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Abstract

We extend beyond the Euler scales the hydrodynamic theory for quantum and clas-
sical integrable models developed in recent years, accounting for diffusive dynamics
and local entropy production. We review how the diffusive scale can be reached via
a gradient expansion of the expectation values of the conserved fields and how the
coefficients of the expansion can be computed via integrated steady-state two-point
correlation functions, emphasising that PT -symmetry can fully fix the inherent am-
biguity in the definition of conserved fields at the diffusive scale. We develop a form
factor expansion to compute such correlation functions and we show that, while
the dynamics at the Euler scale is completely determined by the density of single
quasiparticle excitations on top of the local steady state, diffusion is due to scat-
tering processes among quasiparticles, which are only present in truly interacting
systems. We then show that only two-quasiparticle scattering processes contribute
to the diffusive dynamics. Finally we employ the theory to compute the exact spin
diffusion constant of a gapped XXZ spin−1/2 chain at finite temperature and half-
filling, where we show that spin transport is purely diffusive.
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1 Introduction

Exactly solvable models in statistical physics constitute an ideal outpost to study a whole
range of emerging physical phenomena [1]. The Ising model in two dimensions [2] or
the Heisenberg spin chain [3] played a fundamental role in the understanding of classical
and quantum phase transitions, in the theory of magnetism, and in general in deciphering
the ground state properties of many-body quantum systems. While these quotations are
mostly associated to the physics observed in systems at equilibrium, during the past years
the study of non-equilibrium quantum and classical physics has become gradually one of
the main research topics in high-energy and condensed matter physics. In particular a
large research community has devoted itself to the study of the non-equilibrium dynamics
of isolated quantum systems, with the exactly solvable models playing a pivotal role. One
of the most studied protocol to put an isolated system out of equilibrium is the so-called
quantum quench [4–9], where an initial many-body state is let to unitarly evolve under
a many-body Hamiltonian. The initial state can be chosen to be homogeneous (invariant
under space translations) [4, 5], or inhomogeneous [10–15], as it is the case in many
experimental settings [16–21]. The theoretical study of the latter has started in earnest
only very recently, in particular for the case of the so-called bi-partite quench, where two
macroscopic many-body systems with different thermodynamic quantities (temperature
or chemical potential for example), are joined together [10–12, 12–15, 22–43] or with
an initial non-homogeneous profile of densities [44–48]. The intrinsic difficulty of such
non-equilibrium dynamics has motivated the formulation of a hydrodynamic description
for the dynamics at large space and time scales, based on the local conserved quanti-
ties [49, 50]. In cases where the only local conserved operators are the Hamiltonian of
the system, the momentum and, for example, the total particle number, the system is in-
deed expected to be described at large scales by an Euler hydrodynamics for the energy,
momentum and mass densities. Such hydrodynamic theories were extensively used also
for cold atomic gases, see for example [51–55]. However for systems with a large number
of conserved quantities, such as the Lieb-Liniger model describing quasi-one-dimensional
cold atomic gases, there are many more emerging hydrodynamic degrees of freedom,
one for each conserved quantity. The hydrodynamics, reproducing the large time and
scale dynamics, must therefore be enlarged in order to account for this. In a quasipar-
ticle picture that is natural in Bethe ansatz and other integrable models, the Euler-scale
hydrodynamic theory is formulated for the density of stable quasiparticle excitations.
Nowadays such a theory is referred to as Generalized Hydrodynamics (GHD). It consists
of a non-linear differential equation describing quasiparticles propagating with effective
velocities which are functional of the local density, due to the microscopic interactions
among the elementary constituents. The net effect of such interactions is the so-called
dressing of thermodynamic functions, which can be exactly expressed as functionals of
the local density using the underlying integrable structure. The GHD equations were suc-
cessfully applied to cold atomic systems [56,57] and verified experimentally, [58], to spin
chains [50,59–62], classical gases and fields [63–65] and Floquet dynamics [66].

In the Euler hydrodynamic theory, the length scales considered are of the same order
as that of the time scales, x ∼ t with t much greater than any other available scales, and
the scattering processes among quasiparticles are neglected. However they become im-
portant at smaller length scales, giving rise to different physical phenomena. One of them
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is dissipation and diffusive spreading [67–71], which are relevant phenomena at diffusive
space-time scales, x ∼ t1/2. This follows from the expectation [72] that generic many-
body interacting systems, like normal fluids, display a coexistence of ballistic (convective)
and diffusive dynamics [69,73–77], as classical systems of particles indeed show [78,79].
Given that the hydrodynamics of the classical gas of hard rods, which has an extensive
amount of conserved quantities, contains diffusion [80], it is a relevant question to un-
derstand if the simple interactions that characterize quantum integrable models can lead
to similar generic properties at large scales. In [81] this was indeed shown to be the
case: there is diffusion dynamics in isolated integrable quantum (and classical) systems
and the diffusion matrix can be exactly computed as a functional of the thermodynamic
quantities of the local stationary state. Its form is similar to that found for the hard rods,
but with important differences encoding the interaction and statistics of the quasiparticle
excitations. In a following publication [66], the diagonal part of the diffusion matrix was
shown to be obtainable from quasiparticle spreading, and it was shown that diffusion has
consequences for the dynamics of the out-of-time correlators (OTOC) [82] in interact-
ing integrable systems, which displays the generic behaviour observed in random circuit
models [83–85].

In this paper we fully develop the results of [81]. In particular we clearly present
the connection between the hydrodynamic theory and local correlation functions of the
densities of conserved quantities. Using a form factor expansion, we put in evidence the
presence of a hierarchy of quasiparticle excitations, to be considered in order to recon-
struct the large space and time expansion of the non-equilibrium dynamics. The so-called
one-particle-hole excitations are the simplest excitations on top of the local equilibrium
states. They correspond to single quasiparticles moving with an effective velocity, and
they are present in interacting and non-interacting systems. They are responsible for
the Euler-scale GHD, the equations of motion for the densities of conserved charges at
the largest scales. In order to go beyond the Euler scale dynamics, one needs to in-
clude scattering events among quasiparticles, which amount to considering the two- or
higher-particle-hole excitations. Quite remarkably, as we show in this paper, the entire
physics of diffusion is fixed by the two-particle-hole excitations, which can be interpreted
as accounting for two-body scattering events among quasiparticles: the infinite tower
of particle-hole excitations truncates. Two-particle-hole excitations are only present in
truly interacting systems, therefore confirming the general intuition that there is no dif-
fusive dynamics in non-interacting systems [69, 86] (except, potentially, with external
disorder [87–90]).

Our results are based on two main assumptions:

(a) First, we make the standard hydrodynamic assumptions. That is, on one hand, the
assumption that at large times, the relevant degrees of freedom for describing all
averages on a time slice are reduced to the local mean charge densities on that
time slice, which are then identified as the hydrodynamic variables; and on the
other hand, the assumption that the derivative expansions, up to second order, of
local averages in terms of local mean charge densities captures in a consistent way
the effective dynamics. Proving these assumptions is of course one of the most
challenging problems of mathematical physics, beyond the scope of this paper

(b) Second, we assume some analytical properties of finite-density (thermodynamic)
form factors (matrix elements) of conserved densities and currents. These are
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generalisations of analytical properties calculated for certain conserved densities
in some integrable models, are in analogy with well established bootstrap frame-
work of relativistic quantum field theory, and are in agreement with recent propos-
als [137].

The paper is organized as follows:

• In section 2 we review the general, standard theory of hydrodynamics, based on the
gradient expansion for the expectation values of the currents of conserved densities,
which allows one to go beyond the Euler scale. We connect the coefficients of such
expansions to the steady-state correlation functions of conserved densities and their
currents. Conserved densities have an inherent ambiguity at the Euler scale: they
are not fully fixed by the conserved quantities themselves. We emphasize that the
presence of PT -symmetry – found in a wide family of integrable models including
those most studied in the literature – allows one to lift this ambiguity.

• In section 3 we show how to properly define the local stationary states as macrostates
of quasiparticles, and how to evaluate the necessary correlation functions using the
concept of excitations above a given macrostate: the so called particle-hole excita-
tions.

• In section 4 we show how to compute the diffusion matrix in generic quantum in-
tegrable models via the calculation of the integrated current-current correlation
functions and the sum over of two-particle-hole excitations as the only contribut-
ing intermediate states. In order to obtain this correlation function, we conjecture
a generic form of the poles of the form factor of the current operators, by gener-
alising the so-called form factor axioms. We then extend the formula we find for
the diffusion matrix, following the principles already developed at the Euler scale,
to arbitrary quantum and classical integrable models that have an Euler-scale GHD
description, thus obtaining a completely general expression for the diffusion matrix
in a wide family of integrable models. We also derive some of the properties of the
diffusion matrix and diffusion kernel, and we present a number of important appli-
cations as for example to the solution of the bi-partite quench and the increase of
entropy.

• Finally in section 6 we use the previus result to exactly compute the spin diffusion
constant of an XXZ spin−1/2 chain at finite temperature and half-filling, a regime
where there is no ballistic spin transport and, quite remarkably for an integrable
models, spin transport is purely diffusive. We provide numerical predictions for the
diffusion constant at infinite temperature and we discuss its comparison with the
numerical predictions from tDMRG obtained in [35,91,92].

2 Hydrodynamic theory and Navier-Stokes equation

Hydrodynamics is a very general theory for emerging degrees of freedom at long wave-
lengths and low frequencies. We here review a few basic principles underlying the hydro-
dynamic approximation. These principles are well known, but it is convenient to review
them, and express them in the context of an arbitrary number of conservation laws.
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We note that the basic principles of hydrodynamics, the construction of the hydro-
dynamic equations, and their relations to correlation and response functions, are largely
independent of the microscopic nature of the system, which may be quantum or classical,
a lattice of spins, a field theory, or a gas of interacting particles, etc. It is also important
to realise that, although many works on the hydrodynamic theory of quantum systems is
based on studying the analytic structure of Green’s functions, this is in fact not necessary;
in models with a large amount of conserved densities, the approach we review here, in
particular for the diffusion matrix, appears to be more powerful.

2.1 Hydrodynamic expansion

The physical idea at the basis of hydrodynamics is that, after an appropriate relaxation
time, an inhomogeneous, non-stationary system approaches, locally, states which have
maximised entropy with respect to the conservation laws afforded by the dynamics. Let
qi(x , t) and ji(x , t) be conserved densities and currents. Then the conservation laws are

∂tqi(x , t) + ∂x ji(x , t) = 0, i ∈ I (2.1)

with associated conserved quantities

Q i =
ˆ

dx qi(x , t) (2.2)

(I is the index set indexing the conserved quantities). A homogeneous, stationary, maxi-
mal entropy state has density matrix formally written as

Z−1e−
∑

i βiQ i . (2.3)

In inhomogeneous, non-stationary situations, relaxation occurs within fluid cells which
are large enough with respect to microscopic scales, and small enough with respect to the
variation lengths and times, the latter therefore assumed to be large. Since a maximal
entropy state is completely characterised by the averages of the local (or quasi-local)
conserved densities within it, according to this idea, a state at a time slice t is completely
determined by the profiles of conserved densities {q̄i(x , t) := 〈qi(x , t)〉 : x ∈ R, i ∈ I}.
This means that the state of the system on the time slice t – that is, the set of all averages
of all local observables at t – can be described in terms of a reduced number of degrees
of freedom, the set {q̄i(x , t) : x ∈ R, i ∈ I}, instead of the exact density matrix, or many-
body distribution, at t. That is, for every observable o(x , t), there exists a functional
O[q̄·(·, t)](x , t) such that

〈o(x , t)〉=O[q̄·(·, t)](x , t). (2.4)

The main point is that the dynamical variables of hydro are the conserved densities evalu-
ated on a given time slice. The choice of reference time slice is arbitrary. These dynamical
variables evolve in time according to the hydrodynamic equations.

This reduction of the number of degrees of freedom is the main postulate of hydrody-
namics. It is expected to provide a good approximation to the evolution (in an asymptotic
sense) when variations in space and time occur on lengths which are large enough.

Consider the continuity equation for the conserved densities and currents (an opera-
torial equation, direct consequence of the dynamics of the system),

∂tqi(x , t) + ∂x ji(x , t) = 0. (2.5)
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Hydrodynamics is a theory for the evolution of the mean values of these operators

q̄i(x , t) = 〈qi(x , t)〉, j̄i(x , t) = 〈ji(x , t)〉, (2.6)

provided by the continuity equation

∂t q̄i(x , t) + ∂x j̄i(x , t) = 0. (2.7)

By the main postulate of hydrodynamics described above, the average currents j̄i(x , t)
may depend on the densities q̄ j(y, t) at all points y and index j, but at identical time,

j̄i(x , t) =: Ji[q̄·(·, t)](x , t). (2.8)

Since entropy maximisation is supposed to occur within local fluid cells when variation
lengths are large, it is natural to assume that the functional Ji[q̄·(·, t)] depends on the
values q̄ j(y, t) for all j but only for y near to x . We thus express it in a derivative expansion,

Ji[q̄·(·, t)](x , t) = Fi(q̄·(x , t))−
1
2

∑

j∈I

D
j

i (q̄·(x , t))∂x q̄ j(x , t) +O
�

∂ 2
x q̄·(x , t)

�

, (2.9)

where both Fi(q̄·(x , t)) and D
j

i (q̄·(x , t)) are functions of the charge densities at position
x , t only. As consequence from eqs.(2.7,2.9), by neglecting higher order in derivatives
we have (with implicit summation over repeated indices)

∂t q̄i(x , t) + ∂xFi(q̄·(x , t))−
1
2
∂x

�

D
j

i (q̄·(x , t))∂x q̄ j(x , t)
�

= 0. (2.10)

The first two terms correspond to the Euler equation and the last one to the Navier-Stokes
correction.

In ordinary hydrodynamics, the derivative expansion is usually expected to be mean-
ingful (at least if there is no sub/super-diffusion, namely when the matrix D

j
i = 0 or

D
j

i =∞) only up to the order written. Higher order terms in the derivative expansion
are usually not predictive, because at that order, the assumption of the reduction of the
number of degrees of freedom is incorrect.

The form of the first term in (2.9), Fi(q̄·(x , t)), is a direct consequence of the thermo-
dynamics of the model: indeed, it can be obtained by assuming the conserved densities
(hence the state) to be homogeneous. The function Fi(q̄·) expresses the conserved cur-
rents as functions of conserved densities in homogeneous, stationary, maximal entropy
state: these are the equations of state. The second term, D j

i (q̄·(x , t)), encodes what is
referred to as the constitutive relations, and its form is not a property of the homogeneous,
stationary, maximal entropy states; it must be calculated in a different way.

2.2 Two-point function sum rules

A convenient way to code for hydrodynamic diffusion is via the connected two-point
functions for all the local conserved densities1

Si j(x , t) := 〈qi(x , t)q j(0, 0)〉c (2.11)

1The upper index 〈· · · 〉c indicates that this is the connected correlation function: 〈AB〉c = 〈AB〉 − 〈A〉〈B〉.
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in a generic homogeneous stationary state. By the conservation law, and assuming clus-
tering property of correlation functions of local densities, the space integral of Si j(x , t) is
constant in time. It defines the matrix of static susceptibilities

Ci j :=
ˆ

dx Si j(x , t) =
ˆ

dx Si j(x , 0) . (2.12)

The tensor Ci j is symmetric by translation invariance, and hence it defines a metric on the
space of conserved densities.

We introduce the variance 1
2

´
dx x2 (Si j(x , t) + Si j(x ,−t)) to code for the spreading

of the correlations between the local densities. As a consequence of the conservation laws
and of space and time translation invariance, we have the following sum rule [69] (see
appendix A):

1
2

ˆ
dx x2

�

Si j(x , t) + Si j(x ,−t)− 2Si j(x , 0)
�

=
ˆ t

0
ds
ˆ t

0
ds′

ˆ
dx 〈ji(x , s)j j(0, s′)〉c .

(2.13)
Note that by stationarity of the state, the current-current correlation function on the right-
hand side only depends on s− s′.

Under appropriate simple conditions that we are going to spell out below, the spread-
ing of these correlation functions is governed by separate ballistic and diffusive contribu-
tions:

1
2

ˆ
dx x2

�

Si j(x , t) + Si j(x ,−t)
�

= Di j t
2 +Li j t + o(t) (2.14)

as t → +∞, for some finite coefficients Di j and Li j , which are respectively related to the
ballistic and diffusive expansions of the correlation functions. The coefficients Di j are the
Drude weights, and the coefficients Li j form what is called the Onsager matrix.

Let us now explain (2.14). As it is clear from the sum rule (2.13), the large time
behaviour of the variance 1

2

´
dx x2

�

Si j(x , t) + Si j(x ,−t)
�

is encoded in the large time
behaviour of the space-integrated current-current connected correlation functions. If the
latter is finite at large time, the former is going to grow quadratically in time. More
precisely, assume that the coefficients Di j , defined as

Di j := lim
t→∞

1
2t

ˆ t

−t
ds

ˆ
dx 〈ji(x , s)j j(0,0)〉c , (2.15)

are finite. Then 1
2

´
dx x2

�

Si j(x , t) + Si j(x ,−t)
�

= Di j t
2 +O(t). The coefficients defined

in (2.15) are exactly the Drude weights of the model [93–96].
The sub-leading behaviour of the variance 1

2

´
dx x2

�

Si j(x , t) + Si j(x ,−t)
�

then de-
pends on the behaviour of the time integrated current-current correlator. Indeed, as it
follows from the sum rule (2.13), if the Onsager coefficients Li j , defined by

Li j := lim
t→∞

ˆ t

−t
ds
�
ˆ

dx 〈ji(x , s)j j(0,0)〉c − Di j

�

, (2.16)

are finite, then the expansion (2.14) holds. Although eq.(2.16) has a form slightly dif-
ferent from Kubo–Mori inner product formula for diffusion constant, the latter reduces
(under certain mild assumptions [97]) to standards grand-canonical averaging and there-
fore to equation (2.16).
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We also note that one can derive similar expressions for the Drude weight and the
Onsager matrix, but involving a mix of conserved densities and currents:

Di j = lim
t→∞

1
2t

ˆ
dx x

�

〈qi(x , t)j j(0, 0)〉c − 〈qi(x ,−t)j j(0, 0)〉c
�

(2.17)

and

Li j = lim
t→∞

�
ˆ

dx x
�

〈qi(x , t)j j(0, 0)〉c − 〈qi(x ,−t)j j(0, 0)〉c
�

− Di j t
�

. (2.18)

If the coefficients Di j diverge (i.e. the limits do not exist), then the ballistic description
breaks down. If the coefficients Li j diverge, the diffusive expansion breaks down and the
model is expected to display super-diffusion [98,99].

2.3 Hydrodynamics and two-point functions

The coefficients Li j are related to the diffusion matrix introduced in (2.9). This can be
seen by looking at the equation of motion for the two point function Si j(x , t). Indeed,
within the hydrodynamic approximation, the derivative expansion (2.9) of the current
〈ji(x , t)〉 implies that the two-point density correlation functions satisfy [64] (see Ap-
pendix B)

∂tSi j(x , t) +
�

A k
i ∂x −

1
2
D k

i ∂
2
x

�

Sk j(x , t) = 0 for t > 0,

∂tSi j(x , t) +
�

A k
j ∂x +

1
2
D k

j ∂
2
x

�

Sik(x , t) = 0 for t < 0,
(2.19)

with the flux Jacobian defined as

A j
i :=

∂ 〈ji〉
∂ 〈q j〉

=
∂Fi(q̄·)
∂ q̄ j

. (2.20)

Eq.(2.19) is valid on a homogeneous stationary state only, with mean densities q̄ j inde-
pendent of space and time x , t. Of course both A k

i and D k
i depend on those stationary

mean densities q̄ j .

Operating with
´ t

0 ds
´

dx x and integrating by part, we obtain, for t > 0,

ˆ
dx x Si j(x , t) = A k

i

ˆ t

0
ds
ˆ

dx Sk j(x , s) + Ei j = (A
k

i Ck j) t + Ei j , (2.21)

where we used that
´

dx Sk j(x , s) is independent of s by the conservation laws, and equals
Ck j by definition, and where

Ei j =
ˆ

dx x Si j(x , 0). (2.22)

One can show that [64]
A k

i Ck j = CikA k
j , (2.23)

and therefore (2.21) holds for both t > 0 and t < 0.
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Operating with
´ t

0 ds
´

dx x2 with t > 0 and integrating by part again, we get

ˆ
dx x2

�

Si j(x , t)− Si j(x , 0)
�

= 2A k
i

ˆ t

0
ds
ˆ

dx xSk j(x , s) (2.24)

+D k
i

ˆ t

0
ds
ˆ

dx Sk j(x , s) ,

while operating with
´ −t

0 ds
´

dx x2, we find

ˆ
dx x2

�

Si j(x ,−t)− Si j(x , 0)
�

= 2A k
j

ˆ −t

0
ds
ˆ

dx xSik(x , s) (2.25)

−D k
j

ˆ −t

0
ds
ˆ

dx Sik(x , s).

By integrating eq.(2.21), the first term in (2.24) is evaluated using´ t
0 ds

´
dx xSk j(x , s) = 1

2(A
l

k Cl j) t2 + Ek j t, and in (2.25) using´ −t
0 ds

´
dx xSik(x , s) = 1

2(A
l

i Clk) t2 − Eik t. By the same argument as above, the last
term is proportional to time and in (2.24) and (2.25) equals (D k

i Ck j) t and (CikD
k

j ) t,
respectively. Adding (2.24) and (2.25) and using (2.23) again, the hydrodynamic equa-
tion (2.19) for the two-point function therefore implies that

1
2

ˆ
dx x2

�

Si j(x , t) + Si j(x ,−t)− 2Si j(x , 0)
�

= (A k
i A l

k Cl j) t2 +
1
2
(D k

i Ck j + CikD
k

j + A k
i Ek j − EikA k

j )t. (2.26)

Of course sub-leading terms in O(t) would have been included if we would have pushed
the hydrodynamic expansion further to include higher order derivatives.

As a consequence, the Drude weights and the Onsager coefficients are related to the
diffusion matrix via the matrix of susceptibilities Ci j , up to terms proportional to Ei j ,

Di j = A k
i A l

k Cl j , Li j =
1
2

�

D k
i Ck j + CikD

k
j + A k

i Ek j − EikA k
j

�

. (2.27)

2.4 Gauge fixing and PT -symmetry

The derivations in the previous two subsections are completely general. However, there
is an ambiguity in the definition of the quantities that describe the fluid beyond the Euler
scale. This is because the conserved densities qi(x , t) are only defined by their relation to
the total conserved quantities Q i =

´
dx qi(x , t), and thus are ambiguous under addition

of total derivatives of local observables. Consider the “gauge transformation"

qi(x , t) 7→ qi(x , t) + ∂xoi(x , t), ji(x , t) 7→ ji(x , t)− ∂toi(x , t). (2.28)

It is clear from the definition of the static covariance matrix Ci j and the flux Jacobian A j
i

that these are invariant: they are properties of homogeneous, stationary states, which
are unaffected by the transformation (2.28). As a consequence, by the first equation in
(2.27), the Drude matrix is also invariant: all Euler scale quantities are invariant. By
contrast, quantities defined at the diffusive scale may be affected. It is possible to show,
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assuming the validity of the hydrodynamic projection [72,101], that the Onsager coeffi-
cients Li j are invariant under (2.28). This has a clear physical meaning: by (2.14), these
coefficients represent the strength of the diffusive spreading of the microscopic correla-
tions, something which is independent form the choice of local densities. However, the
diffusion matrix D

j
i and the matrix Ei j are covariant: they transform nontrivially under

(2.28), in such a way as to make the combination on the right-hand side of the second
equation of (2.27) invariant. The hydrodynamic approximation of the currents (2.9) is
explicitly dependent on the choice of densities. See Appendix C. One must therefore
choose a gauge in order to fix the diffusion matrix itself.

It turns out that there is a symmetry that allows us to fix a gauge in a very natural
(and universal) way: PT -symmetry. In quantum mechanics, PT -symmetry is an anti-
unitary involution T that preserves the Hamiltonian and the momentum operators. As
a consequence, it has the effect of simultaneously inverting the signs of the space and
time coordinates. In classical systems, it is the requirement that simultaneously inverting
the signs of the space and time coordinates preserves the dynamics, the total energy and
momentum. Let us consider a stronger version of PT -symmetry: we require that all
conserved quantities Q i be invariant, and that the PT -transform of a local observable be
a local observable.

A consequence of this strong version of PT -symmetry is that homogeneous, station-
ary, maximal entropy states are PT -symmetric. Another consequence is that2

Tqi(x , t)T−1 = qi(−x ,−t) + ∂xai(−x ,−t) (2.29)

for some local observables ai . We show in Appendix C that there exists a unique gauge
choice (under the gauge transformation (2.28)) such that

Tqi(x , t)T−1 = qi(−x ,−t), (2.30)

and that in this gauge choice, it is possible to further choose ji(x , t) such that

Tji(x , t)T−1 = ji(−x ,−t). (2.31)

This gauge choice simplifies drastically the equations of the previous two subsections.
Indeed, a direct consequence is that

1
2

ˆ
dx x2

�

Si j(x , t) + Si j(x ,−t)− 2Si j(x , 0)
�

=
ˆ

dx x2
�

Si j(x , t)− Si j(x , 0)
�

, (2.32)

thus simplifying the left-hand side (2.13). Another consequence is that Ei j , defined in
(2.22), is equal to the negative of itself, hence must vanish,

Ei j = 0. (2.33)

Finally, applying PT -symmetry on the left-hand side of (2.24), we obtain the left-hand
side of (2.25), and thus we conclude that

D k
i Ck j = CikD

k
j . (2.34)

2Here we use a notation from quantum mechanics for the symmetry transformation, but the same holds
in classical systems as well.
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This shows that (2.27) simplifies to

Di j = A k
i A l

k Cl j , Li j =D k
i Ck j . (2.35)

The strong version of PT -symmetry is in fact extremely natural, and is expected to
hold in many Gibbs states and Galilean and relativistic boosts thereof, and many gener-
alised Gibbs ensembles 3. Below we assume that this symmetry holds, and that the above
gauge choice has been made. Note that the expression for D

j
i obtained by inverting

the second equation in (2.35) is the most direct generalization of the usual Green-Kubo
formula for the diffusion constant of a single conserved quantity [97] to systems with an
infinite number of conserved quantities. We will use the formula Li j =D k

i Ck j together
with eq.(2.16) in order to compute the diffusion coefficients.

2.5 Quantities with vanishing diffusion

In models with Galilean invariance which preserve particle number, the current j0 of the
conserved mass density q0 equals the momentum density q1. In relativistic models, the
current of the conserved energy equals the momentum density. That is, in both cases,
with q0 either the mass density or energy density, we have the relation

j0 = q1. (2.36)

In general, whenever the current of a conserved quantity is itself a conserved density,
then it is a straightforward consequence of the above discussion that the part of the dif-
fusion matrix associated with this conserved quantity (e.g. the mass (energy) in Galilean
(relativistic) model) vanishes:

D i
0 = 0. (2.37)

Indeed, in (2.16) the integralˆ
dx 〈j0(x , s)j j(0,0)〉c =

ˆ
dx 〈q0(x , s)j j(0,0)〉c (2.38)

is independent of s by conservation, and therefore by (2.15) equals the Drude weight D0 j .
As a consequence, the Onsager matrix elements L0 j vanish, and by (2.35) this implies
(2.37).

As we discuss below, in a large family of integrable models, even those which are not
Galilean or relativistic invariant, there exists such a conserved quantity which has zero
diffusion. In particular, in the XXZ model, it is well known that the current of energy is
itself one of the conserved densities in the infinite tower afforded by integrability, and
thus does not diffuse.

3 Quasiparticles, stationary states, and thermodynamic form
factors

As we have seen in section 2, the main ingredients in order to formulate a hydrodynamic
theory at large scales are the large scale connected correlations of local charges and their

3The identification of the charge densities q̄i(x , t) with the densities of quasiparticle, see eq. (3.25),
requires PT -symmetry for the charge densities since the quasiparticle densities are indeed PT -symmetric.
However we stress that the hydrodynamical description given by eq. (2.10) is valid for any chosen gauge.
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associated current. In particular, according to (2.15), (2.16) and (2.35), we need to
evaluate the two-point function

Γi j(x , t) = 〈ji(x , t)j j(0, 0)〉c (3.1)

on a generic homogeneous stationary state given by the set of expectation values of local
densities {q̄i}, and then only at the end we shall promote this function to space and time
dependence.

The aim of this section is to introduce the main objects for describing such states in
integrable models, and the techniques to compute correlation functions in such states
using the excitation of the system in the thermodynamic limit. In a wide family of in-
tegrable systems indeed, homogeneous stationary states admit an efficient description
in terms of “quasiparticles", based on the thermodynamic Bethe ansatz (TBA). They are
often referred to as generalised Gibbs ensembles (GGEs), which we will understand as
a TBA state characterised by quasiparticle density (denoted ρp(θ ) below). This is then
used as a basis for developing the hydrodynamics of integrable systems, generalised hy-
drodynamics (GHD). The description is expected to be very general, encompassing both
quantum and classical models, and including field theories and chains. We recall the
main aspects in subsection 3.1, and the GHD built from this in subsection 3.2.

The techniques to compute correlation functions are introduced in subsection 3.3, and
used, as a check, in subsection 3.4 in order to re-obtain known results at the Euler scale.
These techniques are based on the concept of particle and hole excitations above finite-
density, TBA states. Although the TBA description of stationary states is expected to apply
to a wide range of integrable models, to our knowledge, the understanding of particle-
hole excitations is restricted to quantum Bethe-ansatz models with fermionic excitations.
For these two sections, we thus restrict ourselves to this case.

The main derivation presented in the next section, for the diffusion matrix, uses the
particle-hole excitation techniques, and is thus restricted to quantum fermionic excita-
tions. The result is generalised to other quantum and classical integrable models, namely
to the full range of application of GHD, and verified by comparing with the results ob-
tained independently in the hard rod gas [80,100].

3.1 Quasiparticles and homogeneous stationary states

Let us consider first a generic homogeneous integrable quantum model at equilibrium
on a ring of length L. In the Bethe ansatz description, any eigenstate is specified by a
set of real or complex “rapidities" (or Bethe roots) {θ j}Nj=1, interconnected through non-
linear equations, the Bethe ansatz equations. For simplicity we first here consider those
cases where all the states are characterized by real rapidities. Cases with complex ra-
pidities shall be treated in Appendix G. In the thermodynamic limit L → ∞ at fixed
density N/L, the rapidities θ j become dense on the real line, and therefore eigenstates

can be described by densities of rapidities, ρp(θ ) = limL→∞ L−1
�

θ`(θ ,L)+1 − θ`(θ ,L)
�−1

with θ`(θ ,L)+1 < θ < θ`(θ ,L) which we also denote as density of quasiparticle. Such
a macroscopic description of the eigenstates, given only in terms of the density ρp(θ ),
neglects an exponential amount of information: many states lead to the same density.
Defining as usual, informally, the entropy density of the macrostate s[ρp] as the number
of states, divided by L, in a shell surrounding the density ρp, one may evaluate it in the
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thermodynamic limit,

lim
L→∞

s[ρp] =
ˆ

dθ ρs(θ )g(θ ). (3.2)

In this expression, g(θ ) a functional of the state that depends on the statistics of the
quasiparticles and that we describe below, and the density of states ρs(θ ) quantifies the
total number of modes with rapidities inside the interval [θ ,θ +dθ ); in the Bethe ansatz,
one also defines the density of holes ρh = ρs −ρp.

The density of states is not independent of the quasiparticle density. Indeed, taking
the derivative of the (normalised) scattering phase,

T (θ ,α) =
d

dθ
log S(θ ,α)

2πi
, (3.3)

the density of state is given, as a consequence of the Bethe ansatz equations, by

ρs(θ ) =
p′(θ )
2π

+
ˆ

dα T (θ ,α)ρp(α), (3.4)

where p(θ ) is the momentum of the quasiparticle θ , and p′(θ ) its rapidity derivative.
Below we assume for simplicity that p′(θ ) > 0 and that the differential scattering phase
is symmetric:

T (θ ,α) = T (α,θ ). (3.5)

See Remark 2 below. One also defines the filling or occupation function by the ratio

n(θ ) =
ρp(θ )

ρs(θ )
. (3.6)

It is a functional of the density ρp, and provides a good description of the state as well.
In particular, the state density is obtained from the filling function by solving

ρs(θ ) =
p′(θ )
2π

+
ˆ

dα T (θ ,α)n(α)ρs(α). (3.7)

In an integral operator language, where T is the integral operator with kernel T (θ ,α)
and the function n is seen as a diagonal operator, we have

2πρs = (1− T n)−1p′. (3.8)

The operator (1− T n)−1 is the dressing of a function,

hdr(θ ) = ((1− T n)−1h)(θ ). (3.9)

In all models we are aware of, ρs(θ )> 0 is always defined to be a positive function.
Although the above description was based on the Bethe ansatz for quantum mod-

els, it has much wider generality, and applies also to classical integrable models [101];
equations (3.2) up to (3.9) are valid within this level of generality. In order to describe
the functional g(θ ) as well as many other quantities such as Euler-scale correlation func-
tions and, as we will see, diffusion functionals, we need additional information about
the quasiparticles: their statistics. For instance, in the Bethe ansatz description, they are
usually fermions (where the hole density ρh makes sense), but they can also be bosons,
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and in classical models they can be classical particles or classical fields. In the TBA for-
malism, the statistics enters into a free energy function F(ε); this is the free energy for
“free-particle" modes of energy ε, with the same statistics as that of the quasiparticles of
the model. For instance, it is given by − log(1+ e−ε) for fermions, log(1− e−ε) for bosons,
−e−ε for classical particles, 1/ε for classical radiative modes; see [101] for a discussion.

The statistics enters the functional g(θ ), determining the entropy density s[ρp], as
follows. First, g(θ ) is in fact a function of n(θ ) only. In order to determine it, con-
struct the pseudoenergy ε(θ ) = ε(n(θ )) as a function of n(θ ) by inverting the relation
n= dF(ε)/dε. Then g is given by

g = (ε+ c)n− F(ε), (3.10)

with some physically unimportant constant c. We note that, seen as a function of n, g
satisfies

dg
dn
= ε(n) + c . (3.11)

A macrostate specified by a distribution ρp(θ ) is in the microcanonical ensemble.
By a slight abuse of notation, we will denote the macrostate using the quantum “ket"
notation |ρp〉4. As usual in thermodynamics, one expects this to be equivalent to the
(grand) canonical description. In integrable systems, this is the so-called generalised
Gibbs ensembles (GGEs), formally with density matrix proportional to e−

∑

i βiQ i/Z exactly
as in (2.3) but now with an infinite sum over all conserved quantities Q i [103,104]:

e−
∑

i β
iQ i/Z ↔|ρp〉〈ρp|. (3.12)

That is, given any local operator o, in the thermodynamic limit,

lim
L→∞

Z−1Tr
�

e−
∑

i β
iQ i o

�

= 〈ρp|o|ρp〉. (3.13)

The Lagrange parameters β i fix the function ρp(θ ) by means of a non-linear integral
equations. Let hi(θ ) be the one-particle eigenvalues if the conserved charges Q i , that is
Q i|θ 〉= hi(θ )|θ 〉. Then the pseudoenergy solves

ε(θ ) = d(θ ) +
ˆ

dα T (θ ,α)F(ε(α)) , (3.14)

where d(θ ) =
∑

i β
ihi(θ ). The expression e−

∑

i β
iQ i for a GGE is formal, as one would

need to specify the set of charges Q i and the convergence properties. More accurately,
one instead considers the function d(θ ) for characterising the GGE, independently from
any series expansion. The specific free energy takes the general form

ˆ
dθ
2π

p′(θ )F(ε(θ )) , (3.15)

4As mentioned, a macrostate embodies an averaging inside a small shell of microscopic states. By a
generalisation of the eigenstate thermalisation hypothesis [102] to integrable systems [103,104], one would
expect a single state within this shell to give rise to the same local averages as those evaluated from the
macrostate, whence this notation.
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and from it all averages of conserved densities can be evaluated by differentiation with
respect to β i , giving the standard TBA formula

〈ρp|qi|ρp〉=
ˆ

dθ hi(θ )ρp(θ ). (3.16)

One can also show that the entropy density satisfies the correct thermodynamic equation
relating it to the conserved densities and the specific free energy,

s[ρp] =
ˆ

dθ ρp(θ )d(θ )−
ˆ

dθ
2π

p′(θ )F(ε(θ )). (3.17)

The quasiparticle densities not only specify the values of the conserved quantities,
but also the expectation values of all the local operators, as they fully specify the state.
One set of examples are the currents associated to the charge densities, as in (2.5). The
expectation value of the currents on a generic homogeneous stationary state are given by

〈ρp|ji|ρp〉=
ˆ

dθ ρp(θ )v
eff(θ )hi(θ ) , (3.18)

where the effective velocities of the quasiparticles solve the linear integral equations

veff(θ ) =
E′(θ )
p′(θ )

−
ˆ

dα
T (θ ,α)
p′(θ )

ρp(α)(v
eff(θ )− veff(α)) , (3.19)

with E(θ ) the single-particle energy. It can be shown that this expression is equivalent to

veff(θ ) =
(E′)dr(θ )
(p′)dr(θ )

. (3.20)

This formula was proven in the context of integrable field theories in [49] and more
recently in [105] (see also [106]) and in Appendix D we also provide an alternative
derivation based on the dressed form factors given in this paper. More generally, the
expectation value of any local operators on a homogeneous stationary state 〈ρp|o|ρp〉 is
given by some complicated functional of the root densities ρp. These are however much
harder to compute, and only few expressions are available. For example, in the Lieb-
Liniger gas there has been recent developments [107–109], while in the XXZ chain only
few observables (beyond conserved densities and currents) can be computed [110,111].

Remarks:

1. Many quasiparticle types. Generically, TBA (and the related Euler-scale GHD re-
called below) must take into account many quasiparticle types emerging in the ther-
modynamic description, either as “bound states" seen as string configurations (or
modifications thereof) in quantum TBA, or simply from the various particle types
present in the microscopic model itself (for instance, in the asymptotic states of a
QFT). In all cases, the differential scattering kernel takes the form Ta,b(θ1,θ2) for
quasiparticle types a, b at rapidities θ1, θ2, respectively. Likewise, the rapidity in
every TBA object is replaced by a doublet (θ , a) composed of a rapidity and a quasi-
particle type. One then simply replaces each rapidity integral by the combination
of a rapidity integral and a sum over quasiparticle types,ˆ

dθ 7→
∑

a

ˆ
dθ . (3.21)
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That is, all formula stay valid with
´

dθ understood as an integration on an appro-
priate manifold – the spectral manifold of the model.

2. Reparametrisation. In the above, we assumed that the differential scattering ker-
nel T (θ ,α)was symmetric, and that p′(θ )> 0. In fact, all equations of the thermo-
dynamic Bethe ansatz reviewed here can be written in a way that is invariant under
reparametrisation θ 7→ u(θ ) with u′(θ ) > 0. From (3.3), it is clear that T (θ ,α) is
a vector field in the first argument, and a scalar in its second [101], and thus it
is generically not symmetric. Likewise, p′(θ ) and E′(θ ) are vector fields, and the
quantities hi(θ ) in (3.16) and (3.18), as well as the effective velocity veff(θ ), are
scalar fields. If we also consider reparametrisations that do not necessarily pre-
serve the direction – that is, either u′(θ )> 0 for all θ , or u′(θ )< 0 for all θ –, then
generically p′(θ )may be negative, although it always has a definite, θ -independent
sign. In such cases, the covariant (1-form) integration measure is dθσ, where σ is
a pseudoscalar, changing sign under direction-inverting reparametrisations (with
many quasiparticle types, σ is independent of θ , but may depends on the quasipar-
ticle type a). Conventionally, one always take ρp and ρs to be positive quantities,
and thus these are pseudovector fields. With these rules, it is a simple matter to
generalise all equations to the case of an arbitrary parametrisation of the spectral
space. For instance

wdr = (1− T nσ)−1w, hdr = (1− TTnσ)−1h (3.22)

if w is a vector field and h is a scalar field, where TT(θ ,α) = T (α,θ ) is the trans-
posed kernel (a vector (scalar) field in its second (first) argument), and

(p′)dr = 2πσρs. (3.23)

3. Parity symmetry. In models with parity symmetry, it is expected that it is possi-
ble to choose a parametrisation, not necessarily direction-preserving, such that the
differential scattering phase becomes symmetric. This is the case in the XXZ chain,
in the Lieb-Liniger model, in the hard rod gas, and in many other field theories.
With a symmetric choice of T , in the gapped spin XXZ chain all σa (for quasiparti-
cle types a) are equal to 1, however nontrivial parities occur in the gapless regime
at roots of unity [112] or in fermionic models like the Fermi-Hubbard chain [113]
(these therefore also occur, under this symmetric parametrisation choice, in the de-
scription of the local stationary state at the Euler scale, see [50, 114]). Such signs
are then interpreted as the parities of the quasiparticles involved. We emphasise,
however, that it is always possible to choose a parametrisation where no such signs
occur, at the price, in general, of a non-symmetric T .

4. Quantities with vanishing diffusion. Whenever there is a choice of parametrisa-
tion such that T is symmetric, then one can argue that, in this choice of parametrisa-
tion, the quantity associated to the one-particle eigenvalue hi(θ ) = p′(θ ) has van-
ishing diffusion. Indeed, with this choice, the GGE average current (3.18), which
can also be written in general as

〈ρp|ji|ρp〉=
ˆ

dθ
2π
(E′)dr(θ )n(θ )p′(θ ) =

ˆ
dθ
2π

E′(θ )n(θ )(p′)dr(θ ) (3.24)
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becomes equal to the GGE average density of the quantity associated with
h j(θ ) = E′(θ ), as is clear from (3.16). If this equality holds as an operator iden-
tity beyond GGE averages, then the argument presented in subsection 2.5 shows
that D k

i = 0 for all k. We will show below, by explicitly calculating the diffusion
operator, that these elements of the diffusion matrix indeed vanish.

3.2 Local stationary states and GHD

In the previous section we described homogenous stationary states. As explained in sec-
tion 2, in the context of hydrodynamics we need to characterise local averages in in-
homogeneous situations. In inhomogeneous states, the TBA approach above does not
hold anymore. However, the hydrodynamic approximation postulates that the values of
q̄i(x , t) = 〈qi(x , t)〉, on a fixed time slice t, completely determine the state. The first step
in the hydrodynamic theory for integrable systems is to use the form on the right-hand
side of (3.16) as a definition for space-time dependent “densities" ρp(θ ; x , t) determining
the state:

q̄i(x , t) =:
ˆ

dθ ρp(θ ; x , t)hi(θ ). (3.25)

The quantityρp(θ ; x , t), as a function of θ , is in general no longer a Bethe ansatz root den-
sity in quantum models; it is instead a way of representing the averages of conserved den-
sities in space-time, and relation (3.25) is assumed to be an invertible (x , t-dependent)
map q̄·(x , t) 7→ ρp(·; x , t).

At the Euler scale, in the limit of infinitely large variation lengths, the local state can
be understood as a GGE. In this case, ρp(θ ; x , t), as a function of θ , is interpreted as a
space-time dependent Bethe ansatz root density, and therefore all local observables take
their GGE form with respect to ρp(θ ; x , t):

〈o(x , t)〉 Euler
= 〈ρp(x , t)|o|ρp(x , t)〉. (3.26)

In particular, recalling j̄i(x , t) = 〈ji(x , t)〉, we have

j̄i(x , t)
Euler
= Fi(q̄·(x , t)) =

ˆ
dθ ρp(θ ; x , t)veff(θ )hi(θ ). (3.27)

However, going beyond the Euler scale, namely adding the Navier-Stokes (NS) correc-
tions as in eq.(2.9), extra terms occur in averages of generic observables that depend on
the space derivative of ρp(θ ; x , t). At this scale, the local state described by ρp(θ ; x , t)
cannot be interpreted as a space-time dependent GGE. For the currents, we define the
integral operator D[ρp], with kernel D[ρp](θ ,α), via the expansion

j̄i(x , t)
NS
=
ˆ

dθ hi(θ )
�

ρp(θ ; x , t)veff(θ )−
1
2

ˆ
dαD[ρp(·; x , t)](θ ,α)∂xρp(α; x , t)

�

,

(3.28)
and a similar modification is expected for any local operator,

〈o(x , t)〉 NS
= 〈ρp(x , t)|o|ρp(x , t)〉+

ˆ
dαDo[ρp(·; x , t)](α)∂xρp(α; x , t) ,

where the “diffusion functionals" Do[ρp(·; x , t)](α) are not known even for simple oper-
ators. Our main result is the derivation of the exact diffusion functionals for the currents.
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3.3 Particle-hole excitations and correlation functions

We now specialise the above description to quantum integrable models with fermionic
statistics,

F(ε) = − log(1+ e−ε).

This includes for instance the Lieb-Liniger model and the XXZ chain.
One way to compute two-point correlation functions in a generic reference state |Ω〉

is by inserting a resolution of the identity between the two operators and summing over
all the intermediate states s, with momentum Ps and energy Es:

〈Ω|oi(x , t)o j(0,0)|Ω〉=
∑

s

〈Ω|oi|s〉〈s|o j|Ω〉eix(Ps−PΩ)−it(Es−EΩ) , (3.29)

where here and below, for any local operator we denote o(x = 0, t = 0) ≡ o. Let us
consider the thermodynamic reference state |Ω〉 = |ρp〉 the quasiparticle state with root
density ρp(θ ). The spectral sum is in principle very hard to compute. However, whenever
the operators o j are local and conserve the total number of particles, the only non-zero
contributions to the sum are the so-called particle-hole excitations. These are given by
microscopic changes of a rapidities, namely a set of holes θ j

h, j = 1, . . . , m belonging to

the reference state is replaced by a new set of rapidities, the particles θ j
p , and vice versa.

The spectral sum then organises into a sum over numbers m of particle-hole excitations,
see Fig. 1, and can be formally written as

〈ρp|oi(x , t)o j(0,0)|ρp〉c

=
∞
∑

m=1

1
(m!)2

 

m
∏

j=1

ˆ
R

dθ j
pρh(θ

j
p)
 

dθ j
hρp(θ

j
h)

!

× 〈ρp|oi|{θ •p ,θ •h}〉〈{θ
•
p ,θ •h}|o j|ρp〉e

ixk[θ •p ,θ •h ]−itε[θ •p ,θ •h ] , (3.30)

with an appropriate regularised integral. This is part of the assumptions underlying the
validity of the form factor expansion in the thermodynamic limit. The important point
about the regularisation is that the form factor representation involves regularised inte-
grations on the real axis only. See a more detailed discussion in the Appendix F.

The integration rapidities are the particle and hole excitations above the reference
state, and the measure takes into account the weight of availability of such excitations,
proportional, respectively, to the hole and particle densities. By the Bethe ansatz, the
total momentum Ps and energy Es are simply the sums of the individual momenta and
energies of the particles and holes, with positive (negative) contributions for particles
(holes). Let us denote the momentum and energy of an excitation at rapidity θ by k(θ )
and ε(θ ), respectively. Then

Ps = k[θ •p ,θ •h ] =
m
∑

j=1

�

k(θ j
p)− k(θ j

h)
�

, (3.31)

Es = ε[θ
•
p ,θ •h ] =

m
∑

j=1

�

ε(θ j
p)− ε(θ

j
h)
�

.
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h<latexit sha1_base64="b3rZlNOuen/tIKYOEnXd+3WOPkQ=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwttLJvttFm62YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJIJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1A6pBcAkechTQThTQKBDQCkZXE7/1AErzWN5iloAf0aHkA84oGqlXqXYxBKS9vIvwiHk4Ht+7vUrNqTtT2IvELUiNFGj2Kl/dfszSCCQyQbXuuE6Cfk4VciZgXO6mGhLKRnQIHUMljUD7+fT4sX1klL49iJUpifZU/T2R00jrLApMZ0Qx1PPeRPzP66Q4OPdzLpMUQbLZokEqbIztSRJ2nytgKDJDKFPc3GqzkCrK0ORVNiG48y8vEu+kflF3bk5rjcsijRI5IIfkmLjkjDTINWkSjzCSkWfySt6sJ+vFerc+Zq1LVjFTJX9gff4A1T+VFQ==</latexit><latexit sha1_base64="b3rZlNOuen/tIKYOEnXd+3WOPkQ=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwttLJvttFm62YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJIJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1A6pBcAkechTQThTQKBDQCkZXE7/1AErzWN5iloAf0aHkA84oGqlXqXYxBKS9vIvwiHk4Ht+7vUrNqTtT2IvELUiNFGj2Kl/dfszSCCQyQbXuuE6Cfk4VciZgXO6mGhLKRnQIHUMljUD7+fT4sX1klL49iJUpifZU/T2R00jrLApMZ0Qx1PPeRPzP66Q4OPdzLpMUQbLZokEqbIztSRJ2nytgKDJDKFPc3GqzkCrK0ORVNiG48y8vEu+kflF3bk5rjcsijRI5IIfkmLjkjDTINWkSjzCSkWfySt6sJ+vFerc+Zq1LVjFTJX9gff4A1T+VFQ==</latexit><latexit sha1_base64="b3rZlNOuen/tIKYOEnXd+3WOPkQ=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwttLJvttFm62YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJIJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1A6pBcAkechTQThTQKBDQCkZXE7/1AErzWN5iloAf0aHkA84oGqlXqXYxBKS9vIvwiHk4Ht+7vUrNqTtT2IvELUiNFGj2Kl/dfszSCCQyQbXuuE6Cfk4VciZgXO6mGhLKRnQIHUMljUD7+fT4sX1klL49iJUpifZU/T2R00jrLApMZ0Qx1PPeRPzP66Q4OPdzLpMUQbLZokEqbIztSRJ2nytgKDJDKFPc3GqzkCrK0ORVNiG48y8vEu+kflF3bk5rjcsijRI5IIfkmLjkjDTINWkSjzCSkWfySt6sJ+vFerc+Zq1LVjFTJX9gff4A1T+VFQ==</latexit>

✓2
h<latexit sha1_base64="oj6z06TYT1576KRpX5FYlBJGXpQ=">AAAB+3icbVBNS8NAEN3Ur1q/oj16CRbBU0mKoN6KXjxWMLbQ1rDZTtqlmw92J2II8a948aDi1T/izX/j9uOgrQ8GHu/NMDPPTwRXaNvfRmlldW19o7xZ2dre2d0z9w/uVJxKBi6LRSw7PlUgeAQuchTQSSTQ0BfQ9sdXE7/9AFLxOLrFLIF+SIcRDzijqCXPrPZwBEi9vIfwiPmoKO4bnlmz6/YU1jJx5qRG5mh55ldvELM0hAiZoEp1HTvBfk4lciagqPRSBQllYzqErqYRDUH18+nxhXWslYEVxFJXhNZU/T2R01CpLPR1Z0hxpBa9ifif100xOO/nPEpShIjNFgWpsDC2JklYAy6Bocg0oUxyfavFRlRShjqvig7BWXx5mbiN+kXdvjmtNS/naZTJITkiJ8QhZ6RJrkmLuISRjDyTV/JmPBkvxrvxMWstGfOZKvkD4/MH1sKVFg==</latexit><latexit sha1_base64="oj6z06TYT1576KRpX5FYlBJGXpQ=">AAAB+3icbVBNS8NAEN3Ur1q/oj16CRbBU0mKoN6KXjxWMLbQ1rDZTtqlmw92J2II8a948aDi1T/izX/j9uOgrQ8GHu/NMDPPTwRXaNvfRmlldW19o7xZ2dre2d0z9w/uVJxKBi6LRSw7PlUgeAQuchTQSSTQ0BfQ9sdXE7/9AFLxOLrFLIF+SIcRDzijqCXPrPZwBEi9vIfwiPmoKO4bnlmz6/YU1jJx5qRG5mh55ldvELM0hAiZoEp1HTvBfk4lciagqPRSBQllYzqErqYRDUH18+nxhXWslYEVxFJXhNZU/T2R01CpLPR1Z0hxpBa9ifif100xOO/nPEpShIjNFgWpsDC2JklYAy6Bocg0oUxyfavFRlRShjqvig7BWXx5mbiN+kXdvjmtNS/naZTJITkiJ8QhZ6RJrkmLuISRjDyTV/JmPBkvxrvxMWstGfOZKvkD4/MH1sKVFg==</latexit><latexit sha1_base64="oj6z06TYT1576KRpX5FYlBJGXpQ=">AAAB+3icbVBNS8NAEN3Ur1q/oj16CRbBU0mKoN6KXjxWMLbQ1rDZTtqlmw92J2II8a948aDi1T/izX/j9uOgrQ8GHu/NMDPPTwRXaNvfRmlldW19o7xZ2dre2d0z9w/uVJxKBi6LRSw7PlUgeAQuchTQSSTQ0BfQ9sdXE7/9AFLxOLrFLIF+SIcRDzijqCXPrPZwBEi9vIfwiPmoKO4bnlmz6/YU1jJx5qRG5mh55ldvELM0hAiZoEp1HTvBfk4lciagqPRSBQllYzqErqYRDUH18+nxhXWslYEVxFJXhNZU/T2R01CpLPR1Z0hxpBa9ifif100xOO/nPEpShIjNFgWpsDC2JklYAy6Bocg0oUxyfavFRlRShjqvig7BWXx5mbiN+kXdvjmtNS/naZTJITkiJ8QhZ6RJrkmLuISRjDyTV/JmPBkvxrvxMWstGfOZKvkD4/MH1sKVFg==</latexit>

✓2
p

<latexit sha1_base64="yJDTvB9L0bDHB+cKbwJUleX2SOo=">AAAB+3icbVBNS8NAEN3Ur1q/oj16CRbBU0mKoN6KXjxWMLbQxLLZTtulmw92J2IJ8a948aDi1T/izX/jts1BWx8MPN6bYWZekAiu0La/jdLK6tr6RnmzsrW9s7tn7h/cqTiVDFwWi1h2AqpA8Ahc5Cigk0igYSCgHYyvpn77AaTicXSLkwT8kA4jPuCMopZ6ZtXDESDtZR7CI2ZJnt83embNrtszWMvEKUiNFGj1zC+vH7M0hAiZoEp1HTtBP6MSOROQV7xUQULZmA6hq2lEQ1B+Njs+t4610rcGsdQVoTVTf09kNFRqEga6M6Q4UoveVPzP66Y4OPczHiUpQsTmiwapsDC2pklYfS6BoZhoQpnk+laLjaikDHVeFR2Cs/jyMnEb9Yu6fXNaa14WaZTJITkiJ8QhZ6RJrkmLuISRCXkmr+TNeDJejHfjY95aMoqZKvkD4/MH4vqVHg==</latexit><latexit sha1_base64="yJDTvB9L0bDHB+cKbwJUleX2SOo=">AAAB+3icbVBNS8NAEN3Ur1q/oj16CRbBU0mKoN6KXjxWMLbQxLLZTtulmw92J2IJ8a948aDi1T/izX/jts1BWx8MPN6bYWZekAiu0La/jdLK6tr6RnmzsrW9s7tn7h/cqTiVDFwWi1h2AqpA8Ahc5Cigk0igYSCgHYyvpn77AaTicXSLkwT8kA4jPuCMopZ6ZtXDESDtZR7CI2ZJnt83embNrtszWMvEKUiNFGj1zC+vH7M0hAiZoEp1HTtBP6MSOROQV7xUQULZmA6hq2lEQ1B+Njs+t4610rcGsdQVoTVTf09kNFRqEga6M6Q4UoveVPzP66Y4OPczHiUpQsTmiwapsDC2pklYfS6BoZhoQpnk+laLjaikDHVeFR2Cs/jyMnEb9Yu6fXNaa14WaZTJITkiJ8QhZ6RJrkmLuISRCXkmr+TNeDJejHfjY95aMoqZKvkD4/MH4vqVHg==</latexit><latexit sha1_base64="yJDTvB9L0bDHB+cKbwJUleX2SOo=">AAAB+3icbVBNS8NAEN3Ur1q/oj16CRbBU0mKoN6KXjxWMLbQxLLZTtulmw92J2IJ8a948aDi1T/izX/jts1BWx8MPN6bYWZekAiu0La/jdLK6tr6RnmzsrW9s7tn7h/cqTiVDFwWi1h2AqpA8Ahc5Cigk0igYSCgHYyvpn77AaTicXSLkwT8kA4jPuCMopZ6ZtXDESDtZR7CI2ZJnt83embNrtszWMvEKUiNFGj1zC+vH7M0hAiZoEp1HTtBP6MSOROQV7xUQULZmA6hq2lEQ1B+Njs+t4610rcGsdQVoTVTf09kNFRqEga6M6Q4UoveVPzP66Y4OPczHiUpQsTmiwapsDC2pklYfS6BoZhoQpnk+laLjaikDHVeFR2Cs/jyMnEb9Yu6fXNaa14WaZTJITkiJ8QhZ6RJrkmLuISRCXkmr+TNeDJejHfjY95aMoqZKvkD4/MH4vqVHg==</latexit>

✓1
p

<latexit sha1_base64="8tRs1mnmER2FN8ziHPULqbNrMGA=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwtNLJvttF262YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJoJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1Q6pBcAkechTQThTQKBTQCkdXE7/1AErzWN5ilkAQ0YHkfc4oGqlbqfo4BKTd3Ed4xDwZj+/dbqXm1J0p7EXiFqRGCjS7lS+/F7M0AolMUK07rpNgkFOFnAkYl/1UQ0LZiA6gY6ikEeggnx4/to+M0rP7sTIl0Z6qvydyGmmdRaHpjCgO9bw3Ef/zOin2z4OcyyRFkGy2qJ8KG2N7koTd4woYiswQyhQ3t9psSBVlaPIqmxDc+ZcXiXdSv6g7N6e1xmWRRokckENyTFxyRhrkmjSJRxjJyDN5JW/Wk/VivVsfs9Ylq5ipkj+wPn8A4XeVHQ==</latexit><latexit sha1_base64="8tRs1mnmER2FN8ziHPULqbNrMGA=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwtNLJvttF262YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJoJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1Q6pBcAkechTQThTQKBTQCkdXE7/1AErzWN5ilkAQ0YHkfc4oGqlbqfo4BKTd3Ed4xDwZj+/dbqXm1J0p7EXiFqRGCjS7lS+/F7M0AolMUK07rpNgkFOFnAkYl/1UQ0LZiA6gY6ikEeggnx4/to+M0rP7sTIl0Z6qvydyGmmdRaHpjCgO9bw3Ef/zOin2z4OcyyRFkGy2qJ8KG2N7koTd4woYiswQyhQ3t9psSBVlaPIqmxDc+ZcXiXdSv6g7N6e1xmWRRokckENyTFxyRhrkmjSJRxjJyDN5JW/Wk/VivVsfs9Ylq5ipkj+wPn8A4XeVHQ==</latexit><latexit sha1_base64="8tRs1mnmER2FN8ziHPULqbNrMGA=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwtNLJvttF262YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJoJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1Q6pBcAkechTQThTQKBTQCkdXE7/1AErzWN5ilkAQ0YHkfc4oGqlbqfo4BKTd3Ed4xDwZj+/dbqXm1J0p7EXiFqRGCjS7lS+/F7M0AolMUK07rpNgkFOFnAkYl/1UQ0LZiA6gY6ikEeggnx4/to+M0rP7sTIl0Z6qvydyGmmdRaHpjCgO9bw3Ef/zOin2z4OcyyRFkGy2qJ8KG2N7koTd4woYiswQyhQ3t9psSBVlaPIqmxDc+ZcXiXdSv6g7N6e1xmWRRokckENyTFxyRhrkmjSJRxjJyDN5JW/Wk/VivVsfs9Ylq5ipkj+wPn8A4XeVHQ==</latexit>

⇢p(✓)
<latexit sha1_base64="KEIwY76fKcGV3RMRyzAzmsKQHWg=">AAAB/3icbVA9SwNBEN2LXzF+RS0sbBaDEJtwEUHtgjaWETwTyIVjbzNJlux9sDsnhuMa/4qNhYqtf8POf+MmuUITHww83pthZp4fS6HRtr+twtLyyupacb20sbm1vVPe3bvXUaI4ODySkWr7TIMUITgoUEI7VsACX0LLH11P/NYDKC2i8A7HMXQDNghFX3CGRvLKB64aRl7qIjxiGmdZ1cUhIDvxyhW7Zk9BF0k9JxWSo+mVv9xexJMAQuSSad2p2zF2U6ZQcAlZyU00xIyP2AA6hoYsAN1Npw9k9NgoPdqPlKkQ6VT9PZGyQOtx4JvOgOFQz3sT8T+vk2D/opuKME4QQj5b1E8kxYhO0qA9oYCjHBvCuBLmVsqHTDGOJrOSCaE+//IicU5rlzX79qzSuMrTKJJDckSqpE7OSYPckCZxCCcZeSav5M16sl6sd+tj1lqw8pl98gfW5w+3Ppas</latexit><latexit sha1_base64="KEIwY76fKcGV3RMRyzAzmsKQHWg=">AAAB/3icbVA9SwNBEN2LXzF+RS0sbBaDEJtwEUHtgjaWETwTyIVjbzNJlux9sDsnhuMa/4qNhYqtf8POf+MmuUITHww83pthZp4fS6HRtr+twtLyyupacb20sbm1vVPe3bvXUaI4ODySkWr7TIMUITgoUEI7VsACX0LLH11P/NYDKC2i8A7HMXQDNghFX3CGRvLKB64aRl7qIjxiGmdZ1cUhIDvxyhW7Zk9BF0k9JxWSo+mVv9xexJMAQuSSad2p2zF2U6ZQcAlZyU00xIyP2AA6hoYsAN1Npw9k9NgoPdqPlKkQ6VT9PZGyQOtx4JvOgOFQz3sT8T+vk2D/opuKME4QQj5b1E8kxYhO0qA9oYCjHBvCuBLmVsqHTDGOJrOSCaE+//IicU5rlzX79qzSuMrTKJJDckSqpE7OSYPckCZxCCcZeSav5M16sl6sd+tj1lqw8pl98gfW5w+3Ppas</latexit><latexit sha1_base64="KEIwY76fKcGV3RMRyzAzmsKQHWg=">AAAB/3icbVA9SwNBEN2LXzF+RS0sbBaDEJtwEUHtgjaWETwTyIVjbzNJlux9sDsnhuMa/4qNhYqtf8POf+MmuUITHww83pthZp4fS6HRtr+twtLyyupacb20sbm1vVPe3bvXUaI4ODySkWr7TIMUITgoUEI7VsACX0LLH11P/NYDKC2i8A7HMXQDNghFX3CGRvLKB64aRl7qIjxiGmdZ1cUhIDvxyhW7Zk9BF0k9JxWSo+mVv9xexJMAQuSSad2p2zF2U6ZQcAlZyU00xIyP2AA6hoYsAN1Npw9k9NgoPdqPlKkQ6VT9PZGyQOtx4JvOgOFQz3sT8T+vk2D/opuKME4QQj5b1E8kxYhO0qA9oYCjHBvCuBLmVsqHTDGOJrOSCaE+//IicU5rlzX79qzSuMrTKJJDckSqpE7OSYPckCZxCCcZeSav5M16sl6sd+tj1lqw8pl98gfW5w+3Ppas</latexit>

✓
<latexit sha1_base64="gYx5KhbsdwehWm3ovt0YsesD+Ow=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMF0xbaUDbbTbt2swm7E6GE/gcvHlS8+oO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0O/VbT1wbkagHHKc8iOlAiUgwilZqdnHIkfYqVbfmzkCWiVeQKhRo9Cpf3X7CspgrZJIa0/HcFIOcahRM8km5mxmeUjaiA96xVNGYmyCfXTshp1bpkyjRthSSmfp7IqexMeM4tJ0xxaFZ9Kbif14nw+gqyIVKM+SKzRdFmSSYkOnrpC80ZyjHllCmhb2VsCHVlKENqGxD8BZfXib+ee265t5fVOs3RRolOIYTOAMPLqEOd9AAHxg8wjO8wpuTOC/Ou/Mxb11xipkj+APn8wcQDI77</latexit><latexit sha1_base64="gYx5KhbsdwehWm3ovt0YsesD+Ow=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMF0xbaUDbbTbt2swm7E6GE/gcvHlS8+oO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0O/VbT1wbkagHHKc8iOlAiUgwilZqdnHIkfYqVbfmzkCWiVeQKhRo9Cpf3X7CspgrZJIa0/HcFIOcahRM8km5mxmeUjaiA96xVNGYmyCfXTshp1bpkyjRthSSmfp7IqexMeM4tJ0xxaFZ9Kbif14nw+gqyIVKM+SKzRdFmSSYkOnrpC80ZyjHllCmhb2VsCHVlKENqGxD8BZfXib+ee265t5fVOs3RRolOIYTOAMPLqEOd9AAHxg8wjO8wpuTOC/Ou/Mxb11xipkj+APn8wcQDI77</latexit><latexit sha1_base64="gYx5KhbsdwehWm3ovt0YsesD+Ow=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3oxWMF0xbaUDbbTbt2swm7E6GE/gcvHlS8+oO8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg6bJsk04z5LZKLbITVcCsV9FCh5O9WcxqHkrXB0O/VbT1wbkagHHKc8iOlAiUgwilZqdnHIkfYqVbfmzkCWiVeQKhRo9Cpf3X7CspgrZJIa0/HcFIOcahRM8km5mxmeUjaiA96xVNGYmyCfXTshp1bpkyjRthSSmfp7IqexMeM4tJ0xxaFZ9Kbif14nw+gqyIVKM+SKzRdFmSSYkOnrpC80ZyjHllCmhb2VsCHVlKENqGxD8BZfXib+ee265t5fVOs3RRolOIYTOAMPLqEOd9AAHxg8wjO8wpuTOC/Ou/Mxb11xipkj+APn8wcQDI77</latexit>

✓1
h<latexit sha1_base64="b3rZlNOuen/tIKYOEnXd+3WOPkQ=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwttLJvttFm62YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJIJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1A6pBcAkechTQThTQKBDQCkZXE7/1AErzWN5iloAf0aHkA84oGqlXqXYxBKS9vIvwiHk4Ht+7vUrNqTtT2IvELUiNFGj2Kl/dfszSCCQyQbXuuE6Cfk4VciZgXO6mGhLKRnQIHUMljUD7+fT4sX1klL49iJUpifZU/T2R00jrLApMZ0Qx1PPeRPzP66Q4OPdzLpMUQbLZokEqbIztSRJ2nytgKDJDKFPc3GqzkCrK0ORVNiG48y8vEu+kflF3bk5rjcsijRI5IIfkmLjkjDTINWkSjzCSkWfySt6sJ+vFerc+Zq1LVjFTJX9gff4A1T+VFQ==</latexit><latexit sha1_base64="b3rZlNOuen/tIKYOEnXd+3WOPkQ=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwttLJvttFm62YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJIJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1A6pBcAkechTQThTQKBDQCkZXE7/1AErzWN5iloAf0aHkA84oGqlXqXYxBKS9vIvwiHk4Ht+7vUrNqTtT2IvELUiNFGj2Kl/dfszSCCQyQbXuuE6Cfk4VciZgXO6mGhLKRnQIHUMljUD7+fT4sX1klL49iJUpifZU/T2R00jrLApMZ0Qx1PPeRPzP66Q4OPdzLpMUQbLZokEqbIztSRJ2nytgKDJDKFPc3GqzkCrK0ORVNiG48y8vEu+kflF3bk5rjcsijRI5IIfkmLjkjDTINWkSjzCSkWfySt6sJ+vFerc+Zq1LVjFTJX9gff4A1T+VFQ==</latexit><latexit sha1_base64="b3rZlNOuen/tIKYOEnXd+3WOPkQ=">AAAB+3icbVBNS8NAEN34WetXtUcvwSJ4KokI6q3oxWMFYwttLJvttFm62YTdiRhC/StePKh49Y9489+4bXPQ1gcDj/dmmJkXJIJrdJxva2l5ZXVtvbRR3tza3tmt7O3f6ThVDDwWi1i1A6pBcAkechTQThTQKBDQCkZXE7/1AErzWN5iloAf0aHkA84oGqlXqXYxBKS9vIvwiHk4Ht+7vUrNqTtT2IvELUiNFGj2Kl/dfszSCCQyQbXuuE6Cfk4VciZgXO6mGhLKRnQIHUMljUD7+fT4sX1klL49iJUpifZU/T2R00jrLApMZ0Qx1PPeRPzP66Q4OPdzLpMUQbLZokEqbIztSRJ2nytgKDJDKFPc3GqzkCrK0ORVNiG48y8vEu+kflF3bk5rjcsijRI5IIfkmLjkjDTINWkSjzCSkWfySt6sJ+vFerc+Zq1LVjFTJX9gff4A1T+VFQ==</latexit>

✓1
p
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Figure 1: Schematic picture of the particle-hole excitations, entering the expansion
for the two-point correlation functions (3.30). Left: one particle-hole excitations
correspond to processes where one quasiparticle in the local steady state |ρp〉 with
rapidity θ1

h is changed to a new rapidity θ1
p by the action of a local operator o. The

excitation with zero momentum, θ1
p → θ

1
h , can be regarded as the free propagation

of a single quasiparticle with its effective velocity veff(θ1
h ). Right: two particle-hole

excitations consist into two quasi-particles changing their rapidites to two new dif-
ferent values and it can be regarded as a 2-body scattering process among quasipar-
ticles. Higher particle-hole excitations can be equivalently regarded as higher-body
scattering processes.

These functions depend on the reference state via the so-called back-flow function. Namely,
given the single-particle energy E(θ ) and the single-particle momentum p(θ ), we have

ε(θ ) = E(θ ) +
ˆ

dα F(θ ,α)E′(α)n(α) , (3.32)

k(θ ) = p(θ ) +
ˆ

dα F(θ ,α)p′(α)n(α) , (3.33)

with the back-flow F(θ ,α) being the amplitude of the global 1/L shift of the rapidities
close to θ in the presence of the excitations α, [115]. The back-flow is written in terms
of the dressed scattering phase shift, more precisely

F =
log S
2πi

(1− nT )−1. (3.34)

In particular, one can show that

ε′(θ ) = (E′)dr(θ ), k′(θ ) = (p′)dr(θ ) , (3.35)

where the dressing operation is defined in (3.9).
The series (3.30) can not be evaluated exactly in general. Some results for its asymp-

totic were found in [116–122], and the sum was numerically evaluated in the Lieb-
Liniger model at finite temperature and for some specific operators in [123–125]. The
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most complicated objects are the so-called thermodynamic form factors of local operators
〈ρp|oi|{θ •p ,θ •h}〉; these are evaluated in the thermodynamic limit, and thus are matrix
elements on states with finite densities of excitations. The usual way of evaluating such
objects is by evaluating matrix elements in a finite-size system, and taking the thermody-
namic limit. Form factors of operators at finite sizes are generically not known in inter-
acting models, except for few cases [126,127]. Even in the cases where they are known,
extracting their thermodynamic limit is a non-trivial task [118,120,128] and in field the-
ories, together with the computation of finite temperature correlations, they constitute a
long-standing open problem, see for example [119,129–133]. While in field theory form
factors on the vacuum state can be obtained via the so-called form factor bootstrap [134],
still today it is not clear how to formulate a bootstrap protocol to obtain the thermody-
namic form factors, although some attempts were formulated in [135–137]. Further,
in the thermodynamic limit, particle-hole form factors generically contain the so-called
kinematic poles [134, 138] on real rapidities, single poles when hole rapidities coincide
with particle rapidities. Thus the limit has to be taken properly on the summations over
discrete sets of particle and hole rapidities (the form factor expansion itself), not just on
form factors. In some cases the regularisation of the integrals can be obtained explicitly
by properly taking the thermodynamic limit of finite size regularisations [139,140], how-
ever in general it is not known how to do this. Nevertheless, thanks to Eqs.(3.31), the
poles at coinciding particle-hole rapidities can be reabsorbed into contributions to form
factors with lower numbers of particle-hole pairs. The resulting integrals are Hadamard
regularised, and away from coinciding rapidities, the integrand factorises as a product of
functions of the form 〈ρp|oi|{θ •p ,θ •h}〉〈{θ

•
p ,θ •h}|o j|ρp〉. See the Appendix F.

In interacting models, form factors of generic current or charge density operators
on generic reference states are not known. There are however some special limiting
cases where their form can be obtained from different methods or guessed from general
principles. These are the small-momentum limit of the single-particle-hole form factors
and the residue of the kinematic poles.

1. Single-particle-hole form factors. Single-particle-hole form factors of local den-
sities and currents do not contain singularities and their small momentum limit is
given only in terms of thermodynamic functions [120,141]

lim
θp→θh

〈ρp|qi|θp,θh〉= hdr
i (θh). (3.36)

For the density operator in the Lieb-Liniger model this was first derived in [128].
Their general form can be inferred by comparing the expression of the susceptibili-
ties from the thermodynamic Bethe ansatz with that from a form factor expansion.
By using the non-linear relations between the Lagrange multiplier β j and the root
densities ρp(θ ) of a generic GGE, one finds [141]

ˆ
dx 〈qi(x , t)q j(0,0)〉c = −

∂ 〈qi〉
∂ β j

= −
ˆ

dθ
ρp(θ )

∂ β j
hi(θ ) (3.37)

=
ˆ

dθ ρp(θ )(1− n(θ ))hdr
i (θ )h

dr
j (θ ). (3.38)

The factor 1 − n(θ ) is in fact, in general statistics, −d log n/dε [141], where we
recall that n = dF(ε)/dε. As we show in the next subsection, thanks to the con-
tinuity equations, leading to (3.40) and (3.40), in the form factor expansion for
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susceptibilities of conserved densities, the infinite summation over the number of
particle-hole pairs m truncates to m= 1. As a consequence, using (3.30) we obtain

ˆ
dx 〈qi(x , t)q j(0,0)〉c =

ˆ
dx 〈ρp|qi(x , t)q j(0,0)|ρp〉c

= (2π)
ˆ

dθpdθhρp(θh)ρh(θp)δ(k(θp)− k(θh))〈ρp|qi|θp,θh〉〈ρp|q j|θp,θh〉

=
ˆ

dθhρp(θh)(1− n(θh)) lim
θp→θh

〈ρp|qi|θp,θh〉〈ρp|q j|θp,θ 〉 , (3.39)

where we used (3.35), (3.8) and (3.6). This then gives relation (3.36). Note that
we used the fact that setting k(θp) = k(θh) is equivalent to setting θp = θh (mono-
tonicity of k(θ )).

2. Higher particle-hole form factors. In the limit where particles’ rapidities are close
to those of holes, there are singularities, the kinematic poles. These are set by inte-
grability. Further, by the continuity equations, form factors of conserved densities
and currents are related to each other. These statements are expressed as follows:

(a) Continuity equations: there exists a function fi({θ •p ,θ •h}) such that

〈ρp|qi|{θ •p ,θ •h}〉= k[θ •p ,θ •h ] fi({θ •p ,θ •h}), (3.40)

〈ρp|ji|{θ •p ,θ •h}〉= ε[θ
•
p ,θ •h ] fi({θ •p ,θ •h}). (3.41)

These relations are obtained by using the continuity equations

∂t〈ρp|qi(x , t)|{θ •p ,θ •h}〉= −∂x〈ρp|ji(x , t)|{θ •p ,θ •h}〉, (3.42)

and the fact that quasiparticle states are eigenstate of the energy and momen-
tum operators

〈ρp|qi(x , t)|{θ •p ,θ •h}〉= eixk[θ •p ,θ •h ]−itε[θ •p ,θ •h ]〈ρp|qi|{θ •p ,θ •h}〉. (3.43)

At the level of one particle-hole pair, it is clear, from point (i) above, that

fi(θp,θh)∼
hdr

i (θh)

k′(θh)(θp − θh)
(3.44)

as θp→ θh.

(b) Kinematic poles (conjecture): the above pole structure of fi generalises to
higher particles. The two particle-hole form factor of a local density satisfies,
as θ2

p → θ
2
h ,

〈ρp|qi|θ1
p ,θ1

h ,θ2
p ,θ2

h 〉= 〈ρp|qi|θ1
p ,θ1

h 〉
G(θ2

h |θ
1
p ,θ1

h )
�

θ2
p − θ

2
h

� +O((θ2
p − θ

2
h )

0). (3.45)
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Further, the functions G(θ2
h |θ

1
p ,θ1

h ) have an expansion around the line θ1
p ∼ θ

1
h

as 5

G(θ2
h |θ

1
p ,θ1

h ) = (θ
1
p − θ

1
h )

2πTdr(θ1
h ,θ2

h )

k′(θ2
h )

+O((θ1
p − θ

1
h )

2) , (3.46)

where

Tdr = (1− T n)−1T. (3.47)

Note that thanks to the assumed symmetry of T (θ ,α), this is related to the
derivative of the backflow kernel by a transposition,

Tdr =
�

dF
dθ

�T

. (3.48)

We combine this pole structure and expansion statements with the continuity
relation (3.40) and assume the stronger requirement that the function fi be a
sum over the necessary poles of the form factors, plus a regular part. Equations
(3.45) and (3.46) then impose the following:

fi(θ
1
p ,θ1

h ,θ2
p ,θ2

h ) =
2πTdr(θ2

h ,θ1
h )h

dr
i (θ

2
h )

k′(θ1
h )k

′(θ2
h )(θ

1
p − θ

1
h )
+

2πTdr(θ1
h ,θ2

h )h
dr
i (θ

1
h )

k′(θ2
h )k

′(θ1
h )(θ

2
p − θ

2
h )

+
2πTdr(θ2

h ,θ1
h )h

dr
i (θ

2
h )

k′(θ1
h )k

′(θ2
h )(θ

2
p − θ

1
h )
+

2πTdr(θ1
h ,θ2

h )h
dr
i (θ

1
h )

k′(θ2
h )k

′(θ1
h )(θ

1
p − θ

2
h )

+ regular , (3.49)

where the regular terms have a well defined multi-variable Taylor expansion
in θ1,2

p,h around any real values of these variables. One can easily check that
this function, multiplied by k[θ •p ,θ •h ] or ε[θ •p ,θ •h ] as in equation (3.40) and
(3.41), gives the correct residues (3.45) with the expansion (3.46). Equation
(3.49) is expected to hold in general, without the assumption of symmetry of
T and with any parametrisation sign.

In the following we shall show that

i. Single particle-hole form factors in the small momentum limit completely deter-
mine the Euler-scale hydrodynamic theory.

ii. Two particle-hole form factors in the small momentum limit completely determine
the diffusive corrections to the Euler-scale hydrodynamic theory.

Point (i) is shown in the next subsection, while we shall address point (ii) in the next
section.

5This relation was found first for the thermodynamic form factor of the density operator in the Lieb-
Liniger gas [120]. We here make the conjecture that this form is universal for any local operator. Notice that
the same conjecture is also put forward in [137].
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3.4 The Euler scale: single particle-hole excitations

We first recall the derivation presented in point (1) of the previous subsection for the
static covariance matrix (or susceptibility matrix) Ci j =

´
dx 〈qi(x , t)q j(0,0)〉c . In the

derivation (3.39), only the one particle-hole contribution was taken. Now consider the
full form factor expansion (3.30) for Ci j . At any particle-hole number m > 1, note that
the integration over x produces δ(k[θ •p ,θ •h ]). Note also the factor k[θ •p ,θ •h ] in (3.40),
which vanishes on the hyper-plane k[θ •p ,θ •h ] = 0. Since, at m > 1, the singularities of
fi({θ •p ,θ •h}) lie on a subset of measure zero of this hyper-plane, by the principal-value
prescription they do not contribute. As a consequence, and the restriction on this hyper-
plane imposed by δ(k[θ •p ,θ •h ]) vanishes. This is not true for one particle-hole pair, as in
this case the singularity lies exactly on this hyper-plane, (3.44), on which the resulting
form factor has a finite limit.

The same argument can be used to evaluate the B-matrix [72]

Bi j = −
∂ 〈ji〉
∂ β j

=
ˆ

dx 〈ji(x , t)q j(0,0)〉c (3.50)

in order to obtain

Bi j =
ˆ

dθ ρp(θ )(1− n(θ ))veff(θ )hdr
i (θ )h

dr
j (θ ) (3.51)

in agreement with the expression found in [114,141]. As recalled in section 2, the Euler-
scale hydrodynamic theory is completely determined by the expression of the expectation
values of the currents on a generic GGE state as in eq. (3.27):

j̄i(x , t)
Euler
= Fi(q̄·(x , t)). (3.52)

In particular, it is fully encoded within the flux Jacobian A j
i = ∂Fi/∂ q̄ j (2.20) given, in

matrix notation, by [72,141] as A= BC−1. Therefore, the one particle-hole form factors
determine A j

i , hence the Euler hydrodynamics.
The Drude weights can also be obtained directly by using similar arguments as above,

evaluating the expression (2.15) by a form factor expansion. Here, the space integral does
not make higher particle-hole form factor contributions vanish, as the current form factors
are proportional to ε[θ •p ,θ •h ]. However, the time integral in (2.15) provides the necessary
delta function δ(ε[θ •p ,θ •h ]). At one particle-hole level, the space integral makes the term
time-independent, on which the time average in (2.15) acts trivially. The result is then

Di j = 2π
ˆ

dθh

ρp(θh)ρh(θh)

k′(θh)
lim
θp→θh

〈ρp|ji|θp,θh〉〈θp,θh|j j|ρp〉 (3.53)

=
ˆ

dθ ρp(θ )(1− n(θ ))(veff(θ ))2hdr
i (θ )h

dr
j (θ ) (3.54)

using (3.41), (3.44), (3.20) and (3.35). This is again in agreement with the results found
in [114,141].

That is, we have shown that the single particle-hole contribution completely deter-
mines the Euler-scale hydrodynamic coefficients, as under spatial or temporal integrations
all the higher particle-hole contributions vanish.
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4 Diffusion matrix

In this section we derive an expression for the diffusion matrix by using the definition
(2.16) of the Onsager matrix as time integrated current-current correlator, and its relation
(2.35) with the diffusion matrix. This relation is valid at least under the PT -symmetry
assumption, which we expect to hold in many integrable models of interest (including
the classical hard rod gas, the quantum Lieb-Liniger model, and the quantum Heisenberg
chain, isotropic and anisotropic) and for the choices of conserved density and current
operators with form factors as described in subsection 3.3. We compute the integrated
correlation function by representing it as a sum over particle-hole excitations as in equa-
tion (3.30) and show that only the terms with two particle-hole excitations contribute to
the full Onsager matrix. We then generalise the result, by analogy, to arbitrary integrable
models (with arbitrary number of quasiparticle types, and in an arbitrary spectral space
parametrisation), including classical models.

4.1 Exact diffusion matrix from two-particle-hole excitations

In this subsection, we assume that there is a single quasiparticle type, but we keep the
differential scattering kernel generic (that is, not necessarily symmetric). With a single
quasiparticle type, it is somewhat superfluous to consider nontrivial parametrisation par-
ities, however for the sake of generalisation to many quasiparticle types, see Section 4.2,
it is convenient to keep the parity arbitrary, with

σ = sgn(k′(θ )). (4.1)

We focus now on the DC operator, namely on the integrated Γi j(x , t) (see (3.1)) as
per (2.35) and (2.16). Expanding in particle-hole contributions as in (3.30) we have, in
a self-explanatory notation,

Γi j(x , t) = [jj]1ph
i j (x , t) + [jj]2ph

i j (x , t) + . . . . (4.2)

As shown in the previous section, the single-particle-hole contribution gives, under space
integral and then time average, the Drude weight coefficients. In fact, recall that the
one-particle-hole contribution is, under space integral, time-independent, as the factor
δ(k(θp)− k(θh)) imposes θp = θh. Therefore

ˆ t

−t
ds

ˆ
dx [jj]1ph

i j (x , s) = 2tDi j , (4.3)

so that only higher-particle-hole form factors contribute to the Onsager matrix.
We first consider the two-particle-hole contribution

lim
t→∞

ˆ t

−t
ds
ˆ

dx [jj]2ph
i j (x , t) =

lim
t→∞

(2π)2

2!2

ˆ
dθ1

h dθ2
hρp(θ

1
h )ρp(θ

2
h )
 

dθ1
p dθ2

pρh(θ
1
p )ρh(θ

2
p )

×δ(k[θ •p ,θ •h ])δt(ε[θ
•
p ,θ •h ])〈ρp|ji|θ1

p ,θ1
h ,θ2

p ,θ2
h 〉〈θ

1
p ,θ1

h ,θ2
p ,θ2

h |j j|ρp〉 , (4.4)
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where δt(ε) = (2π)−1
´ t
−t ds eisε, with limt→∞δt(ε) = δ(ε). We are careful in first ex-

ecuting integrals against the delta function implementing the condition k[θ •p ,θ •h ] = 0,
before taking the limit towards the delta function implementing ε[θ •p ,θ •h ] = 0, as the
space integral is performed before the time integral. We note that in the opposite or-
der, the result would vanish because of (3.41). The conditions coming from both delta
functions read

k(θ1
p ) + k(θ2

p ) = k(θ1
h ) + k(θ2

h ), ε(θ1
p ) + ε(θ

2
p ) = ε(θ

1
h ) + ε(θ

2
h ). (4.5)

Interpreting incoming hole excitations as outgoing particle excitations, see Fig. 1, this
has the form of a two-particle scattering process where both momentum and energy
are conserved. In two dimensions, such scattering processes lead to k(θ1

p ) = k(θ1
h ),

k(θ2
p ) = k(θ2

h ) or k(θ1
p ) = k(θ2

h ), k(θ2
p ) = k(θ1

h ), namely

{θ •p}= {θ
•
h}. (4.6)

Since the product of form factors has poles at θ i
p = θ

j
h with i, j ∈ {1, 2}, the kinematic

conditions (4.6) evaluate the form factors exactly at their poles, which appear as double
poles in (4.4). However, the equality (4.6) is only approached as the limit t → ∞ in
(4.4) is taken. Indeed, first the measure of the multiple integral concentrates on the
hypersurface k[θ •p ,θ •h ] = 0 in rapidity space, and the poles at (4.6) lie on a submanifold
which has measure zero on this hypersurface; they are avoided by the principal-value
prescription. Then, the limit t → ∞ is taken, whereby δt(ε[θ •p ,θ •h ]) → δ(ε[θ •p ,θ •h ]).
This effectively reduces the hypersurface where the integration measure concentrates to
a vanishing neighbourhood of (4.6). In this neighbourhood, the double-pole divergence
coming form the form factors is simplified by the factor (ε[θ •p ,θ •h ])

2 from (3.41), and
thus the result of the limit process is finite and non-zero.

At higher particle-hole numbers, an expression similar to (4.4) occurs, but the kine-
matic conditions k[θ •p ,θ •h ] = 0 and ε[θ •p ,θ •h ] = 0 have a continuum of solutions that do
not impose any coincidence of momenta: the poles of the form factors lie on a subman-
ifold of measure zero on the resulting integration hypersurface (and are avoided by the
principal value prescription). On the other hand the factor (ε[θ •p ,θ •h ])

2 from (3.41) is
zero everywhere on this hypersurface, and thus the contribution vanishes.

Hence, the DC operator is fully given by the two-particle-hole contribution,

(DC)i j =
ˆ

dt
ˆ

dx [jj]2ph
i j (x , t) (4.7)

and ˆ
dt

ˆ
dx [jj]nph

i j (x , t) = 0 n> 2. (4.8)

The explicit calculation for the coefficients (DC)i j is as follows. The two kinematic
conditions δ(k[θ •p ,θ •h ])δ(ε[θ

•
p ,θ •h ]) only have solutions of the type (4.6), therefore we

can evaluate the integrand with the form factors replaced by their leading behaviour
near the poles. There are two separate contributions: θ i

p ∼ θ
j

h with i = j and with i 6= j.
Both contributions give the same final result so we can simply consider the first case and
multiply the final result by 2. We denote the new set of variables

∆θ1 = θ
1
p − θ

1
h (4.9)

∆θ2 = θ
2
p − θ

2
h (4.10)
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and rename θ1,2
h ≡ θ1,2, such that inside the integral we can expand the energy and the

momentum in powers of ∆θ1 and ∆θ2

ε[θ •p ,θ •h ] = veff(θ1)k
′(θ1)∆θ1 + veff(θ2)k

′(θ2)∆θ2 +O((∆θ1)
2, (∆θ2)

2) , (4.11)

k[θ •p ,θ •h ] = k′(θ1)∆θ1 + k′(θ2)∆θ2 +O((∆θ1)
2, (∆θ2)

2) , (4.12)

where we used (3.35) and (3.20). We first integrate over∆θ2, which is fixed by the total
momentum conservation to leading order as

∆θ2 = −∆θ1
k′(θ1)
k′(θ2)

. (4.13)

An extra factor
1

|k′(θ2)|

appears in the integrand after integrating against the delta function δ(k[θ •p ,θ •h ]). The
energy is now given, to leading order, by

ε[θ •p ,θ •h ] = (v
eff(θ1)− veff(θ2))∆θ1k′(θ1). (4.14)

Its square ε[θ •p ,θ •h ]
2, which appears in the product of form factors in (4.4) as per (3.41),

is therefore proportional to (∆θ1)2. The product of form factors in (4.4) also contains the
product fi(θ1

p ,θ1
h ,θ2

p ,θ2
h ) f j(θ1

p ,θ1
h ,θ2

p ,θ2
h ). The non-vanishing contributions come from

the first two terms in (3.49), which are thus four terms in the product. Using (4.13),
each of these is proportional to (∆θ1)−2, which is therefore cancelled by the (∆θ1)2 in
ε[θ •p ,θ •h ]

2. The integration over ∆θ1 against the delta function δ(ε[θ •p ,θ •h ]) can now be
taken, and it provides an additional factor

1
|veff(θ1)− veff(θ2)| |k′(θ1)|

.

Putting all factors together, in particular using (3.49) and 2πσ1,2ρs(θ1,2) = k′(θ1,2), we
find the DC matrix

(DC)i j =
ˆ

dθ1dθ2

2
ρp(θ1)(1− n(θ1))ρp(θ2)(1− n(θ2))|veff(θ1)− veff(θ2)|

×
�Tdr(θ2,θ1)hdr

i (θ2)

σ2ρs(θ2)
−

Tdr(θ1,θ2)hdr
i (θ1)

σ1ρs(θ1)

��Tdr(θ2,θ1)hdr
j (θ2)

σ2ρs(θ2)
−

Tdr(θ1,θ2)hdr
j (θ1)

σ1ρs(θ1)

�

,

(4.15)

which leads to the diffusion kernel reported in section 4.3. Naturally, as there is a single
particle type, the signs σ in the above expression cancel out. We recall the definition of
the dressed scattering kernel,

Tdr = (1− T nσ)−1T. (4.16)

Notice that in (4.15), we used the fact that after integration over ∆θ2 the integrand be-
comes regular, making the result an ordinary integral, such that no regularisation scheme
is needed.
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4.2 Generalisation to arbitrary integrable models

Result (4.15) has been derived using the particle-hole form factor expansion, and thus
it holds in the context of integrable models with fermionic excitations. It has also been
derived explicitly with the understanding that there is a single quasiparticle type (and
with a choice of positive parity). It is simple to propose its extension to integrable models
with arbitrary number of quasiparticle types and arbitrary quasiparticle statistics, thus
including classical integrable models. We provide arguments for the validity of this in
quantum models with many string lengths in Appendix G, and check the proposal against
the known classical hard rod result in Appendix H.

Recall from Remark 1 of subsection 3.1 that it is a simple matter in TBA and Euler-
scale GHD to take into account many quasiparticle types: one then simply replaces each
rapidity integral by the combination of a rapidity integral and a sum over quasiparticle
types, ˆ

dθ 7→
∑

a

ˆ
dθ . (4.17)

Further, the natural generalisation to models with different statistics is obtained by analogy
with the formulae for correlation functions and Drude weights, making the replacement
(see [101] for further remarks)

1− n(θ ) 7→ f (θ ) = −
d2F(ε)/dε2

dF(ε)/dε

�

�

�

ε=ε(θ )
. (4.18)

Therefore, the general formula is expected to be

(DC)i j =
∑

a,b

ˆ
dθ1dθ2

2
ρp;a(θ1) fa(θ1)ρp;b(θ2) fb(θ2)|veff

a (θ1)− veff
b (θ2)|

×
� Tdr

b,a(θ2,θ1)hdr
i;b(θ2)

σbρs;b(θ2)
−

Tdr
a,b(θ1,θ2)hdr

i;a(θ1)

σaρs;a(θ1)

�

×
�Tdr

b,a(θ2,θ1)hdr
j;b(θ2)

σbρs;b(θ2)
−

Tdr
a,b(θ1,θ2)hdr

j;a(θ1)

σaρs;a(θ1)

�

. (4.19)

In this expression, recall that σa is the sign of the parametrisation for quasiparticle type
a,

σa = sgn(k′a(θ )), (4.20)

which enters, for instance, into the relation between k′a(θ ) and ρs;a(θ ):

k′a(θ ) = 2πσaρs;a(θ ). (4.21)

We recall that it is always possible to choose a parametrisation where σa = 1 for all a. It
is a simple matter to see that formula (4.19) is reparametrisation invariant.

In many models, it is possible to choose a parametrisation such that T is symmetric,
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in which case Tdr also is. In this case, the formula simplifies to

(DC)i j =
∑

a,b

ˆ
dθ1dθ2

2
ρp;a(θ1) fa(θ1)ρp;b(θ2) fb(θ2)|veff

a (θ1)− veff
b (θ2)|

×
�

Tdr
a,b(θ1,θ2)

�2� hdr
i;b(θ2)

σbρs;b(θ2)
−

hdr
i;a(θ1)

σaρs;a(θ1)

�� hdr
j;b(θ2)

σbρs;b(θ2)
−

hdr
j;a(θ1)

σaρs;a(θ1)

�

(4.22)

(T symmetric).

As mentioned, this is valid in the XXZ chain, in the Lieb-Liniger model, in the hard rod
gas, and in many other field theories, and nontrivial parities occur in the gapless regime
of the XXZ chian at roots of unity [112] and in fermionic models like the Fermi-Hubbard
chain [113].

4.3 Diffusion kernel and Markov property

From the above result, it is possible to extract the integral kernel Da,b(θ ,α) for the diffu-

sion matrix D
j

i . Using the dual integral-kernel form,

(DC)i j = (hi ,DCh j) =
∑

a,b

ˆ
dθdαhi;a(θ )(DC)a,b(θ ,α)h j;b(α), (4.23)

and writing as usual n, f , ρs, σ and 1 as diagonal integral kernels, we define the integral
kernel eD via

DC = (1−σnT )−1ρsσeDσnf (1− TTnσ)−1. (4.24)

Since from (3.37) we have

C = (1−σnT )−1ρp f (1− TTnσ)−1, (4.25)

we find
D= (1−σnT )−1ρsσeDσρ

−1
s (1−σnT ). (4.26)

Using (4.24) with (4.19), we can extract the diffusion kernel, which can be written in the
form:

1
2
eDa,b(θ ,α) = δa,bδ(θ −α)ewa(θ )−fWa,b(θ ,α). (4.27)

The off-diagonal elements of this kernel can be interpreted as the effects of interparticle
scatterings with different velocities,

fWa,b(θ ,α) =
1
2
ρp;a(θ ) fa(θ )

Tdr
a,b(θ ,α)Tdr

b,a(α,θ )

ρs;a(θ )2
|veff

a (θ )− veff
b (α)|, (4.28)

while the diagonal part, ew(θ ) can be seen as the effective variance for the quasiparti-
cle fluctuations with rapidity θ inside the local stationary state, caused by the random
scattering processes (see also [66])

ewa(θ ) =
1
2

∑

b

ˆ
dαρp;b(α)(1− nb(α))

�

Tdr
a,b(θ ,α)

ρs;a(θ )

�2

|veff
a (θ )− veff

b (α)| , (4.29)
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where the ratio Tdr
a,b(θ ,α)/ρs;a(θ ) can be thought as the average displacement of the

quasiparticle of type a due to multiple scattering processes with all the other quasipar-
ticles present in the local stationary state. Clearly, under reparametrisation, the kernels
eD(θ ,α) and fW (θ ,α) are both scalars in θ and vector fields in α, the function ew(θ ) is a
scalar, and the kernel D(θ ,α) is a vector field in θ and a scalar in α.

If T is symmetric, then we can write

ewa(θ ) = ρs;a(θ )
−2
∑

b

ˆ
dαfWb,a(α,θ )ρs;b(α)

2. (4.30)

In this case, the operator D is a Markov operator with respect to the measure dpa(θ ),
which can be interpreted, much like in the hard rod case [64,72, 80,142], as describing
the random exchange of velocities among the quasiparticles under collisions. Indeed, in
this case

∑

a

ˆ
dθ p′a(θ )Da,b(θ ,α) = 0, (4.31)

which can be seen either by combining (4.30) with (4.27), or directly by choosing
hi;a(θ ) = p′a(θ ) in (4.22): with the latter, we immediately find (for any parity) that
(DC)i j = 0 using (p′)dr

a (θ ) = k′a(θ ) = 2πσaρs;a(θ ), and since this holds for all h j;b(θ ), it
implies (4.31). The Markov property (4.31) implies the lack of diffusion for the conserved
quantity corresponding to this choice of ha(θ ).

As mentioned in section 2.5, this sum rule – the lack of diffusion – follows from
Galilean or relativistic invariance as then the current of mass (energy) is the momen-
tum density, and agrees with the general argument, explained in Remark 4 of section 3.1,
according to which for any model where there is a parametrisation making T symmetric,
the diffusion associated to the charge corresponding to p′(θ ) must be zero. In particu-
lar, it is the case in the XXZ spin chain, where the energy current is a conserved density,
implying the absence of energy diffusion in the chain.

5 GHD Navier-Stokes equation, entropy increase, linear regime

In this section, we derive consequences of the form of the diffusion kernel found in the pre-
vious section. We write the Navier-Stokes equation corresponding to it in various forms,
prove that this leads to entropy production, analyse its linear regime, and apply these
to the Lieb-Liniger model as an explicit example. For lightness of notation, we restrict
ourselves to the case of a single quasiparticle type and a symmetric differential scatter-
ing phase (3.5), but all results can be generalise by following the principles discussed in
Remarks 1 and 2 of subsection 3.1.

5.1 Navier-Stokes GHD equation for the quasiparticle densities and occu-
pation numbers

The expression (3.28) for the currents in terms of the root densities, allows to write
directly the Navier-Stokes equation for the density of quasi-particles

∂tρp + ∂x(v
effρp) = ∂xN , N = 1

2
D∂xρp, (5.1)
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where as usual we see ∂xρp as a vector in the space of spectral functions, and the diffusion
operator D of eq. (4.26) as an integral operator acting on this space. We shall write this
equation for the occupation numbers n(θ ) = ρp(θ )/ρs(θ ). We will show that this can be
expressed in terms of the diffusion kernel introduced in eq. (4.27), as

∂t n+ veff∂x n=
1
ρs
(1− nT )∂xN =

1
2ρs
(1− nT )∂x

�

(1− nT )−1ρs
eD∂x n

�

. (5.2)

Since the full solution to this equation is technically very involved it is useful to consider
the so-called linear regime, where we can neglect second and higher powers of (∂x n) (for
instance, if n(θ ; x , t), in addition to being smooth, stays close to some equilibrium value
neq(θ )). In this limit equation (5.2) reduces to the equation

∂t n+ veff∂x n=
1
2
eD∂ 2

x n+O((∂x n)2) (5.3)

that simply account for diffusion spreading on top of the ballistic propagation of the
quasiparticles with their effective velocities.

In order to derive equation (5.2), first, we show that

(1− nT )N = 1
2
ρs
eD∂x n. (5.4)

Using the Bethe equations Tρp = ρs − p′/2π we find

(1− nT )∂xρp = ∂xρp − n∂x(Tρp) = ρp∂x log n, (5.5)

and combined with

(1− nT )N = 1
2
ρs
eDρ−1

s (1− nT )∂xρp (5.6)

this shows (5.4). We are then in position to arrive at the following equation for the
distribution n:

∂t n+ veff∂x n=
1
ρs
(1− nT )∂xN . (5.7)

To prove this relation we recall that, for any parameter α on which n depends, we have
the following identity

∂α

�

n(1− T n)−1
�

= (1− nT )−1∂αn(1− T n)−1. (5.8)

Therefore we find

2π∂tρp = ∂t

�

n(1− T n)−1p′
�

= (1− nT )−1∂t n(1− T n)−1p′, (5.9)

and similarly for 2π∂x

�

veffρp

�

= ∂x

�

n(1− T n)−1E′
�

, so we have from (5.1)

(1− nT )−1∂t n(p
′)dr + (1− nT )−1∂x n(E′)dr = 2π∂xN , (5.10)

and therefore

∂t n+ veff∂x n=
2π
(p′)dr

(1− nT )∂xN , (5.11)

which shows (5.7) using (p′)dr = 2πρs.
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5.2 Entropy increase due to diffusion

It is a well established notion in classical hydrodynamic theory that the diffusion terms
in the Navier-Stokes equation breaks time-reversal symmetry. This is most clearly shown
by constructing a function of the hydrodynamic state, expressed as an integral over local
states, which is strictly increasing with time. This function then has the usual interpreta-
tion as the total entropy of all fluid cells, expressed as an integral over an entropy density.
The fact that the total entropy of fluid cells increase with time is of course not in contra-
diction with the underline unitary (deterministic) evolution of the system. Indeed, the
total entropy of the system, say the von Neumann entropy of the whole system’s den-
sity matrix, is invariant under time evolution; however by separation of scales, it should
be, intuitively, composed of the total entropy of local fluid cells plus the entropy stored
in large-scale structures. Because of diffusion, entropy stored in large-scale structures
passes to microscopic scales (large-scale structures are smoothed out, reducing the large-
scale configuration space). Thus, each fluid cell sees its entropy increase. See also the
related recent discussions on entropy and related concepts in isolated systems [143–145].

In the specific case of GHD, each fluid cell is specified by the densities of quasiparticles
ρp(θ ; x , t). Following (3.2), the entropy of a fluid cell at position x , t is given by the
formula

s(x , t) =
ˆ

dθ ρs(θ ; x , t)g(n(θ ; x , t)). (5.12)

The function g(n) depends on the statistics of the quasiparticles, and is given by (3.10).
The solution of this equation is specified up to terms of zeroth and first powers of n,
which do not affect total entropy variations. One can show that in the Fermionic case the
Yang-Yang [115] formula is recovered,

s = −
ˆ

dθ ρs (n log n+ (1− n) log(1− n)) , (5.13)

in the bosonic case that of [146] is obtained

s = −
ˆ

dθ ρs (n log n− (1+ n) log(1+ n)) , (5.14)

in the case of classical particles one finds the usual classical entropy,

s = −
ˆ

dθ ρsn log n, (5.15)

and the correct classical field entropy is found in the case of radiative modes,

s =
ˆ

dθ ρs log n. (5.16)

If the fluid cell’s state is described by a GGE, then expression (5.12) is exactly the
density per unit length of the GGE’s von Neumann entropy [147, 148]. As discussed in
subsection 3.2, at the Euler scale, local states are described by GGEs, and thus in this
case s(x , t) is the von Neumann entropy, per unit length, of the reduced density matrix
(or marginal distribution) of the fluid cell at x , t. However, beyond the Euler scale, the
GGE description of local states is not valid any more, as the GGE form of averages of
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local observables if generically modified by derivative (diffusive) terms. In this case it is
not clear if s(x , t) is equal to the von Neumann entropy of the reduced density matrix of
fluid cells. Yet, we now show that the total entropy S(t) =

´
dx s(x , t) associated to this

entropy density is strictly increasing with time under the Navier-Stokes equation (5.1).
In this sense, s(x , t) can be interpreted as an entropy density of the local fluid cell.

At Euler scale the local entropy s(x , t) satisfies a continuity equation [149, 150],
namely

∂ts+ ∂x j(1)s = 0 , (5.17)

with the Euler-scale entropy current given by

j(1)s (x , t) =
ˆ

dθ veffρs g(n). (5.18)

This means that, in systems of finite extent (where the entropy density vanishes beyond
this extent), the total entropy S(t) =

´
dx s(x , t) is preserved, dS(t)/dt = 0. We now

introduce the Navier-Stokes terms, and we show that the total entropy S(t) increases
with time.

For simplicity we introduce G(n) = g(n)/n and write

s =
ˆ

dθ ρpG(n). (5.19)

Extracting the terms involving N in equations (5.2) and (5.1), and using (5.4), we find

∂ts+ ∂x j(1)s

=
ˆ

dθ
�

G(n)∂xN +ρpG′(n)
�

1
ρs
(1− nT )∂xN

��

= −∂x j(2)s −
ˆ

dθ (2G′(n) + nG′′(n))∂x n(1− nT )N

= −∂x j(2)s −
1
2

ˆ
dθ (2G′(n) + nG′′(n))∂x n (ρs

eDρ−1
s )ρs ∂x n, (5.20)

where the correction to the entropy current given by diffusive terms is

j(2)s = −
ˆ

dθ
�

NG(n) + nG′(n)(1− nT )N
�

. (5.21)

Now we note that 2G′(n)+nG′′(n) = g ′′(n) = −1/(nf ) (the last equation obtained using
(3.11) and (4.18)), and we find

∂ts+ ∂x( j
(1)
s + j(2)s ) =

1
2

ˆ
dθ

ˆ
dα

∂x n(θ )
n(θ ) f (θ )

ρs(θ )eD(θ ,α)∂x n(α). (5.22)

Therefore, using (4.24), the equation for the hydrodynamic evolution of the entropy den-
sity can be more compactly written as

∂ts+ ∂x

�

j(1)s + j(2)s

�

=
1
2
(Σ,DCΣ) , (5.23)

with the spectral functio Σ defined as (1− T n)−1Σ = ∂x n/( f n). As a consequence, the
total entropy S(t) is only conserved up to terms of order (∂x n(x , t))2, and

dS(t)
dt

=
1
2

ˆ
dx (Σ,DCΣ)(x , t)≥ 0 , (5.24)
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where the inequality follows from the positivity of the operator DC , which is clear from
the expression (4.19). It is a simple matter to see that, generically, the inequality is
actually strict. Further, we note that the entropy current is modified by terms of order
∂x n(x , t) (an effect also known in the hard rod gas [64,72]), and given by

j(1)s + j(2)s =
ˆ

dθ
�

ρs(θ )g(n(θ ))v
eff(θ )

−N (θ )G(n(θ ))−
ˆ

dαn(θ )G′(n(θ )) (δ(θ −α)− n(θ )T (θ ,α))N (α)
�

.

(5.25)

5.3 Solution of the partitioning protocol in the linear regime

One of the main application of the hydrodynamic equation (5.2) is the dynamics given by
a bi-partite initial state, namely when the initial state is chosen to be the tensor product of
two macroscopically different state. Such a non-equilibrium dynamics has been studied
extensively in the past years. The solution at the Euler scale in integrable models is a
continuum of contact singularities, one for each value of θ [49,151]. Such singularities
are a feature of the Euler scale, and are smoothed out at shorter space-time scales by
diffusive spreading effects, which, upon integration over θ , give rise to 1/

p
t corrections

to local observables.
We here consider the equation (5.3) for the occupation numbers in the linear regime

∂t n+ veff∂x n=
1
2
eD∂ 2

x n+O((∂x n)2). (5.26)

We aim to solve this equation with step initial conditions given by

n(θ ; x , 0) = nL(θ )Θ(−x) + nR(θ )Θ(x) , (5.27)

with nL ∼ nR. In the following we shall show that the solution of this equation up to
corrections of order t−1 at large times, is given by

n(θ ; x , t) = nL(θ ) + (nR(θ )− nL(θ ))
1− erf

�Ç

1
4t ew(θ )(t veff(θ )− x)

�

2

−
ˆ

dθ ′∆n(θ ,θ ′)(nR(θ
′)− nL(θ

′)) +O(t−1), (5.28)

with erf(u) the error function and

∆n(θ ,θ ′) =





e−
(x−t veff(θ ))2

4ew(θ )t

p

4πew(θ )t
−

e−
(x−t veff(θ ′))2

4ew(θ ′)t

p

4πew(θ ′)t





fW (θ ,θ ′)
veff(θ ′)− veff(θ )

. (5.29)

It is interesting to compare this solution with the one obtained in the standard ballistic
GHD case (obtained in the limit of zero diffusion ew→ 0 and fW → 0), which reads

n(θ ; x , t) = nL(θ ) + (nR(θ )− nL(θ ))Θ
�

t veff(θ )− x
�

, (5.30)

with the Heaviside theta function Θ(x). At each x , t there is a contact singularity at θ ∗,
fixed by the condition veff(θ ∗) = x/t. This is instead smoothed out by the diffusive terms
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in (5.28). This on the other hand is not the only effect of diffusion: the interparticle
scatterings also lead to non-local changes in rapidities between n(θ ) and n(θ ′). This
leads to rearrangements of rapidities among particles due to the off-diagonal elements
fW (θ ,θ ′) of the diffusion kernel, that give the second term in (5.28).

In order to arrive to (5.28) we use that we can solve the equation by Fourier transform,

n(θ ; x , t) = nL(θ ) +
ˆ

dk
2π

eikx
�

exp
�

−(ikveff +
1
2

k2
eD)t

�

nk

�

(θ ). (5.31)

By neglecting the diffusion terms, there would be only a diagonal matrix −ikveff in the
exponential. The set of these matrices for all k all commute with each other, so one could
diagonalise them simultaneously. A possible basis of eigenvectors is given by the vectors
u(θ ′;θ ) = δ(θ − θ ′) with eigenvalues kveff(θ ′) and one decomposes as
nk(θ ) =

´
dθ ′ Ck(θ ′)u(θ ′;θ ) thus getting

´ dk
2πdθ ′ eikx−ikveff(θ ′)t Ck(θ ′). The initial con-

dition then fixes the final solution as

nk(θ ) =
nR(θ )− nL(θ )

ik
. (5.32)

Including the diffusion kernels, one is left, in the exponential, with the matrices

iveff(θ )δ(θ −α) + keD(θ ,α)/2 (5.33)

for all k’s. These matrices do not commute with each other for different k’s, therefore we
cannot find a set of eigenvectors that simultaneously diagonalise all of them. Instead, we
find, for each k, a set of k−dependent eigenvectors by first order perturbation, keeping
in mind that the propagator (5.33) is valid up to terms of order k3, namely up to terms
of order t−1 in the solution of equation (5.3). We then proceed to express each nk(θ ) as
a linear combination on all the k-set: we search for vectors satisfying

�

(iveff + kew− kfW )(u(θ ′) + k∆u(θ ′))
�

(θ )

= (λ(θ ′) + k∆λ(θ ′))(u(θ ′;θ ) + k∆u(θ ′;θ )) +O(k2), (5.34)

where λ= iveff(θ ′) + kew(θ ′) and u(θ ′;θ ) = δ(θ ′ − θ ). We find

−kfW (θ ,θ ′) + k(iveff(θ ) + kew(θ ))∆u(θ ′;θ )

= k∆λ(θ ′)δ(θ ′ − θ ) + k(iveff(θ ′) + kew(θ ′))∆u(θ ′;θ ). (5.35)

This is solved as

∆u(θ ′;θ ) =
−fW (θ ,θ ′)−∆λ(θ ′)δ(θ − θ ′)

i(veff(θ ′)− veff(θ )) + k(ew(θ ′)− ew(θ ))
. (5.36)

The condition of well-definiteness of the vector fixes the eigenvalue,

∆λ= −fW (θ ,θ )dθ , (5.37)

which guarantees that the numerator is zero at the pole θ = θ ′ of the denominator. This
means that the shift of eigenvalue is infinitesimal, and that the resulting shift of vector
∆u(θ ′;θ ) is to be interpreted, under integration over θ ′, as a principal value. But since
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fW (θ ,θ ) = 0 there is no need for principal value integration, and ∆λ = 0. Therefore we
decompose as

nk(θ ) = Ck(θ )−
ˆ

dθ ′ Ck(θ
′)

kfW (θ ,θ ′)
i(veff(θ ′)− veff(θ )) + k(ew(θ ′)− ew(θ ))

+O(k2). (5.38)

The initial condition now fixes the coefficients as

Ck(θ ) =
nR(θ )− nL(θ )

ik+ 0+
− i

ˆ
dθ ′

(nR(θ ′)− nL(θ ′))fW (θ ,θ ′)
i(veff(θ ′)− veff(θ )) + k(ew(θ ′)− ew(θ ))

+O(k). (5.39)

The full solution is then given by

n(θ ; x , t) = nL(θ ) +
ˆ

dk
2π

dθ ′ eikx−iktveff(θ ′)−k2 t ew(θ ′) C(θ ,θ ′; k) ,

with

C(θ ,θ ′; k) = Ck(θ
′)

�

δ(θ − θ ′)−
kfW (θ ,θ ′)

i(veff(θ ′)− veff(θ )) + k(ew(θ ′)− ew(θ ))

�

. (5.40)

By substituting the functions Ck and keeping only terms up to the order calculated (be-
cause of the initial condition giving a 1/k, this means neglecting O(k2) terms), one finds

n(θ ; x , t) = nL(θ ) +
ˆ

dk
2π

eikx

�

e−iktveff(θ )−k2 t(θ )ew(θ ) nR(θ )− nL(θ )
ik+ 0+

−
ˆ

dθ ′

�

e−iktveff(θ )−k2 t ew(θ ) − e−iktveff(θ ′)−k2 t ew(θ ′)
�

(nR(θ ′)− nL(θ ′))fW (θ ,θ ′)

veff(θ ′)− veff(θ )

�

.

(5.41)

The integration over k can now be trivially performed in terms of the error function erf(u),
giving

ˆ
dk
2π

eikx−ikt veff(θ )−k2 t ew(θ ) 1
ik+ 0+

=
1− erf

�Ç

1
4t ew(θ )(t veff(θ )− x)

�

2
, (5.42)

which finally leads to equation (5.28).

5.4 Diffusion in the Lieb-Liniger Bose gas

The Lieb-Liniger Bose gas is a model that describes bosons on a line interacting point-wise
(here with mass m= 1/2) [152]

H =
N
∑

j=1

∂ 2
x j
+ 2c

N
∑

i< j=1

δ(x i − x j), (5.43)

on a line of length L and where the coupling c can be taken both positive and negative
(attractive Bose gas). Below we consider the repulsive regime c > 0, where the TBA
formulation is simpler due to the absence of bound states. The model is Galilean invariant
and as a consequence the momentum is exactly given by the rapidity p(θ ) = θ with
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Figure 2: Plot of the quasiparticle variance (5.47) multiplied by the inverse temper-
ature β = 1/T for a thermal homogeneous Lieb-Liniger gas with coupling c = 1 and
density n0 = 1. At small temperature it converges to an asymptotic function which
becomes equal to zero at the two Fermi points θ = ±θF in the limit β →∞.

θ ∈ (−∞,+∞) (with this choice of parametrisation, the rapidity is related to the velocity
as v(θ ) = 2θ). Transport of charges is always ballistic, with its Drude weights written
in [141]. However there are diffusive corrections on top of it, except for the local density
n0(x , t) =

´ +∞
−∞ dθρp(θ ; x , t) whose diffusion matrix element is zero, due to (4.31). It is

interesting to compute the diffusion operator in the strong coupling limit c→∞. In this
limit the scattering kernel becomes a constant function

T (θ ,α) =
1
π

c
(θ −α)2 + c2

=
1
πc
+O(c−2) , (5.44)

and moreover some different analytical results can be obtained [153,154] for the ground
state proprieties of the gas. The diffusion kernel in this limits then becomes

D(θ ,α) =
�

2
c

�2�

1+
2n0

c

�−2
�

�
ˆ

dκρp(κ)(1− n(κ))|veff(θ )− veff(κ)|
�

δ(θ −α)

−ρp(θ )(1− n(θ ))|veff(θ )− veff(α)|
�

, (5.45)

with the effective velocity given in this limit by

veff(θ ) = v(θ ) +
2
c

ˆ
dα
2π

v(α)n(α) +O(c−2). (5.46)

It is interesting to notice that diffusion only take place at order c−2, as at order c−1 the
quasiparticles are simply non-interacting dressed free fermionic particles [155]. Notice
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that the diffusion operator (5.45) becomes almost equivalent in this limit to the one of a
hard rod gas (H.7) up to the statistical factor f = 1− n in the case of the Bose gas. The
dressed velocity (5.46) corresponds exactly to the one of a hard-rod gas with rod length
a = −2/c. Therefore, as was noticed before [156, 157], the Lieb-Liniger gas at large
coupling positive c is completely analogous to a hard-rod gas of particles at the Euler
scales (albeit with negative rod lengths), but due to the explicit dependence of diffusion
from the statistics of the quasiparticles, the equivalence does not hold at diffusive scales.

The quasiparticle variance (4.29)

ew(θ ) =
1
2

ˆ
dαρp(α)(1− n(α))

�

Tdr(θ ,α)
ρs(θ )

�2

|veff(θ )− veff(α)| (5.47)

can be shown to be proportional the amplitude of the space fluctuations of the quasiparti-
cles around their average position, see [66]. In Fig. 2 we plot this quantity for a thermal
Lieb-Liniger gas at c = 1, particle density n0 = 1 and for different temperatures.

6 Gapped XXZ chain and spin diffusion at half-filling

In this section we focus on the XXZ spin-1/2 chain, defined by the Hamiltonian

H =
L
∑

j=1

�

1
2
(S+j S−j+1 + S−j S+j+1) +∆Sz

j S
z
j+1

�

, (6.1)

with the spin 1/2 operators S±,z
j ≡ S±,z( j) at site j. We describe the physics of the spin

transport of the model at equilibrium, for example the dynamics observed when two semi-
infinite chains at thermal equilibrium with slightly different magnetizations are joined to-
gether [91,98,142,158,159] or when the initial state is an equilibrium state with a small
local perturbation in the magnetization density, as done for example with tDMRG numer-
ical simulations in [91]. The observed spin dynamics can be very different depending on
the parameters of the system, namely the value of the anisoptropy ∆ and the filling, i.e.
the total magnetization of the state

Sz
0 = lim

L→∞
L−1

L
∑

j=1

〈Sz( j)〉. (6.2)

It is useful therefore to make here a short review of the different regimes for spin transport
in the XXZ chain at thermal equilibrium,

1. |∆| < 1, Sz
0 ∈ (−1/2, 1/2) and |∆| ≥ 1, Sz

0 6= 0: spin transport is ballistic with
diffusive corrections. The presence of a ballistic spin current at Sz

0 = 0 is due to the
presence of extra conserved quantities in the regime |∆| < 1 which are odd under
spin flip on the whole chain [60, 97, 160, 161]. At finite Sz

0 all the other spin even
(and parity odd) conserved quantities contribute to the spin current [93,162], since
the state is not spin-flip invariant. The Drude weights for the ballistic current were
obtained in [39,94,158,163].
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Figure 3: Plot of the spin diffusion constant D00 = (D)Sz ,Sz for a gapped XXZ chain at
infinite temperature β = 0 and half-filling as given by (6.6) (black line) as function
of ∆. Red squared are data obtained by integrating the time-dependent current-
current correlator obtained from tDMRG simulations with a finite maximal time from
[35, 91, 92] and blue dots are the result of their extrapolation at large times, see
Appendix I. The large ∆ limit is given by 1

2 lim∆→∞D00 ' 0.424 and close to ∆= 1
it diverges as ∼ (∆− 1)−1/2, signalling super-diffusive transport.

2. |∆| > 1, Sz
0 = 0: spin transport is purely diffusive since there are no spin-flip

odd conserved charges besides the total magnetization Sz
0 and therefore spin Drude

weight is zero, see for example [99]. Numerical and some analytical analysis were
provided in [35,98,164–167] and in the low temperature regime some results were
found within the low-energy field theory description [168–170]. However up to
now a proof of diffusive dynamics at any finite temperatures was missing and no
closed formula for the diffusion constant was known.

3. ∆ = ±1, Sz
0 = 0: spin transport at finite temperature is super-diffusive, namely

with an infinite diffusion constant and with zero Drude weight 6. This is suggested
by numerical simulations [98, 172], which show a dynamical exponent z = 3/2
instead of the usual z = 2 characterizing diffusive transport, and by some analytic
results [99] which prove the divergence of the diffusion constant. However an
understanding of this phenomena remains elusive for now.

In reference [81] the first case was studied, namely the dynamics at |∆| < 1 and half-
filling Sz

0 = 0. There we showed that by choosing a ∆ close to 1−, the ballistic dynamics

6While this is true at thermal equilibrium [99], non-equilibrium states can display normal diffusion, see
for example [171].
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slows down and the viscous terms become important, so that the full Navier-Stokes cor-
rections are necessary to describe the exact dynamics at intermediate times. We here
instead focus on the gapped regime |∆|> 1 and we show that transport is indeed purely
diffusive on equilibrium states at half-filling. We define the hydrodynamic local magne-
tization density as a function of a smooth space variable x ∈ R, such that

〈Sz( j, t)〉
�

�

�

j=x
≡ sz

0(x , t) (6.3)

for any site j in the chain; this is valid when variations of sz
0(x , t) occur on large distances.

The same can be done for all the local conserved densities q(x , t). As showed in the
following sections, the hydrodynamic equation for the local magnetization reads as

∂ts
z
0(x , t) + ∂x

�

veff
∞(x , t)sz

0(x , t)
�

=
1
2
∂xD00(x , t)∂x sz

0(x , t)

+
1
2
∂x

∞
∑

j=1

D0 j(x , t)∂x〈q j(x , t)〉, (6.4)

with the velocity veff
∞ defined after equation (6.21) as the velocity of the largest quasipar-

ticle inside the reference state. In the limit of linear perturbation on top of a half-filled
equilibrium state (e.g. a thermal state), both the velocity veff

∞ and the diffusion coeffi-
cients D0 j with j > 0, evaluated on the reference state, vanish (in accordance with the
absence of a finite spin Drude weight at half-filling [99]). Therefore we obtain a standard
diffusion equation for the local magnetization

∂ts
z
0(x , t) =

D00

2
∂ 2

x sz
0(x , t), (6.5)

where the diffusion constant D00 is a functional of the thermodynamic properties of the
reference state (e.g. its temperature). In the next sections we shall show, as consequence
of result (4.22), that the spin diffusion constant is exactly given as

D00

2
= ew∞ ≡

1
2

∞
∑

b=1

ˆ π/2

−π/2
dαρp,b(α)(1− nb(α))|veff

b (α)| (Wb)
2 , (6.6)

with ew∞ the variance (6.33) for the large-scale fluctuations of the bound state with
infinite size a =∞. The function

Wb = lim
a→∞

�

Tdr
a,b(θ ,α)/ρs,a(θ )

�

, (6.7)

which can be seen as the effective shift of the trajectory of the largest quasipartice with
a =∞ when it scatters with the quasiparticle b, it is a constant function in θ and α.
Formula (6.6) is a direct consequence of our result (4.15) and therefore it provides the
exact spin diffusion constant of the model, provided the validity of our conjecture on the
poles of the form factors, see sec. 3.3. It can be numerically evaluated, see Figure 3. In
the infinite temperature limit T →∞ it agrees with another recent result [173] found
at the same time as this paper appeared. Notice that for reference states with vanishing
particle or hole density ρp,a(θ )(1− na(θ )) = 0 the diffusion constant is zero. This is the
case for example for the fully polarized domain-wall state or other reference states that
display sub-diffusive corrections to ballistic spin transport, see [174].

In the following sections we shall review how to describe the thermodynamic limit of
the a gapped XXZ chain and arrive to the final result (6.6).
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6.1 A reminder of the the thermodynamic limit of the XXZ chain

The gapped regime |∆| ≥ 1 is characterized by the presence of an infinite number of
bound states or strings and by a compact support for the rapidites in the model
θ ∈ [−π/2,π/2]. Due to the infinite number of strings, the dressing integral equations
hdr

a = [(1− T n)−1]abhb can be recast into a factorized form, which is given by

hdr
i;a = di;a + s ∗ (hdr

i;a−1(1− na−1) + hdr
i;a+1(1− na+1)), (6.8)

with s(θ ) = (2cosh(ηθ ))−1 and with ∗ denoting convolution operation
f ∗ g =

´ π/2
−π/2 f (u− v)g(v)dv. The driving function di;a(θ ) depends on the type of con-

served quantity considered. Energy, momentum and all the other ultra-local (in contrast
with quasi-local) conserved quantities have drivings terms of the type

di;a = δa,1(1+ T11)
−1hi , (6.9)

with hi the single-particle eigenvalue. Quasi-local conserved charges [95,175,176] rep-
resent higher strings and their driving terms couple to larger strings, as di;a ∼ δa,s with
s > 1. The only conserved quantity which is not included in this set of families is the
spin magnetization q0 = L−1

∑

j Sz
j , which is orthogonal to all the other charges, being

the only spin-flip non invariant conserved operator. Its absolute value enters the dressing
(6.8) via the value of the asymptotic of the dressed functions (and, equivalently, of the
root densities), namely

lim
a→∞

a−1 log hdr
i;a = −µ, (6.10)

where µ is the chemical potential associated to the magnetization charge q0.
Let us now consider a thermal state at finite temperature β and chemical potential µ

and analyse the infinite temperature limit. In the limit β → 0 the occupation numbers
can be expressed analytically and they are constants in θ [99,112]

na(θ ) =
sinhµ

sinh(µ(a+ 1))2
. (6.11)

In the limit µ→ 0 also the root densities and the derivative of the energies take a simple
form

na(θ ) =
1

(a+ 1)2
, (6.12)

ρp,a(θ ) =
1
2
(a+ 1)−1

�

Ka(θ )
a
−

Ka+1(θ )
a+ 2

�

, (6.13)

ε′a(θ ) = −π
s+ 1

2

�

K ′a(θ )

a
−

K ′a+2(θ )

a+ 2

�

, (6.14)

with the functions Ka(θ ) defined with the notation ∆= coshη as

Ka(θ ) =
sinh(ηa)

π(cosh(ηa)− cos(2θ ))
. (6.15)

From these expressions and from the ones at finite chemical potential one can notice that
all thermodynamic functions converge to constant function in θ at large string number a,
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with deviation of order e−aη. Such constants also decay at large a for any thermal state,
not necessarily with infinite temperature, with the following different behaviours at large
a

ρp,a(θ )∼

¨

e−µa if µ > 0

1/a3 if µ= 0
, ρs,a(θ )∼

¨

const if µ > 0

1/a if µ= 0
, (6.16)

with a constant in front which is β−dependent. Moreover at thermal equilibrium the
velocities decay exponentially in a as [59,99]

veff
a ∼ e−aη (6.17)

for any µ. The behavior of the dressed magnetization hdr
0;a(θ ) at finite temperature in this

limit is very non-trivial. We have

hdr
0;a(θ ) =

¨

µ/3(a+κ(β))2 +O(µ2) if a� 1/µ

a if a� 1/µ
, (6.18)

with κ(0) = 1 at infinite temperature, where the expression indeed reads [99]

lim
β→0

hdr
0;a(θ ) =

1
2

sinh(µ(a+ 1))
sinhµ

�

a
sinh(µa)

−
(a+ 2)

sinh(µ(a+ 2))

�

, (6.19)

and it is easy from this expression to infer the behaviour (6.18).

6.2 Spin dynamics in the gapped XXZ chain

Given a reference equilibrium state |ρp,a〉, the eigenvalue of the local magnetization sz
0,

namely h0;a(θ ) = a, is such that only the asymptotic density of holes determine the
absolute value of the local magnetization

|sz
0|=

1
2
−
∑

a≥1

ˆ π/2

−π/2
dθρp,a(θ )a = lim

a→∞
ρh,a ≡ ρh,∞, (6.20)

where ρh,∞ is indeed a constant in θ for all stationary states. This relation is due to the
recursive structure of the dressing ρp = n(1 − T n)−1p′. It is easy to show that such a
structure leads to a telescopic sum in (6.20). The same relation is valid for the absolute
value of the expectation value of the spin current [59]

|̄jz0|=
∑

a≥1

ˆ π/2

−π/2
dθ ρp,a(θ )v

eff
a (θ )a = ρh,∞veff

∞ ≡ veff
∞|s

z
0|, (6.21)

with veff
∞ = lima→∞ veff

a (θ ) is the local velocity of the largest bound state, namely the one
with infinite size a. The sign of the magnetization f, see [59], and of the spin current
is given by the choice of the reference state used to construct the thermodynamic states
and it is an information not contained in the set ρp,a. If the reference state is the spin
up ferromagnetic state | ↑ . . . ↑〉 then f = 1, otherwise one can also choose the opposite
state | ↓ . . . ↓〉 and have f = −1. Namely, given a choice of the reference state, any state
|ρp〉 can have either magnetization sz

0 ∈ [0,1/2] or sz
0 ∈ [−1/2, 0]. Therefore a generic
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stationary state in the gapped regime ∆ ≥ 1 is specified by the root densities and the
magnetization sign f, namely by the set

|ρp,a, f〉, (6.22)

for any normalizable densities
∑

a≥1 a
´ π/2
−π/2ρp,a(θ )dθ ≤ 1/2 and f = ±1. This is now a

complete set of states in the thermodynamic limit.
In [59] it was found that given an initial profile of magnetization that crosses zero in

some points, its sign f(x) evolves in time by a local continuity equation

∂t f(x , t) + veff
∞(x , t)∂x f(x , t) = 0, (6.23)

where the equation is to be intended as an equation for the positions {x j
0(t)} of the zeros

of the magnetization, since ∂x f(x , t) =
∑

j δ(x − x j
0(t)). This simply means that the

zero of the magnetization are transported by the flow with ẋ j
0(t) = veff

∞(x
j
0(t), t). Using

|sz
0|f = sz

0, we arrive to equation (6.4) with the values of the local charges (even under
spin-flip) given as usual by the root densities

〈qi(x , t)〉=
∑

a

ˆ π/2

−π/2
dθ ρp,a(θ ; x , t)hi;a(θ ) ∀i > 0. (6.24)

6.3 Spin diffusion constant at half-filling

We consider the spin dynamics in the linear regime at half-filling, namely when the total
magnetization is zero Sz

0 = 0. This limit is particularly important since the spin ballistic
current vanishes and the local magnetization evolves according to equation (6.5), which
is a purely diffusive dynamics. On the other hand this limit presents numerous technical
difficulties that we will here address and show how to compute the diffusion constant in
equation (6.6).

Due to the spin-flip symmetry of the reference state at half-filling, we find

(DC)0i = δi0(DC)00, (6.25)

with δi j the Kronecker delta. This is due to the fact that all conserved charges with i > 0
are invariant under a global spin flip transformation. Moreover for the same reason we
also find

C0i = δi0C00. (6.26)

We then conclude that the diffusion matrix evaluated on a half-filling state is diagonal
on the line corresponding to the magnetization charge and it can be then expressed from
one single element of the (DC) matrix as

lim
µ→0

D00 =
limµ→0(DC)00

limµ→0 C00
. (6.27)

The spin susceptibility of a stationary state, defined as [114,141,177]

C00 = lim
L→∞

L−1
∑

j

〈Sz( j, t)Sz(0, 0)〉c (6.28)
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is given by equation (3.37) trivially generalised to the presence of different strings

C00 =
∑

a≥1

ˆ π/2

−π/2
dθ ρp,a(θ )(1− na(θ ))(h

dr
0;a(θ ))

2. (6.29)

Using the properties of the dressed spin (6.18) and of the root densities at finite temper-
ature and large a (6.16), one easily realizes that the limit µ → 0 and the sum over the
infinite number of strings do not commute. This can be seen as follows: due to (6.18) the
contributions from the first strings vanishes in this limit and only large strings are rele-
vant, namely the ones with a ¦ 1/µ. Note that we cannot simply substitute hdr

0;a(θ )→ a,
following (6.18), and use limµ→0ρp,a ∼ a−3, the root distributions at half-filling, as the
sum would reduce to

lim
µ→0

C00 '
∑

a�1/µ

ˆ π/2

−π/2
dθ ρp,a(θ )(1− na(θ ))a

2, (6.30)

which is a logarithmically diverging sum. Instead, for a ¦ 1/µ, the root distribution ρp,a
does not take its half-filling form, and still is exponentially convergent as ρp,a ∼ e−µa. The
clearest way is to perform the sum over the string types in (6.29) with a finite chemical
potential µ, and only then the limit µ→ 0 can be taken. In the infinite temperature limit
β → 0 one finds this way the expected finite result for the half-filling state

lim
µ→0

lim
β→0

C00 = lim
µ→0

lim
β→0

∑

a≥1

ˆ π/2

−π/2
dθ ρp,a(θ )(1− na(θ ))(h

dr
0;a(θ ))

2 = 1/4. (6.31)

Notice also that since na → 0 at large a the contribution of the statistical factor 1− na is
irrelevant for such computation and it could be set to 1 from the start (clearly only when
we are interested in the half-filling limit at µ= 0).

Let us now compute the spin diffusion constant by computing limµ→0(DC)00. It is
useful to decompose the computation between the contribution to the diffusion constant
given by the diagonal part of the diffusion kernel and the one given by the off-diagonal
one, see eq. (4.24) and (4.27). Then we have (DC)00 = (DC)diag

00 + (DC)off−diag
00

lim
µ→0
(DC)diag

00 = lim
µ→0

2
∑

a≥1

ˆ π/2

−π/2
dθ ewa(θ )ρp,a(θ )(1− na(θ ))

�

hdr
0;a(θ )

�2
, (6.32)

with the functions ewa(θ ) defined previously in (4.29), should be indeed seen as the vari-
ance for the fluctuations of the trajectory of each quasiparticle with rapidity θ and string
type a, due to the scattering processes with all the quasiparticles present inside the ref-
erence state

ewa(θ ) =
1
2

∞
∑

b=1

ˆ
dαρp,b(α)(1− nb(α))

�

Tdr
a,b(θ ,α)

ρs,a(θ )

�2

|veff
a (θ )− veff

b (α)|. (6.33)

One finds that the limit of large string number, this function is a finite constant, namely

lim
a→∞

ewa(θ ) = ew∞, (6.34)
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given in equation (6.6), and it converges to the asymptotic value exponentially fast in the
string length a, namely ewa(θ ) = ew∞ +O(e−aη). Now, since the sum over a in (6.32) in
the limit µ→ 0 is over a ¦ 1/µ one recovers the same summation as in the calculation
of the spin susceptibility (6.29)

lim
µ→0

∑

a≥1

ˆ π/2

−π/2
dθ ewa(θ )ρp,a(θ )(1− na(θ ))

�

hdr
0;a(θ )

�2

= 2ew∞ lim
µ→0

∑

a�1/µ

ˆ π/2

−π/2
dθρp,a(θ )(1− na(θ ))

�

hdr
0;a(θ )

�2
= 2ew∞ lim

µ→0
C00, (6.35)

where we used that, if a ¦ 1/µ in the limit µ→ 0, we can simply substitute ewa → ew∞
inside the sum. Let us now consider the contribution from the off-diagonal part of the
diffusion kernel

lim
µ→0
(DC)off−diag

00 = − lim
µ→0

∑

a,b≥1

ˆ π/2

−π/2
dθdαhdr

0;a(θ )ρp,a(θ )(1− na(θ ))

×

�

Tdr
a,b(θ ,α)

�2

ρs,a(θ )ρs,b(α)
|veff

a (θ )− veff
b (α)|ρp,b(α)(1− nb(α))h

dr
0;b(α). (6.36)

The contribution can only be finite in the limit limµ→0 if the sum over the strings types
at µ = 0 diverges at large a, b, so that the limit and the sum cannot be commuted, as
it is the case for the diagonal case (6.32). Let us then analyse the asymptotic b →∞
behaviour at fixed a. The dressed scattering kernel Tdr

a,b decays at large b with the same
power as the density of states

Tdr
a,b(θ ,α)∼ b−1. (6.37)

Therefore we find that the sum decays as 1/b3 and that the same is true for the sum
over a at fixed b. The sum also converges if one sums over a and with b ∼ a due to the
exponential vanishing of the effective velocities. Therefore the sum in (6.36) converges
if we bring the limit µ → 0 inside the sum, which implies that the sum and the limit
can be exchanged, giving a vanishing contribution at half-filling from the off-diagonal
parts limµ→0(DC)off−diag

00 = 0. We can then finally conclude that the diffusion constant of
half-filling stationary states is given by

1
2

lim
µ→0

D00 =
limµ→0(DC)diag

00

limµ→0 C00
= ew∞. (6.38)

7 Conclusion

In this paper we have shown that there exists a large-scale description of the
non-equilibrium dynamics of generic integrable models that also accounts for diffusive
and dissipative effects. We derived the hydrodynamic theory from a gradient expan-
sion of the expectation values of the local currents, which allows us to obtain hydrody-
namic equations of Navier-Stokes type. In order to compute the diffusion matrix for a
generic stationary state we employed the so-called form factor expansion to evaluate the
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necessary dynamical correlation functions of current operators. Such expansion directly
connects the generalised Navier-Stokes equation to the presence of scattering processes
among the quasiparticles, which are responsible for the decay of the current-current cor-
relator and therefore for the presence of finite diffusion constants. Moreover we showed
that the diffusion constants of the model are entirely given by two-body scatterings among
quasiparticles, while higher scattering processes only determine sub-leading time scales.
We presented an exact expression for the diffusion matrix which applies to any inte-
grable model with a thermodynamic description in terms of quasiparticles. In particular
we computed the spin diffusion constant for a XXZ spin chain at finite temperature, which
constituted a long-standing open problem. We believe our expression can give new in-
sights into the timely problem of computing diffusion constants in many-body systems,
see for example [145].

This paper provides a comprehensive description of the recently developed gener-
alised hydrodynamics with diffusive terms, and opens the way to a number of future
directions. First, our work shows how to compute the dynamical correlation functions
in the thermodynamic limit via quasiparticle excitation processes. While in the current
work we only employed a restricted part of the whole spectral sum, one may think of
extending it to include higher particle-hole numbers and to fully determine the thermo-
dynamic form factors of local conserved densities or current operators. This would give
access to the full collision integrals for the quasiparticles, therefore, in a sense, leading
to a new “generalised Boltzmann equation" for interacting integrable models.

The exact results for the diffusion constant of a XXZ chain, and the possible extension
to several other model such as the Fermi-Hubbard model, can now provide a perfect
playground to test numerical methods. The state of the art in numerical techniques, at the
present, seem unable to reach the time scales necessary to fully reconstruct the diffusive
dynamics of the system, although some recent developments are encouraging [70]. This
will constitute a future challenge for the community working on numerical algorithms
for many-body systems.

The divergence of the spin diffusion constant in a XXZ chain in the Heisenberg limit
motivates the study of possible super-diffusive transport dynamics in integrable models
with isotropic interactions [99]. The origins of such super-diffusive behaviour, and the
connections with integrability, are at the present not understood and their quest repre-
sents a clear direction to be taken in future researches.

The quasiparticle scattering processes introduced in this work can also, in principle, be
employed to characterize other physical phenomena, such as the presence of integrability
breaking terms in the Hamiltonian giving the time evolution, see for example [178,179].

The small temperature limit expansion of the diffusion matrix can be studied and
possibly compared with field theoretical techniques that can access the low energy spec-
trum of microscopic model, see for example [165, 180]. This would give new insights
into which types of interactions one need to include in the low-energy field theoretical
description in order to describe the diffusive dynamics.

Finally it would be necessary to rule out the possible existence of slow decoherence
modes which are not included in the hydrodynamic theory. While some recent works
seem to point out that under some mild assumption in quantum many-body systems these
modes are absent at diffusive scales [145], a rigorous proof of such statement in inter-
acting integrable model is still lacking, with some results only available in free fermionic
theories [86].
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A A direct proof of the sum rule (2.13)

We start with the right-hand side of (2.13) and simply use the conservation laws and
space and time translation invariance:

ˆ t

0
ds
ˆ t

0
ds′

ˆ
dx 〈ji(x , s)j j(0, s′)〉c

= −
ˆ t

0
ds
ˆ t

0
ds′

ˆ
dx x∂x〈ji(x , s)j j(0, s′)〉c

=
ˆ t

0
ds
ˆ t

0
ds′

ˆ
dx x∂s〈qi(x , s)j j(0, s′)〉c

=
ˆ t

0
ds′

ˆ
dx x〈(qi(x , t)− qi(x , 0))j j(0, s′)〉c

= −
ˆ t

0
ds′

ˆ
dx x〈(qi(0, t)− qi(0, 0))j j(x , s′)〉c

=
ˆ t

0
ds′

ˆ
dx

x2

2
∂x〈(qi(0, t)− qi(0, 0))j j(x , s′)〉c

= −
ˆ t

0
ds′

ˆ
dx

x2

2
∂s′〈(qi(0, t)− qi(0,0))q j(x , s′)〉c

= −
ˆ

dx
x2

2
〈(qi(0, t)− qi(0, 0))(q j(x , t)− q j(x , 0))〉c

= −
ˆ

dx
x2

2
〈(qi(x , t)− qi(x , 0))(q j(0, t)− q j(0,0))〉c

=
ˆ

dx
x2

2

�

Si j(x , t) + Si j(x ,−t)− 2Si j(x , 0)
�

. (A.1)

B A proof of the equation of motion (2.19)

By the conservation laws, it is immediate that

∂tSi j(x , t) + ∂x〈ji(x , t)q j(0,0)〉c = 0. (B.1)

Let us now evaluate the two-point function 〈ji(x , t)q j(0,0)〉c using the hydrodynamic
expansion (2.9). For this purpose, we combine two assumptions. First, the main as-
sumption of hydrodynamics, that all local averages at time t are completely determined
by the knowledge of {q̄(x , t) : x ∈ R, i ∈ I}, that is,

〈o(x , t)〉=O[q̄·(·, t)](x , t). (B.2)

Second, causality, that the state at time t is completely determined by that at any given
time s < t. This means that, for any given s, the average current 〈ji(x , t)〉 at a later time
t > s is a functional of {q̄(x , s) : x ∈ R, i ∈ I}. In what follows, we first assume t > 0 and
take s = 0.

By standard linear response arguments, small perturbations of the state at time 0
will introduce, in the average 〈ji(x , t)〉, local observables at time 0. Since the state is
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determined by all conserved densities, it is expected that there be perturbations that
insert conserved densities. Let us define parameters β j(x) which exactly play this role:

δ〈o(y, t)〉
δβ j(x)

= 〈o(y, t)q j(x , 0)〉c . (B.3)

At the Euler scale, we may understand the state at time 0, where each fluid cell has
maximised entropy with respect to the available conserved charges, to be of the form
exp

�´
dx

∑

j β j(x)q j(x)
�

. This reproduces (B.3). We assume that at the diffusive scale,
there also exist perturbations of homogeneous states described by β j(x) such that (B.3)
holds.

Applying (B.3) and the principles of hydrodynamics, we can simply use the chain rule
in order to obtain (2.19):

〈ji(x , t)q j(0, 0)〉c =
δj̄i(x , t)
δβ j(0)

(B.4)

=
ˆ

dy
∑

k

δj̄i(x , t)
δq̄k(y, t)

δq̄k(y, t)
δβ j(0)

=
ˆ

dy
∑

k

�

A k
i δ(x − y)−

1
2
D k

i ∂xδ(x − y)
�

〈qk(y, t)q j(0,0)〉c

=
∑

k

�

A k
i −

1
2
D k

i ∂x

�

〈qk(x , t)q j(0,0)〉c ,

where in the third line we used (2.9) and (2.20), and homogeneity of the state. Combin-
ing with (B.1), we find (2.19).

Let us now consider negative times t < 0. In this case the above proof does not
hold, because we cannot assume that averages 〈o(y, t)〉 are completely determined by
{q̄(x , s) : x ∈ R, i ∈ I} for s > t (including s = 0). This is because beyond the Euler scale,
the hydrodynamic approximation of the time evolution is generically not reversible: in
particular, information is lost as time goes on, and later configurations do not determine
earlier configurations.

However, we can establish the following general symmetry relation:

〈ji(x , t)q j(0,0)〉c = 〈qi(x , t)j j(0, 0)〉c . (B.5)

This is shown by evaluating the space derivative using the conservation laws and using
homogeneity and stationarity:

∂x〈ji(x , t)q j(0,0)〉c = −∂t〈qi(x , t)q j(0,0)〉c

= −∂t〈qi(0,0)q j(−x ,−t)〉c

= ∂x〈qi(0,0)j j(−x ,−t)〉c

= ∂x〈qi(x , t)j j(0, 0)〉c .

Therefore, the left- and right-hand side of (B.5) can only differ by a function of t. Taking
x →∞ and using clustering, this function must be zero.
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We can now use (B.5) in order to perform a symmetric version of the derivation (B.4),
obtaining, for t < 0,

〈ji(x , t)q j(0,0)〉c = 〈qi(0, 0)j j(−x ,−t)〉c

=
∑

k

�

A k
j +

1
2
D k

j ∂x

�

〈qi(x , t)q j(0, 0)〉c .

Note how the summation is over the index of the rightmost conserved density, instead of
the leftmost one, in 〈qi(x , t)q j(0, 0)〉c .

C Gauge covariance and gauge fixing by PT -symmetry

C.1 Gauge covariance

Let us first discuss the covariance of the hydrodynamics data under the redefinition of the
local charges via

qi(x , t)→ q′i(x , t) = qi(x , t) + ∂xoi(x , t). (C.1)

The Drude coefficients Di j and the Onsager matrix Li j are both invariant under this
gauge transformation, which is physically sound as they coded for the microscopic ballis-
tic and diffusive spreading of the correlation functions. Indeed, under the gauge trans-
formation qi(x , t)→ q′i(x , t) = qi(x , t) + ∂xoi(x , t), the current transform as

ji(x , t)→ j′i(x , t) = ji(x , t)− ∂toi(x , t). (C.2)

Hence, the integrand in the double integral
´ t

0 ds
´ t

0 ds′
´

dx 〈ji(x , s)j j(0, s′)〉c in equa-
tion (2.13) is modified by total derivative only, so that this double integral only acquires
boundary under gauge transformation. That is we get:

ˆ t

0
ds′

ˆ
dx
�

〈oi(x , t)j j(0, s′)〉c − 〈oi(x , 0)j j(0, s′)〉c
�

+
ˆ t

0
ds
ˆ

dx
�

〈ji(x , s)o j(0, t)〉c − 〈ji(x , s)o j(0, 0)〉c
�

+O(t0) .

If oi(x , t) is a local conserved charge, then these terms vanish by global conservation law.
If not, by the hydrodynamic projection mechanism [72,101] only the part of the operator
projecting non-trivially on the conserved charges contribute at large time. Hence, these
boundary terms produce O(t0) contribution and thus do not contribute to the leading
terms in (2.14).

Of course the coefficients D k
j are not invariant under this gauge transformation be-

cause the local charges are modified hence their dynamical equations. Under the gauge
transformations (C.1,C.2), the charge and current expectations are modified according
to

q̄i(x , t)→ q̄′i(x , t) = q̄i(x , t) + ∂x ōi(x , t), j̄i(x , t)→ j̄′i(x , t) = j̄i(x , t)− ∂t ōi(x , t).

In the hydrodynamic approximation, ōi(x , t) = Oi[q̄·(x , t)] at the Euler scale (which
is sufficient at the order of the derivative expansion we are dealing with). Using the
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chain rule to compute ∂t ōi(x , t) and ∂x ōi(x , t), one then gets that Fi is invariant and D
j

i
transforms as

D
j

i →D′
j

i =Di − 2
∑

k

�

A k
i
∂Ok

∂ q̄ j
−
∂Oi

∂ q̄k
A j

k

�

.

C.2 Gauge fixing

Consider PT -symmetry as defined in subsection 2.4.
We first show that there is a unique choice of a “proper" gauge, under the gauge

transformation (2.28), such that (2.30) holds. The proper gauge transformations are
those which preserve reality of the local conserved densities: we will simply ask that
the local observables oi(x , t) in (2.28) have real averages in homogeneous, stationary,
maximal entropy states.

First, assuming PT -symmetry, we have (2.29):

Tqi(x , t)T−1 = qi(−x ,−t) + ∂xai(−x ,−t). (C.3)

By the fact that T is an involution, applying (C.3) twice we obtain

∂x

�

Tai(x , t)T−1 − ai(−x ,−t)
�

= 0. (C.4)

Let us define q′i(x , t) = qi(x , t) + ∂xoi(x , t). Then

Tq′i(x , t)T−1 = q′i(−x ,−t) + ∂x

�

Toi(x , t)T−1 + oi(−x ,−t) + ai(−x ,−t)
�

. (C.5)

Choosing

oi(x , t) = −
ai(x , t)

2
(C.6)

and using (C.4), this shows (2.30).
Second, we show that oi(x , t) has real averages. The only local observables that

are independent of space are those proportional to the identity operator, thus eq.(C.4)
implies Tai(x , t)T−1 = ai(−x ,−t) + ci1. On the one hand, the involution property and
anti-unitarity of T shows that ci must be purely imaginary. On the other hand, by shifting
ai(x , t) by a pure imaginary constant times 1, the imaginary part of ci can be made to
vanish. Hence

Tai(x , t)T−1 = ai(−x ,−t). (C.7)

Taking into account the fact that the anti-unitary transformation T changes averages
to their complex conjugate, we therefore obtain Im(〈ai(x , t)〉) = 0 in maximal entropy
states, and thus Im(〈oi(x , t)〉) = 0. This shows that there is a proper gauge choice leading
to (2.30).

Finally, in order to show uniqueness, assume Tqi(x , t)T−1 = qi(−x ,−t) and
T(qi(x , t) + ∂xeoi(x , t))T−1 = qi(−x ,−t) − ∂xeoi(−x ,−t). This implies that there exists
eci such that Teoi(x , t)T−1 = −eoi(−x ,−t) + eci1. By a shift, eci can be made purely imag-
inary, and we find Re(〈eoi(x , t)〉) = 0. Thus this is not a proper gauge transformation.
Hence the proper gauge choice is unique.

We second show that we can choose the currents to be PT -invariant, (2.31). Indeed,
the choice of new currents given by j′i(x , t) = ji(x , t)− ∂toi(x , t) satisfies the conserva-
tion law ∂tq

′
i(x , t)+∂x j

′
i(x , t) = 0, which implies ∂x

�

Tj′i(x , t)T−1 − j′i(−x ,−t)
�

= 0. As a
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consequence, there exists c′i such that Tj′i(x , t)T−1 = j′i(−x ,−t) + c′i1. By a similar argu-
ment as that leading to (C.7), we conclude that we can shift the currents by appropriate
constants so that c′i = 0.

D An alternative derivation of the current formula

Our analysis of the single-particle-hole form factors also gives a new proof of equation
(3.18) for the expectation values of the currents on a GGE.

Consider

Bi j =
ˆ

dx〈ji(x , t)q j(0,0)〉c = −
∂ 〈ji〉
∂ β j

, (D.1)

where 〈ji〉 is the average current in a GGE. Clearly, the conserved densities qi(x , t) are op-
erators that are linear functionals of the one-particle eigenvalues hi(θ ). As a consequence
of the conservation laws, so are the currents ji(x , t), hence so are their averages in GGEs,
〈ji〉. Therefore, we may write 〈ji〉=

´
dθ ρp(θ )w(θ )hi(θ ) for some state-dependent func-

tion w(θ ). Hence we have

∂β j 〈ji〉=
ˆ

dθ ∂β j

�

ρp(θ )w(θ )
�

hi(θ ). (D.2)

On the other hand we can insert a resolution of particle-hole identity inside the correlator
in (D.1). Only the one particle-hole states contribute, because of the integration over
x and conservation law for the charges (3.40) and (3.41), by the same reasons as in
section 3.4. In the one particle-hole sector, the integration on x forces the rapidities of
the hole and the particle to be equal. Using (3.36), the single particle-hole contribution
then yields

Bi j =
ˆ

dθρp(θ )(1− n(θ ))veff(θ )hdr
i (θ )h

dr
j (θ ), (D.3)

where veff(θ ) is given by the ratio (3.20), and occurs by evaluating
[ε(θp) − ε(θh)]/[k(θp − θh] at θp = θh. Finally, completeness of the set of functions
hi(θ ) and equality of (D.2) and (D.3) gives a set of first-order β j-differential equations
for w(θ ). One can check that one solution is indeed the effective velocity,

w(θ ) = veff(θ ). (D.4)

Assuming that this solution is unique, this proves the equation (3.18) for the expectation
values of the currents on a generic GGE state. Recall that the values used for the one
particle-hole form factors at equal particle-hole rapidities are only a consequence of the
thermodynamic Bethe ansatz (see subsection 3.3). Hence the present derivation gives a
proof that is independent from assumptions on form factors.

E Solving T dr for an XXZ chain in the gapped regime

The equation for the dressed scattering - in the presence of strings - is

Tdr
a,b(θ ,θ ′)−

∑

c

Ta,c(θ ,α)nc(α)T
dr
c,b(α,θ ′) = Ta,b(θ ,θ ′), (E.1)
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which can be rewritten in the usual factorized form as

Tdr
ab − s ? (Tdr

a−1,b(1− na−1) + Tdr
a+1,b(1− na+1)) = s(δa−1,b +δa+1,b), (E.2)

with the kernel

s(θ ) =
1

2coshηθ
, (E.3)

with ∆= coshη. Let us denote the generalized coefficients f (b)a

f (b)a − s ? ( f (b)a−1(1− na−1) + f (b)a+1(1− na+1)) = sδab. (E.4)

Then
Tdr

ab = f (b−1)
a + f (b+1)

a with f (b−1)
0 = 0. (E.5)

For b = 1 equation (E.4) is the equation for the density of states ρs,a. Higher b correspond
to higher-spin generalizations of the density of states. Solving numerically the equations
for f (b)a is a very non-trivial task. One indeed needs to truncate the number of string
to a finite number amax to solve them numerically. While for any fixed b the equations
(E.4) can be solved similarly to the equations for the density of states, at larger b the
solution become less and less accurate, as the driving term sδab gets closer to the largest
string. At the moment we have not found an efficient way to truncate the equations to
obtain a precise result. The only case where it was possible to exactly solve it is at infinite
temperature β = 0, where the recursive relation can be solved analitically for all b and
also for all a (although it becomes increasingly expensive at larger a).

F Thermodynamic limit of sums over excitations

In order to compute dynamical correlation functions in the thermodynamic limit, one
needs to perform a multiple integration over all possible values of the rapidites of the
particle-hole excitations. The form factors have however a pole singularity whenever
θ i

p = θ
j

h and they are finite only when we consider only one single particle-hole n = 1
with θp → θh, when the form factor becomes indeed diagonal. Therefore we need to be
careful while rewriting the sums as integrals. The aim of this section is to show how this
can be done. Let us start with the finite size form of the correlation function where we
already neglect sub-leading corrections

〈o(x , t)o(0,0)〉=
∞
∑

m=0

1
m!2

m
∏

j=1





1
L

∑

θ
j

p

1
L

∑

θ
j

h





〈ρp|oi|{θ •p ,θ •h}〉〈{θ
•
p ,θ •h}|o j|ρp〉e

ixk[θ •p ,θ •h ]−itε[θ •p ,θ •h ]. (F.1)

The sum over particle and holes rapidites transforms into a product of integrals under a
proper regularization. The idea is to write the sum over the holes as a complex integral
over all the values that the holes rapidites can take for a finite (but large) L using the
following counting function for each hole

Q(θh) = L
ˆ θh

−∞
ρp(u)du. (F.2)
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Notice that in the thermodynamic limit all the correlation functions computed on any
discretization of the state are all equivalent. Let us focus first on the sum over one of the
holes, that we shall denote with θ1

h ≡ θh. We denote

F(z)≡Fθ1
p ,...,θm

p
(z,θ2

h , . . . ,θm
h )

=〈ρp|oi|{θ •p ,θ •h}〉〈{θ
•
p ,θ •h}|o j|ρp〉e

ixk[θ •p ,θ •h ]−itε[θ •p ,θ •h ]
�

�

�

θ1
h=z

, (F.3)

and with a help of Q(θ1
h ) we can write the sum over all the values of hole rapidity θ1

h as

1
L

∑

θ1
h

F(θ1
h ) =

∑

I j

˛
I j

dz
F(z)Q′(z)

e2πiQ(z) − 1

=
�
ˆ
R−iε
−
ˆ
R+iε

�

F(z)Q′(z)
e2πiQ(z) − 1

dz − 2πi
∑

j

Residue
�

�

�

z=θ j
p

F(z)Q′(z)
e2πiQ(z) − 1

, (F.4)

where the first integrals are taken on a single contour including the poles in Q(z) = integers
where integers are all the possible quantum numbers of the hole (a valid discretization
of the state at finite L). In the second step we modified the sum over all these contours in
the integral over the line above and below the real axes. In order to do that we need to
subtract the poles of the form factors that we do not want to include in the sum, namely
the sum over the residues of F at the positions of the particles. Let us now consider the
thermodynamic limit L →∞ of the first contribution. The real part of 2πiQ(z − iε) is
positive and proportional to L, and therefore

ˆ
R−iε

F(z)Q′(z)
e2πiQ(z) − 1

dz→ 0. (F.5)

Using that Q′ = Lρp +O(1) we then arrive in the thermodynamic limit to

1
L

∑

θ1
h

F(θ1
h )→

ˆ
R+iε

F(z)ρp(z)dz − lim
L→∞

2πi
∑

j

Residue
�

�

�

z=θ j
p

F(z)ρp(z)

e2πiQ(z) − 1
. (F.6)

The final regularized integral can be written as the Hadamard finite part of the integral
ˆ
R+iε

F(z)ρp(z)dz =
 
R

F(z)ρp(z)dz−iπ
∑

j

Residue
�

�

�

z=θ j
p

�

F(z)ρp(z)
�

, (F.7)

with the finite part taken with respect to each pole at any particle position θ j
p and defined

as
 

dθ
f (θ )
(θ −α)2

= lim
ε→0+

�ˆ α−ε

−∞
dθ

f (θ )
(θ −α)2

+
ˆ +∞

α+ε
dθ

f (θ )
(θ −α)2

−
2 f (α)
ε

�

. (F.8)

It remains to discuss the contributions from the residues at the positions of the parti-
cles. After having summed also on the particle positions these will be some regular
contributions to add to the form factors expansion. Therefore we can always define
shifted form factors to include also those contributions. For example for the case of
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two particle-hole excitations we can always shift the form factor with an analytic func-
tion eFθ1

p ,θ2
p
(θ1

h ,θ2
h ) = Fθ1

p ,θ2
p
(θ1

h ,θ2
h ) + Rθ1

p ,θ2
p
(θ1

h ,θ2
h ) such that the integrated function

Rθ1
p ,θ2

p
(θ1

h ,θ2
h ) cancels exactly the contributions from the residues in (F.6) and (F.7) (and

does not affect the kinematic poles of Fθ1
p ,θ2

p
(θ1

h ,θ2
h )). This brings us to conclude that

there is always a proper choice of form factors such that the sum over excitations can be
regularized simply via the Hadamard integral

1
L

∑

θ1
p ,θ2

p

1
L

∑

θ1
h ,θ2

h

Fθ1
p ,θ2

p
(θ1

h ,θ2
h )

→
ˆ

dθ1
p dθ2

pρh(θ
1
p )ρh(θ

2
p )
 

dθ1
h dθ2

hρp(θ
1
h )ρp(θ

2
h )eFθ1

p ,θ2
p
(θ1

h ,θ2
h ), (F.9)

with the same logic applying to higher particle-hole excitations. A similar result can be
found in [137].

G Diffusion matrix with different particle types

Result (4.15) has been derived using the particle-hole form factor expansion, with the
understanding that there is a single quasiparticle type (a single string length). We now
explain how to extend the derivation result to integrable models with arbitrary number
of quasiparticle types, in agreement with the proposed general result (4.19).

In general the rapidites describing a generic state in integrable models are not only
real and, in the thermodynamic limit, they form patterns on the complex plane called
strings, which can be interpreted as bound states. Strings are characterised by their centre
of mass rapidity θ (a)

`
with θ (a)

`
∈ R, and their length ma, such that the rapidities belonging

to a string are given by

θ
(a)
i,` = θ

(a)
`
+ iκ(ma + 1− 2i) (G.1)

with i = 1, . . . , ma, for some κ that depends on the model 7. In some system each string
can also carry a sign or parity σ associated to it, expressing the sign of the derivative
of its dressed momentum, see for example the gapless XXZ chain or the Hubbard chain
[113,181]. For each string length, the centre of mass rapidities becomes dense on the real
line, and therefore eigenstates can be described by densities of string-centre rapidities,
ρp,a(θ ), where a runs over all the allowed types of strings (allowed string lengths). The
string centres and types are interpreted as quasiparticles’ rapidities and types. In this
description, the quasiparticles scatter diagonally and elastically, with two-body scattering
amplitude obtained by summing the scattering amplitudes between each elements of the
two strings

log Sa,b(θ
(a)
1 ,θ (b)2 )

2πi
=

1
2πi

ma
∑

i=1

nb
∑

j=1

log S
�

θ
(a)
i,1 ,θ (a)i,2

�

. (G.2)

7In the gapless XXZ spin chain, when the anisotropy ∆ is chosen to be at the (so-called) roots of unity
values∆= cosπn/m, due to the periodicity on the imaginary line of the scattering kernel, the string expres-
sion should be generalized to θ (a)

`
+ iκ(ma + 1− 2i) + iπ(1− va)/4 with the additional parameters va = ±1

(to not be confused with the parity σa) determined by the choice of the integers n, m, see for example [112].

55

https://scipost.org
https://scipost.org/SciPostPhys.6.4.049


SciPost Phys. 6, 049 (2019)

In these cases, the natural generalisation of (4.15) is to replace each rapidity integral by
the combination of a rapidity integral and a sum over quasiparticle types as it follows

(DC)i j =
∑

a,b

ˆ
dθ1dθ2

2
ρp;a(θ1) fa(θ1)ρp;b(θ2) fb(θ2)|veff

a (θ2)− veff
b (θ1)|

×
�

Tdr
a,b(θ2,θ1)

�2 � hdr
i;b(θ2)

σbρs;b(θ2)
−

hdr
i;a(θ1)

σaρs;a(θ1)

�� hdr
j;b(θ2)

σbρs;b(θ2)
−

hdr
j;a(θ1)

σaρs;a(θ1)

�

, (G.3)

with fa(θ ) = 1 − na(θ ). here the only non-trivial generalization is the presence of the
parity σa associated to the particle a, defined as k′a(θ ) = 2πσaρs,a(θ ), with the momen-
tum of the string given in (G.5) and with the dressing of the scattering kernel, and all of
the other thermodynamic functions, provided by

Tdr
a,b = [(1− T nσ)−1]a,c Tc,b, (G.4)

with σ the vector of signs σa
8. We provide below an argument for the validity of this

generalisation for the diffusion operator in quantum integrable models.
In order to confirm the validity of formula (G.3) one should notice that the scatter-

ing kernel Ta,b(θ ,α), analogously to the scattering amplitude (G.2), is additive on the
string components and similarly, the dressed (and bare) energy and momentum func-
tions for the strings are also given by the sum of all the string components. Given the
string θ (a)i = θ (a) + iκ(ma + 1− 2i) indeed one has for the string momentum and energy

ka(θ
(a)) =

ma
∑

i=1

k(θ (a)i ) (G.5)

εa(θ
(a)) =

ma
∑

i=1

ε(θ (a)i ). (G.6)

This directly implies that all formulae of subsections 3.1 and 3.2, as well as (3.35), hold
by replacing the integral over rapidities into the sum over particle types a and integral
on the real parts ˆ

dθ →
∑

a

ˆ
dθ (a). (G.7)

This agrees with the general TBA structure used in GHD, see [49,50]. Further, it is clear
that in the form factor expansion, one must also sum over string lengths, as particle and
hole excitations can be created for any string states: the presence of strings introduces
extra types of excitations on top of the length-1 particle-hole excitations in the resolution
of identity (3.30). In fact, in general, not only particle-hole pairs with the same string
length contribute, but also strings can be destroyed and larger or smaller strings created
(for example, two strings of size 1 can make a string of size 2 or vice versa). Thus, the
replacement (G.7) is to be applied also in the form factor expansion (with the condition
that total string lengths of particles agree with that of holes for given form factor to be
nonzero). As for the kinematic pole conditions in subsection 3.3, we need to assume

8In the gapped spin XXZ chain all σa are equal to 1, however this is not the case in the gapless regime at
roots of unity [112] or in fermionic models like the Fermi-Hubbard chain [113]. These signs also enter the
description of the local stationary state also at Euler scale, see [50,114].
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that formulae (3.40) and (3.41) hold, and that poles can only occur, again, at coinciding
particle and hole rapidities. The explicit residues, when particle and hole types agree,
are assumed to be given by the natural generalisation of (3.49):

fi; a,b(θ
1
p ,θ1

h ,θ2
p ,θ2

h ) =
Tdr

b,a(θ
2
h ,θ1

h )h
dr
i; b(θ

2
h )

ρs;aσa(θ1
h )k

′
b(θ

2
h )(θ

1
p − θ

1
h )
+

Tdr
a,b(θ

1
h ,θ2

h )h
dr
i; a(θ

1
h )

ρs;b(θ2
h )σbk′a(θ

1
h )(θ

2
p − θ

2
h )

+
Tdr

b,a(θ
2
h ,θ1

h )h
dr
i; b(θ

2
h )

ρs;a(θ1
h )σak′b(θ

2
h )(θ

2
p − θ

1
h )
+

Tdr
a,b(θ

1
h ,θ2

h )h
dr
i; a(θ

1
h )

ρs;b(θ2
h )σbk′a(θ

1
h )(θ

1
p − θ

2
h )

+ regular, (G.8)

where the presence of the parities σa,σb comes from the proper definition of the back-
flow function F , related to the dressed scattering kernel by (3.48) when parities are non-
trivial (see for example the supplementary material of [50]). With these, the derivation
of (4.15) carried out in section 4.1 can be done in the presence of different types of
strings. The kinematic constraints (4.5) for generic two-body scattering processes then
would read

ka(θ
1
p ) + kb(θ

2
p ) = kc(θ

1
h ) + kd(θ

2
h ), εa(θ

1
p ) + εb(θ

2
p ) = εc(θ

1
h ) + εd(θ

2
h ) , (G.9)

with the extra condition for the conservation of the total particle number

ma +mb = mc +md . (G.10)

Due to the vanishing of the form factor with the total energy difference, as shown in
section 4.1, the only finite contributions to diffusion are the solutions of the kinematic
constrains that collapse the integral on the kinematic poles of the form factor, namely
when θ i

p → θ
j

h. Since generically dressed momenta and energies at a given rapidity are
different for different string types, it is not hard to check that the only solutions are c = a
and d = b, or c = b and d = a, that is, for coinciding-rapidity particle-hole pairs with the
same string type. The expression for the matrix (DC)i j in presence the of generic types
of particles generalises to eq. (G.3).

H Comparison with diffusion in the hard-rod gas

Hard rod gases are a special case of classical integrable systems [64,72,78,80,142,156,
182–186]. They are characterized by an ensemble of hard rod moving in one dimen-
sion with velocities v. Whenever two rods collide, they exchange their velocities. In the
language of TBA, the quasiparticles are identified with the velocity tracers, following the
centres of rods with a given velocity. When quasiparticles scatter, their positions are dis-
placed by a constant shift a, the length of the rod. The velocity v plays the role of the
rapidity θ and one can analogously define the local stationary state via the local density
of velocities

ρp(v; x , t). (H.1)

The scattering kernel of the gas is given by

T (v, v′) = −
a

2π
(H.2)
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(the factor of 2π is related to the choice of the phase-space integration measure defining
the ensemble, dpdx/(2π)). As the quasiparticles are classical, the statistical factor is
simply f = 1 (the free energy function is F(ε) = −e−ε). Given the form of the scattering
kernel and the classical statistics, the dressing of single-particle functions take the form

hdr(v) = h(v)− aρ̄〈h〉, (H.3)

where ρ̄ =
´

dvρp(v) and 〈h〉=
´

dv h(v)ρp(v)/ρ̄. Therefore,

Tdr(v, v′) = −
a

2π
(1− aρ̄). (H.4)

Also, one has
2πρs(v) = 1− aρ̄, (H.5)

and

veff(v) =
v − aρ̄〈h1〉

1− aρ̄
, h1(v) = v. (H.6)

We then consider our final general result (4.19) and we specialize to the hard rod gas
by using a single quasiparticle type (hence no type index), and setting f (v) = 1 and
Tdr(v, v′) = − a

2π(1−aρ̄). By Galilean invariance it is sufficient to consider states with zero
average velocities, 〈h1〉 = 0, and putting everything together, we find the the operator
DC(v, v′) in velocities space given by

DC(v, v′) = a2(1− aρ̄)−1
�

δ(v − v′)r(v)ρp(v)−ρp(v
′)ρp(v)|v − v′|

�

(H.7)

with

r(v) =
ˆ

dv′ρp(v
′)|v′ − v|. (H.8)

This expression agrees with the one previously found in [64, 72, 80]. This confirms that
although derived in the quantum models, the expression (4.15) generalises to (4.19),
expressed in complete generality as a function of the differential scattering kernel T (θ ,α)
and the statistical factor f (θ ). We stress that, differently from the expression of the
effective velocity (3.19), the diffusion matrix (4.19) depends explicitly on the statistical
factor f and therefore classical and quantum models are expected to have in general
different diffusive dynamics.

I Numerical evaluations of the spin diffusion constant and tDMRG
predictions

In Figure 3 we have plotted the diffusion constant of a XXZ chain at infinite temperature
β = 0 and for different values of ∆. This is indeed the only case where we were able
to solve numerically the equations for the dressed scattering kernel Tdr

a,b, see E. We find

a finite value at ∆ → ∞ given by 1
2 lim∆→∞D00 ' 0.424, close to the value first nu-

merically predicted in [91]. We compare the solution with numerical data obtained by
simulating the dynamical correlator 〈jz0( j, t)jz0(0, 0)〉c with tDMRG up to some maximal
time tmax in [35,91,92] and with the spin current jz0( j, 0) =

i
2 (S

+
j S−j+1−S−j S+j+1). We find
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that these data only constitute a lower bound to the exact spin diffusion constant as they
are slightly smaller than our theoretical prediction. The discrepancy is due to the time
truncation, namely by defining the finite time diffusion constant as

D00(tmax)/2=
∑

j

ˆ tmax

0
dt〈jz0( j, t)jz0(0, 0)〉c , (I.1)

we have
D00(tmax)≤D00(∞), (I.2)

since the correlator appears to be positive for any t ≥ 0 in this regime. In Figure 4 we
plot the diffusion constant obtained by integrating over a maximal time tmax as function
of this. Since the correlator

∑

j〈j
z
0( j, t)jz0(0, 0)〉c is expected to decay at large times t as a

power law
∑

j

〈jz0( j, t)jz0(0,0)〉c ∼ t−3/2, (I.3)

(compatible with the numerical data) the integrated one converges to the infinite tmax
value with corrections of order t−1/2

max . We use the fitting function a+ bt−1/2
max to extrapolate

the numerical value of a and we find that this is in much better agreement with our
theoretical prediction (6.38). Finally we find that the diffusion constant diverges in the
limit ∆→ 1 as ∼ (∆− 1)−1/2, signaling super-diffusive behaviour, in accord with recent
predictions [99].
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Figure 4: Plot of the infinite temperature diffusion constant at finite time, defined
in equation (I.1) for a gapped XXZ chain at infinite temperature and half-filling at
∆ = 1.5 (Left) and ∆ = 3 (Right). Dots are obtained from tDMRG simulations
from [35,91,92] and the continuous line is a fitting function as a+ t−1/2

max b with a, b
fitting parameters.
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