method m ∈ Mc with a method parameter7

v ∈ D, where D is a universal domain for method arguments and return values,
including the special don’t care value ∈ D. We denote by Ac = {m(v) | m ∈
Mc, v ∈ D} the set of all method calls on object c. Sequences of method calls
α ∈ A∗c can be abstracted back into sequences of methods α# ∈ M∗c by dropping
the method parameters: ε# = ε and (m(v)α)# = mα#.

7 This is without loss of generality since D may contain value tuples.

Coherence concerns the semantics of method calls as state transformations.
Let Sc be the domain of memory states of the object c with initial state initc ∈
Sc. Each method call m(v) ∈ Ac corresponds to a semantical action [[m(v)]]c ∈
Sc → (D× Sc). If s ∈ Sc is the current state of the object then executing a call
m(v) on c returns a pair (u, s′) = [[m(v)]]c(s) where the first projection u ∈ D
is the return value from the call and the second projection s′ ∈ Sc is the new
updated state of the variable. For convenience, we will denote u = π1[[m(v)]]c(s)
by u = s.m(v) and s′ = π2[[m(v)]]c(s) by s′ = s � m(v). The action notation
is extended to sequences of calls α ∈ A∗c in the natural way: s � ε = s and
s� (m(v)α) = (s�m(v))� α.

For policy-based scheduling we assume an abstraction function mapping a
memory state s ∈ Sc into a policy state s# ∈ Pc. Specifically, init#c = ε. Further,
we assume the abstraction commutes with method execution in the sense that
if we execute a sequence of calls and then abstract the final state, we get the
same as if we executed the policy automaton on the abstracted state in the first
place. Formally, (s� α)# = s# � α# for all s ∈ Sc and α ∈ A∗c .

Definition 5 (Coherence). A csm variable c is policy-coherent if for all
method calls a, b ∈ Ac whenever s# c a# � b# for a state s ∈ Sc, then
a and b are confluent in the sense that s.a = (s � b).a, s.b = (s � a).b and
s� a� b = s� b� a. ut

Example 3. Esterel pure signals do not carry any data value, so their memory
state coincides with the policy state, Ss = Ps = {0, 1} and s# = s. An emission
emit does not return any value but sets the state of s to 1, i. e., s. emit() = ∈ D
and s�emit() = 1 ∈ Ss. A present test returns the state, s. pres() = s, but does
not modify it, s�pres() = s. From the policy Fig. 1 we find that the concurrent
enablings s# s a

� b# according to Def. 4 are (i) a = b ∈ {pres(), emit()}
for arbitrary s, or (ii) s = 1, a = emit() and b = pres(). In each of these cases
we verify s.a = (s � b).a, s.b = (s � a).b and s � a � b = s � b � a without
difficulty. Note that 1 s emit � pres since the order of execution is irrelevant
if s = 1. On the other hand, 0 1s emit � pres because in state 0 both methods
are not confluent. Specifically, 0. pres() = 0 6= 1 = (0� emit()). pres(). ut

A special case are linear precedence policies where µ c ↓m for all m ∈ Mc

and µ c m→ n is a linear ordering on Mc, for all policy states µ. Then, for no
state we have µ c m1 � m2, so there is no concurrency and thus no confluence
requirement to satisfy at all. Coherence of c is trivially satisfied whatever the
semantics of method calls. For any two admissible methods one takes precedence
over the other and thus the enabling relation becomes deterministic. There is
however a risk of deadlock which can be excluded if we assume that threads
always call methods in order of decreasing precedence.

The other extreme case is where the policy makes all methods concurrently
enabled, i. e., µ c m1 � m2 for all policy states µ and methods m1, m2. This
avoids deadlock completely and gives maximal concurrency but imposes the
strongest confluence condition, viz. independently of the scheduling order of
any two methods, the resulting variable state must be the same. This requires

complete isolation of the effects of any two methods. Such an extreme is used,
e. g., in the CR library [19]. The typical csm variable, however, will strike a trade-
off between these two extremes. It will impose a sensible set of precedences that
are strong enough to ensure coherent implementations and thus determinacy for
policy-conformant scheduling, while at the same time being sufficiently relaxed to
permit concurrent implementations and avoiding unnecessary deadlocks risking
that programs are rejected by the compiler as un-scheduleable.

Whatever the policies, if the variables are coherent, then all policy-conformant
interleavings are indistinguishable for each csm variable. To state schedule in-
variance in its general form we lift method actions and independence to multi-
variable sequences of methods calls A = {c.m(v) | c ∈ O,m(v) ∈ Ac}. For a
given sequence α ∈ A∗ let πc(α) ∈ A∗c be the projection of α on c, formally
πc(ε) = ε, πc(c.m(v)α) = m(v)πc(α) and πc(c

′.m(v)α) = πc(α) for c′ 6= c.
A global memory Σ ∈ S =

∏
c∈O Sc assigns a local memory Σ.c ∈ Sc to each

variable c. We write init for the initial memory that has init .c = initc and
(init .c)# = ε ∈ Pc.

Given a global memory Σ ∈ S and sequences α, β ∈ A∗ of method calls, we
extend the independence relation of Def. 4 variable-wise, defining Σ α � β
iff (Σ.c)# c (πc(α))# � (πc(β))#. The application of a method call a ∈ A to
a memory Σ ∈ S is written Σ.a ∈ S and defined (Σ.(c.m(v))).c = (Σ.c).m(v)
and (Σ.(c.m(v))).c′ = Σ.c′ for c′ 6= c. Analogously, method actions are lifted
to global memories, i. e., (Σ � c.m(v)).c′ = Σ.c′ if c′ 6= c and (Σ � c.m(v)).c =
Σ.c�m(v).

Proposition 1 (Commutation). Let all csm variables be policy-coherent and
Σ a � α for a memory Σ ∈ S, method call a ∈ V and sequences of method
calls α ∈ V∗. Then, Σ � a� α = Σ � α� a and Σ.a = (Σ � α).a.

2.6 Policies and Modularity

Consider the synchronous data-flow network cnt in Fig. 3b with three process
nodes, a multiplexer mux, a register reg and an incrementor inc. Their DCoL
code is given in Fig. 3a. The network implements a settable counter, which
produces at its output ys a stream of consecutive integers, incremented with each
clock tick. The wires ys, zs and ws are IVars (see Ex. 2) carrying a single integer
value per tick. The input xs is a pure Esterel signal (see Ex. 1). The counter
state is stored by reg in a local variable xv with read and write methods that
can be called by a single thread only. The register is initialised to value 0 and in
each subsequent tick the value at ys is stored. The inc takes the value at zs and
increments it. When the signal xs is absent, mux passes the incremented value
on ws to ys for the next tick. Otherwise, if xs is present then mux resets ys.

The evaluation order is implemented by the policies of the IVars ys, zs and
ws. In each case the put method takes precedence over get which makes sure that
the latter is blocked until the former has been executed. The causality cycle of
the feedback loop is broken by the fact that the reg node first sends the current

module cnt

[% mux node

loop

v = xs.pres();

if v then ys.put(0);

else u = ws.get();

ys.put(u);

end

] ||

[% reg node

xv.write(0);

loop

v = xv.read(); zs.send(v);

u = ys.get(); xv.write(u);

end

] ||

[% inc node

loop

v = zs.get(); ws.put(v+1);

end

]

(a) Network with mux, reg, inc threads.

ws zs
reginc

0
cnt

mux
xs ys

(b) Block diagram of the feedback network.

module cnt-cmp

reg.init(0);

[% mux-cmp node

loop

v = xs.pres();

if v then reg.set(0);

else u = ws.get();

reg.set(u);

end

] ||

[% inc-cmp node

loop

v = reg.get(); ws.put(v+1);

end

]

(c) Network with reg as a precompiled
DCoL object.

Fig. 3: Synchronous data-flow network cnt built from control-flow processes.

counter value to zs before it waits for the new value at ys. The other nodes mux
and inc, in contrast, first read their inputs and then send to their output.

Now suppose, for modularity, the reg node is pre-compiled into a synchronous
IO automaton to be used by mux and inc as a black box component. Then, reg
must be split into three modes [20] reg.init, reg.get and reg.set that can
be called independently in each instant. The init mode initialises the register
memory with 0. The get mode extracts the buffered value and set stores a new
value into the register. Since there may be data races if get and set are called
concurrently on reg, a policy must be imposed. In the scheduling of Fig. 3b,
first reg.get is executed to place the output on zs. Then, reg waits for mux to
produce the next value of ys from xs or ws. Finally, reg.set is executed to store
the current value of ys for the next tick. Thus, the natural policy for the register
is to require that in each tick set is called by at most one thread and if so no
concurrent call to get by another thread happens afterwards. In addition, the
policy requires init to take place at least once before any set or get. Hence,
the policy has two states Preg = {0, 1} with initial ε = 0 and admissibility such
that 0 reg ↓m iff m = init and 1 reg ↓m for all m. The transitions are
0� init = 1 and 1�m = 1 for all m ∈ Mreg. Further, for coherence, in state 1

no set may be concurrent and every get must take place before any concurrent
set. This means, we have 1 reg m→ set for all m ∈ {get, set}. Fig. 3c shows
the partially compiled code in which reg is treated as a compiled object. The
policy on reg makes sure the accesses by mux and inc are scheduled in the right
way (see Ex. 4). Note that reg is not an IVar because it has memory.

The cnt example exhibits a general pattern found in the modular compilation
of SP: Modules (here reg) may be exercised several times in a synchronous tick
through modes which are executed in a specific prescribed order. Mode calls (here
reg.set, reg.get) in the same module are coupled via common shared memory
(here the local variable xs) while mode calls in distinct modules are isolated
from each other [15,20].

3 Constructive Semantics of DCoL

To formalise our semantics it is technically expedient to keep track of the com-
pletion status of each active thread inside the program expression. This results in
a syntax for processes distinguished from programs in that each parallel compo-
sition P1 k1||k2 P2 is labelled by completion codes ki ∈ {⊥, 0, 1} which indicate
whether each thread is waiting ki = ⊥, terminated 0 or pausing ki = 1. Since we
remove a process from the parallel as soon as it terminates then the code ki = 0
cannot occur. An expression P1 ||P2 is considered a special case of a process
with ki = ⊥. The formal semantics is given by a reduction relation on processes

Σ;Π ` P m
=⇒ Σ′ `k′ P ′ (2)

specified by the inductive rules in Fig. 4 and Fig. 5. The relation (2) determines
an instantaneous sequential reduction step of process P , called an sstep, that fol-
lows a sequence of enabled method calls m ∈ M∗ in sequential program order in
P . This does not include any context switches between concurrent threads inside
P . For thread communication, several ssteps must be chained up, as described
later. The sstep (2) results in an updated memory Σ′ and residual process P ′.
The subscript k′ is a completion code, described below. The reduction (2) is
performed in a context consisting of a global memory Σ ∈ S (must context)
containing the current state of all csm variables and an environment predic-
tion Π ⊆ M∗ (can context). The prediction records all potentially outstanding
methods sequences from threads running concurrently with P .

We write πc(m) ∈ M∗c for the projection of a method sequence m ∈ M∗ to
variable c and write πc(Π) for its lifting to sets of sequences. Prefixing is lifted,
too, i. e., c.m�Π = {c.mm |m ∈ Π} for any c.m ∈ M.

Performing a method call c.m(v) in Σ;Π advances the must context to
Σ�c.m(v) but leaves Π unchanged. The sequence of methods m ∈ M∗ in (2) is
enabled in Σ;Π, written [Σ,Π] ↓m meaning that [(Σ.c)#, πc(Π)] c ↓πc(m)
for all c ∈ O. In this way, the context [Σ,Π] forms a joint policy state for all
variables for the tuc P , in the sense of Sec. 2 (Def. 3).

Most of the rules in Figs. 4 and 5 should be straightforward for the reader fa-
miliar with structural operational semantics. Seq1 is the case of a sequential P ;Q

Sequence

Σ;Π ` P m
=⇒ Σ′ `k′ P ′ k′ 6= 0

Seq1
Σ;Π ` P ;Q

m
=⇒ Σ′ `k′ P ′ ;Q

Σ;Π ` P m1==⇒ Σ′ `0 P ′ Σ′;Π ` Q m2==⇒ Σ′′ `k′ Q′ Seq2
Σ;Π ` P ;Q

m1m2====⇒ Σ′′ `k′ Q′

Completion

Cmp1
Σ;Π ` skip

ε
=⇒ Σ `0 skip

Cmp2
Σ;Π ` pause

ε
=⇒ Σ `1 pause

Recursion
Σ;Π ` P{rec p. P/p} m

=⇒ Σ′ `k′ P ′ Rec
Σ;Π ` rec p. P

m
=⇒ Σ′ `k′ P ′

Fig. 4: SStep Reductions for Sequence, Completion and Recursion.

where P pauses or waits (k′ 6= 0) and Seq2 is where P terminates and control
passes into Q. The statements skip and pause are handled by rules Cmp1 and
Cmp2. The rule Rec explains recursion rec p.P by syntactic unfolding of the re-
cursion body P . All interaction with the memory takes place in the method calls
letx = c.m(e) inP . Rule Let1 is applicable when the method call is enabled,
i. e., [Σ,Π] ↓ c.m. Since processes are closed, the argument expression e must
evaluate, eval(e) = v, and we obtain the new memory Σ � c.m(v) and return
value Σ.c.m(v). The return value is substituted for the local (stack allocated)
identifier x, giving the continuation process P{Σ.c.m(v)/x} which is run in the
updated context Σ�c.m(v);Π. The prediction Π remains the same. The second
rule Let2 is used when the method call is blocked or the thread wants to wait
and yield to the scheduler. The rules for conditionals Cnd1, Cnd2 are canonical.
More interesting are the rules Par1–Par4 for parallel composition, which imple-
ment non-deterministic thread switching. It is here where we need to generate
predictions and pass them between the threads to exercise the policy control.

The key operation is the computation of the can-prediction of a process P to
obtain an over-approximation of the set of possible method sequences potentially
executed by P . For compositionality we work with sequences cans(P) ⊆ M∗ ×
{0, 1} stoppered with a completion code 0 if the sequence ends in termination or
1 if it ends in pausing. The symbols ⊥0, ⊥1 and > are the terminated, paused
and fully unconstrained can contexts, respectively, with ⊥0 = {(ε, 0)}, ⊥1 =
{(ε, 1)} and > = M∗ × {0, 1}. The set cans(P), defined in Fig 6, is extracted
from the structure of P using prefixing c.m �Π ′, choice Π ′1 ⊕Π ′2 = Π ′1 ∪Π ′2,
parallel Π ′1 ⊗Π ′2 and sequential composition Π ′1 ·Π ′2. Sequential composition is
obtained pairwise on stoppered sequences such that (m, 0)·(n, c) = (mn, c) and
(m, 1)·(n, c) = (m, 1). As a consequence, ⊥0 ·Π ′ = Π ′ and ⊥1 ·Π ′ = ⊥1. Parallel
composition is pairwise free interleaving with synchronisation on completion
codes. Specifically, a product (m, c) ⊗ (n, d) generates all interleavings of m

Method Call

[Σ,Π] ↓ c.m eval(e) = v Σ � c.m(v);Π ` P{Σ.c.m(v)/x} m
=⇒ Σ′ `k′ P ′ Let1

Σ;Π ` letx = c.m(e) inP
c.mm
====⇒ Σ′ `k′ P ′

Let2
Σ;Π ` letx = c.m(e) inP

ε
=⇒ Σ `⊥ letx = c.m(e) inP

Conditional
eval(e) = true Σ;Π ` P m

=⇒ Σ′ `k′ P ′ Cnd1
Σ;Π ` if e then P else Q

m
=⇒ Σ′ `k′ P ′

eval(e) = false Σ;Π ` Q m
=⇒ Σ′ `k′ Q′ Cnd2

Σ;Π ` if e then P else Q
m
=⇒ Σ′ `k′ Q′

Parallel
Σ;Π ⊗ can(Q) ` P m

=⇒ Σ′ `k′ P ′ k′ 6= 0
Par1

Σ;Π ` P k||kQ Q
m
=⇒ Σ′ `k′ukQ P ′ k′||kQ Q

Σ;Π ⊗ can(Q) ` P m
=⇒ Σ′ `0 P ′

Par2
Σ;Π ` P k||kQ Q

m
=⇒ Σ′ `kQ Q

Σ;Π ⊗ can(P) ` Q m
=⇒ Σ′ `k′ Q′ k′ 6= 0

Par3
Σ;Π ` P kP||k Q

m
=⇒ Σ′ `kPuk′ P kP||k′ Q

′

Σ;Π ⊗ can(P) ` Q m
=⇒ Σ′ `0 Q′

Par4
Σ;Π ` P kP||k Q

m
=⇒ Σ′ `kP P

Fig. 5: SStep Reductions for Method Calls, Conditional and Parallel.

and n with a completion that models a parallel composition that terminates iff
both threads terminate and pauses if one pauses. Formally, (m, c) ⊗ (n, d) =
{(c,max(c, d)) | c ∈ m ⊗ n}. Thus, Π ′P ⊗ Π ′Q = ⊥0 iff Π ′P = ⊥0 = Π ′Q and
Π ′P ⊗ Π ′Q = ⊥1 if Π ′P = ⊥1 = Π ′Q, or Π ′P = ⊥0 and Π ′Q = ⊥1, or Π ′P = ⊥1

and Π ′Q = ⊥0. From cans(P) we obtain can(P) ⊆ M∗ by dropping all stopper
codes, i.e., can(P) = {m | ∃d. (m, d) ∈ cans(P)}.

The rule Par1 exercises a parallel P k||kQ
Q by performing an sstep in P . This

sstep is taken in the extended context Σ;Π ⊗ can(Q) in which the prediction
of the sibling Q is added to the method prediction Π for the outer environment
in which the parent P ||Q is running. In this way, Q can block method calls
of P . When P finally yields as P ′ with a non-terminating completion code,
0 6= k′ ∈ {⊥, 1}, the parallel completes as P ′ k′||kQ

Q with code k′ u kQ. This
operation is defined k1uk2 = 1 if k1 = 1 = k2 and k1uk2 = ⊥, otherwise. When
P terminates its sstep with code k′ = 0 then we need rule Par2 which removes
child P ′ from the parallel composition. The rules Par3,Par4 are symmetrical to
Par1,Par2. They run the right child Q of a parallel P kP

||k Q.
Completion and Stability. A process P ′ is 0-stable if P ′ = skip and 1-stable if
P ′ = pause or P ′ = P ′1 ;P

′
2 and P ′1 is 1-stable, or P ′ = P ′1 1||1 P

′
2, and P ′i are 1-

cans(skip) = cans(p) = ⊥0 cans(pause) = ⊥1

cans(rec p. P) = cans(P) cans(P ||Q) = cans(P)⊗ cans(Q)

cans(P ;Q) =

{
cans(P) if cans(P) ⊆ M∗ × {1}
cans(P) · cans(Q) otherwise

cans(letx = c.m(e) inP) = c.m� cans(P)

cans(if e then P else Q) =

cans(P) if eval(e) = true

cans(Q) if eval(e) = false

cans(P) ⊕ cans(Q) otherwise.

Fig. 6: Computing the can Prediction.

stable. A process is stable if it is 0-stable or 1-stable. A process expression is well-
formed if in each sub-expression P1 k1||k2 P2 of P the completion annotations are
matching with the processes, i. e., if ki 6= ⊥ then Pi is ki-stable. Stable processes
are well-formed by definition. For stable processes we define a (syntactic) tick
function which steps a stable process to the next tick. It is defined such that
σ(skip) = skip, σ(pause) = skip, σ(P ′1 ;P

′
2) = σ(P ′1) ;P ′2 and σ(P ′1 k1

||k2

P ′2) = σ(P ′1)||σ(P ′2).

Example 4. The data-flow cnt-cmp from Fig. 3c can be represented as a DCoL
process in the form C = reg.init(0); (M ⊥||⊥ I) with

M =df rec p. v = xs. pres();P (v); pause; p

P (v) =df if v then reg.set(0); else Q

Q =df u = ws.get(); reg.set(u);

I =df rec q. v = reg.get(); ws.put(v + 1); pause; q.

Let us evaluate process C from an initialised memory Σ0 such that Σ0.xs = 0 =
Σ0.ws, and empty environment prediction {ε}.

The first sstep is executed from the context Σ0; {ε} with empty can predic-
tion. Note that reg.init(0); (M ⊥||⊥ I) abbreviates let = reg.init(0) in

(M ⊥||⊥ I). In context Σ0; {ε} the method call reg.init(0) is enabled, i.e.,
[Σ0, {ε}] ↓ reg.init. Since eval(0) = 0, we can execute the first method call
of C using rule Let1. This advances the memory to Σ1 = Σ0 � reg.init(0).
The continuation process M ⊥||⊥ I is now executed in context Σ1;⊥0. The left
child M starts with method call xs. pres() and the right child I with reg.get().
The latter is admissible, since (Σ1.reg)# = 1. Moreover, get does not need to
honour any precedences, whence it is enabled, [Σ1, Π] ↓ reg.get for any Π.
On the other hand, xs. pres in M is enabled only if (Σ1.xs)# = 1 or if there
is no concurrent emit predicted for xs. Indeed, this is the case: The concur-
rent context of M is ΠI = {ε} ⊗ can(I) = can(I) = {reg.get · ws.put}. We
project πxs(ΠI) = {ε} and find [Σ1, ΠI] ↓ xs. pres. Hence, we have a non-
deterministic choice to take an sstep in M or in I. Let us use rule Par1/Par2 to

run M in context Σ;ΠI . By loop unfolding Rec and rule Let1 we execute the
present test of M which returns the value Σ1.xs. pres() = false. This leads
to an updated memory Σ2 = Σ1 � xs. pres() = Σ1 and continuation process
P (false); pause;M . In this (right associated) sequential composition we first
execute P (false) where the conditional rule Cnd2 switches to the else branch
Q which is u = ws.get(); reg.set(u);, still in the context Σ2, ΠI . The reading of
the data-flow variable ws, however, is not enabled, [Σ2, ΠI] 1 ↓ ws.get, because
(Σ2.ws)# = 0 and thus get not admissible. The sstep blocks with rule Let2:

Let2
Σ2;ΠI ` Q

ε
=⇒ Σ2 `⊥ Q

Cnd2
Σ2;ΠI ` P (false)

ε
=⇒ Σ2 `⊥ Q

Seq1
Σ2;ΠI ` P (false); pause;M

ε
=⇒ Σ2 `⊥ Q; pause;M

Let1(Σ1;ΠI ` ↓ xs. pres)
Σ1;ΠI ` v = xs. pres();P (v); pause;M

ε
=⇒ Σ2 `⊥ Q; pause;M

Rec
Σ1;ΠI `M

m2==⇒ Σ2 `⊥ Q; pause;M
Par1

Σ1; {ε} `M ⊥||⊥ I
m2==⇒ Σ2 `⊥ (Q; pause;M) ⊥||⊥ I

Let1(Σ;⊥0 ↓ reg.init)
Σ; {ε} ` C m1m2====⇒ Σ2 `⊥ (Q; pause;M) ⊥||⊥ I

where m1 = reg.init and m2 = xs. pres. In the next sstep, from Σ2;ΠQ with
ΠQ = {ε} ⊗ can(Q; pause;M) = can(Q; pause;M) = {ws.get · reg.set} we let
the process I execute its reg.get() with rules Rec and Let1. The return value is
v = Σ2.reg.get() = 0. Then, from the updated memory Σ3 = Σ2 � reg.get()
we run the continuation process ws.put(0 + 1); pause; I. The ws.put is enabled
if the IVar is empty and there is no concurrent put on ws predicted from M .
Both conditions hold since (Σ3.ws)# = (Σ.ws)# = 0 and πws(ΠQ) = {get}.
Therefore, [Σ3, ΠQ] ↓ ws.put. With the evaluation eval(0 + 1) = 1 the rule
Let1 permits us to update the memory as Σ4 = Σ3 � ws.put(1) and continue
with process pause; I which completes by pausing. Formally, this sstep is:

Cmp2
Σ4;ΠQ ` pause

ε
=⇒ Σ4 `1 pause

Seq1
Σ4;ΠQ ` pause; I

ε
=⇒ Σ4 `1 pause; I

Let2
Σ3;ΠQ ` ws.put(0 + 1); pause; I

m4==⇒ Σ4 `1 pause; I
Let1

Σ2;ΠQ ` v = reg.get(); ws.put(v + 1); pause; I
m3m4====⇒ Σ4 `1 pause; I

Rec
Σ2;ΠQ ` I

m3m4====⇒ Σ4 `1 pause; I
Par3

Σ2; {ε} ` (Q; pause;M) ⊥||⊥ I
m3m4====⇒ Σ4 `⊥ (Q; pause;M) ⊥||1 (pause; I)

where m3 = reg.get and m4 = ws.put. In the next sstep the waiting method
u = ws.get in Q is now admissible and can proceed, (Σ4.ws)# = ((Σ3 �
ws.put(1)).ws)# = 1 and thus [Σ4, Π] ↓ ws.get for all Π. The return value
is u = Σ4.ws.get() = 1, the updated memory Σ5 = Σ4 � ws.put(1) and the
continuation process reg.set(1); pause;M . The register set method is admissi-
ble since (Σ4.reg)# = 1 and also enabled because there is no get predicted in
the concurrent environment ⊥0. Thus, [Σ5,⊥0] ↓ reg.set. The execution of
the method yields the memory Σ6 = Σ5� reg.set(1) with continuation process

pause ;M which completes by pausing. This yields the derivation tree:

Cmp2
Σ6; {ε} ` pause;M

ε
=⇒ Σ6 `1 pause;M

Let1
Σ5; {ε} ` reg.set(1); pause;M

m6==⇒ Σ6 `1 pause;M
Let1

Σ4; {ε} ` Q; pause;M
m5m6====⇒ Σ6 `1 pause;M

Par2
Σ4; {ε} ` (Q; pause;M) ⊥||1 (pause; I)

m5m6====⇒ Σ6 `1 (pause;M) 1||1 (pause; I)

where m5 = ws.get and m6 = reg.set. To justify the rule Par2 consider that
{ε} ⊗ can(pause; I) = {ε} ⊗ {ε} = {ε}. At this point we have reached a 1-stable
process. With the tick function we advance to the next tick, σ((pause;M) 1||1

(pause; I)) = (skip;M) ⊥||⊥ (skip; I) which behaves like M ⊥||⊥ I. ut

3.1 Determinacy, Termination and Constructiveness

Determinacy of DCoL is a result of two components, monotonicity of policy-
conformant scheduling and csm coherence. Monotonicity ensures that whenever
a method is executable and policy-enabled, then it remains policy-enabled under
arbitrary ssteps of the environment. Symmetrically, the environment cannot be
blocked by a thread taking policy-enabled computation steps.

The second building block for determinacy is csm variable coherence. Con-
sider a context Σ;ΠQ in which we run an sstep of P with prediction ΠQ for
concurrent process Q, resulting in a final memory Σ′P arising from executing a
sequence mP of method calls from P . Because of the policy constraint, the se-
quence mP must be enabled under all predictions n ∈ ΠQ, i. e., [Σ,n] ↓mP .
Suppose, on the other side, we sstep the process Q in the same memory Σ with
prediction ΠP for P , resulting in an action sequence mQ and final memory Σ′Q.
Then, by the same reasoning, [Σ,n] ↓mQ for all n ∈ ΠP . But since mP is an
actual execution of P it must be in the prediction for P , i. e., mP ∈ ΠP and sym-
metrically, mQ ∈ ΠQ. But then we have [Σ,mQ] ↓mP and [Σ,mP] ↓mP

which means Σ mP � mQ. Now if the semantics of method calls is policy-
coherent then the Monotonicity can be exploited to derive a confluence property
for processes which guarantees that mP can still be executed by P in state Σ′Q
and mQ by Q in state Σ′P , and both lead to the same final memory.

Theorem 1 (Diamond Property). If all csm variables are policy-coherent
then the sstep semantics is confluent. Formally, given two derivations Σ;Π `
P

m1==⇒ Σ1 `k1 P1 and Σ;Π ` P m2==⇒ Σ2 `k2 P2, Then, there exist Σ′, k′ and P ′

such that Σ1;Π ` P1
n1=⇒ Σ′ `k′ P ′ and Σ1;Π ` P2

n2=⇒ Σ′ `k′ P ′.

Thm. 1 shows that no matter how we schedule the ssteps of local threads
to create an sstep of a parallel composition, the final result will not diverge.
This does not guarantee completion of a process. However, it implies that the
question of whether P blocks or makes progress does not depend on the order
in which concurrent threads are scheduled. Either a process completes or it does
not. All ssteps in a process can be scheduled with maximal parallelism without
interference.

A main program P is run at the top level in an “environmentally closed” form
of ssteps (2) where the prediction is empty Π = {ε} and thus acts neutrally. We
iterate such ssteps to construct a macro-step reaction. Let us write

Σ ` P =⇒ Σ′ ` P ′ (3)

if there exists k′, m such that Σ;⊥0 ` P
m
=⇒ Σ′ `k′ P ′. The relation =⇒ is well-

founded for clock-guarded processes in the sense that it has no infinite chains.

Theorem 2 (Termination). Let P0, P1, P2, . . . and Σ0, Σ1, Σ2, . . . be infinite
sequences of processes and memories, respectively, with Σi ` Pi =⇒ Σi+1 ` Pi+1.
If P0 is clock-guarded then there is n ≥ 0 with Σn = Σi, Pn = Pi for all i ≥ n.

The fixed point semantics will iterate (3) until it reaches a P ∗ such that
Σ∗ ` P ∗ =⇒ Σ∗ ` P ∗. By Termination Thm. 2 this must exist for clock-guarded
processes. If cans(P ∗) = ⊥0 then P ∗ is 0-stable and the program P has termi-
nated. If cans(P ∗) = ⊥1, the residual P ∗ is pausing.

Definition 6 (Macro Step). A run Σ ` P ⇒⇒ Σ′ ` P ′ is a sequence of ssteps
with processes P0, P1, P2, . . . , Pn and sequences of method calls m1, m2, . . .mn

such that for all 1 ≤ i ≤ n,

Σi−1;⊥0 ` Pi−1 =⇒ Σi `ki
Pi,

where P0 = P , Σ0 = Σ, Σn = Σ′ and Pn = P ′. A run is called a macro-step
if it is maximal, i. e., if Σ′ ` P ′ =⇒ Σ′′ ` P ′′ implies Σ′ = Σ′′ and P ′ = P ′′.
The macro-step is called stabilising if the final P ′ is stable, i. e., kn 6= ⊥ and the
clock is admissible, i. e., if (Σ′.c)# � σ is defined for all c ∈ O. The macro-step
is pausing if kn = 1 and terminating if kn = 0. ut

Given a pausing macro-step Σ ` P ⇒⇒ Σ′ ` P ′, then the next tick starts
with process σ(P ′) in memory Σ′′ such that (πc(Σ

′))# −σ→ (πc(Σ
′′))# for all

c ∈ O. This only constrains the abstract policy state of each variable in Σ′′ not
their memory content. In this way, csm variables can introduce an arbitrary new
memory Σ′′ with every clock tick.

Theorem 3 (Macro-step Determinism). If all csm variables are policy-
coherent then for two macro steps Σ ` P ⇒⇒ Σ1 ` P1 and Σ ` P ⇒⇒ Σ2 ` P2

we have Σ1 = Σ2 and P1 = P2.

Definition 7 (Constructiveness). A program P is policy-constructive, for
a set of policy coherent csm variables, if for arbitrary initial memory Σ all
reachable macro-steps of P are stabilising. ut

A non-constructive program will, after some tick, end up in a fixed point
P ∗ with cans(P ∗) 6∈ {⊥0,⊥1}. Then P ∗ is stuck involving a set of active child
threads waiting for each other in a policy-induced cycle.

Finally, we present two important results for DCoL showing that we are
conservatively extending existing SP semantics. A DCoL program using only

sequentially constructive variables [14] (see [17][Sec. 5.7]) is called a DCoL-
SC program. DCoL programs using only pure signals subject to the policy of
Ex. 1 (Fig. 1) are expressive complete for the pure instantaneous fragment of
Esterel [4]. Esterel signal emissions emit s are syntactic sugar for s. emit();.
A presence test pres s thenP elseQ abbreviates if s. pres() then P else Q.
Sequential composition P ;Q in Esterel behaves like a parallel composition in
which the schedule is forced to run P to termination before it can pass control
to Q. In DCoL this is (P;s′. emit();) || (s′. pres() thenQ else skip) with fresh
signal s′ not occurring in either P or Q. This suggests the following definition:
A program P is a (pure instantaneous) DCoL-Esterel program if (i) P only uses
pure signals and (ii) P does not use pause or rec and (iii) P does not contain
sequentially nested occurrences of signal accesses.

Theorem 4 (Esterel and Sequential Constructiveness).

1. If an DCoL-Esterel program P is policy-constructive according to Def. 7 iff
it is Berry-constructive in the sense of [4].

2. If a DCoL-SC program P is policy-constructive according to Def. 7 then it
is sequentially constructive in the sense of [14].

It is interesting to note that the second statement in Thm. 4 is not invertible
(for a counter example see [17]). Hence, policy-constructiveness for SC-variables
induced by our semantics is more restrictive than that given in [14].

4 Related Work

Many languages have been proposed to offer determinism as a fundamental de-
sign principle. We consider these attempts under several categories.
Fixed protocol for shared data. These approaches introduce an unique protocol
for data exchange between concurrent processes. SHIM [21] provides a model for
combined hardware software systems typically of embedded systems. Here, the
concurrent processes communicate using point-to-point (restricted) Kahn chan-
nels with blocking reads and writes. SHIM programs are shown to be deterministic-
by-construction as the states of each process are finite and deterministic and the
data produced-consumed over any channel is also deterministic.

Concurrent revisions [19] introduce a generic and deterministic programming
model for parallel programming. This model supports fork-join parallelism and
processes are allowed to make concurrent modifications to shared data by creat-
ing local copies that are eventually merged using suitable (programmer specified)
merge functions at join boundaries.

However, like the deterministic SP model [2], both SHIM and concurrent re-
visions lack support for more expressive shared ADTs essential for programming
complex systems. Caromel et al. [22], on the other hand, offer determinism with
asynchronously communicating active objects (ADTs) equipped with a process
calculus semantics. Here, an active object is a sequential thread. Active objects
communicate using futures and synchronise via Kahn-MacQueen co-routines [23]

for deterministic data exchange. Our approach subsumes Kahn buffers of SHIM
and the local-copy-merge protocol of concurrent revisions by an appropriate
choice of method interface and policy. None of these approaches [19,21,22] uses
a clock as a central barrier mechanism like our approach does.

In the Java-derived language X10, clocks are a form of synchronisation barrier
for supporting deterministic and deadlock-free patterns of common parallel com-
putations [24]. This allows multiple-clocks in contrast to our approach. These,
however, are not abstracted in the objects in contrast to our clocks that are
encapsulated inside the csm types. Hence X10 clocks are invoked directly by the
activities (i. e., concurrent threads) of programs and this manual synchronisation
is as error-prone as other unsafe low-level primitives such as locks.
Coherent memory models for shared data. Whether clocked or not, our approach
depends on the availability of csm types that are provably coherent for their
policy. Besides the standard types of SP (data-flow, sequentially constructive
variables, Kahn channels, signals) such csm types can be obtained from exist-
ing research on coherent memory models [25,26]. Unlike the protocol-oriented
approaches above, some approaches have been developed based on coherency of
the underlying memory models [26] especially for shared objects.

Bocchino et al. [25] propose deterministic parallel Java (DPJ) which has a
type and effect system to ensure that parallel heap accesses remain safe. Data
structures such as arrays, trees, and sets can be accessed in parallel as long as
accesses can be shown to use non-overlapping regions.

Grace [27] promises a deterministic run-time through the adoption of fork-
join parallelism combined with memory protection and a sequential commit
protocol. However, there is no guarantee on the determinism of such custom
synchronisation protocols. These must be verified using expensive proof systems.

A powerful technique to generate coherent shared memory structure for func-
tional programs has recently been proposed by Kuper et al. [28]. They introduce
lattice-based data structures, called LVars, in which all write accesses produce
a monotonic value increase in the lattice and all read accesses are blocked until
the memory value has passed a read-specific threshold. Each variable’s domain is
organised as a lattice of states with ⊥ and > representing an empty new location
and an error, respectively. Because of monotonicity all writes are confluent with
each other. Since reads are blocked each LVar data type can thus be used in
DCoL as a coherent csm type of variables with a threshold-determined policy.
Note that [25,26,27,28] do not consider csm types and [28] also do not treat
destructive sequential updates as we do.

Recently Haller et al. [29] have developed Reactive Async, a new event-based
asynchronous concurrent programming model that improves on LVars. This ap-
proach extends futures and promises8 with lattice-based operations in order to
support destructive updates (refinement of results) in a deterministic concur-
rent setting. The basic abstractions are: cells which define interfaces for reading
a value that is asynchronously computed and (ii) cell completers that allow mul-

8 A future can asynchronously be completed with a value of the appropriate type or
it can fail with an exception. A promise allows completing a future at most once.

tiple monotonic updates of values taken from a lattice type class. The model
supports concurrent programming with cyclic data dependencies in contrast to
LVars. The mechanism for resolving cycles combines the lattices with quiescence
detection on a handler pool (execution context). The quiescence concept refers
to a state where the cell values are not going to be changed anymore. The thread
pool is able to detect this quiescent (synchronisation) phase and when this is the
case the resolution of cyclic dependencies and reading of cells can take place. This
is similar to our policies, where enabling of methods (e. g., read) is a state and
prediction-dependent notion. Our developments may offer a theoretical back-
ground for the cell interfaces of this model. In Reactive Async the concurrent
code is guaranteed to be deterministic provided that the API is used appropri-
ately but this is not checked statically. It would be interesting to investigate
whether our theory can contribute on this front. In the other direction, Reac-
tive Async manages inter-cell dependencies which might support global policies
between different csm variables in our setting.

Clock-driven encapsulation. Encapsulation is not entirely unknown in reactive
programming. The idea of reactive object model (ROM) [30] was first introduced
by Boussinot et al. and subsequently refined [31] and combined with standards
such as UML [32]. Here a program is a collection of reactive objects that operate
synchronously relative to a global clock, similar to SP. Each object encapsulates
a set of methods and data, where the methods share this data. ROM relied on a
simplified assumption, where each method invocation is separated into instants.

André et al. [33] generalised the ROM idea to that of synchronous objects,
which behave like synchronous modules (in Esterel or Lustre). The program is
divided into a collection of synchronous and standard objects. While the lat-
ter interact using messages, the former use signals like in SP. Communication
between standard and synchronous objects has to be managed using special in-
terface objects. The framework supports features such as aggregation, encapsu-
lation and inheritance yet communication is restricted to standard Esterel-style
signals. However, the issue of determinism for the composition of synchronous
objects with standard objects is not considered.

A concrete implementation of synchronous objects in Java is proposed in [34].
Here, a run-time system is used to provide a cyclic schedule of the objects during
an instant. This approach assumes that outputs from the objects can be read
only in the next instant (similar to the SL programming language [35]) and so
does not support instantaneous communication like we do.

Synchronous objects arise naturally in modular compilation [15,36,37]. The
first time these have been exposed at the language level is in [20]. That work
has inspired our use of policies. While [20] offers a mechanism for deterministic
management of shared variables through ADT-like interfaces it has three seri-
ous limitations: (1) Modes express data-flow equations rather than imperative
method procedures and so are not directly suitable for control-flow programming;
(2) Policies do not distinguish between two modes being called sequentially by
the same thread, which can be permitted, and two methods being called by dif-
ferent threads in parallel, which may have to be prohibited. This makes policies

too restrictive in the light of the recent more liberal notion of sequential con-
structiveness [14] and, most importantly, (3) the notion of policy-soundness does
not use policies prescriptively as a contract to be fulfilled by the scheduler but
instead only descriptively as an invariant of the program code. Hence, policies
in [20] cannot be used to generalise the semantics of SP signals to shared ADTs.

The sequentially constructive model of synchronous computation [14] has
shown how the constructive semantics of Esterel can be reconstructed from a
scheduling view as standard destructive variables plus synchronisation protocol.
SCL acts as an intermediate language for the graphical language SCCharts [38]
and the textual language SCEst [18] which are proposed as sequentially con-
structive extensions of the well-known control-flow languages SyncCharts [39]
and Esterel [4]. By presenting our new analysis of sequential constructiveness
for SCL our results become applicable both for SCCharts and SCEst.

The term ‘constructive’ semantics has been coined by Berry [4]. In [40] it was
shown how it can be recoded as a fixed-point in an interval domain which we
generalise here to policy states [µ, γ]. Talpin et al. [13] recently gave a construc-
tive semantics of multi-clock synchronous programs. It is an open problem how
our approach could be generalised to multiple clocks.

5 Conclusion

This work extends the SP theoretical foundations to allow communication at
higher levels of abstraction. The paper explains deterministic concurrency of
SP as a derived property from csm types. Our results extend the SP-notion of
constructiveness to general shared csm types. We have made some simplifying
assumptions that render the theory somewhat less general than it could be. A
first limitation is our assumption that all method calls are atomic. We believe
the theory can be generalised for non-atomic methods albeit at the price of
a significant increase in the complexity of calculating can predictions. Second,
method parameters are passed “by value” rather than “by reference”. This is
necessary for having types as black boxes ready to use. Method parameters
passing variables “by reference” would also introduce aliasing issues which we
do not address. Third, in our present setting the policy update µ�m does not
observe method parameters. This is an abstraction to facilitate static analyses. In
principle, to increase expressiveness, the method parameters could be included,
too, but again complicate over-approximation for can information.

Acknowledgement. We thank Philipp Haller, Adrien Guatto and the three
anonymous reviewers for their insightful comments and suggestions helping us
improving the paper. This work has been supported by the German Research
Council (DFG) under grant number ME-1427/6-2.

References

1. Lee, E.: The problem with Threads. Computer 39(5) (May 2006) 33–42
2. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Guernic, P.L., de Simone,

R.: The Synchronous Languages Twelve Years Later. Proc. of the IEEE 91(1)
(Jan. 2003) 64–83

3. Colaço, J., Pagano, B., Pouzet, M.: SCADE 6: A Formal Language for Embedded
Critical Software Development. In TASE’17, Sophia Antipolis, France (Sep. 2017)

4. Berry, G.: The Constructive Semantics of Pure Esterel. Draft Book (1999)
5. Schneider, K.: The Synchronous Programming Language Quartz. Internal re-

port 375, Dep. of Comp. Sci., University of Kaiserslautern, Germany (Dec. 2009)
6. von Hanxleden, R.: SyncCharts in C – A Proposal for Light-Weight, Deterministic

Concurrency. In: In EMSOFT’09, Grenoble, France (Oct. 2009) 225–234
7. Guernic, P.L., Goutier, T., Borgne, M.L., Maire, C.L.: Programming real time

applications with SIGNAL. Proc. of the IEEE 79 (Sep. 1991) 1321–1336
8. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow

programming language LUSTRE. Proc. of the IEEE 79(9) (Sep. 1991) 1305–1320
9. Pouzet, M.: Lucid Synchrone, un langage synchrone d’ordre supérieur. Mémoire

d’habilitation, Université Paris 6 (Nov. 2002)
10. : The Esterel v7 Reference Manual Version v7 30 (Nov. 2005)
11. Aguado, J., Mendler, M.: Constructive Semantics for Instantaneous Reactions.

Theoretical Computer Science 412 (Mar. 2011) 931–961
12. Aguado, J., Mendler, M., von Hanxleden, R., Fuhrmann, I.: Grounding Syn-

chronous Deterministic Concurrency in Sequential Programming. In ESOP’14,
Grenoble, France (Apr. 2014) 229–248

13. Talpin, J., Brandt, J., Gemünde, M., Schneider, K., Shukla, S.: Constructive poly-
chronous systems. Sci. of Comp. Prog. 96(3) (Dec. 2014) 377–394

14. von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I.,
Motika, C., Mercer, S., O’Brien, O., Roop, P.: Sequentially Constructive
Concurrency—A conservative extension of the synchronous model of computation.
ACM TECS 13(4s) (Jul. 2014) 144:1–144:26

15. Pouzet, M., Raymond, P.: Modular static scheduling of synchronous data-flow
networks - An efficient symbolic representation. Design Automation for Embedded
Systems 14(3) (Sep. 2010) 165–192

16. Kahn, G.: The Semantics of Simple Language for Parallel Programming. In IFIP
Congress’74, Stockholm, Sweden (Aug. 1974) 471–475

17. Aguado, J., Mendler, M., Pouzet, M., Roop, P., von Hanxleden, R.:
Clock-Synchronised Shared Objects for Deterministic Concurrency. Re-
search Report 102, University of Bamberg, Germany (Jul. 2017) https:

//www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/

grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf.
18. Rathlev, K., Smyth, S., Motika, C., von Hanxleden, R., Mendler, M.: SCEst:

sequentially constructive esterel. ACM TECS 17(2) (Jan. 2018) 33:1–33:26
19. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually Consistent Trans-

actions. In ESOP’12, Tallinn, Estonia (Apr. 2012) 67–86
20. Caspi, P., Colac̃o, J., Gérard, L., Pouzet, M., Raymond, P.: Synchronous Objects

with Scheduling Policies: Introducing Safe Shared Memory in Lustre. In LCTES’09,
Dublin, Ireland (Jun. 2009) 11–20

21. Vasudevan, N.: Efficient, Deterministic and Deadlock-free Concurrency. PhD
thesis, Dep. of Comp. Sci., Columbia University (Mar. 2011)

https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf
https://www.uni-bamberg.de/fileadmin/uni/fakultaeten/wiai_professuren/grundlagen_informatik/papersMM/report-WIAI-102-Feb-2018.pdf

22. Caromel, D., Henrio, L., Serpette, B.: Asynchronous and Deterministic Objects.
In POPL’04, Venice, Italy (Jan. 2004) 123–134

23. Kahn, G., MacQueen, D.: Coroutines and Networks of Parallel Processes. In IFIP
Congress’77, Toronto, Canada (Aug. 1977) 993–998

24. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: An Object-oriented Approach to Non-uniform Cluster
Computing. In OOPSLA ’05, San Diego, USA (Oct. 2005) 519–538

25. Bocchino, R., Adve, V., Dig, D., Adve, S., Heumann, S., Komuravelli, R., Overbey,
J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic
parallel Java. In OOPSLA’09, Orlando, USA (Oct. 2009) 97–116

26. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In PLDI’03, San
Diego, USA (Jun. 2003) 338–349

27. Berger, E., Yang, T., Liu, T., Novark, G.: Grace: Safe multithreaded programming
for C/C++. In OOPSLA’09, Orlando, USA (Oct. 2009) 81–96

28. Kuper, L., Turon, A., Krishnaswami, N., Newton, R.: Freeze after writing: Quasi-
deterministic parallel programming with LVars. In POPL’14, San Diego, USA
(Jan. 2014) 257–270

29. Haller, P., Geries, S., Eichberg, M., Salvaneschi, G.: Reactive Async: Expressive
deterministic concurrency. In SCALA’16, Amsterdam, Netherlands (Oct. 2016)
11–20

30. Boussinot, F., Doumenc, G., Stefani, J.: Reactive Objects. Annales des
télécommunications 51(9-10) (Sep. 1996) 459–473

31. Talpin, J., Benveniste, A., Caillaud, B., Jard, C., Bouziane, Z., Canon, H.: BDL, a
language of distributed reactive objects. In IEEE ISORC’98, Kyoto, Japan (Apr.
1998) 196–205

32. André, C., Peraldi-Frati, M., Rigault, J.: Integrating the Synchronous Paradigm
into UML: Application to Control-Dominated Systems. In UML’02, London, UK
(Oct. 2002) 163–178

33. André, C., Boulanger, F., Péraldi, M., Rigault, J., Vidal-Naquet, G.: Objects and
Synchronous Programming. RAIRO-APII-JESA-Journal Europeen des Systemes
Automatises 31(3) (1997) 417–432

34. Passerone, C., Sansoe, C., Lavagno, L., McGeer, R., Martin, J., Passerone, R.,
Sangiovanni-Vincentelli, A.: Modeling reactive systems in Java. ACM TODAES
3(4) (Oct. 1998) 515–523

35. Boussinot, F., Simone, R.D.: The SL synchronous language. IEEE TSE 22(4)
(Apr. 1996) 256–266

36. Biernacki, D., Colaço, J., Hamon, G., Pouzet, M.: Clock-directed Modular Code
Generation of Synchronous Data-flow Languages. In LCTES’08, Tucson, USA
(Jun. 2008) 121–130

37. Hainque, O., Pautet, L., Biannic, Y.L., Nassor, E.: Cronos: A Separate Compilation
Toolset for Modular Esterel Applications. In FM’99 — Formal Methods, Toulouse,
France (Sep. 1999) 1836–1853

38. von Hanxleden, R., Duderstadt, B., Motika, C., Smyth, S., Mendler, M., Aguado,
J., Mercer, S., O’Brien, O.: SCCharts: Sequentially Constructive Statecharts for
safety-critical applications. SIGPLAN Not. 49(6) (Jun. 2014) 372–383

39. André, C.: Semantics of SyncCharts. Technical Report ISRN I3S/RR–2003–24–
FR, I3S Laboratory, Sophia-Antipolis, France (Apr. 2003)

40. Aguado, J., Mendler, M., von Hanxleden, R., Fuhrmann, I.: Denotational fixed-
point semantics for constructive scheduling of synchronous concurrency. Acta In-
formatica 52(4) (Jun. 2015) 393–442

	Deterministic Concurrency: A Clock-Synchronised Shared Memory Approach

