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Abstract

Recently, Iwahori-Hecke algebras were associated to Kac-Moody groups over non-

Archimedean local fields. We introduce principal series representations for these alge-

bras. We study these representations and partially generalize Kato and Matsumoto

irreducibility criteria.

1 Introduction

1.1 The reductive case

Let G be a reductive group over a non-Archimedean local field K. To each open compact
subgroup K of G is associated a Hecke algebra HK . There exists a strong link between
the smooth representations of G and the representations of the Hecke algebras of G. Let I
be the Iwahori subgroup of G. Then the Hecke algebra HC associated with I is called the
Iwahori-Hecke algebra of G and plays an important role in the representation theory of G.
Its representations have been extensively studied. Let Y be the cocharacter lattice of G and
W v be the vectorial (i.e finite) Weyl group of G. Then by the Bernstein-Lusztig relations,
HC admits a basis (ZλHw)λ∈Y,w∈W v such that

⊕
λ∈Y CZλ is a subalgebra of HC isomorphic to

the group algebra C[Y ] of Y . We identify
⊕

λ∈Y CZλ and C[Y ]. Let τ ∈ TC = Hom(Y,C∗).
Then τ induces a representation τ : C[Y ] → C. Inducing τ to HC, one gets a representation
Iτ of HC. These representations were introduced by Matsumoto in [Mat77] and are called
principal series representations. We refer to [Sol09, Section 3.2] for a survey on this
subject.

Matsumoto and Kato gave criteria for the irreducibility of Iτ . The group W v acts on Y
and thus it acts on TC. If τ ∈ TC, we denote by Wτ the fixer of τ in W v. Let Φ∨ be the coroot
lattice of G. Let q be the residue cardinal of K. Suppose that G is of adjoint type. Let W(τ)

be the subgroup of Wτ generated by the reflections that it contains. Then Kato proved the
following theorem (see [Kat81, Theorem 2.4]):

Theorem 1. Let τ ∈ TC. Then Iτ is irreducible if and only if it satisfies the following
conditions:

1. Wτ = W(τ),

2. for all α∨ ∈ Φ∨, τ(α∨) 6= q.

When τ is regular, that is when Wτ = {1}, condition (1) is satisfied and this is a result
by Matsumoto (see [Mat77, Théorème 4.3.5]).
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1.2 The Kac-Moody case

Let G be a split Kac-Moody group over a non-Archimedean local field K. There is up
to now no definition of smoothness for the representations of G. However one can define
certain Hecke algebras in this framework. In [BK11] and [BKP16], Braverman, Kazhdan and
Patnaik defined the spherical Hecke algebra and the Iwahori-Hecke HC of G when G is affine.
Bardy-Panse, Gaussent and Rousseau generalized these constructions to the case where G is
a general Kac-Moody group. They achieved this construction by using masures (also known
as hovels), which are an analogue of Bruhat-Tits buildings (see [GR08]). Together with
Abdellatif, we attached Hecke algebras to subgroups slightly more general than the Iwahori
subgroup (see [AH19]).

Let Y be the cocharacter lattice of G and W v be the Weyl group of G. The Iwahori-Hecke
algebra HC of G admits a Bernstein-Lusztig presentation but it is no more indexed by Y . Let
T ⊂ A = Y ⊗R be the Tits cone of G. Then T is a convex cone and it satisfies T = A if and
only if G is reductive. Then HC can be embedded in an algebra BLHC called the Bernstein-

Lusztig-Hecke algebra of G. The algebra BLHC admits a basis (ZλHw)λ∈Y,w∈W v such that⊕
λ∈Y CZλ is isomorphic to the group algebra C[Y ] of Y . We identify

⊕
λ∈Y CZλ and C[Y ].

Then HC is isomorphic to the subalgebra
⊕

w∈W v,λ∈Y + CZλHw. Let τ ∈ TC = Hom(Y,C∗).

Then τ induces a map τ : C[Y ] → C and we can define the representation Iτ of BLHC induced
by τ . By restriction, this also defines a representation I+τ of HC. As Iτ admits a basis indexed
by the Weyl group of G, Iτ is infinite dimensional unless G is reductive. The aim of this
paper is to study these representations and in particular to study their irreducibility. As we
shall see (Proposition 4.2), Iτ is irreducible if and only if I+τ is irreducible and we will mainly
study Iτ . We prove the following theorem, generalizing Matsumoto irreducibility criterion
(see Corollary 5.10):

Theorem 2. Let τ be a regular character. Then Iτ is irreducible if and only if for all α ∈ Φ∨,

τ(α∨) 6= q.

We also generalize one implication of Kato’s criterion (see Proposition 5.17). Suppose
that G is of adjoint type and let W(τ) be the subgroup of Wτ generated by the reflections that
it contains. Then:

Theorem 3. Let τ ∈ TC. Assume that Iτ is irreducible. Then:

1. Wτ = W(τ),

2. for all α∨ ∈ Φ∨, τ(α∨) 6= q.

We then obtain Kato’s criterion when the Kac-Moody group G is associated with a size
2 Kac-Moody matrix (see Theorem 6.40):

Theorem 4. Assume that G is associated with a size 2 Kac-Moody matrix. Let τ ∈ TC.
Then Iτ is irreducible if and only if it satisfies the following conditions:

1. Wτ = W(τ),

2. for all α∨ ∈ Φ∨, τ(α∨) 6= q.

In order to prove these theorems, we first establish the following irreducibility criterion.
For τ ∈ TC set Iτ (τ) = {x ∈ Iτ |θ.x = τ(θ).x ∀θ ∈ C[Y ]}. Then:

Theorem 5. (see Theorem 5.8) Iτ is irreducible if and only if:

• τ(α∨) 6= q for all α∨ ∈ Φ∨

• dim Iτ (τ) = 1.
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Frameworks Actually, following [BPGR16] we study Iwahori-Hecke algebras associated to
abstract masures. In particular our results also apply when G is an almost-split Kac-Moody
group over a non-Archimedean local field.

Organization of the paper In Section 2, we recall the definition of the Iwahori-Hecke
algebras and of the Bernstein-Lusztig-Hecke algebras, introduce principal series representa-
tions and define an algebra BLH(TF) containing BLHF , where F is the field of coefficients of
BLHF .

In Section 3, we study the F [Y ]-module Iτ and we study the intertwining operators from
Iτ to Iτ ′ , for τ, τ ′ ∈ TF .

In Section 4, we study principal series representations of HF and their links with principal
series representations of BLHF .

In Section 5, we establish Theorem 5. We then apply it to obtain Theorem 2 and Theo-
rem 3.

In Section 6 we regard the weights vectors of Iτ and use it to prove Kato’s irreductibility
criterion for size 2 Kac-Moody matrices.

There is an index of notations at the end of the paper.
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2 Iwahori-Hecke algebras

Let G be a Kac-Moody group over a non-archimedean local field. Then Gaussent and
Rousseau constructed a space I, called a masure on which G acts, generalizing the con-
struction of the Bruhat-Tits buildings (see [GR08], [Rou16] and [Rou17]). Rousseau then
defined in [Rou11] an axiomatic definition of masures inspired by the axiomatic definition of
Bruhat-Tits buildings. We simplified it in [Héb19]. Masures satisfying these axiomatics are
called abstract masures because they might not be associated with some Kac-Moody group.

In [BPGR16], Bardy-Panse, Gaussent and Rousseau attached an Iwahori-Hecke algebra
HR to each abstract masure satisfying certain conditions and to each ring R. The algebra
HR is an algebra of functions defined on some pairs of chambers of the masure, equipped
with a convolution product. Then they prove that under some additional hypothesis on the
ring R (which are satisfied by R and C), HR admits a Bernstein-Lusztig presentation. In this
paper, we will only use the Bernstein-Lusztig presentation of HR and we do not introduce
masures (see [Héb18, Appendix A] for a definition). We however introduce the standard
apartment of a masure. We restrict our study to the case where R = F is a field.

2.1 Standard apartment of a masure

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (ai,j)i,j∈I
indexed by a finite set I, with integral coefficients, and such that :

(i) ∀ i ∈ I, ai,i = 2;

(ii) ∀ (i, j) ∈ I2, (i 6= j) ⇒ (ai,j ≤ 0);

(iii) ∀ (i, j) ∈ I2, (ai,j = 0) ⇔ (aj,i = 0).
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A root generating system is a 5-tuple S = (A,X, Y, (αi)i∈I , (α
∨
i )i∈I) made of a Kac-Moody

matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite rank,
and of a free family (αi)i∈I (respectively (α∨

i )i∈I) of elements in X (resp. Y ) called simple

roots (resp. simple coroots) that satisfy ai,j = αj(α
∨
i ) for all i, j in I. Elements of X

(respectively of Y ) are called characters (resp. cocharacters).
Fix such a root generating system S = (A,X, Y, (αi)i∈I , (α

∨
i )i∈I) and set A := Y ⊗ R.

Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A∗. In particular, the αi’s (with i ∈ I) will be seen as linear forms on A. This allows us to
define, for any i ∈ I, an involution ri of A by setting ri(v) := v−αi(v)α

∨
i for any v ∈ A. Let

S = {ri|i ∈ I} be the (finite) set of simple reflections. One defines the Weyl group of

S as the subgroup W v of GL(A) generated by S . The pair (W v,S ) is a Coxeter system,
hence we can consider the length ℓ(w) with respect to S of any element w of W v. If s ∈ S ,
s = ri for some unique i ∈ I. We set αs = αi and α∨

s = α∨
i .

The following formula defines an action of the Weyl group W v on A∗:

∀ x ∈ A, w ∈ W v, α ∈ A∗, (w.α)(x) := α(w−1.x).

Let Φ := {w.αi|(w, i) ∈ W v × I} (resp. Φ∨ = {w.α∨
i |(w, i) ∈ W v × I}) be the set of real

roots (resp. real coroots): then Φ (resp. Φ∨) is a subset of the root lattice Q :=
⊕

i∈I

Zαi

(resp. coroot lattice Q∨ =
⊕

i∈I Zα
∨
i ). By [Kum02, 1.2.2 (2)], one has Rα∨ ∩Φ∨ = {±α∨}

and Rα ∩ Φ = {±α} for all α∨ ∈ Φ∨ and α ∈ Φ.

Fundamental chamber, Tits cone and vectorial faces As in the reductive case, define
the fundamental chamber as Cv

f := {v ∈ A | ∀s ∈ S , αs(v) > 0}.
Let T :=

⋃

w∈W v

w.Cv
f be the Tits cone. This is a convex cone (see [Kum02, 1.4]).

For J ⊂ S , set F v(J) = {x ∈ A|αj(x) = 0∀j ∈ J and αj(x) > 0∀j ∈ S \J}. A positive

vectorial face is a set of the form w.F v(J) for some w ∈ W v and J ⊂ S . Then by [Rém02,
5.1 Théorème (ii)], the family of positive vectorial faces of A is a partition of T and the
stabilizer of F v(J) is WJ = 〈J〉.

One sets Y + = Y ∩ T .

Remark 2.1. By [Kac94, §4.9] and [Kac94, § 5.8] the following conditions are equivalent:

1. the Kac-Moody matrix A is of finite type (i.e. is a Cartan matrix),

2. A = T

3. W v is finite.

2.2 Recalls on Coxeter groups

2.2.1 Bruhat order

Let (W0,S0) be a Coxeter system. We equip it with the Bruhat order ≤W0 (see [BB05,
Definition 2.1.1]). We have the following characterization (see [BB05, Corollary 2.2.3]): let
u, w ∈ W0. Then u ≤W0 w if and only if every reduced expression for w has a subword that
is a reduced expression for u. By [BB05, Proposition 2.2.9], (W0,≤W0) is a directed poset,
i.e for every finite set E ⊂W0, there exists w ∈ W0 such that v ≤W0 w for all v ∈ E.

We write ≤ instead of ≤W v . For u, v ∈ W v, we denote by [u, v], [u, v), . . . the sets
{w ∈ W v|u ≤ w ≤ v}, {w ∈ W v|u ≤ w < v}, . . ..
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2.2.2 Reflections and coroots

Let R = {wsw−1|w ∈ W v, s ∈ S } be the set of reflections of W v. Let r ∈ R. Write
r = wsw−1, where w ∈ W v, s ∈ S and ws > w (which is possible because if ws < w, then
r = (ws)s(ws)−1). Then one sets αr = w.αs ∈ Φ+ (resp. α∨

r = w.α∨
s ∈ Φ∨

+). This is well
defined by the lemma below.

Lemma 2.2. Let w,w′ ∈ W v and s, s′ ∈ S be such that wsw−1 = w′s′w′−1 and ws > w,
w′s′ > w′. Then w.αs = w′.αs′ ∈ Φ+ and w.α∨

s = w′.α∨
s′ ∈ Φ∨

+.

Proof. One has r(x) = x − w.αs(x)w.α
∨
s = x − w′.αs′(x)w

′.α∨
s′ for all x ∈ A and thus

w.αs ∈ R∗w′.αs′ and w.α∨
s ∈ R∗w′.α∨

s′. As Φ and Φ∨ are reduced, w.αs = ±w′.αs′ and
w.α∨

s = ±w′.α∨
s . By [Kum02, Lemma 1.3.13], w.αs, w

′.αs′ ∈ Φ+ and w.α∨
s , w

′.α∨
s′ ∈ Φ∨

+,
which proves the lemma.

Lemma 2.3. Let r, r′ ∈ R and w ∈ W v be such that w.αr = αr′ or w.α∨
r = α∨

r′. Then
wrw−1 = r′.

Proof. Write r = vsv−1 and r = v′s′v′−1 for s, s′ ∈ S and v, v′ ∈ W v. Then v′−1wv.αs = αs′.
Thus by [Kum02, Theorem 1.3.11 (b5)], v′−1wvsv−1w−1v′ = s′ and hence wrw−1 = r′.

Let r ∈ R. Then for all x ∈ A, one has:

r(x) = x− αr(x)α
∨
r .

Let α∨ ∈ Φ∨. One sets rα∨ = wsw−1 where (w, s) ∈ W v × S is such that α∨ = w.α∨
s . This

is well defined, by Lemma 2.3. Thus α∨ 7→ rα∨ and r 7→ α∨
r induce bijections Φ∨

+ → R and
R → Φ∨

+. If r ∈ R, r = wsw−1, one sets σr = σs, which is well defined by assumption on
the σt, t ∈ S (see Subsection 2.3).

For w ∈ W v, set NΦ∨(w) = {α∨ ∈ Φ∨
+|w.α∨ ∈ Φ∨

−}.

Lemma 2.4. ([Kum02, Lemma 1.3.14]) Let w ∈ W v. Then |NΦ∨(w)| = ℓ(w) and if w =
s1 . . . sr is a reduced expression, then NΦ∨(w) = {α∨

sr , sr.α
∨
sr−1

, . . . , sr . . . s2.α
∨
s1
}.

2.2.3 Reflections subgroups of a Coxeter group

If W0 is a Coxeter group, a Coxeter generating set is a set S0 such that (W0,S0) is a
Coxeter system. Let (W0,S0) be a Coxeter system and R0 = {w.s.w−1|w ∈ W0, s ∈ S0}
be its set of reflections. A reflection subgroup of W0 is a group of the form W1 = 〈R1〉
for some R1 ⊂ R0. For w ∈ W0, set NR0(w) = {r ∈ R0|rw−1 < w−1}. By [Dye90, 3.3] or
[Dye91, 1], if S (W1) = {r ∈ R0|NR0(r)∩W1 = {r}}, then (W1,S (W1)) is a Coxeter system.

Let (W0,S0) be a Coxeter system. The rank of (W0,S0) is |S0|.

Remark 2.5. 1. The rank of a Coxeter group is not well defined. For example, by [Müh05,
3], if k ∈ Z≥1 and n = 4(2k + 1) then the dihedral group of order n admits Coxeter
generating sets of order 2 and 3. However by [Rad99], all the Coxeter generating sets
of the infinite dihedral group have cardinal 2.

2. Using [Bou81, IV 1.8 Proposition 7] we can prove that if (W0,S0) is a Coxeter system
of infinite rank, then every Coxeter generating set of W0 is infinite.
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3. Reflection subgroups of finite rank Coxeter groups are not necessarily of finite rank.
Indeed, let W0 be the Coxeter group generated by the involutions s1, s2, s3, with sisj of
infinite order when i 6= j ∈ J1, 3K. Let W ′

0 = 〈s1, s2〉 ⊂ W0 and R1 = {ws3w−1|w ∈
W ′

0} ⊂ R0. Then W1 = 〈R1〉 has infinite rank. Indeed, let ψ : W0 → W ′
0 be the group

morphism defined by ψ|W ′
0
= IdW ′

0
and ψ(s3) = 1. Then R1 ⊂ kerψ. Thus s3 appears

in the reduced writing of every nontrivial element of W1. By [BB05, Corollary 1.4.4] if
r ∈ R1, then the unique element of NR0(r) containing an s3 in its reduced writing is r.
Thus S (W1) ⊃ R1 is infinite.

2.3 Iwahori-Hecke algebras

In this subsection, we give the definition of the Iwahori-Hecke algebra via its Bernstein-Lusztig
presentation, as done in [BPGR16, Section 6.6].

Let R1 = Z[(σs)s∈S , (σ
′
s)s∈S ], where (σs)s∈S , (σ

′
s)s∈S are two families of indeterminates

satisfying the following relations:

• if αs(Y ) = Z, then σs = σ′
s;

• if s, t ∈ S are conjugate (i.e. such that αs(α
∨
t ) = αt(α

∨
s ) = −1), then σs = σt = σ′

s =
σ′
t.

To define the Iwahori-Hecke algebra HR1 associated with A and (σs, σ
′
s)s∈S , we first

introduce the Bernstein-Lusztig-Hecke algebra. Let BLHR1 be the free R1-vector space with
basis (ZλHw)λ∈Y,w∈W v . For short, one sets Hw = Z0Hw for w ∈ W v and Zλ = ZλH1 for
λ ∈ Y . The Bernstein-Lusztig-Hecke algebra BLHR1 is the module BLHR1 equipped
with the unique product ∗ that turns it into an associative algebra and satisfies the following
relations (known as the Bernstein-Lusztig relations):

• (BL1) ∀ (λ, w) ∈ Y ×W v, Zλ ∗Hw = ZλHw;

• (BL2) ∀ s ∈ S , ∀ w ∈ W v, Hs ∗Hw =

{
Hsw if ℓ(sw) = ℓ(w) + 1

(σs − σ−1
s )Hw +Hsw if ℓ(sw) = ℓ(w)− 1

;

• (BL3) ∀ (λ, µ) ∈ Y 2, Zλ ∗ Zµ = Zλ+µ;

• (BL4) ∀ λ ∈ Y, ∀ i ∈ I, Hs ∗ Zλ − Zs.λ ∗ Hs = Qs(Z)(Z
λ − Zs.λ), where Qs(Z) =

(σs−σ−1
s )+(σ′

s−σ′−1
s )Z−α∨

s

1−Z−2α∨
s

.

The existence and uniqueness of such a product ∗ comes from [BPGR16, Theorem 6.2].

Definition 2.6. Let F be a field of characteristic 0 and f : R1 → F be a ring morphism
such that f(σs) and f(σ′

s) are invertible in F for all s ∈ S . Then the Bernstein-Lusztig-

Hecke algebra of (A, (σs)s∈S , (σ
′
s)s∈S ) over F is the algebra BLHF = BLHR1 ⊗R1 F .

Following [BPGR16, Section 6.6], the Iwahori-Hecke algebra HF associated with S and
(σs, σ

′
s)s∈S is now defined as the F-subalgebra of BLHF spanned by (ZλHw)λ∈Y +,w∈W v (recall

that Y + = Y ∩ T with T being the Tits cone). Note that for G reductive, we recover the
usual Iwahori-Hecke algebra of G, since Y ∩ T = Y .

In certain proofs, when F = C, we will make additional assumptions on the σs and σ′
s,

s ∈ S . To avoid these assumptions, we can assume that σs, σ
′
s ∈ C and |σs| > 1, |σ′

s| > 1 for
all s ∈ S .
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Remark 2.7. 1. Let s ∈ S . Then if σs = σ′
s, Qs(Z) =

(σs−σ−1
s )

1−Z−α∨
s

.

2. Let s ∈ S and λ ∈ Y . Then Qs(Z)(Z
λ − Zs.λ) ∈ F [Y ]. Indeed, Qs(Z)(Z

λ − Zs.λ) =
Qs(Z).Z

λ(1− Z−αs(λ)α∨
s ). Assume that σs = σ′

s. Then

1− Z−αs(λ)α∨
s

1− Z−α∨
s

=





αs(λ)−1∑

j=0

Z−jα∨
s if αs(λ) ≥ 0

− Zα∨
s

−αs(λ)−1∑

j=0

Zjα∨
s if αs(λ) ≤ 0,

and thus Qs(Z)(Z
λ − Zs.λ) ∈ F [Y ]. Assume σ′

s 6= σs. Then αs(Y ) = 2Z and a similar
computation enables to conclude.

3. From (BL4) we deduce that for all s ∈ S , λ ∈ Y ,

Zλ ∗Hs −Hs ∗ Zs.λ = Qs(Z)(Z
λ − Zs.λ).

4. When G is a split Kac-Moody group over a non-Archimedean local field K with residue
cardinal q, we can choose F to be a field containing Z[

√
q±1] and take f(σs) = f(σ′

s) =√
q for all s ∈ S .

5. By (BL4), the family (Hw ∗ Zλ)w∈W v,λ∈Y is also a basis of BLHF .

We equip F [Y ] with an action of W v. For θ =
∑

λ∈Y aλZ
λ ∈ F [Y ] and w ∈ W v, set

θw :=
∑

λ∈Y aλZ
w.λ.

Lemma 2.8. Let θ ∈ F [Y ] and w ∈ W v. Then θ∗Hw−Hw∗θw−1 ∈ BLH<w
F :=

⊕
v<wHvF [Y ].

In particular, BLH≤w
F :=

⊕
v≤wHvC[Y ] is a left finitely generated F [Y ]-submodule of BLHF .

Proof. We do it by induction on ℓ(w). Let θ ∈ F [Y ] and w ∈ W v be such that u :=
θHw−Hwθ

w−1 ∈ BLH(TF)
<w. Let s ∈ S and assume that ℓ(ws) = ℓ(w)+1. Then by (BL4):

θ ∗Hws = (Hwθ
w−1

+ u) ∗Hs = Hwsθ
sw−1

+ aHw + uHs,

for some a ∈ F . Moreover, by [Kum02, Corollary 1.3.19] and (BL2), u ∗Hs ∈ BLH(TF)
<ws

and the lemma follows.

Definition 2.9. Let HF ,W v =
⊕

w∈W v FHw ⊂ HF . Then HF ,W v is a subalgebra of HF . This
is the Hecke algebra of the Coxeter group (W v,S ).

2.4 Principal series representations

In this subsection, we introduce the principal series representations of BLHF .
We now fix (A, (σs)s∈S , (σ

′
s)s∈S ) as in Subsection 2.3 and a field F as in Definition 2.6. Let

HF and BLHF be the Iwahori-Hecke and the Bernstein-Lusztig Hecke algebras of (A, (σs)s∈S , (σ
′
s)s∈S )

over F .
Let TF = HomGr(Y,F×) be the group of group morphism from Y to F∗. Let τ ∈ TF . Then

τ induces an algebra morphism τ : F [Y ] → F by the formula τ(
∑

y∈Y aye
y) =

∑
y∈Y ayτ(y),

for
∑
aye

y ∈ F [Y ]. This equips F with the structure of a F [Y ]-module.
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Let Iτ = Ind
BLHF (τ) = BLHF ⊗F [Y ] F . For example if λ ∈ Y , w ∈ W v and s ∈ S , one

has:
Zλ.1⊗τ 1 = τ(λ)1⊗τ 1, Hw ∗ Zλ ⊗τ 1 = τ(λ)Hw ⊗τ 1 and

Zλ.Hs⊗τ 1 = Hs∗Zs.λ⊗τ 1+Qs(Z)(Z
λ−Zs.λ)⊗τ 1 = τ(s.λ)Hi⊗τ 1+τ

(
Qs(Z)(Z

λ−Zs.λ)
)
⊗τ 1.

Let h ∈ Iτ . Write h =
∑

λ∈Y,w∈W v hw,λHwZ
λ ⊗τ cw,λ, where (hw,λ), (cw,λ) ∈ F (W v×Y ),

which is possible by Remark 2.7. Thus

h =
∑

λ∈Y,w∈W v

hw,λcw,λτ(λ)Hw ⊗τ 1 =
( ∑

λ∈Y,w∈W v

hw,λcw,λτ(λ)Hw

)
1⊗τ 1.

Thus Iτ is a principal BLHF -module and (Hw ⊗τ 1)w∈W v is a basis of Iτ . Moreover Iτ =
HW v,F .1⊗τ 1 (see Definition 2.9 for the definition of HW v,F).

2.5 The algebra BLHF(TF)

In this subsection, we introduce an algebra BLH(TF) containing BLHF . This algebra will
enable us to regard the elements of Iτ as specializations at τ of certain elements of BLH(TF).
When F = C, this will enable us to make τ ∈ TC vary and to use density arguments and
basic algebraic geometry to study the Iτ .

2.5.1 Description of BLH(TF )

Let BLH(TF) be the right F(Y ) vector space
⊕

w∈W v HwC(Y ). We equip F(Y ) with an

action of W v. For θ =
∑

λ∈Y aλZ
λ

∑
λ∈Y bλZλ ∈ F(Y ) and w ∈ W v, set θw :=

∑
λ∈Y aλZ

w.λ

∑
λ∈Y bλZw.λ .

Proposition 2.10. There exists a unique multiplication ∗ on BLH(TF) which equips BLH(TF )
with the structure of an associative algebra and such that:

• F(Y ) embeds into BLH(TF) as an algebra,

• (BL2) is satisfied,

• the following relation (BL4’) is satisfied:

for all θ ∈ F(Y ) and s ∈ S , θ ∗Hs −Hs ∗ θs = Qs(Z)(θ − θs).

The proof of this proposition is postponed to 2.5.2.
We regard the elements of F [Y ] as polynomial functions on TF by setting:

τ(
∑

λ∈Y

aλZ
λ) =

∑

λ∈Y

aλτ(λ),

for all (aλ) ∈ F (Y ). The ring F [Y ] is a unique factorization domain. Let θ ∈ F(Y ) and
(f, g) ∈ F [Y ] × F [Y ]∗ be such that θ = f

g
and f and g are coprime. Set D(θ) = {τ ∈

TF |θ(g) 6= 0}. Then we regard θ as a map from D(θ) to F by setting θ(τ) = f(τ)
g(τ)

for all

τ ∈ D(θ).
For w ∈ W v, let πH

w : BLH(TF) → F(Y ) be defined by πH
w (

∑
v∈W v Hwθv) = θw. If τ ∈ TF ,

let F(Y )τ = { f
g
|f, g ∈ C[Y ] and g(τ) 6= 0} ⊂ F(Y ). Let BLH(TF)τ =

⊕
w∈W v HwF(Y )τ ⊂

BLH(TF). This is a not a subalgebra of BLH(TF) (consider for example 1
Zλ−1

∗ Hs = Hs ∗
1

Zs.λ−1
+ . . . for some well chosen λ ∈ Y , s ∈ S and τ ∈ TC). It is however an HW v,F −

F(Y )τ bimodule. For τ ∈ TF , we define evτ : BLH(TF)τ → HW v,F by evτ (h) = h(τ) =∑
w∈W v Hwθw(τ) if h =

∑
w∈W v Hwθw ∈ H(Y )τ . This is a morphism of HW v,F − F(Y )τ -

bimodule.
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2.5.2 Construction of BLH(TF)

We now prove the existence of BLH(TF). For this we use the theory of Asano and Ore of
rings of fractions: BLH(TF) will be the ring BLHF ∗ (F [Y ] \ {0})−1.

Let V = BLHF ⊗F [Y ]F(Y ) ⊃ BLHF , where BLHF is equipped with its structure of a right
F [Y ]-module. As a right F(Y )-vector space, V =

⊕
w∈W v HwC(Y ). The left action of F [Y ]

on BLHF extends to an action of F [Y ] on V by setting θ.
∑

w∈W v Hwfw =
∑

w∈W v(θ.Hw)fw,
for all (fw) ∈ F(Y )(W

v) and θ ∈ F [Y ]. This equips V with the structure of a (F [Y ]−F(Y ))-
bimodule.

Lemma 2.11. The left action of F [Y ] on V extends uniquely to a left action of F(Y ) on V .
This equips V with the structure of a (F(Y )-F(Y ))-bimodule.

Proof. Let w ∈ W v and P ∈ F [Y ] \ {0}. Let V ≤w =
⊕

v∈[1,w]HvF(Y ). By Lemma 2.8, the

map mP : V ≤w → V ≤w defined by mP (h) = P.h is well defined. Thus the left action of F [Y ]
on V ≤w induces a ring morphism φw : F [Y ] → Endv.s(V

≤w), where Endv.s(V
≤w) is the space

of endormophism of the C(Y )-vector space V ≤w.
Let us prove that φw(P ) is injective. Let h ∈ V ≤w. Write h =

∑
v∈W v Hwθw, with

θw ∈ F(Y ) for all w ∈ W v. Suppose that h 6= 0. Let v ∈ W v be such that θv 6= 0 and such
that v is maximal for this property for the Bruhat order. By Lemma 2.8, P ∗h 6= 0 and thus
φw(P ) is injective. Therefore it is invertible for all P ∈ F [Y ]. Thus φw extends uniquely to

a ring morphism φ̃w : F(Y ) → Vw. As (W v,≤) is a directed poset, there exists an increasing
sequence (wn)n∈Z≥0

(for the Bruhat order) such that
⋃

n∈Z≥0
[1, wn] = W v. Let m,n ∈ Z≥0 be

such that m ≤ n. Let P ∈ F [Y ] and f (m) = φ̃wm
(P ) and f (n) = φ̃wn

(P ). Then f
(n)

|V ≤wm
= f (m)

and thus for all θ ∈ F(Y ) and x ∈ BLH(TF ), θ.x := φ̃wk
(θ)(x) is well defined, independently

of k ∈ Z≥0 such that x ∈ V ≤wk . This defines an action of F(Y ) on V .
Let h ∈ V , θ ∈ F(Y ) and P ∈ F [Y ] \ {0}. Let x = 1

P
.h. Then as V is a (F [Y ]-F(Y ))-

bimodule, (P ∗ x) ∗ θ = h ∗ θ = P ∗ (x ∗ θ) and thus x ∗ θ = 1
P
∗ (h ∗ θ) = ( 1

P
∗ h) ∗ θ. Thus V

is a (F(Y )−F(Y ))-bimodule.

Lemma 2.12. The set F [Y ] ⊂ BLHF satisfies the right Ore condition: for all P ∈ F [Y ] and
h ∈ BLHF , P ∗ BLHF ∩ h ∗ C[Y ] 6= ∅.

Proof. Let P ∈ F [Y ] and h ∈ BLHF . Then by definition, P ∗ ( 1
P
∗ h) = h ∈ V . Moreover,

V =
⊕

w∈W v HwC(Y ) and thus there exists θ ∈ F [Y ] such that 1
P
∗ h ∗ θ ∈ BLHF . Then

P ∗ 1
P
∗ h ∗ θ = h ∗ θ ∈ P ∗ BLHF ∩ h ∗ F [Y ], which proves the lemma.

Definition 2.13. Let R be a ring and r in R. Then r is said to be regular if for all
r′ ∈ R \ {0}, rr′ 6= 0 and r′r 6= 0.

Let R be a ring and X ⊂ R a multiplicative set of regular elements. A right ring of

fractions for R with respect to X is any overring S ⊃ R such that:

• Every element of X is invertible in S.

• Every element of S can be expressed in the form ax−1 for some a ∈ R and x ∈ X.

We can now prove Proposition 2.10. The uniqueness of such a product follows from (BL4’).
By Lemma 2.8, the elements of F [Y ]\{0} are regular. By Lemma 2.12 and [GW04, Theorem
6.2], there exists a right ring of fractions BLH(TF) for BLHF with respect to F [Y ]\{0}. Then
BLH(TF) is an algebra over F and as a vector space, BLH(TF) =

⊕
w∈W v(HwF [Y ])(F [Y ] \

{0})−1 =
⊕

w∈W v HwC(Y ).
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Let (f, g) ∈ F [Y ]× (F [Y ] \ {0}). Then it is easy to check that g ∗
(
Hs ∗ 1

gs
+Qs(Z)

)
(1
g
−

1
gs
)
)
= Hs and thus 1

g
∗ Hs = (Hs ∗ 1

gs
+ Qs(Z)(

1
g
− 1

gs
). Let f ∈ F [Y ]. A straightforward

computation yields the formula f
g
∗Hs = Hs ∗ (fg )s+Qs(Z)(

f
g
− (f

g
)s) which finishes the proof

of Proposition 2.10.

Remark 2.14. • Inspired by the proof of [BPGR16, Theorem 6.2] we could try to define
∗ on V as follows. Let θ1, θ2 ∈ F [Y ] and w1, w2 ∈ W v. Write θ1 ∗Hw2 =

∑
w∈W v Hwθw,

with (θw) ∈ F(Y )(W
v). Then (Hw1 ∗ θ1) ∗ (Hw2 ∗ θ2) =

∑
w∈W (Hw1 ∗ Hw) ∗ (θ2θw).

However it is not clear a priori that the so defined law is associative.

• Suppose that HF is the Iwahori-Hecke algebra associated with some masure defined in
[BPGR16, Definition 2.5]. Using the same procedure as above (by taking S = {Y λ|λ ∈
Y +}), we can construct the algebra BLHF from the algebra HF . In this particular case,
this gives an alternative proof of [BPGR16, Theorem 6.2].

3 Weight decompositions and intertwining operators

Let τ ∈ TF . In this section, we study the structure of Iτ as a F [Y ]-module and the set
HomBLHF−mod(Iτ , Iτ ′) for τ ′ ∈ TF .

In Subsection 3.1, we study the weights of Iτ and decompose every BLHF -submodule of
Iτ as a sum of generalized weight spaces (see Lemma 3.3).

In Subsection 3.2, we relate intertwining operators and weight spaces. We then prove the
existence of nontrivial intertwining operators Iτ → Iw.τ for all w ∈ W v.

In Subsection 3.3, we prove that when W v is infinite, then every nontrivial submodule
of Iτ is infinite dimensional. We deduce that contrary to the reductive case, there exist
irreducible representations of BLHF which does not embed in any Iτ .

3.1 Generalized weight spaces of Iτ

Let τ ∈ TF . Let x ∈ Iτ . Write x =
∑

w∈W v xwHw ⊗τ 1, with (xw) ∈ F (W v). Set supp(x) =
{w ∈ W v| xw 6= 0}. Equip W v with the Bruhat order. If E is a finite subset of W v, max(E)
is the set of elements of E that are maximal for the Bruhat order. Let R be a binary relation
on W v (for example R =“≤”, R =“�”, ...) and w ∈ W v. One sets

IRw
τ =

⊕

v∈W v|vRw

FHv ⊗τ 1,HW v,F
Rw =

⊕

vRw

FHv,
BLH(TF )

Rw =
⊕

vRw

HvF(Y )

and BLHRw
F = BLH(TF)

Rw ∩ BLHF =
⊕

vRw HvF [Y ].

Let V be a vector space over F and E ⊂ End(V ). For τ ∈ FE set V (τ) = {v ∈
V |e.v = τ(e).v∀e ∈ E} and V (τ, gen) = {v ∈ V |∃k ∈ Z≥0|(e− τ(e)Id)k.v = 0, ∀e ∈ E}. Let
Wt(E) = {τ ∈ FE|V (τ) 6= {0}}.

The following lemma is well known.

Lemma 3.1. Let V be a finite dimensional vector space over F . Let E ⊂ End(V ) be a subset
such that for all e, e′ ∈ E,

1. e is triangularizable

2. ee′ = e′e.
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Then V =
⊕

τ∈Wt(E) V (τ, gen) and in particular Wt(E) 6= ∅.

For τ ∈ TF , set Wτ = {w ∈ W v| w.τ = τ}.

Remark 3.2. Let τ ∈ TF . By Lemma 2.8, I≤w
τ and I

�w
τ are F [Y ]-submodules of Iτ . In

particular F [Y ].x is finite dimensional for all x ∈ Iτ .

Let M be a BLHF -module. For τ ∈ TF , set

M(τ) = {m ∈M |P.m = τ(P ).m ∀P ∈ F [Y ]}

and
M(τ, gen) = {m ∈M |∃k ∈ Z≥0|∀P ∈ F [Y ], (P − τ(P ))k.m = 0} ⊃M(τ).

Let Wt(M) = {τ ∈ TF |M(τ) 6= {0}} and Wt(M, gen) = {τ ∈ TF |M(τ, gen) 6= {0}}.
Lemma 3.3. 1. Let τ, τ ′ ∈ TF . Let x ∈ Iτ (τ

′, gen). Then if x 6= 0,

max supp(x) ⊂ {w ∈ W v| w.τ = τ ′}.

In particular, if Iτ (τ ′, gen) 6= {0}, then τ ′ ∈ W v.τ and thus

Wt(Iτ ) ⊂W v.τ.

2. Let τ ∈ TF . Let M ⊂ Iτ be a F [Y ]-submodule of Iτ . Then Wt(M) = Wt(M, gen) ⊂
W v.τ and M =

⊕
χ∈Wt(M)M(χ, gen). In particular, Wt(M) 6= ∅.

Proof. (1) Let x ∈ Iτ (τ
′, gen) \ {0}. Let w ∈ max supp(x). Write x = awHw ⊗τ 1 + y, where

aw ∈ F \ {0} and y ∈ I
�w
τ . Then by Lemma 2.8,

Zλ.x = awHwZ
w−1.λ ⊗τ 1 + y′ = τ(w−1.λ)awHw ⊗τ 1 + y′ = τ ′(λ)awHw ⊗τ 1 + τ ′(λ)y,

where y′ ∈ I
�w
τ . Therefore w.τ = τ ′.

(2) Let w ∈ W v. Let P ∈ F [Y ] and mP : I≤w
τ → I≤w

τ be defined by mP (x) = P.x for
all x ∈ I≤w

τ . Then by Lemma 2.8, (mP − w.τ(P )Id)(I≤w
τ ) ⊂ I<w

τ . By induction on ℓ(w) we
deduce that mP is triangularizable on I≤w

τ and Wt(I≤w
τ ) ⊂ [1, w].τ ⊂W v.τ .

Let x ∈ M and Mx = F [Y ].x. By the fact that (W v,≤) is a directed poset and by
Lemma 2.8, there exists w ∈ W v such that Mx ⊂ I≤w

τ . Therefore, for all P ∈ F [Y ], mP :
Mx → Mx is triangularizable. Thus by Lemma 3.1, F [Y ].x =

⊕
χ∈Wt(Mx,gen)

Mx(χ, gen) =⊕
χ∈W v.τ Mx(χ, gen). Consequently, M =

∑
x∈M Mx =

⊕
χ∈Wt(M,gen)M(χ, gen) and Wt(M) ⊂⋃

w∈W v Wt(I≤w
τ ) ⊂W v.τ .

Let χ ∈ Wt(M, gen). Let x ∈ M(χ, gen) \ {0} and N = F [Y ].x. Then by Lemma 2.8,
N is a finite dimensional submodule of Iτ . By Lemma 3.1, Wt(N) 6= ∅. As Wt(N) ⊂ {χ},
χ ∈ Wt(M). Thus Wt(M, gen) ⊂ Wt(M) and as the other inclusion is clear, we get the
lemma.

Proposition 3.4. (see [Mat77, 4.3.3 Théorème (iii)]) Let τ, τ ′ ∈ TF and M (resp. M ′)
be a BLHF -submodule of Iτ (resp. Iτ ′). Assume that HomBLHF−mod(M,M ′) \ {0}. Then
τ ′ ∈ W v.τ .

Proof. Let f ∈ HomBLHF
(M,M ′) \ {0}. Then by Lemma 3.3 (2), there exists w ∈ W v/Wτ

such that f
(
M(w.τ, gen)

)
6= {0}. Then w.τ ∈ Wt(Iτ ′) and by Lemma 3.3 (1) the proposition

follows.
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An element τ ∈ TF is said to be regular if w.τ 6= τ for all w ∈ W v \ {1}. We denote by
T reg
F the set of regular elements of TF .

Proposition 3.5. (see [Kat81, Proposition 1.17]) Let τ ∈ TF .

1. There exists a basis (ξw)w∈W v of Iτ such that for all w ∈ W v:

• ξw ∈ I≤w
τ and πH

w (ξw) = 1

• ξw ∈ Iτ (w.τ, gen).

Moreover, if w ∈ W v is minimal for ≤ among {v ∈ W v|v.τ = w.τ}, then ξw ∈ Iτ (w.τ).
In particular, Wt(Iτ ) = W v.τ .

2. If τ is regular, then Iτ (w.τ, gen) = Iτ (w.τ) is one dimensional for all w ∈ W v and
Iτ =

⊕
w∈W v Iτ (w.τ).

Proof. (1) Let w ∈ W v. Then by Lemma 2.8, Lemma 3.1 and Lemma 3.3, I≤w
τ =

⊕
v∈W v/Wτ

I≤w
τ (v.τ, gen).

Write Hw⊗τ 1 =
∑

v∈W v/Wτ
xv, where xv ∈ I≤w

τ (v.τ, gen) for all v ∈ W v/Wτ . Let v ∈ W v/Wτ

be such that πH
w (xv) 6= 0. Then max supp(xv) = {w} and by Lemma 3.3, w.τ = v.τ .

Set ξw = 1
πH
w (xv)

xv. Then (ξu)u∈W v is a basis of Iτ and has the desired properties. Let

w ∈ W v be minimal for ≤ among {v ∈ W v|v.τ = w.τ}. Let λ ∈ Y . Then by Lemma 2.8,
(Zλ−w.τ(λ).ξw) ∈ Iτ (w.τ, gen)∩ I<w

τ . By Lemma 3.3, we deduce that (Zλ −w.τ(λ)).ξw = 0
and thus that ξw ∈ Iτ (w.τ). Thus w.τ ∈ Wt(Iτ ) and by Lemma 3.3, Wt(Iτ ) = Iτ .

(2) Suppose that τ is regular. Let w ∈ W v, λ ∈ Y and x ∈ Iτ (τ, gen). Then by
Lemma 3.3 (1), x−πH

w (x)ξw ∈ Iτ (τ, gen)∩I<w
τ = {0}. By (1), ξw ∈ Iτ (w.τ) and thus Iτ (τ) =

Iτ (τ, gen) is one dimensional. By Lemma 3.3, we deduce that Iτ =
⊕

w∈W v Iτ (w.τ).

3.2 Intertwining operators and weight spaces

In this subsection, we relate intertwining operators and weight spaces and study some con-
sequences. Let τ ∈ TF . Using Subsection 3.1, we prove the existence of nonzero morphisms
Iτ → Iw.τ for all w ∈ W v. We will give a more precise construction of such morphisms in
Subsection 5.4.

Let M be a BLHF -module and τ ∈ TF . For x ∈ M(τ) define Υx : Iτ → M by Υx(u.1⊗τ

1) = u.x, for all u ∈ BLHF . Then Υx is well defined. Indeed, let u ∈ BLHF be such that
u.1⊗τ 1 = 0. Then u ∈ F [Y ] and τ(u) = 0. Therefore u.x = 0 and hence Υx is well defined.
The following lemma is then easy to prove.

Lemma 3.6. (Frobenius reciprocity, see [Kat81, Proposition 1.10]) Let M be a BLHF -
module, τ ∈ TF and x ∈ M(τ). Then the map Υ : M(τ) → HomBLHF−mod(Iτ ,M) map-
ping each x ∈ M(τ) to Υx is a vector space isomorphism and Υ−1(f) = f(1 ⊗τ 1) for all
f ∈ HomBLHF−mod(Iτ ,M).

Proposition 3.7. (see [Mat77, (4.1.10)]) Let M be a BLHF -module such that there exists
ξ ∈M satisfying:

1. there exists τ ∈ TF such that ξ ∈M(τ),

2. M = BLHF .ξ.

Then there exists a surjective morphism φ : Iτ ։M of BLHF -modules.

Proof. One can take φ = Υξ, where Υ is as in Lemma 3.6.

13



Proposition 3.8. (see [Mat77, Théorème 4.2.4]) Let M be an irreducible representation of
BLHF containing a finite dimensional F [Y ]-submodule M ′ 6= {0}. Then there exists τ ∈ TF
such that there exists a surjective morphism of BLHF -modules φ : Iτ ։M .

Proof. By Lemma 3.1, there exists ξ ∈ M ′ \ {0} such that Zµ.ξ ∈ F .ξ for all µ ∈ Y . Let
τ ∈ TF be such that ξ ∈M(τ). Then we conclude with Proposition 3.7.

Remark 3.9. Let Z(BLHF) be the center of BLHF . When W v is finite, it is well known
that BLHF is a finitely generated Z(BLHF) module and thus every irreducible representation
of BLHF is finite dimensional. Assume that W v is infinite. Using the same reasoning as in
[AH19, Remark 4.32] we can prove that BLHF is not a finitely generated Z(BLHF)-module.
As we shall see (see Remark 5.11), when F = C, there exist irreducible infinite dimensional
representations of BLHF . However we do not know if there exist an irreducible representation
V of BLHF such that for all x ∈ V \ {0}, F [Y ].x is infinite dimensional or equivalently, a
representation which is not a quotient of a principal series representation.

Proposition 3.10. (see [Kat81, (1.21)]) Let τ ∈ TF and w ∈ W v. Then HomBLHF−mod(Iτ , Iw.τ) 6=
{0}.
Proof. By Proposition 3.5 w.τ ∈ Wt(Iτ ) and we conclude with Lemma 3.6.

3.3 Nontrivial submodules of Iτ are infinite dimensional

In this subsection, we prove that when W v is infinite, then every submodule of Iτ is infinite
dimensional. We then deduce that there can exist an irreducible representation of BLHC such
that V does not embed in any Iτ , for τ ∈ TC.

Lemma 3.11. Assume that W v is infinite. Let w ∈ W v. Then there exists s ∈ S such that
sw > w.

Proof. Let DL(w) = {s ∈ S |sw < w}. By the proof of [BB05, Lemma 3.2.3], S * DL(w),
which proves the lemma.

Proposition 3.12. (compare [Mat77, 4.2.4]) Let τ ∈ TF . Let M ⊂ Iτ be a nonzero HW v,F -
submodule. Then the dimension of M is infinite. In particular, if V is a finite dimensional
irreducible representation of BLHF , then HomF(V, Iτ ) = {0} for all τ ∈ TF .

Proof. Let m ∈ M \ {0}. Let ℓ(m) = max{ℓ(v)|v ∈ supp(m)}. Let w ∈ supp(m) be such
that ℓ(w) = ℓ(m). By Lemma 3.11 there exists (sn) ∈ S Z≥1 such that if w1 = w and
wn+1 = snwn for all n ∈ Z≥1, one has ℓ(wn+1) = ℓ(wn) + 1 for all n ∈ Z≥1. Let m1 = m and
mn+1 = Hsn.mn for all n ∈ Z≥1. Then for all n ∈ Z≥1, wn ∈ max

(
supp(mn)

)
, which proves

that M is infinite dimensional.

As we shall see in Appendix A, there can exist finite dimensional representations of BLHC.

4 Principal series representations of BLHF and HF

In this section, we study principal series representations of HF .
In Subsection 4.1, we prove that when τ ∈ TF , the HF -submodules of Iτ are exactly the

BLHF submodules of Iτ (see Proposition 4.2).
In Subsection 4.2, we study the existence of principal series representations of HF that

do not extend to representations of BLHF .

14



4.1 Principal series representations regarded as modules over HF

One sets Y ∅ = Y , T ∅
F = TF . Let Y + = Y ∩ T (see Subsection 2.1 for the definition

of T ). Let HomMon(Y
+,F) be the set of monoid morphisms from Y + to F and T+

F =
HomMon(Y

+,F) \ {0}. Let η ∈ {∅,+}. If τ ∈ TF , χ ∈ T η
F and M is a F [Y η]-submodule of

Iτ , one sets M(χ,F [Y η]) = {m ∈ M |P.m = χ(P ), ∀P ∈ F [Y η]} and M(χ,F [Y η], gen) =

{m ∈ M |∃k ∈ Z≥0|
(
P − χ(P )Id

)k
.m = 0, ∀P ∈ F [Y η]}. Let Wt(M,F [Y η]) = {τ ∈

T η
F |M(τ,F [Y η]) 6= {0}}.

Lemma 4.1. Let τ ∈ TF . Let M ⊂ Iτ be a finite dimensional F [Y +]-submodule of Iτ . Then
M is an F [Y ]-submodule of Iτ .

Proof. For n ∈ Z≥0 set P(n): “every n-dimensional F [Y +] submodule of Iτ is an F [Y ]-
submodule”. Let n ∈ Z≥0 be such that P(n) is true. Let M ′ be an n + 1-dimensional
F [Y +]-submodule of Iτ .

Assume |Wt(M,F [Y +])| ≥ 2. Let τ1 ∈ Wt(M). Then by a lemma similar to Lemma 3.3,

M =M(τ1,F [Y +], gen)⊕
⊕

τ ′∈Wt(M)\{τ1}

M(τ ′,F [Y +], gen).

Then M(τ1,F [Y +], gen) and
⊕

τ ′∈Wt(M)\{τ1}
M(τ ′,F [Y +], gen) are F [Y +]-submodules of M

and have dimension at most n. Thus M is a F [Y ]-submodule.
Assume that Wt(M) = {τ ′} for some τ ′ ∈ HomGr(Y,F∗). Let x ∈ M \ {0} and k =

min{k′ ∈ Z≥1|(Zλ − τ ′(λ)Id)k
′

= 0, ∀λ ∈ Y +}. Let M ′ = {m ∈ M |(Zλ − τ ′(λ)Id)k−1.m =
0, ∀λ ∈ Y +}. Then M ′ is a proper F [Y +]-submodule of M and thus it is an F [Y ]-submodule.
Let λ ∈ Y +. Then (Zλ−τ ′(λ)Id).x ∈M ′ and hence Zλ.x = τ ′(λ)x+m′

λ, where m′
λ ∈M ′. Let

µ ∈ Y and ν ∈ Cv
f ∩ Y (see Subsection 2.1 for the definition of Cv

f ) be such that µ+ ν ∈ Y +.

Then x = 1
τ ′(ν)

(Zν .x−m′
ν) and thus Zµ.x = Zµ. 1

τ ′(ν)
(Zν .x−m′

ν) =
1

τ ′(ν)
(Zµ+ν .x−Zµ.m′

ν) ∈ M .

Therefore M is an F [Y ]-submodule of Iτ , which proves the lemma.

Proposition 4.2. Let τ ∈ TF and M ⊂ Iτ . Then M is an HF -submodule of Iτ if and only
if M is a BLHF -submodule of Iτ . In particular, Iτ is irreducible as a BLHF -module if and
only if Iτ is irreducible as an HF -module.

Proof. Let M ⊂ Iτ be a HF -submodule. Then M is an F [Y +] submodule of Iτ . Thus
M =

∑
x∈M F [Y +].x and by Lemma 4.1, M is an F [Y ]-submodule of Iτ . As BLHF is

generated as an algebra by HF and F [Y ], we deduce the proposition.

4.2 Degenerate principal series representations of HF

Let τ : Y + → F be a monoid morphism. Then τ induces an algebra morphism τ : F [Y +] → F
and thus this defines a representation I+τ = IndHF (τ) = HF ⊗F [Y +] F . Then if I+τ is not
the restriction of a representations of BLHF we call I+τ a degenerate principal series

representation of HF . In this section we study the existence of degenerate principal series
representation of HF . We prove that in some cases - for example when HF is associated
with an affine root generating system or to a size 2 Kac-Moody matrix - there exists no
degenerate principal series representations of HF (see Lemma 4.5). We prove that there exist
Kac-Moody matrices such that there exist degenerate principal series representations of HF

(see Lemma 4.9).
Let resY + : HomMon(Y,F) → HomMon(Y

+,F) be defined by resY +(τ) = τ|Y + for all
τ ∈ HomMon(Y,F).
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Lemma 4.3. The map resY + : HomGr(Y,F∗) = HomMon(Y,F∗) → HomMon(Y
+,F∗) is a

bijection.

Proof. Let τ ∈ HomMon(Y,F∗). Let ν ∈ Cv
f . Let λ ∈ Y and n ∈ Z≥0 be such that λ+nν ∈ T .

Then τ(λ) = τ(λ+nν)
τ(nν)

and thus res|Y + is injective.

Let τ+ ∈ HomMon(Y
+,F∗). Let λ ∈ Y . Write λ = λ+ − λ−, with λ+, λ− ∈ Y +. Set

τ(λ) = τ+(λ+)
τ+(λ−)

, which does not depend on the choices of λ− and λ+. Then τ ∈ HomMon(Y,F∗)

is well defined and res|Y +(τ) = τ+, which finishes the proof.

Lemma 4.4. Let τ ∈ HomMon(Y
+,F) and χ ∈ TF .

1. Suppose HomHF−mod(I
+
τ , Iχ) 6= {0}. Then there exists w ∈ W v such that τ = w.χ|Y +.

2. Suppose HomHF−mod(Iχ, I
+
τ ) 6= {0}. Then there exists w ∈ W v such that τ = w.χ|Y +.

Proof. ( 1) Let φ ∈ HomHF−mod(I
+
τ , Iχ) \ {0}. Let x = φ(1 ⊗τ+ 1). Then Zλ.x = τ(λ).x for

all λ ∈ Y +. By Lemma 2.8, Zλ.x 6= 0 for all λ ∈ Y +. Thus τ(λ) 6= 0 for all λ ∈ Y +.

Let µ ∈ Y . Let ν ∈ Cv
f ∩ Y be such that µ + ν ∈ Y +. Then Zµ.x = τ(µ+ν)

τ(ν)
.x. Therefore

there exists χ′ ∈ TF such that x ∈ Iχ(χ
′). By Lemma 3.3, χ′ ∈ W v.χ. Moreover, χ′

|Y + = τ ,

which proves (1).
(2) Let φ ∈ HomHF−mod(Iχ, I

+
τ ) \ {0}. Let x = φ(1 ⊗χ 1). Then Zλ.x = χ(λ).x for all

λ ∈ Y +. By a lemma similar to Lemma 3.3 we deduce that χ|Y + ∈ W v.τ , which proves the
lemma.

One has HomMon

(
Y, (F , .)

)
= HomGr(Y,F∗) ∪ {0}. Set Ain =

⋂
s∈S

ker(αs). Let T̊ be
the interior of the Tits cone.

Lemma 4.5. Let τ+ ∈ HomMon

(
Y, (F , .)

)
. Assume that there exists λ ∈ Y + such that

τ+(λ) = 0. Then τ+(T̊ ∩Y ) = {0}. In particular, if T = T̊ ∪Ain, then HomMon

(
Y +, (F , .)

)
=

HomMon(Y,F∗) ∪ {0}.

Proof. Let µ ∈ T̊ ∩ Y . Then for n ≫ 0, nµ ∈ λ + T . Indeed, nµ − λ = n(µ − λ
n
) ∈ T for

n≫ 0. Hence τ+(nµ) = (τ+(µ))n = 0.

A face F v ⊂ T is called spherical if its fixer in W v is finite.

Remark 4.6. 1. If A is associated to an affine Kac-Moody matrix, then T = T̊ ∪Ain (see
[Héb18, Corollary 2.3.8] for example).

2. If A is associated to a size 2 indefinite Kac-Moody matrix, then T = T̊ ∪Ain. Indeed, by
[Rém02, Théorème 5.2.3 ], T̊ is the union of the spherical vectorial faces. By [Rou11,
1.3], if J ⊂ S and w ∈ W v, the fixer of w.F v is w.W v(J).w−1. Therefore the only
non-spherical face of T is Ain and hence T = T̊ ∪ Ain.

3. Let A = (ai,j)i,j∈J1,3K be a Kac-Moody matrix such that for all i 6= j, ai,jaj,i ≥ 4. Then by
[Kum02, Proposition 1.3.21], W v is the free group with 3 generators s1, s2, s3 of order
2. Thus for all J ⊂ S such that |J | = 2, F v(J) is non-spherical. Hence T ) T̊ ∪Ain.
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4.2.1 Construction of an element of HomMon(Y
+,F) \ HomMon(Y,F)

We now prove that there exist Kac-Moody matrices for which HomMon(Y
+,F) 6= HomMon(Y,F).

Assume that A is associated to an invertible indefinite size 3 Kac-Moody matrix (see [Kac94,
Theorem 4.3] for the definition of indefinite). Then one has A = A′ ⊕ Ain, where A′ =⊕

i∈I Rα
∨
i . Maybe considering A/Ain, we may assume that Ain = {0}.

Recall that T is the disjoint union of the positive vectorial faces of A.

Lemma 4.7. Assume that there exists a non-spherical vectorial face F v 6= {0}. Let x ∈ T
and y ∈ T \ F v. Then [x, y] ∩ F v ⊂ {x}.

Proof. Assume that y ∈ T̊ . Then (x, y] ⊂ T̊ and thus [x, y] ∩ F v ⊂ {x}.
Assume that y /∈ T̊ . For a ∈ T , we denote by F v

a the vectorial face of T containing a. If
F v
x = F v

y , then [x, y] ⊂ F v
x . As F v

y 6= F v, we deduce that [x, y] ∩ F v = ∅. We now assume
that F v

x 6= F v
y . As W v is countable, the number of positive vectorial faces is countable and

thus there exist u 6= u′ ∈ [x, y] such that F v
u = F v

u′ . Then the dimension of the vector space
spanned by F v

u is at least 2. Thus there exists w ∈ W v such that F v
u = w.F v(J), for some

J ⊂ S such that |J | ≤ 1. Then the fixer of F v
u is w.WJ .w

−1, where WJ = 〈J〉. Then WJ

is finite and thus F v
u is spherical. Consequently, (x, y) = (x, u] ∪ [u, y) ⊂ T̊ and the lemma

follows.

Lemma 4.8. Assume that there exists a non-spherical vectorial face F v 6= {0}. Then T \F v

and T \ {0} are convex.

Proof. Let x, y ∈ T \ F v. Suppose that [x, y] ∩ F v 6= ∅. By Lemma 4.7, y ∈ F v = F v ∪ {0}
and hence y = 0. Let F v

x be the vectorial face containing x. Then [x, y) ⊂ F v
x and hence

[x, y) ∩ F v = ∅: a contradiction. Thus T \ F v is convex.
By [GR14, 2.9 Lemma], there exists a basis (δs)s∈S of

⊕
s∈S

Rα∨
s such that δs(T ) ≥ 0

for all s ∈ S . Thus T \ {0} is convex and hence T \ F v = T \ F v ∩ T \ {0} is convex.

Lemma 4.9. Assume that A is associated to an indefinite Kac-Moody matrix of size 3 such
that there exists a non-spherical face different from Ain. Assume moreover that (α∨

s )s∈S is a
basis of A. Then HomMon

(
Y +, (F , .)

)
) HomMon

(
Y +,F∗

)
∪ {0}.

Proof. Let τ+ = 1F v : T → F . Let us prove that τ+ ∈ HomMon

(
T , (F , .)

)
.

Let x, y ∈ T . If x, y ∈ T \ F v, then x+ y = 2.1
2
(x+ y) ∈ T \ F v by Lemma 4.8 and thus

τ+(x+ y) = 0 = τ+(x)τ+(y).
Suppose x ∈ F v and y ∈ T \ F v, then x+ y = 2.1

2
(x+ y) ∈ T \ F v by Lemma 4.7. Thus

τ+(x+ y) = 0 = τ+(x)τ+(y).
Suppose x = {0} and y ∈ T \ F v. Let F v

y be the vectorial face containing y. Then
(x, y] ⊂ F v

y and hence x + y ∈ F v
y : τ+(x + y) = 0 = τ+(x)τ+(y). Consequently, τ+ ∈

HomMon

(
T , (F , .)

)
.

Maybe considering w.F v, for some w ∈ W v, we can assume F v ⊂ Cv
f . Then there exist

s1, s2, s3 ∈ S such that S = {s1, s2, s3} and F v = α−1
s1
({0}) ∩ α−1

s2
({0}) ∩ α−1

s3
(R∗

+). Let
λ ∈ A be such that αs1(λ) = αs2(λ) = 0 and αs3(λ) = 1. There exists n ∈ Z≥1 such that
λ ∈ 1

n
Y . Thus τ+|Y + ∈ HomMon

(
Y +, (F , .)

)
\ (HomMon

(
Y +,F∗

)
∪ {0}).

5 Study of the irreducibility of Iτ

In this section, we study the irreducibility of Iτ .
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In Subsection 5.1, we describe certain intertwining operators between Iτ and Is.τ , for s ∈
S and τ ∈ TF . For this, we introduce elements Fs ∈ BLH(TF) such that Fs(χ)⊗χ 1 ∈ Iχ(s.χ)
for all χ ∈ TF for which this is well defined.

In Subsection 5.2, we establish that the condition (2) appearing in Theorems 1, 2 and 3
is a necessary condition for the irreducibility of Iτ . This conditions comes from the fact that
when Iτ is irreducible, certain intertwinners have to be isomorphisms.

In Subsection 5.3, we prove an irreducibility criterion for Iτ involving the dimension of Iτ
and the values of τ (see Theorem 5.8). We then deduce Matsumoto criterion.

In Subsection 5.4 we introduce and study, for every w ∈ W v, an element Fw ∈ BLH(TF )
such that Fw(χ)⊗χ 1 ∈ Iχ(w.χ) for every χ ∈ TC for which this is well defined.

In Subsection 5.5 we prove one implication of Kato’s criterion (see Proposition 5.17).
The definition we gave for Iτ is different from the definition of Matsumoto (see [Mat77,

(4.1.5)]). It seems to be well known that these definitions are equivalent. We justify this
equivalence in Subsection 5.6. We also explain why it seems difficult to adapt Kato’s proof
in our framework.

5.1 Intertwining operators associated with simple reflections

Let s ∈ S . In this subsection we define and study an element Fs ∈ BLH(TF) such that
Fs(χ)⊗χ 1 ∈ Iχ(s.χ) for all χ such that Fs(χ) is well defined.

Let s ∈ S and Ts = σsHs. Let w ∈ W v and w = s1 . . . sk be a reduced writing. Set
Tw = Ts1 . . . Tsk . This is independent of the choice of the reduced writing by [BPGR16, 6.5.2].

Set Bs = Ts − σ2
s ∈ HW v,F . One has B2

s = −(1 + σ2
s)Bs. Let ζs = −σsQs(Z) + σ2

s ∈
F(Y ) ⊂ BLH(TF ). When σs = σ′

s =
√
q for all s ∈ S , we have ζs =

1−qZ−α∨
s

1−Z−α∨
s

∈ F(Y ). Let

Fs = Bs + ζs ∈ BLH(TF).
Let α∨ ∈ Φ∨. Write α∨ = w.α∨

s for w ∈ W v and s ∈ S . We set ζα∨ = (ζs)
w.

Let α∨ ∈ Φ∨. Write α = w.α∨
s , with w ∈ W v and s ∈ S . We set σα∨ = σs and

σ′
α∨ = w.σ′

s. This is well defined by Lemma 2.4 and by the relations on the σt, t ∈ S (see
Subsection 2.3).

The ring F [Y ] is a unique factorization domain. For α∨, write ζα∨ =
ζnum
α∨

ζden
α∨

where

ζnumα∨ , ζdenα∨ ∈ C[Y ] are pairwise coprime. For example if α∨ ∈ Φ∨ is such that σα∨ = σ′
α∨ we can

take ζdenα∨ = 1−Z−α∨

and in any case we will choose ζdenα∨ among {1−Z−α∨

, 1+Z−α∨

, 1−Z−2α∨}.
Remark 5.1. Let τ ∈ TF and r = rα∨ ∈ R. Suppose that r.τ 6= τ . Then ζdenα∨ (τ) 6= 0.
Indeed, let λ ∈ Y be such that τ(r.λ) 6= τ(λ). Then τ(r.λ − λ) = τ(α∨

r )
αr(λ) 6= 1. Suppose

σα∨ = σ′
α∨, then ζdenα∨ = 1 − Z−α∨

r and thus τ(ζdenα∨ ) 6= 0. Suppose σr = σ′
r. Then αr(λ) ∈ 2Z

thus τ(α∨
r ) /∈ {−1, 1} and hence τ(ζdenα∨ ) 6= 0.

Lemma 5.2. Let s ∈ S and θ ∈ C(Y ). Then

θ ∗ Fs = Fs ∗ θs.

In particular, for all τ ∈ TF such that τ(ζdens ) 6= 0, Fs(τ) ⊗τ 1 ∈ Iτ (s.τ) and Fs(τ) ⊗s.τ 1 ∈
Is.τ(τ).

Proof. Let λ ∈ Y . Then

Zλ ∗Bs − Bs ∗ Zs.λ =σs(Z
λ ∗Hs −Hs ∗ Zs.λ) + σ2

s(Z
s.λ − Zλ)

=− σsQs(Z)(Z
sλ − Zλ) + σ2

s (Z
s.λ − Zλ)

=ζs(Z
s.λ − Zλ).
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Thus Zλ ∗ Fs = Zλ ∗ (Bs + ζs) = Fs ∗ Zs.λ and hence θ ∗ Fs = Fs ∗ θs for all θ ∈ C[Y ].
Let θ ∈ C[Y ] \ {0}. Then θ ∗ (Fs ∗ 1

θs
) = Fs and thus 1

θ
∗Fs = Fs ∗ 1

θs
. Lemma follows.

Lemma 5.3. Let s ∈ S . Then F 2
s = ζsζ

s
s ∈ F(Y ) ⊂ BLH(TF).

Proof. By Lemma 5.2, one has:

F 2
s = (Bs+ζs)∗Fs = Bs∗Fs+Fs∗ζss = B2

s+Bsζs+Bsζ
s
s+ζsζ

s
s = Bs(−1−σ2

s+ζs+ζ
s
s )+ζsζ

s
s = ζsζ

s
s .

5.2 A necessary condition for irreducibility

In this subsection, we establish that the condition (2) appearing in Theorems 1, 2 and 3 is a
necessary condition for the irreducibility of Iτ .

Recall the definition of Υ from Subsection 3.2.

Lemma 5.4. Let τ ∈ TF and s ∈ S be such that τ(ζdens )τ((ζdens )s) 6= 0. Let φ(τ, s.τ) =
ΥFs(τ)⊗s.τ 1 : Iτ → Is.τ and φ(s.τ, τ) = ΥFs(τ)⊗τ 1 : Is.τ → Iτ . Then

φ(s.τ, τ) ◦ φ(τ, s.τ) = τ(ζsζ
s)IdIτ and φ(τ, s.τ) ◦ φ(s.τ, τ) = τ(ζsζ

s)IdIs.τ .

Proof. By Lemma 5.2 and Lemma 3.6, φ(s.τ, τ) and φ(τ, s.τ) are well defined. Let f =
φ(s.τ, τ) ◦ φ(τ, s.τ) ∈ EndBLHF−mod(Iτ ). Then by Lemma 5.2 and Lemma 5.3:

f(1⊗τ 1) = φ(s.τ, τ)
(
Fs(τ)⊗s.τ 1

)
= Fs(τ).φ(s.τ, τ)

(
1⊗s.τ 1

)
= Fs(τ)

2 ⊗τ 1 = τ(ζsζ
s
s )⊗τ 1.

By symmetry, we get the lemma.

Let UF be the set of τ ∈ TF such that for all α∨ ∈ Φ∨, τ(ζnumα∨ ) 6= 0. When σs = σ′
s =

√
q

for all s ∈ S , then UF = {τ ∈ TF |τ(α∨) 6= q, ∀α∨ ∈ Φ∨}.
We assume that for all s ∈ S , σ′

s /∈ {σ−1
s ,−σs,−σ−1

s }. Under this condition, if α∨ ∈ Φ∨

and τ ∈ TF are such that τ(ζdenα∨ ) = 0, then τ(ζnumα∨ ) 6= 0.

Lemma 5.5. 1. Let τ ∈ UF . Then for all w ∈ W v, Iτ and Iw.τ are isomorphic as BLHF -
modules.

2. Let τ ∈ TF be such that Iτ is irreducible. Then τ ∈ UF .

Proof. Let τ ∈ UF . Let w ∈ W v and τ̃ = w.τ . Let s ∈ S . Assume that s.τ̃ 6= τ̃ . Then by
Remark 5.1 and Lemma 5.4, Iτ̃ is isomorphic to Is.τ̃ and (1) follows by induction.

Let τ ∈ TF be such that Iτ is irreducible. Let s ∈ S .
Suppose τ(ζdens ) = 0. Then by assumption, τ(ζnums ) 6= 0. Moreover by Remark 5.1,

Is.τ = Iτ .
Suppose now τ(ζdens ) 6= 0. Then (with the same notations as in Lemma 5.4), φ(s.τ, τ) 6= 0

and Im
(
φ(s.τ, τ)

)
is a BLHF -submodule of Iτ : Im

(
φ(s.τ, τ)

)
= Iτ . Therefore φ(τ, s.τ) ◦

φ(s.τ, τ) 6= 0. Thus by Lemma 5.4, φ(τ, s.τ) is an isomorphism and τ(ζsζ
s
s ) 6= 0. In particular,

τ(ζnums ) 6= 0.
Therefore in any cases, Iτ is isomorphic to Is.τ and τ(ζnums ) 6= 0. By induction we deduce

that Iw.τ is isomorphic to Iτ . Thus Iw.τ is irreducible for all w ∈ W v. Thus w.τ(ζnums ) 6= 0
for all w ∈ W v and s ∈ S , which proves that τ ∈ UF .
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Lemma 5.6. Let τ ∈ TF be such that Iw.τ ≃ Iτ (as a BLHF -module) for all w ∈ W v. Then
for all w ∈ W v, there exists a vector space isomorphism Iτ (τ) ≃ Iτ (w.τ).

Proof. Let w ∈ W v. Then by hypothesis, HomBLHF−mod(Iτ , Iτ ) ≃ HomBLHF−mod(Iw.τ , Iw.τ).
Let φ : Iτ → Iw.τ be a BLHF -module isomorphism. Then φ induces an isomorphism of vector
spaces Iτ (w.τ) ≃ Iw.τ(w.τ). By Lemma 3.6,

Iτ (τ) ≃ HomBLHF−mod(Iτ , Iτ) ≃ HomBLHF−mod(Iw.τ , Iw.τ) ≃ Iw.τ(w.τ) ≃ Iτ (w.τ).

5.3 An irreducibility criterion for Iτ

In this subsection, we give a characterization of irreducibility for Iτ , for τ ∈ TC.
If B is a C-algebra with unity e and a ∈ B, one sets Spec(a) = {λ ∈ C| a−λe is not invertible}.

Recall the following theorem of Amitsur (see Théorème B.I of [Ren10]):

Theorem 5.7. Let B be a C-algebra with unity e. Assume that the dimension of B over C
is countable. Then for all a ∈ B, Spec(a) 6= ∅.

Recall that UC is the set of τ ∈ TC such that for all α∨ ∈ Φ∨, τ(ζnumα∨ ) 6= 0.

Theorem 5.8. Let τ ∈ TC. Then the following are equivalent:

1. Iτ is irreducible,

2. Iτ (τ) = C.1⊗τ 1 and τ ∈ UC,

3. EndBLHC−mod(Iτ ) = C.Id and τ ∈ UC.

Proof. Assume that B = EndBLHC−mod(Iτ ) 6= CId. By Lemma 3.6 and the fact that Iτ
has countable dimension, B has countable dimension. Let φ ∈ B \ CId. Then by Amitsur
Theorem, there exists γ ∈ Spec(φ). Then φ − γId is non-injective or non-surjective and
therefore Ker(φ− γId) or Im(φ− γId) is a non-trivial BLHC-module, which proves that Iτ is
reducible. Using Lemma 5.5 we deduce that (1) implies (3).

By Lemma 3.6, (2) is equivalent to (3).
Let τ ∈ TC satisfying (2). Then by Lemma 5.5 and Lemma 5.6, dim Iτ (w.τ) = 1 for all

w ∈ W v. By Lemma 5.5, for all w ∈ W v, there exists an isomorphism of BLHC-modules
fw : Iw.τ → Iτ . As C.fw(1⊗w.τ 1) ⊂ Iτ (w.τ) we deduce that Iτ (w.τ) = C.fw(1⊗w.τ 1) for all
w ∈ W v.

Let M 6= {0} be a BLHC-submodule of Iτ . Let x ∈ M \ {0}. Then M ′ = C[Y ].x is a
finite dimensional C[Y ]-module. Thus by Lemma 3.1), there exists ξ ∈ M ′ \ {0} such that
Zλ.ξ ∈ C.ξ for all λ ∈ Y . Then ξ ∈ Iτ (τ

′) for some τ ′ ∈ TC. By Lemma 3.3, τ ′ = w.τ , for
some w ∈ W v. Thus ξ ∈ C∗fw(1⊗w.τ 1). One has BLHC.ξ = fw(

BLHC.1⊗w.τ 1) = fw(Iw.τ) =
Iτ ⊂ M . Hence Iτ is irreducible, which finishes the proof of the theorem.

Remark 5.9. Actually, our proof of the equivalence between (2) and (3), and of the fact
that (2) implies (1) is valid when F is a field, without assuming F = C.

Recall that an element τ ∈ TF is called regular if w.τ 6= τ for all w ∈ W v.

Corollary 5.10. (see [Mat77, Théorème 4.3.5] ) Let τ ∈ TF be regular. Then Iτ is irreducible
if and only if τ ∈ UF .
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Proof. By Lemma 5.5, if Iτ is irreducible, then τ ∈ UF .
Assume that τ ∈ UF . Then by Proposition 3.5 (2), dim Iτ (τ) = 1 and we conclude with

Theorem 5.8 and Remark 5.9.

Remark 5.11. Assume that F = C and that σs = σ′
s =

√
q for all s ∈ S , for some q ∈ Z≥2.

Let (yj)j∈J be a Z-basis of Y . Then the map TC → (C∗)J defined by τ ∈ TC 7→ (τ(yj))j∈J is a
group isomorphism. We equip TC with a Lebesgue measure through this isomorphism. Then
the set of measurable subsets of TC having full measure does not depend on the choice of the
Z-basis of Y . Then UC =

⋂
α∨∈Φ∨{τ ∈ TC|τ(α∨) 6= q} has full measure in TC. Moreover

T reg
C ⊃ ⋂

λ∈Y \{0}{τ ∈ TC|τ(λ) 6= 1} has full measure in TC and thus {τ ∈ TC|Iτ is irreducible}
has full measure in TC.

Recall that R = {wsw−1|w ∈ W v, s ∈ S } is the set of reflections of W v. For τ ∈ TC, set
Wτ = {w ∈ W v| w.τ = τ}, Φ∨

(τ) = {α∨ ∈ Φ∨
+|ζdenα∨ (τ) = 0}, R(τ) = {r = rα∨ ∈ R|α∨ ∈ Φ∨

(τ)}
and

W(τ)= 〈R(τ)〉 = 〈{r = rα∨ ∈ R|ζdenα∨ (τ) = 0}〉 ⊂W v.

By Remark 5.1, W(τ) ⊂ Wτ . It is moreover normal in Wτ . When αs(Y ) = Z for all s ∈ S ,
then W(τ)= 〈Wτ ∩ R〉.

Corollary 5.12. Let τ ∈ TF be such that Wτ = W(τ) = {1, t} for some reflection t. Then Iτ
is irreducible if and only if τ ∈ UF .

Proof. By Lemma 5.5, if Iτ is irreducible, then τ ∈ UF . Reciprocally, let τ ∈ UF be such that
Wτ = W(τ) = {1, t}, for some t ∈ R. Write t = v−1sv for s ∈ S and v ∈ W v. Let τ̃ = v.τ .

One has s.τ̃ = τ̃ and Wτ̃ = {1, s}. By Lemma 3.3, Iτ̃ (τ̃ ) ⊂ I≤s
τ̃ .

Let λ ∈ Y . Then Zλ.Hs ⊗τ̃ 1 = τ̃ (λ)Hs ⊗τ̃ 1 + τ̃ (Qs(Z)(Z
λ − Zs.λ))1⊗τ̃ 1.

Suppose σs = σ′
s. Then as W(τ̃ ) = v.W(τ).v

−1 = {1, s}, one has τ̃ (α∨
s ) = 1. By Remark 2.7,

τ̃((Qs(Z)(Z
λ−Zs.λ)) = (σs−σ−1

s )αs(λ). As there exists λ ∈ Y such that αs(λ) 6= 0, we deduce
that Hs ⊗τ̃ 1 /∈ Iτ̃ (τ̃ ) and thus Iτ̃ (τ̃) = F .1⊗τ̃ 1. Similarly, if σs 6= σ′

s then Iτ̃ (τ̃) = F .1⊗τ̃ 1.
By Theorem 5.8 and Remark 5.9, we deduce that Iτ̃ is irreducible. By Lemma 5.5 we deduce
that Iτ is isomorphic to Iτ̃ and thus Iτ is irreducible.

5.4 Weight vectors regarded as rational functions

In this subsection, we introduce and study elements Fw ∈ BLH(TF), w ∈ W v, such that for
all χ ∈ TF such that Fw(χ) is well defined, Fw(χ)⊗χ 1 ∈ Iχ(w.χ).

For w ∈ W v, let πT
w : BLH(TF) → F(Y ) be the right F(Y )-module morphism defined by

πT
w(Tv) = δv,w for all v ∈ W v.

Lemma 5.13. Let F ′ be a uncountable field containing F . Let P ∈ F [Y ] be such that
P (τ) = 0 for all τ ∈ T reg

F ′ . Then P = 0.

Proof. Let F0 ⊂ F be a countable field (one can take F0 = Q or F0 = Fℓ for some prime
power ℓ). Write P =

∑
λ∈Y aλZ

λ, with aλ ∈ F for all λ ∈ Y . Let (yj)j∈J be a Z-basis of Y
and Xj = Zyj for all j ∈ J . Let F1 = F(aλ|λ ∈ Y ). Let (xj)j∈J ∈ (F ′)J be algebraically
independent over F1. Let τ ∈ TF ′ be defined by τ(yj) = xj for all j ∈ J .

Let us prove that τ ∈ T reg
F . Let w ∈ W v \ {1}. Let λ ∈ Y be such that w−1.λ − λ 6= 0.

Write w−1.λ− λ =
∑

j∈J njyj with nj ∈ Z for all j ∈ J . Let Q =
∏

j∈J Z
nj

j ∈ F1[Zj, j ∈ J ].

Then Q 6= 1 and thus τ(w−1.λ − λ) = Q((xj)j∈J) 6= 1. Thus w.τ 6= τ and τ ∈ T reg
F ′ . Thus

P (τ) = 0 and by choice of (xj)j∈J this implies P = 0.
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Let w ∈ W v. Let w = s1 . . . sr be a reduced expression of w. Set Fw = Fsr . . . Fs1 =
(Bsr + ζsr) . . . (Bs1 + ζs1) ∈ BLH(TF ). By the lemma below, this does not depend on the
choice of the reduced expression of w.

Lemma 5.14. (see [Ree97, Lemma 4.3]) Let w ∈ W v.

1. The element Fw ∈ BLH(TF ) is well defined, i.e it does not depend on the choice of a
reduced expression for w.

2. One has Fw − Tw ∈ BLH(TF)
<w.

3. If θ ∈ F(Y ), then θ ∗ Fw = Fw ∗ θw−1
.

4. If τ ∈ TF is such that ζβ∨ ∈ F(Y )τ for all β∨ ∈ NΦ∨(w), then Fw ∈ BLH(TF)τ and
Fw(τ).1 ⊗τ 1 ∈ Iτ (w.τ).

5. Let τ ∈ T reg
F . Then Fw ∈ BLH(TF )τ .

Proof. Let us prove (4) by induction on ℓ(w). By Lemma 5.2, θ ∗ Fw = Fw ∗ θw−1
for all

θ ∈ F(Y ). Let n ∈ Z≥0 and assume that (4) is true for all w ∈ W v such that ℓ(w) ≤ n. Let
w ∈ W v be such that ℓ(w) ≤ n+1. Write w = sv, with s ∈ S and ℓ(v) ≤ n. By Lemma 2.4,
NΦ∨(sv) = NΦ∨(v) ∪ {v−1.α∨

s }. Let τ ∈ TF be such that be such that ζα∨ ∈ F(Y )τ for all
α∨ ∈ NΦ∨(w). One has Fw = (Bs + ζs) ∗ Fv. As Fv ∈ BLH(TF)τ and BLH(TF)τ is a left
HW v,F -submodule of BLH(TF ), Bs ∗Fv ∈ BLH(TF)τ . One has ζs ∗Fv = Fv ∗ ζv−1

s ∈ BLH(TF)τ
and hence Fw ∈ BLH(TF)τ .

Let τ ∈ TF be such that ζα∨ ∈ F(Y )τ for all α∨ ∈ NΦ∨(w). Let θ ∈ F [Y ]. Then
(θ ∗ Fw)(τ) = (Fw ∗ θw−1

)(τ) = τ(θw
−1
)τ(Fw(τ)), which finishes the proof of (4).

Let τ ∈ T reg
F and α∨ ∈ Φ∨. Write α∨ = w.α∨

s for w ∈ W v and s ∈ S . Then s.w−1.τ 6=
w−1.τ and by Remark 5.1, w−1.τ(ζdens ) 6= 0 or equivalently τ(ζdenα∨ ) 6= 0. By (4) we deduce
that Fw ∈ BLH(TF)τ for all τ ∈ T reg

F , which proves (5).
Let us prove (2). Let v ∈ W v be such that h := Fv −Tv ∈ BLH(TF)

<v and s ∈ S be such
that sv > v. Then

Fsv = (Ts − σ2
s + ζs) ∗ (Tv + h) = Tsv + (−σ2

s + ζs) ∗ Tv + (−σ2
s + ζs) ∗ h+ Ts ∗ h.

By Lemma 2.8, (−σ2
s + ζs) ∗ Tv, (−σ2

s + ζs) ∗ h ∈ BLH(TF)
≤v. By [Kum02, Corollary 1.3.19],

s.[1, v) ⊂ [1, sv) and thus Ts ∗ h ∈ BLH(TF)
<sw thus Fsv − Tsv ∈ BLH(TF )

<sv. By induction
we deduce (2).

Let w = s1 . . . sr = s′1 . . . s
′
r be reduced expressions of w. Let Fw be associated to s1 . . . sr

and F ′
w be associated to s′1 . . . s

′
r. Let F ′ be a uncountable field containing F . Then by

Proposition 3.5 (2), for all τ ∈ T reg
F ′ there exists θ(τ) ∈ F ′∗ such that Fw(τ) = θ(τ)F ′

w(τ).

Let v ∈ W v be such that πv(F ′
w) 6= 0 and θv = πH

v (Fw)
πH
v (F ′

w)
∈ F(Y ). Then θv(τ) = θ(τ) for all

τ ∈ T reg
F ′ . But by (2), θ(τ) = 1 for all τ ∈ T reg

F ′ . Thus by Lemma 5.13, θ = 1 = θv and
F ′
w = Fw.

Remark 5.15. 1. When σs = σ′
s for all s ∈ S , the condition (4) is equivalent to τ(β∨) 6=

1 for all β∨ ∈ NΦ∨(w).
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5.5 One implication of Kato’s criterion

Recall the definition of W(τ) from Subsection 5.3.
In this subsection, we prove that if Iτ is irreducible, then Wτ =W(τ).

Lemma 5.16. Let τ ∈ TC be such that Wτ 6= W(τ). Let w ∈ Wτ \W(τ) be of minimal length.
Then Fw ∈ BLH(TF )τ .

Proof. Write w = sk . . . s1, where k = ℓ(w) and s1, . . . , sk ∈ S . Let j ∈ J0, k − 1K. Set
wj = sj . . . s1. Suppose that wj.ζ

den
sj+1

(τ) = 0. Then rwj .α∨
sj+1

= s1 . . . sjsj+1sj . . . s1 ∈ W(τ).

Moreover as W(τ) ⊂Wτ , we have sj+1 . . . s1.τ = sj . . . s1.τ . Therefore

τ = w.τ = sk . . . sj . . . s1.τ = sk . . . ŝj+1 . . . s1.τ,

and w′ = sk . . . ŝj+1 . . . s1 ∈ Wτ . By definition of w, w′ ∈ W(τ). Consequently

w = sk . . . ŝj+1 . . . s1.s1 . . . sj.sj+1.sj . . . s1 = w′rwj .α∨
sj+1

∈ W(τ) :

a contradiction. Therefore wj .ζ
den
sj+1

(τ) 6= 0 and by Lemma 2.4 and Lemma 5.14, Fw ∈
BLH(TF)τ .

Proposition 5.17. Let τ ∈ TC be such that Wτ 6=W(τ). Then Iτ is reducible.

Proof. Let w ∈ Wτ \ W(τ) be of minimal length. Then by Lemma 5.16 and Lemma 5.14,
Fw(τ) ⊗τ 1 ∈ Iτ (τ). Moreover, πT

w

(
Fw(τ) ⊗τ 1

)
= 1 and thus Fw(τ) ⊗τ 1 /∈ C1 ⊗τ 1. We

conclude with Theorem 5.8.

5.6 Link with the works of Matsumoto and Kato

Assume that W v is finite. Then HC = BLHC. Let τ ∈ TC. Then by Subsection 2.4,
dimC Iτ = |W v|. One has Zλ.1⊗τ 1 = τ(λ)1⊗τ 1 for all λ ∈ Y and HC.1⊗τ 1 = Iτ . Thus by
[Mat77, Théorème 4.1.10] the definition we used is equivalent to Matsumoto’s one.

Assume that HC is associated with a split reductive group over a field with residue cardinal
q. Then by (BL2), one has:

∀ s ∈ S , ∀ w ∈ W v, Ts ∗ Tw =

{
Tsw if ℓ(sw) = ℓ(w) + 1

(q − 1)Tw + qTsw if ℓ(sw) = ℓ(w)− 1.

Set 1′τ =
∑

w∈W v Tw ⊗τ 1. Then if s ∈ S , Ts.1
′
τ = q1′τ . Then by [Kat81, (1.19)], 1′τ

is proportional to the vector 1τ defined in [Kat81]. Kato proves Theorem 1 by studying
whether the following property is satisfied: “for all w ∈ W v, HC.1

′
w.τ = Iw.τ ” (see [Kat81,

Lemma 2.3]). When W v is infinite, we do not know how to define an analogue of 1′τ and thus
we do not know how to adapt Kato’s proof.

6 Description of generalized weight spaces

In this section, we describe Iτ (τ, gen), when τ ∈ TC is such that W(τ)= Wτ . We then deduce
Kato’s criterion for size 2 matrices.

Let us sketch our proof of this criterion. By Theorem 5.8 and Proposition 5.17, it suffices
to study Iτ (τ) when τ ∈ UC is such that Wτ = W(τ). For this, we begin by describing
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Iτ (τ, gen). Let τ ∈ TC satisfying the above condition. By Dyer’s theorem, (W(τ),Sτ ) is a
Coxeter system, for some Sτ ⊂ W(τ). Let r ∈ Sτ . We study the singularity of Fr at τ ,
that is, we determine an (explicit) element θ ∈ C(Y ) such that Fr − θ is defined at τ (see
Lemma 6.20). Using this, we then describe Iτ (τ, gen). We then deduce that when Wτ = W(τ)

is the infinite dihedral group then Iτ (τ) is irreducible. After classifying the subgroups of the
infinite dihedral group (see Lemma 6.39), we deduce Kato’s criterion for size 2 matrices.

In Subsection 6.1, we study the torus TC.
In Subsection 6.2, we introduce a new basis of HW v,C which enables us to have information

on the poles of the coefficients of the Fw.
In Subsection 6.3, we give a recursive formula which enables us to have information on

the poles of the coefficients of the Fw.
In Subsection 6.4, we study the singularity of Fr at τ , for r ∈ Sτ .
In Subsection 6.5, we give a description of Iτ (τ, gen), when Wτ =W(τ).
In Subsection 6.6, we prove that when Wτ = W(τ) is the infinite dihedral group and τ ∈ UC,

then Iτ is irreducible.
In Subsection 6.7, we prove Kato’s criterion for size 2 Kac-Moody matrices.

This section is strongly inspired by [Ree97].

In certain proofs, when F = C, we will make additional assumptions on the σs and σ′
s,

s ∈ S . To avoid these assumptions, we can assume that σs, σ
′
s ∈ C and |σs| > 1, |σ′

s| > 1 for
all s ∈ S .

6.1 The complex torus TC

We assume that |σs| ∈ R>1 for all s ∈ S . Let (yj)j∈J be a Z-basis of Y . The map TC → (C∗)J

mapping each τ ∈ TC on (τ(yj))j∈J is a bijection. We identify TC and (C∗)J . We equip TC
with the usual topology on (C∗)J . This does not depend on the choice of a basis (yj)j∈J .

Lemma 6.1. The set {τ ∈ TC|∀(w, λ) ∈ W v \ {1} × (Cv
f ∩ Y ), w.τ(λ) 6= τ(λ)} is dense in

TC. In particular, T reg
C is dense in TC.

Proof. Let λ ∈ Cv
f ∩ Y . By [Bou81, V.Chap 4 §6 Proposition 5], for all w ∈ W v \ {1},

w.λ 6= λ. Let (γj)j∈J ∈ (C∗)J be algebraically independent over Q and τγ ∈ TC be defined
by τγ(yj) = γj for all j ∈ J . Then w.τγ(λ) 6= τγ(λ) for all w ∈ W v \ {1}. Let τ ∈ TC. Let

(γ(n)) ∈
(
(C∗)J

)Z≥0 be such that γ(n) is algebraically independent over Q for all n ∈ Z≥0 and

such that γ(n) → (τ(yj))j∈J . Then τγ(n) → τ and we get the lemma.

Let A ⊂ R be a ring. We set Q∨
A =

⊕
s∈S

Aα∨
s ⊂ A.

Lemma 6.2. Let (γs) ∈ (C∗)S . Then there exists τ ∈ TC such that τ(α∨
s ) = γs for all s ∈ S .

Proof. Let us prove that there exists n ∈ Z≥1 such that 1
n
Q∨

Z ⊃ Y ∩Q∨
Q. The module Y ∩Q∨

Q

is a Z-submodule of the free module Y . Thus it is a free module and its rank is lower or
equal to the rank of Y . Let (yj)j∈J be a Z-basis of Y ∩Q∨

Q. As α∨
s ∈ Y ∩Q∨

Q for all s ∈ S ,
we have we have vectQ(Y ∩Q∨

Q) = Q∨
Q. Therefore for all j ∈ J , there exists (mj,s) ∈ QS such

that yj =
∑

j∈J mj,sα
∨
s and thus there exists n ∈ Z≥1 such that 1

n
Q∨

Z ⊃ Y ∩Q∨
Q.

Let S be a complement of Y ∩ Q∨
Q in Y ⊗ Q. For s ∈ S , choose γ

1
n
s ∈ C∗ such that

(γ
1
n
s )n = γs. Let τ̃ : 1

n
Q∨

Z ⊕ S → C∗ be defined by τ̃(
∑

s∈S

as
n
α∨
s + x) =

∏
s∈S

(γ
1
n
s )as for all

(as) ∈ ZS and x ∈ S. Let τ = τ̃|Y . Then τ ∈ TC and τ(α∨
s ) = γs for all s ∈ S .
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6.2 A new basis of HW v,C

Following [Ree97, 5], we now define a new basis (Bw)w∈W v of HW v,C which has “good proper-
ties” with respect to multiplication (see Lemma 6.6). This will enable us to have information
on the coefficient πH

1 (Fw) ∈ C(Y ), for w ∈ W v (see Lemma 6.7 and Lemma 6.20). In the split
reductive case, we could use the Kazhdan-Lusztig basis of HW v,C. In the general Kac-Moody
case however, there is up to now no Kazhdan-Lusztig basis of HW v,C.

Let τ, τ ′ ∈ TC and x ∈ Iτ ′(τ). Let Υτ,τ ′

x be the BLHC-modules morphism from Iτ to Iτ ′
sending h.1⊗τ 1 to h.x for all h ∈ BLHC. This is well defined by Lemma 3.6.

Lemma 6.3. Let v ∈ W v, s ∈ S be such that vs > v and τ ∈ T reg
C . Then:

Fvs(s.τ) = Fv(s.τ) ∗ Fs(τ) ∈ HW v,C.

Proof. By Lemma 5.14 (5), Fvs(s.τ), Fv(s.τ) and Fs(τ) are well defined.
Let τ̃ = s.τ . By Lemma 5.14 x := Fv(τ̃) ∈ Iτ̃ (v.τ̃), y := Fs(τ̃) ∈ Iτ (τ̃ ) and z :=

Fvs(τ)⊗τ 1 ∈ Iτ (vs.τ). We have the following diagram:

Ivs.τ = Iv.τ̃
Υv.τ̃ ,τ̃

x
//

Υv.τ̃ ,τ
z

22Iτ̃
Υτ̃ ,τ

y
// Iτ .

By Proposition 3.5 (2), Υτ̃ ,τ
y ◦Υv.τ̃ ,τ̃

x ∈ CΥvs.τ,τ
z . By evaluating at 1⊗vs.τ 1 we deduce that

Fv(s.τ) ∗ Fs(τ) ∈ CFvs(s.τ). Moreover πT
vs(Fv(s.τ) ∗ Fs(τ)) = 1 = πT

vs(Fvs(τ) ⊗τ 1), which
proves the lemma.

Lemma 6.4. Let w ∈ W v and s ∈ S be such that ws > w. Let mBs
: H≤ws

W v,C → H≤ws
W v,C be

the right multiplication by Bs. Then mBs
is well defined, diagonalizable and its eigenvalues

are −(1 + σ2
s ) and 0, both with multiplicity |[1,ws]|

2
.

Proof. Let v ∈ [1, ws]. Then by [Kum02, Corollary 1.3.19], vs ≤ max(w,ws) = ws. Thus
H≤ws

W v,C ∗Hs ⊂ H≤ws
W v,C and hence mBs

is well defined.

We have H≤ws
W v,C = H≤w

W v,C ∗ H≤s
W v,C and H≤s

W v,C = CBs ⊕ C(Ts + 1) and thus H≤ws
W v,C =

H≤w
W v,C ∗Bs +H≤w

W v,C ∗ (Ts + 1). The families (Tv ∗ Bs)v<vs≤ws and (Tv ∗ (Ts + 1))v<vs≤ws are

bases of H≤w
W v,C ∗Bs and H≤w

W v,C ∗ (Ts+1). Moreover, B2
s = −(1+σ2

s)Bs and (Ts+1)∗Bs = 0,
which proves the lemma.

Lemma 6.5. Let τ ∈ TC be such that |τ(α∨
s )| > 1 for all s ∈ S . Then τ ∈ T reg

C .

Proof. Let w ∈ W v \{1}. Let λ ∈ Cv
f ∩Y . By [Bou81, V.Chap 4 §6 Proposition 5] w−1.λ 6= λ

and by [GR14, Lemma 2.4 a)], w−1.λ−λ ∈ (
⊕

s∈S
Z≤0α

∨
s )\{0}. Thus |w.τ(λ)

τ(λ)
| < 1 and hence

w.τ 6= τ .

Lemma 6.6. There exists a basis (Bw)w∈W v of HW v,C such that :

1. Bs = Ts − σ2
s for all s ∈ S ,

2. Bw − Tw ∈ H<w
W v,C for all w ∈ W v,

3. For all w ∈ W v and s ∈ S we have:

BwBs =





− (1 + σ2
s )Bw if ws < w

Bws +
∑

vs<v<w

b(v, w)Bv if ws > w,

for some b(v, w) ∈ C.
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Proof. Let τ0 ∈ TC be such that τ0(α
∨
s ) = σs for all s ∈ S , whose existence is provided

by Lemma 6.2. For all s ∈ S , |τ0(α∨
s )| > 1 and thus by Lemma 6.5, τ0 is regular. By

Lemma 5.14, Bw := Fw(τ0) is well defined for all w ∈ W v. Then (Bw)w∈W v satisfies (1) and
(2).

Let w ∈ W v and s ∈ S be such that ws < w. By Lemma 6.3, one has

Bw = Fw(τ0) = Fws(s.τ0) ∗ Fs(τ0) = Fws(s.τ0) ∗Bs.

Moreover, B2
s = −(1 + σ2

s )Bs and thus Bw ∗Bs = −(1 + σ2
s)Bw, hence (3) holds in this case.

Let w ∈ W v and s ∈ S be such that ws > w. By (2), H≤ws
W v,C =

⊕
v∈[1,ws]CBs. By

Lemma 6.4 and the first part of (3), if h ∈ H≤ws
W v,C is such that h ∗ Bs = −(1 + σ2

s)h, then

h ∈ ⊕
vs<v<wsBv. Thus Bw ∗ Bs − Bws ∈

⊕
vs<v≤w Bv. Moreover, πT

ws(Bw ∗ Bs − Bws) = 0,
and therefore Bw ∗Bs − Bws ∈

⊕
vs<v<w Bv, which concludes the proof of the lemma.

As (Bw)w∈W v is a C-basis of HW v,C, (Bw)w∈W v is a C(Y )-basis of the right module
BLH(TC).

Let w ∈ W v. Write Fw =
∑

v∈W v Bvpv,w, where (pv,w) ∈ C(Y )(W
v). By an induction on

ℓ(w) using Lemma 6.6 (2) we have
⊕

v≤wHvC(Y ) =
⊕

v≤w BvC(Y ) for all w ∈ W v. Thus
for all v ∈ W v such that v � w, one has pv,w = 0. In [Ree97, 5.3], Reeder gives recursive
formulae for the pv,w. The following lemma is a particular case of them.

For v ∈ W v, define πB
v : HW v,C → C(Y ) by πB

v (
∑

u∈W v Bufu) = fv for all (fu) ∈ C(Y )(W
v).

Lemma 6.7. Let w ∈ W v. Then p1,w = ζw :=
∏

β∨∈NΦ∨ (w) ζβ∨.

Proof. We prove it by induction on ℓ(w).
Let v ∈ W v and assume that p1,v = ζv. Let s ∈ S be such that vs > v. By Lemma 5.2

one has
Fvs =Fv ∗ Fs

=(
∑

u∈W v

Bupu,v) ∗ Fs

=
∑

u∈W v

Bu ∗ Fsp
s
u,v =

∑

u∈W v

Bu ∗Bsp
s
u,v +

∑

u∈W v

Bup
s
u,vζs.

By Lemma 6.6, we have πB
1 (

∑
u∈W v Bu ∗ Bsp

s
u,v) = 0 and πB

1 (
∑

u∈W v Bup
s
u,vζs) = ps1,vζs. By

Lemma 2.4, NΦ∨(vs) = s.NΦ∨(v)⊔{α∨
s } and thus πB

1 (Fvs) = p1,vs = ps1,vζs = ζvs which proves
the lemma.

6.3 An expression for the coefficients of the Fw in the basis (Tv)

In this subsection, we give a recursive formula for the coefficients of the Fw in the basis
(Tv)v∈W v (see formula (1) below and Lemma 6.9). We will deduce information concerning the
elements v ∈ W v such that πT

v (Fw) is well defined at τ , for a given τ ∈ TC (see Lemma 6.10).

Let λ ∈ Y and w ∈ W v. By (BL4), Remark 2.7 (2) and an induction on ℓ(w), there
exists (Pv,w,λ(Z))v∈W v ∈ C[Y ](W

v) such that Zλ ∗ Tw =
∑

v∈W v Tv ∗ Pv,w,λ(Z). Moreover

Pw,w,λ = Zw−1.λ and for all v ∈ W v \ [1, w], Pv,w,λ = 0.
Let λ ∈ Cv

f ∩ Y . Then by [Bou81, V.Chap 4 §6 Proposition 5], for all v, w ∈ W v such
that v 6= w, one has v.λ 6= w.λ. Let w ∈ W v. Let w = s1 . . . sk be a reduced expression. Set
Qw,w,λ(Z) = 1 ∈ C(Y ). For v ∈ W v \ [1, w], set Qv,w,λ(Z) = 0. Define (Qv,w,λ(Z))v∈[1,w] by
decreasing induction by setting:

Qv,w,λ(Z) =
1

Zw−1.λ − Zv−1.λ

∑

w≥u>v

Qu,w,λPv,u,λ ∈ C(Y ). (1)
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Lemma 6.8. Let λ ∈ Cv
f ∩ Y , w ∈ W v and τ ∈ T reg

C be such that v.τ(λ) 6= τ(λ) for all
v ∈ W v \ {1}. Let x ∈ Iτ be such that Zλ.x = w.τ(λ).x. Then x ∈ Iτ (w.τ).

Proof. By Proposition 3.5 (2), we can write x =
∑

v∈W v xv where xv ∈ Iτ (v.τ) for all v ∈ W v.
One has Zλ.x−w.τ(λ).x = 0 =

∑
v∈W v(v.τ(λ)−w.τ(λ))xv. As v.τ(λ) 6= w.τ(λ) for all v 6= w,

we deduce that x = xw.

Lemma 6.9. Let v, w ∈ W v. Then πT
v (Fw) = Qv,w,λ, for any λ ∈ Cv

f ∩ Y . In particular,
Qv,w,λ does not depend on the choice of λ.

Proof. Let λ ∈ Cv
f and h =

∑
v∈W v TvQv,w,λ ∈ BLH(TC). One has:

Zλ ∗ h = Zλ ∗
∑

v∈W v

TvQv,w,λ

=
∑

u,v∈W v

TuPu,v,λQv,w,λ

=
∑

u∈W v

Tu
∑

v∈W v

Pu,v,λQv,w,λ.

Let u ∈ W v. Then:
∑

v∈W v

Pu,v,λQv,w,λ = Pu,u,λQu,w,λ+
∑

v>u

Pu,v,λQv,w,λ = Zu−1.λ+(Zw−1.λ−Zu−1.λ)Qu,w,λ = Zw−1.λQu,w,λ,

and therefore Zλ.h = h.Zw−1.λ.
Let λ ∈ Cv

f ∩ Y and τ ∈ T reg
C be such that u.τ(λ) 6= τ(λ) for all u ∈ W v \ {1}. Then

evτ (Z
λ ∗ h) = evτ (h ∗ Zv−1.λ) = w.τ(λ).h(τ). By Lemma 6.8 we deduce that h(τ) ∈ Iτ (w.τ).

By Proposition 3.5 (2) and Lemma 5.14 we deduce that h(τ) = Fw(τ). By Lemma 6.1, we
deduce that h = Fw, which proves the lemma.

Lemma 6.10. Let w ∈ W v, τ ∈ TC and v ∈ [1, w]. Assume that for all u ∈ [v, w), u.τ 6= w.τ .
Then for all u ∈ [v, w], πT

u (Fw) ∈ C(Y )τ .

Proof. We do it by decreasing induction on v. Suppose that for all u ∈ (v, w), πT
u (Fw) ∈

C(Y )τ . Let λ ∈ Cv
f ∩Y be such that v.τ(λ) 6= w.τ(λ), which exists because Cv

f ∩Y generates
Y . By Lemma 6.9 we have

πT
v (Fw) = Qv,w,λ =

1

Zw−1.λ − Zv−1.λ

∑

w≥u>v

Qu,w,λPv,u,λ.

We deduce that πT
v (Fw) ∈ C(Y )τ because by assumption Qu,w,λ ∈ C(Y )τ for all u ∈ (v, w].

Lemma follows.

6.4 τ -simple reflections and intertwining operators

Let τ ∈ TC. Following [Ree97, 14], we introduce τ -simple reflections (see Definition 6.11).
If Sτ is the set of τ -simple reflections, then (W(τ),Sτ ) is a Coxeter system. We study, for
such a reflection r, the singularity of Fr at τ : we prove that Fr − ζr is in BLH(TC)τ (see
Lemma 6.20). This enables us to define Kr(τ) = (Fr − ζr)(τ) ∈ HW v,C. This will be useful
to describe Iτ (τ, gen).

We now define τ -simple reflections. Our definition slightly differs from [Ree97, Definition
14.2]. In many cases, these definitions are equivalent (see 6.4.3) but we do not know if they
are always equivalent.
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Definition 6.11. Let τ ∈ TC. A coroot β∨ ∈ Φ∨
τ and its corresponding reflection rβ∨ are said

to be τ-simple if NR(rβ∨) ∩W(τ)= {β∨}. We denote by Sτ the set of τ -simple reflections.

Recall that Φ∨
(τ) = {α∨ ∈ Φ∨

+|ζdenα∨ (τ) = 0} and R(τ) = {rα∨ |α∨ ∈ Φ∨
(τ)}.

6.4.1 Coxeter structure of W(τ)

We use the same notation as in 2.2.3. Then Sτ = S (W(τ)) and thus (W(τ),Sτ ) is a Coxeter
system.

Let ≤τ and ℓτ be the Bruhat order and the length on (W(τ),Sτ ).

Lemma 6.12. Let x, y ∈ W(τ) be such that x ≤τ y. Then x ≤ y.

Proof. By definition, if x, y ∈ W(τ), then x ≤τ y (resp. x ≤ y) if there exist n ∈ Z≥0 and
x0 = x, x1, . . . , xn = y ∈ W(τ) (resp . W v) such that (xi, xi+1) is an arrow of the graph of
[Dye91, Definition 1.1] for all i ∈ J0, n− 1K. We conclude with [Dye91, Theorem 1.4]

Remark 6.13. The orders ≤ and ≤τ can be different on W(τ): there can exist v, w ∈ W(τ)

such that v and w are not comparable for ≤τ and v < w. For example if W v = {s1, s2} is the
infinite dihedral group, r1 = s1 and r2 = s2s1s2 (see Lemma B.2), then r1 < r2 but r1 and r2
are not comparable for <τ .

6.4.2 Singularity of Fr at τ for a τ-simple reflection

Lemma 6.14. Let r = rβ∨ ∈ Sτ . Then NΦ∨(rβ∨) ∩ Φ∨
(τ) ⊂ {β∨}.

Proof. Let f : Φ∨
+ → R be the map defined by f(α∨) = rα∨ for all α∨ ∈ Φ∨

+. Then by
Subsection 2.2, f is a bijection. One has f

(
NΦ∨(r) ∩ Φ∨

(τ)

)
= NR(r) ∩ R(τ). Moreover,

R(τ) ⊂W(τ)∩ R. Thus

f−1
(
NR(r) ∩W(τ)

)
= {β∨} ⊃ f−1

(
NR(r) ∩ R(τ)

)
= NΦ∨(r) ∩ Φ∨

(τ).

Lemma 6.15. Let τ ∈ TC and rβ∨ ∈ Sτ . Then there exists h′ ∈ BLH(TC)τ such that
Frβ∨ = h′.ζdenβ∨ .

Proof. Using [BB05, 1. Exercise 10], we write rβ∨ = wsw−1 with w ∈ W v, s ∈ S and
ℓ(wsw−1) = 2ℓ(w) + 1. One has β∨ = w.α∨

s . Let rβ∨ = sm . . . s1 be a reduced expression
of rβ∨ , with m ∈ Z≥0 and s1, . . . , sm ∈ S . Let k ∈ J0, m − 1K and v = sk . . . s1. Suppose
that Fv = h′k.(ζ

den
β∨ )η(k) where h′k ∈ BLH(TC)τ and η(k) ∈ Z≥0. Then Fsk+1v = Fsk+1

∗ Fv =

(Bsk+1
+ ζsk+1

) ∗ Fv. One has ζsk+1
∗ Fv = Fv.ζ

v−1

sk+1
by Lemma 5.14.

By Lemma 6.14 if ζv
−1

sk+1
is not defined in τ then k = ℓ(w). As Bsk+1

∈ HW v,C and BLH(TC)τ
is a left HW v,C-module, we can write Fsk+1v = h′k+1.(ζ

den
β∨ )η(k+1) where h′k+1 ∈ BLH(TC)τ and

η(k+1) ≤ η(k) if k 6= ℓ(w) and η(k+1) ≤ η(k)+1 if k = ℓ(w), which proves the lemma.

Lemma 6.16. Let h ∈ BLH(TC) and τ ∈ TC. Then

max{u ∈ W v|πH
u (h) /∈ C(Y )τ} = max{u ∈ W v|πB

u (h) /∈ C(Y )τ}.
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Proof. Let v ∈ max{u ∈ W v|πH
u (h) /∈ C(Y )τ}. By 6.6 (2),

πB
v (h) =

∑

u≥v

πB
v (Hu)π

H
u (h) = πB

v (Hv)π
H
v (h) +

∑

u>v

πB
v (Hu)π

H
u (h).

Moreover, by Lemma 6.6 (1) πB
v (Hv) ∈ C∗. Thus πB

v (h) /∈ C(Y )τ . Similarly if v′ ∈ max{u ∈
W v, u ≥ v|πB

u (h) /∈ C(Y )τ}, then πH
v′ (h) /∈ C(Y )τ . Hence v ∈ max{u ∈ W v|πB

u (h) /∈ C(Y )τ}
and consequently max{u ∈ W v|πH

u (h) /∈ C(Y )τ} ⊂ max{u ∈ W v|πB
u (h) /∈ C(Y )τ}. By a

similar reasoning we get the other inclusion.

Lemma 6.17. Let w ∈ W v. Suppose that for some s ∈ S , we have w.λ− λ ∈ Rα∨
s for all

λ ∈ Y . Then w ∈ {Id, s}.

Proof. Let β∨ ∈ NΦ∨(w). Write β∨ =
∑

t∈S
ntα

∨
t , with nt ∈ Z≥0 for all t ∈ S . Then

w.β∨ ∈ Φ∨
− and by assumption, nt = 0 for all t ∈ S \{s}. Therefore β∨ ∈ Z≥0α

∨
s ∩Φ∨ = {α∨

s }.
We conclude with Lemma 2.4.

Lemma 6.18. Let χ ∈ TC. Assume that there exists β∨ ∈ Φ∨
+ such that rβ∨ ∈ Wτ . Then

there exists (χn) ∈ (TC)
Z≥0 such that:

• χn → χ,

• Wχn
= 〈rβ∨〉 for all n ∈ Z≥0,

• χn(β
∨) = χ(β∨) for all ∈ Z≥0.

Proof. We first assume that β∨ = α∨
s , for some s ∈ S . Let (yj)j∈J be a Z-basis of Y . For all

j ∈ J , choose zj ∈ C such that χ(yj) = exp(zj). Let g : A → C be the linear map such that

g(yj) = zj for all j ∈ J . Let V be a complement of Q∨
R in A. Let n ∈ Z≥1. Let b

(n)
s = g(α∨

s )

and (b
(n)
t ) ∈ CS \{s} be such that |b(n)t −g(α∨

t )| < 1
n

and such that the exp(b
(n)
t ), t ∈ S \{s} are

algebraically independent over Q. Let gn : A → C be the linear map such that gn(α
∨
t ) = b

(n)
t

for all t ∈ S and gn(v) = g(v) for all v ∈ V . For n ∈ Z≥0 set χn = (exp ◦gn)|Y ∈ TC. For all
x ∈ A, gn(x) → g(x) and thus χn → χ.

Let n ∈ Z≥1. Then χ(α∨
s ) = χn(α

∨
s ) and thus s ∈ Wχn

. Let w ∈ Wχn
. Then w−1.λ− λ ∈

Zα∨
s for all λ ∈ Y . By Lemma 6.17 we deduce that w ∈ {Id, s}. Therefore Wχn

= {Id, s}.
We no more assume that β∨ = α∨

s for some s ∈ S . Write β∨ = w.α∨
s for some w ∈ W v

and s ∈ S . Let χ̃ = w−1.χ. Then s ∈ Wχ̃. Thus there exists (χ̃n) ∈ (TC)
Z≥0 such that

χ̃n → χ̃ and Wχ̃n
= {Id, s} for all n ∈ Z≥0. Let (χn) = (w.χ̃n). Then χn → χ and

Wχn
= {1, rβ∨} for all n ∈ Z≥0.

Moreover, χ(β∨) ∈ {−1, 1} and χn(β
∨) ∈ {−1, 1} for all n ∈ Z≥0. Maybe considering a

subsequence of (χn), we may assume that there exists ǫ ∈ {−1, 1} such that χn(β
∨) = ǫ for

all n ∈ Z≥0. As χn → χ, χn(β
∨) = ǫ→ χ(β∨), which proves the lemma.

Let C[Q∨
Z] =

⊕
λ∈Q∨

Z

CZλ ⊂ C[Y ]. This is the group algebra of Q∨
Z. Let C(Q∨

Z) ⊂ C(Y ) be

the field of fractions of C[Q∨
Z] and H(Q∨

Z) =
⊕

w∈W v HwC(Q∨
Z) ⊂ BLH(TC). This is a (HW v,C−

C(Q∨
Z))-bimodule of BLH(TC) and a left C(Q∨

Z)-submodule of BLH(TC). Consequently Fw ∈
H(Q∨

Z) for all w ∈ W v.
Let A = C[Zα∨

s |s ∈ S ] ⊂ C[Q∨
Z]. This is a unique factorization domain and C(Q∨

Z) is the
field of fractions of A.

Lemma 6.19. Let β∨ ∈ Φ∨. Then Zβ∨ − 1 and Zβ∨

+ 1 are irreducible in A.
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Proof. Write β∨ = w.α∨
s , where w ∈ W v and s ∈ S . Then Zβ∨

= (Zα∨
s )w.

Lemma 6.20. (see [Ree97, Proposition 14.3]) Let τ ∈ TC and r = rβ∨ ∈ Sτ . Then Fr∨
β
−

ζβ∨ ∈ BLH(TC)τ .

Proof. One has Fr∨
β
− ζβ∨ ∈ H(Q∨

Z). Write Fr∨
β
− ζβ∨ =

∑
u∈W v Hu

fu
gu

, with fu, gu ∈ A and

fu ∧ gu = 1 for all u ∈ W v. Let u ∈ (1, rβ∨). Let us prove that ζdenβ∨ ∧ gu = 1. Suppose that

ζdenβ∨ ∧ gu 6= 1. Then there exists η ∈ {−1, 1} such that Zβ∨

+ η divides gu.

Let χ ∈ TC be such that χ(β∨) = −η. By Remark 5.1, rβ∨ ∈ Wχ. Let (χn) ∈ (TC)
Z≥0 be

such that χn → χ and Wχn
= {1, rβ∨} for all n ∈ Z≥0, and χn(β

∨) = −η for all n ∈ Z≥0.
whose existence is provided by Lemma 6.18. One has gu(χn) = 0 for all n ∈ Z≥0. Moreover
by Lemma 6.10, πH

u (Fr∨
β
) = fu

gu
∈ C(Y )χn

for all n ∈ Z≥0. Therefore, fu(χn) = 0 for all

n ∈ Z≥0 and thus fu(χ) = 0.
By the Nullstellensatz (see [Lan02, IX, Theorem 1.5] for example), there exists n ∈ Z≥0

such that Zβ∨

+ η divides fn
u in A. By Lemma 6.19, Zβ∨

+ η is irreducible in A and thus
Zβ∨

+ η divides fu: a contradiction. Therefore ζdenβ∨ ∧ gu = 1. By Lemma 6.15, gu(τ) 6= 0.

Therefore {u ∈ W v|πH
u (Frβ∨ − ζrβ∨) /∈ C(Y )τ} ⊂ {1}. By Lemma 6.16 we deduce

that {u ∈ W v|πB
u (Frβ∨ − ζrβ∨) /∈ C(Y )τ} ⊂ {1}. Using Lemma 6.7 we deduce that {u ∈

W v|πB
u (Frβ∨ −ζrβ∨ ) /∈ C(Y )τ} = ∅. By Lemma 6.16, {u ∈ W v|πH

u (Frβ∨ −ζrβ∨ ) /∈ C(Y )τ} = ∅,
which proves the lemma.

6.4.3 Comparison of definitions of τ-simplicity

We now compare our definition of τ -simplicity and the one of Reeder (see [Ree97, Definition
14.2]). Let S Ree

τ be the set of τ -simple reflections r = rβ∨ ∈ W(τ)∩ R such that NΦ∨(rβ∨) ∩
Φ∨

(τ) = {β∨}.
The advantage of our definition is that it is well adapted to the Coxeter structure of W(τ)

and the advantage of Reeder’s one is that it is well adapted to the study of the singularity
Fr at τ . Indeed, suppose that there exists r ∈ Sτ \ S Ree

τ . Then ζr ∈ BLH(TC)τ , thus by
Lemma 6.20, Fr ∈ BLH(TC)τ and hence Fr(τ)⊗τ 1 ∈ Iτ (τ) \C1⊗τ 1. However, when τ ∈ UC,
and r ∈ S Ree

τ , then one can prove that Fr /∈ BLH(TC)τ . Thus in order to understand Iτ (τ),
we need to compare the two definitions, see Lemma 6.22.

Lemma 6.21. 1. One has R(τ) =
⋃

w∈W(τ)
w.(Sτ ∩ R(τ)).w

−1. In particular, R(τ) = R ∩
W(τ) if and only if Sτ ⊂ R(τ).

2. One has S Ree
τ ⊂ R(τ). Moreover, Sτ = S Ree

τ if and only if Sτ ⊂ R(τ).

Proof. Let w ∈ W(τ) and r ∈ R(τ). Let us prove that r′ := wrw−1 ∈ R(τ). One has
α∨
r′ ∈ {w.α∨

r , wr.α
∨
r }. Let v ∈ {w,wr} be such that α∨

r′ = v.α∨
r . One has ζdenα∨

r′
= (ζdenα∨

r
)v

and hence ζdenα∨
r′
(τ) = (ζdenα∨

r
)v(τ) = (ζdenα∨

r
)(v−1.τ) = 0 because v ∈ W(τ) ⊂ Wτ . Thus r′ =

wrw−1 ∈ R(τ). Therefore
⋃

w∈W(τ)
w.(Sτ ∩ R(τ)).w

−1 ⊂ R(τ). By [Dye90, Theorem 3.3 (i)],

R ∩ W(τ) =
⋃

w∈W(τ)
wSτw

−1 and thus R(τ) ⊂ ⋃
w∈W(τ)

w.Sτ .w
−1. Let r ∈ R(τ). Write

r = wr′w−1, with w ∈ W(τ) and r′ ∈ Sτ . Then r′ = w−1rw ∈ R(τ), which proves that
R(τ) =

⋃
w∈W(τ)

w.(Sτ ∩ R(τ)).w
−1.

One has Sτ ⊂ R ∩ W(τ) and thus if R(τ) = R ∩W(τ), then Sτ ⊂ R(τ). Suppose that
Sτ ⊂ R ∩W(τ). Then by [Dye90, Theorem 3.3 (i)],

R ∩W(τ)=
⋃

w∈W(τ)

wSτw
−1 ⊂ R(τ) ⊂ R ∩W(τ),
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which proves (1).
Let r = rβ∨ ∈ S Ree

τ . Then β∨ ∈ Φ∨
(τ) and thus r ∈ R(τ). Consequently S Ree

τ ⊂ R(τ).

Thus if Sτ = S Ree
τ one has R(τ) = R ∩W(τ) by (1).

Let f : Φ∨
+ → R be the bijection defined by f(α∨) = rα∨ for all α∨ ∈ Φ∨. Let r ∈ R.

Then f
(
NΦ∨(r)∩Φ∨

(τ)

)
= NR(r)∩R(τ). Thus if R(τ) = R∩W(τ), one has f

(
NΦ∨(r)∩Φ∨

(τ)

)
=

NR(r) ∩W(τ). Thus if r ∈ R, r ∈ S Ree
τ if and only if r ∈ Sτ , which concludes the proof of

the lemma.

Lemma 6.22. Let τ ∈ TC be such that Iτ is irreducible. Then Sτ = S Ree
τ .

Proof. Let τ ∈ TC be such that Sτ 6= S Ree
τ . Then if Sτ ⊂ S Ree

τ , one has Sτ ⊂ R(τ)

by Lemma 6.21 and thus Sτ = S Ree
τ by Lemma 6.21: a contradiction. Thus there exists

r = rβ∨ ∈ Sτ \ S Ree
τ . Then by the proof of Lemma 6.14, NR(r) ∩ Φ∨

(τ) = ∅. Therefore

ζr ∈ BLH(TC)τ . By Lemma 6.20 we deduce that Fr ∈ BLH(TC)τ . By Lemma 5.14, Fr(τ)⊗τ 1 ∈
Iτ (τ) \ C1⊗τ 1 and by Theorem 5.8, Iτ is reducible.

By the Lemma above and Kato’s criterion ([Kat81, Theorem 2.2]), if τ ∈ UC and W(τ) =
Wτ , then Sτ = S red

τ .

Lemma 6.23. Assume that αs(Y ) = Z for all s ∈ S . Then Sτ = S Ree
τ .

Proof. Let r = rβ∨ ∈ Wτ ∩ R. Then r.τ(λ) = τ(λ − β(λ)β∨) = τ(λ) = τ(λ)τ(β∨)β(λ) for
all λ ∈ Y . By assumption, there exists λ ∈ Y such that β(λ) = 1 and thus τ(β∨) = 1.
Moreover, σβ∨ = σ′

β∨ for all s ∈ S and thus ζdenβ∨ = 1 − Zβ∨

. Thus r ∈ R(τ). Consequently

R(τ) = R ∩W(τ) and thus by Lemma 6.21, Sτ = S Ree
τ .

Lemma 6.24. Let τ ∈ TC be such that (W(τ),Sτ ) is the infinite dihedral group. Then
Sτ = S

Ree
τ .

Proof. Write Sτ = {r1, r2}. Every element of W(τ) has a unique reduced writing involving r1
and r2. By Lemma 6.21, W(τ)= 〈⋃w∈W(τ)

w.(Sτ ∩R(τ)).w
−1〉 and thus Sτ ∩R(τ) is nonempty.

Thus maybe exchanging the roles of r1 and r2, we may assume that r1 ∈ R(τ). By definition,
r2 ∈ W(τ) = 〈R(τ)〉. Write r2 = t1 . . . tk, with k ∈ Z≥0 and t1, . . . , tk ∈ R(τ). Suppose
r2 /∈ R(τ). Let i ∈ J1, kK. Then by Lemma 6.21, one can write ti = wir1w

−1
i where wi ∈ W(τ).

Thus the number of r1 appearing in the reduced decomposition of ti is odd. Therefore k is
even. As ti ∈ R for all i ∈ J1, kK we deduce that ℓ(ti) is odd for all i ∈ J1, kK and ℓ(r2) is even.
We reach a contradiction with the fact that r2 ∈ R. Thus r2 ∈ R(τ) and by Lemma 6.21,
Sτ = S

Ree
τ .

6.5 Description of generalized weight spaces

In this subsection, we describe Iτ (τ, gen) when W(τ) = Wτ , using the Kr1 . . .Krk(τ), for
r1, . . . , rk ∈ Sτ (see Theorem 6.32).

For r ∈ R, one sets Kr = Fr − ζα∨
r
∈ BLH(TC). By Lemma 5.14 we have:

θ ∗Kr = Kr ∗ θr + (θr − θ)ζr for all θ ∈ C(Y ). (2)

Lemma 6.25. Let w1, w2 ∈ W v. Then there exists P ∈ C(Y )× such that Fw1 ∗ Fw2 =
Fw1w2 ∗ P . If moreover τ ∈ UC, then one can write P = f

g
with f, g ∈ C[Y ]× and f(w.τ) 6= 0

for all w ∈ W v.
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Proof. Let u, v ∈ W v. Let us prove that if χ ∈ T reg
C , then Fu ∗ Fv ∈ BLH(TC)χ. Write

Fu =
∑

u′≤uHu′θu′ , where θu′ ∈ C(Y ) for all u′ ≤ u. Then by Lemma 5.14,

Fu ∗ Fv =
∑

u′≤u

Hu′θu′ ∗ Fv =
∑

u′≤u

Hu′ ∗ Fv ∗ (θu′)v
−1

.

By Lemma 5.14, θu′ ∈ BLH(TC)χ for all χ ∈ T reg
C and thus (θu′)v

−1 ∈ BLH(TC)χ for all
χ ∈ T reg

C . Let χ ∈ T reg
C . As BLH(TC)χ is an HW v,C − C(Y )χ bimodule, we deduce that

Fu ∗ Fv ∈ BLH(TC)χ.
Let u, v ∈ W v. Let us prove that there exists Q ∈ C(Y ) such that Fu ∗Fv = Fuv ∗Q. Let

λ ∈ Y . Then by Lemma 5.14, one has ZλFu∗Fv = Fu∗Fv∗Z(uv)−1.λ. Therefore for all χ ∈ T reg
C ,

there exists a(χ) ∈ C such that Fu ∗ Fv(χ) = a(χ)Fuv(χ). Write Fu ∗ Fv =
∑

w∈W v Hw ∗ θw
and Fuv =

∑
w∈W v Hw ∗ θ̃w, where (θw), (θ̃w) ∈ C(Y )(W

v). Let Q = θuv
θ̃uv

= θuv. Let w ∈ W v be

such that θ̃w = 0. Then for all χ ∈ T reg
C , θw(χ) = 0 and by Lemma 6.1, θw = 0 = Qθ̃w. Let

w ∈ W v be such that θw 6= 0. Then U := {χ ∈ TC|θw ∈ BLH(TC)χ and θw(χ) 6= 0} is open
and dense in TC. By Remark 5.11, T reg

C has full measure in TC and thus U ∩ T reg
C is dense

in TC. Moreover θw(χ) = Q(χ)θ̃(χ) for all χ ∈ U ∩ T reg
C and thus θ̃w = Qθw. Consequently,

there exists Q ∈ C(Y ) such that Fu ∗ Fv = Fuv ∗Q.
Let τ ∈ UC. Let w1 ∈ W v. Let u ∈ W v be such that there exists θ = f

g
∈ C(Y )× such

that Fw1 ∗ Fu = Fw1u ∗ θ, with f(w.τ) 6= 0 for all w ∈ W v. Let s ∈ S be such that us > u.
Then by Lemma 5.3,

Fw1 ∗ Fus = Fw1u ∗ θ ∗ Fs = Fw1u ∗ Fs ∗ θs.

Suppose w1us > w1u. Then Fw1u∗Fs = Fw1us and thus Fw1 ∗Fus = Fw1us∗θs and f s(w.τ) 6= 0
for all w ∈ W v. Suppose w1us < w1u. Then Fw1u∗Fs = Fw1us∗(Fs)

2 and thus by Lemma 5.3,

Fw1 ∗ Fus = Fw1us ∗ (θsζsζ
s
s ). By definition of UC, one can write Fw1 ∗ Fus = Fw1us ∗ f̃

g̃
with

f̃ , g̃ ∈ C[Y ]× such that f̃(w.τ) 6= 0 for all w ∈ W v and the lemma follows.

Remark 6.26. In [Ree97, Lemma 4.3 (2)], Reeder gives an explicit expression of Fu ∗ Fv,
for u, v ∈ W v.

Let r ∈ R. Let Ωr : C(Y ) → C(Y ) be defined by Ωr(θ) = ζr(θ
r − θ) for all θ ∈ C(Y ).

Lemma 6.27. Let r ∈ Sτ . Then Ωr(C(Y )τ ) ⊂ C(Y )τ .

Proof. Write r = rβ∨ , where β∨ ∈ Φ∨. Then one has r(λ) = λ − β(λ)β∨ for all λ ∈ Y . Let
λ ∈ Y . Then with the same computation as in Remark 2.7 (2), we have that Ωr(Z

λ) ∈ C(Y )τ .
Thus Ωr(θ) ∈ C(Y )τ for all θ ∈ C[Y ].

Let θ ∈ C(Y )τ . Write θ = f
g
, where f, g ∈ C[Y ] and g(τ) 6= 0. Then ζr(θ

r − θ) =

ζr(
frg−(frg)r

ggr
). Moreover, gr(τ) = g(r.τ) = g(τ) 6= 0 and as f rg ∈ C[Y ], we have that

ζr(θ
r − θ) ∈ C(Y )τ .

We now assume that τ ∈ UC.
For each w ∈ W(τ) we fix a reduced writing w = r1 . . . rk, with k = ℓ(w) and r1, . . . , rk ∈ Sτ

and we set w = (r1, . . . , rk). Let Kw = Kr1 . . .Krk ∈ BLH(TC).

Lemma 6.28. Let r ∈ Sτ . Then BLH(TC)τ ∗Kr ⊂ BLH(TC)τ . In particular, Kw ∈ BLH(TC)τ
for all w ∈ W(τ).
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Proof. Let w ∈ W v and θ ∈ C(Y )τ . Then Hwθ ∗ Kr = HwKrθ
r + Hw ∗ Ωr(θ). Using

Lemma 6.20, Lemma 6.27 and the fact that BLH(TC)τ is a HW v,C − C(Y )τ -bimodule, we
deduce that Hwθ ∗Kr ∈ BLH(TC)τ . Hence BLH(TC)τ ∗Kr ⊂ BLH(TC)τ .

Lemma 6.29. Let w ∈ W(τ). Then max supp
(
Kw(τ)

)
= {w}.

Proof. Write w = (r1, . . . , rk) with r1, . . . , rk ∈ Sτ . Then

Kw = (Fri1
− ζri1 ) . . . (Frik

− ζrik ) = Fri1
∗ Fri2

∗ . . . ∗ Frik
+

∑

v<τw

FvPv,

for some Pv ∈ C(Y ). By Lemma 6.25, there exist f, g ∈ C[Y ]× such that Fri1
∗Fri2

∗. . .∗Frik
=

Fw∗ f
g

and f(τ) 6= 0. One has πT
w(Fw) = 1 and by Lemma 6.12, πT

v (Fv) = 0 for all v ∈ [1, w)≤τ
.

Thus using Lemma 6.28, one can moreover assume g(τ) 6= 0. Therefore πT
w(Kw) =

f
g
∈ C(Y )τ

and f(τ) 6= 0, which proves the lemma.

Let K(W(τ)) =
⊕

w∈W(τ)
FwC(Y ). By Lemma 6.25 and Lemma 5.14, K(W(τ)) is a sub-

algebra of BLH(TC). Let Kτ = K(W(τ)) ∩ BLH(TC)τ . For w ∈ W(τ), set K(W(τ))
<τw =⊕

v∈W(τ),v<τw
FwC(Y ) and K(W(τ))

<τw =
⊕

v<τw
KvC(Y )τ .

Lemma 6.30. Let θ ∈ C(Y )τ and w ∈ W(τ). Then there exists kw(θ) ∈ K<τw
τ such that

θ ∗Kw = Kw ∗ θw−1
+ kw(θ).

Proof. If w = 1, this is clear. Suppose w > 1. Write w = vr with v ∈ W(τ) and r ∈ Sτ such

that v <τ w. Suppose that θ ∗Kv = Kv ∗ θv−1
+ kv(θ) with kv(θ) ∈ K<τv

τ . One has

θ ∗Kw = θ ∗Kv ∗Kr =
(
Kvθ

v−1

+ kv(θ)
)
∗Kr = Kw ∗ θw−1

+Kv ∗ Ωr(θ
v−1

) + kv(θ) ∗Kr.

The sets K(W(τ))
≤τv =

⊕
v′≤τv

Fv′C(Y ) and BLH(TC)τ are right C(Y )τ -submodules of
BLH(TC) and thus by Lemma 6.28 and Lemma 6.27, Kv ∗ Ωr(θ

v−1
) ∈ K≤τv

τ ⊂ K<τw
τ .

By Lemma 6.28, kv(θ) ∗Kr ∈ BLH(TC)τ . By Lemma 5.14 and [Kum02, Corollary 1.3.19],

kvFr ∈ K(W(τ))
<τmax(vr,v) = K(W(τ))

<τw. Consequently kv ∗ Kr ∈ K<τw
τ and KvΩr(θ

v−1
) +

kv(θ)Kr ∈ K<τw
τ , which proves the lemma.

Lemma 6.31. One has Kτ =
⊕

w∈W(τ)
KwC(Y )τ .

Proof. By Lemma 6.28, Kτ ⊃ ⊕
w∈W(τ)

KwC(Y )τ .

For w ∈ W(τ), set K(W(τ))
≤τw =

⊕
v≤τw

FvC(Y ) ⊂ K(W(τ)). Let w ∈ W(τ). Suppose that

for all v ∈ [1, w)≤τ
, one has K≤τv

τ =
⊕

v′∈[1,v]≤τ
Kv′C(Y )τ . By Lemma 6.29, one can write

πT
w(Kw) =

f
g
, with f, g ∈ C[Y ] such that f(τ)g(τ) 6= 0. Let x ∈ K≤τw

τ and θ = πT
w(x) ∈ C(Y )τ .

By Lemma 6.28, θ g
f
Kw ∈ BLH(TC)τ . Moreover, x − θ g

f
Kw ∈ ∑

v∈[1,w)≤τ
K≤τv

τ . Therefore,

x ∈ ⊕
v∈[1,w]≤τ

KvC(Y )τ and the lemma follows.

Theorem 6.32. Let τ ∈ TC be such that W(τ) =Wτ . Then Iτ (τ, gen) = evτ (Kτ )⊗τ 1.

Proof. Let w ∈ W(τ) and θ ∈ C(Y )τ . Then by Lemma 6.30, (θ−τ(θ))Kw(τ)⊗τ 1 ∈ K<τw(τ)⊗τ

1. By an induction using Lemma 6.31 we deduce that Kw(τ)⊗τ 1 ⊂ Iτ (τ, gen).
Let w ∈ W v and Ew =

(
evτ (Kτ ) ⊗τ 1

)
∩ I≤w

τ . By Lemma 6.29, dimEw = |W(τ)∩ {v ∈
W v|v ≤ w}|. By Proposition 3.5, dim Iτ (τ, gen)≤w = |{v ∈ Wτ |v ≤ w}| = dimEw. As
(W v,≤) is a directed poset, Iτ =

⋃
w∈W v I≤w

τ , which proves the theorem.
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6.6 Irreducibility of Iτ when Wτ = W(τ) is the infinite dihedral group

In this subsection, we prove that if τ ∈ UC is such that Wτ = W(τ) and W(τ) is isomorphic to
the infinite dihedral group, then Iτ is irreducible (see Lemma 6.38). Let us sketch the proof
of this lemma. We prove that Iτ (τ) = C1 ⊗τ 1. For w ∈ W(τ), let πK

w : Iτ (τ, gen) → C be
defined πK

w

(∑
v∈W v Kv(τ)xv

)
= xw, for all (xv) ∈ C(W(τ)), which is well defined by Lemma 6.29

and Theorem 6.32. We suppose that Iτ (τ) \ C⊗τ 1 is nonempty and we consider one of its
elements x. We reach a contradiction by computing πK

w (x), where w ∈ W(τ) is such that
ℓτ (w) = max{ℓτ (v)|v ∈ supp(x) ∩W(τ)} − 1.

Let τ ∈ UC. Assume that (W(τ),Sτ ) is isomorphic to the infinite dihedral group (in
particular, |Sτ | = 2 and every element of W(τ) admits a unique reduced writing).

The following lemma is easy to prove.

Lemma 6.33. Let w ∈ W(τ) and r ∈ Sτ be such that ℓτ (wr) = ℓτ (w) + 1. Let u ∈ [1, w)≤τ .
Then ur 6= w.

Lemma 6.34. Let τ ∈ UC. Let r = rβ∨ ∈ Sτ , where β∨ ∈ Φ∨. Then there exists a ∈ C∗

such that for all λ ∈ Y ,
τ
(
(Zr.λ − Zλ)ζr

)
= aτ(λ)β(λ).

Proof. One has

ζr =
1

ζdenβ∨

.
∏

α∨∈NΦ∨ (r)

ζnumα∨ .
∏

α∨∈NΦ∨ (r)\{β∨}

1

ζdenα∨

.

By Lemma 6.14 and by definition of UC, τ(
∏

α∨∈NΦ∨ (r)\{β∨} ζ
den
α∨ ) 6= 0 and τ(

∏
α∨∈NΦ∨ (r) ζ

num
α∨ ) 6= 0.

If σβ∨ = σ′
β∨ , one has Zr.λ−Zλ

ζden
β∨

= Zr.λ−Zλ

1−Zβ∨ = Zλ Z−β(λ)β∨
−1

1−Zβ∨ . By Lemma 6.24, r ∈ S Ree
τ and

thus τ(β∨) = 1. Thus by the same computation as in Remark 2.7, τ(Z
r.λ−Zλ

1−Zβ∨ ) = β(λ)τ(λ).

Using a similar computation when σβ∨ 6= σ′
β∨ , we deduce the lemma.

Lemma 6.35. Let w ∈ W(τ) and r ∈ Sτ be such that ℓτ (wr) = ℓτ (w) + 1. Then there exists
a ∈ C∗ such that for all λ ∈ Y , one has:

πK
w

(
Zλ ∗Kwr(τ)⊗τ 1

)
= aτ(λ)αr(w

−1.λ).

Proof. Let λ ∈ Y . Write Zλ ∗Kw = Kw ∗ Zw−1.λ + k, where k ∈ K<τw
τ , which is possible by

Lemma 6.30. One has

Zλ ∗Kwr = (Kw ∗ Zw−1.λ + k) ∗Kr = Kwr ∗ Zrw−1.λ +Kw

(
(Zrw−1.λ − Zw−1.λ)ζr

)
+ k ∗Kr.

Therefore, using Lemma 6.33 and Lemma 6.34 we deduce

πK
w

(
ZλKwr(τ)⊗τ 1

)
= τ

(
(Zrw−1.λ − Zw−1.λ)ζr

)
= aτ(λ)β(w−1.λ),

for some a ∈ C∗.

Lemma 6.36. Let w ∈ W(τ) and r ∈ Sτ be such that ℓτ (rw) = ℓτ (w) + 1.
One has πK

w (Kr ∗ K(W(τ))
≤τw) = {0}.

Proof. Let u ∈ W(τ) and r ∈ Sτ be such that ru >τ u. Then by Lemma 6.25 and
[Kum02, Corollary 1.3.19], Fr ∗ K(W(τ))

≤τu ⊂ K(W(τ))
≤τmax(u,ru) and thus Kr ∗ K(W(τ))

≤τu ⊂
K(W(τ))

≤τmax(u,ru).
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Let v ∈ [1, w)≤τ
. If rv >τ v, then by Lemma 6.25, there exists Q ∈ C(Y ) such that

Fr ∗ Fv = Frv ∗ Q and thus Kr ∗ Fv ∈ Frv ∗ Q + FvC(Y ). By Lemma 6.33, rv 6= w. Using
Lemma 6.29 and the fact w and rv have the same length, we deduce that πK

w (Kr ∗ Fv) = 0.
If rv <τ v, then Kr ∗ Fv ∈ K(W(τ))

≤τv and thus πK
w (Kr ∗ Fv) = 0 which finishes the proof

of the lemma.

Lemma 6.37. Let w ∈ Wτ , r ∈ {r1, r2} be such that ℓτ (rw) = ℓτ (w) + 1. Then there exists
b ∈ C∗ such that for all λ ∈ Y :

πK
w (Zλ.Krw(τ)⊗τ 1) = bτ(λ)αr(λ).

Proof. One has

ZλKrw = (Zλ ∗Kr) ∗Kw =
(
Kr.Z

r.λ + (Zr.λ − Zλ)ζr
)
∗Kw(τ).

One has Zr.λ ∗Kw ∈ K(W(τ))
≤τw. Thus by Lemma 6.36, πK

w (Kr.Z
r.λ ∗Kw) = 0. Moreover,

by Lemma 6.34, there exists b ∈ C∗ such that

πK
w

(
(Zr.λ − Zλ)ζrKw(τ)⊗τ 1

)
= w.τ

(
(Zr.λ − Zλ)ζr

)
= bτ(λ)αr(λ),

which proves the lemma.

Lemma 6.38. Let τ ∈ UC be such that Wτ = W(τ) and that there exists r1, r2 ∈ R such that
(W(τ), {r1, r2}) is isomorphic to the infinite dihedral group and that r1, r2 are τ -simple. Then
Iτ is irreducible.

Proof. Let us prove that Iτ (τ) = C.1⊗τ 1. Let x ∈ Iτ \C.1⊗τ 1 and assume that x ∈ Iτ (τ).
Let n = max{ℓτ(w)|w ∈ supp(x)}. Let w ∈ W(τ) be such that ℓτ (w) = n − 1. Then
there exist r, r′ ∈ Sτ such that {v ∈ W(τ)|ℓτ (v) = n} = {rw, wr′}. By Theorem 6.32,
x ∈ ∑

v∈W(τ)
CKv(τ)⊗τ 1. Let γ = πK

rw(x) and γ′ = πK
wr′(x).

Set γw = πK
w (x). Then by Lemma 6.35 and Lemma 6.37, there exist a, a′ ∈ C∗ such that

for all λ ∈ Y ,

πK
v (Zλ.x) = τ(λ)

(
aγαr(λ) + a′γ′w.αr′(λ) + γw

)
= τ(λ)γw.

Therefore {αr, w.αr′} is lineraly dependent and hence w.αr′ ∈ {±αr} = {αr, r.αr}. By
Lemma 2.3 we deduce rw = wr′: a contradiction because |{rw, wr′}| = |{v ∈ W(τ)|ℓτ(v) =
n}| = 2.

Therefore Iτ = C1⊗τ 1 and by Theorem 5.8, Iτ is irreducible.

6.7 Kato’s criterion when the Kac-Moody matrix has size 2

In this subsection, we prove Kato’s irreducibility criterion when |S | = 2 (see Theorem 6.40).
As the case where W v is finite is a particular case of Kato’s theorem [Kat81, Theorem 2.2]
we assume that W v is infinite.

This is equivalent to assuming that the Kac-Moody matrix of the root generating system

S is of the form

(
2 a
b 2

)
, with a, b ∈ Z<0 and ab ≥ 4 ([Kum02, Proposition 1.3.21]). The

system (W v,S ) is then the infinite dihedral group. Write S = {s1, s2}. Then every element
of W v admits a unique reduced writing involving s1 and s2.

Let G be a group and a, b ∈ G. For k ∈ Z≥0, we define Pk(a, b) = aba . . . where the
products has k terms.
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Lemma 6.39. The subgroups of W v are exactly the ones of the following list:

1. {1}

2. 〈r〉 = {1, r}, for some r ∈ R

3. Zk = 〈P2k(s1, s2)〉 = 〈P2k(s2, s1)〉 ≃ Z for k ∈ Z≥1

4. Rk,m = 〈P2k+1(s1, s2), P2m+1(s2, s1)〉 ≃W v for k,m ∈ Z≥0.

Proof. Let {1} 6= H ⊂ W v be a subgroup. Let n = min{ℓ(w)|w ∈ H \ {1}}.
First assume that n is even and set k = n

2
. Then P (s1, s2, n) = P (s2, s1, n)

−1 and as these
are the only elements having length n in W v, H ⊃ Zk. Let w = Pn(s1, s2). Let h ∈ H \ {1}.
Write ℓ(h) = an+ r with a ∈ Z≥1 and r ∈ J0, r− 1K. Then there exists ǫ ∈ {−1, 1} such that
h = wǫa.h′, with ℓ(h′) = r. Moreover, h′ ∈ H and thus h′ = 1. Therefore H = Zk.

We now assume that n is odd. Maybe considering vHv−1 for some v ∈ W v and exchanging
the roles of s1 and s2, we may assume that s1 ∈ H . Assume H 6= 〈s1〉. Let n′ = min{ℓ(w)|w ∈
H \〈s1〉}. Let w ∈ H \〈s1〉 be such that ℓ(w) = n′. Then the reduced writing of w begins and
ends with s2. Thus n′ = 2n′′ + 1 for some n′′ ∈ Z≥0. Then it is easy to see that H = R1,n′′,
which finishes the proof.

We prove in Appendix B that there exists size 2 Kac-Moody matrices such that for each
subgroup of W v, there exists τ ∈ TC such that W(τ) is isomorphic to this subgroup.

Theorem 6.40. Assume that the matrix of the root generating system S is of size 2. Let
τ ∈ TC. Then Iτ is irreducible if and only if τ ∈ UC and Wτ = W(τ).

Proof. If W v is finite, this is a particular case of Kato’s theorem ([Kat81, Theorem 2.2]).
Suppose that W v is infinite. By Lemma 5.5 and Proposition 5.17, if Iτ is irreducible, then
τ ∈ UC and Wτ = W(τ). Reciprocally, suppose τ ∈ UC and Wτ = W(τ). Then by Lemma 6.39,
either W(τ) = {1}, or W(τ) = 〈r〉 for some r ∈ R or W(τ) = 〈r1, r2〉 for some r1, r2 ∈ R

and (W(τ), {r1, r2}) is isomorphic to the infinite dihedral group. In the first two cases, Iτ
is irreducible by Corollary 5.10 or Corollary 5.12. Suppose W(τ) = 〈r1, r2〉. Then by Re-
mark 2.5 (1), (W(τ),Sτ ) is isomorphic to the infinite dihedral group and Iτ is irreducible by
Lemma 6.38.

Comments on the proofs of Kato’s criterion There are several proofs of Kato’s cri-
terion in the litterature. In [Ree92], Reeder proves this criterion (see Corollary 8.7). In his
proof, he uses the R-group Rτ = {w ∈ Wτ |w(Φ∨

(τ)∩Φ∨
+) = Φ∨

(τ) ∩Φ∨
+}. This group is reduced

to {1} when Wτ =W(τ). His proof uses Harich-Chandra completeness theorem, which - under
certain hypothesis on τ - majorizes the dimension of the space of intertwining operators of
Iτ . Unfortunately, it seems that there exists up to now no equivalent of Harich-Chandra
completeness theorem available in the Kac-Moody framework.

In [Rog85], Rogawski gives a proof of a particular case of Kato’s criterion (see Corollary
3.2). However, it seems that its proof uses the fact that every element x of Iτ (τ) can be
written as a sum x =

∑
j∈J xj where J is a finite set and for all j ∈ J , |max supp(xj)| = 1

and xj ∈ Iτ (τ). I do not know how to prove such a property.
In [Ree97], Reeder gives two proofs of Kato’s criterion or of weak versions of it (see

Corollary 4.6 and Theorem 14.7). Our proof of Theorem 6.40 is strongly inspired by the
proof of [Ree97, Theorem 14.7]. However, there are some points that I do not understand
in its proof. For example (with the same notation as in [Ree97]) I think that it is not
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clear why the only terms contributing to the coefficient of Brzvτ are of the form r1rz. For
example, suppose that τ is the map 1 : Y → C defined by 1(λ) = 1 for all λ ∈ Y and that
σs = σ′

s = q ∈ Z≥2 for all s ∈ S . Then W1 = W v and the set of 1-simple reflections is S .
By definition, Ks = Bs for all s ∈ S . Let s, t ∈ S be such that s 6= t. By Lemma 6.6, one
has BsBt = Bst and BtBs = Bts. Let λ ∈ Y . Then:

Zλ∗Kst = ZλBsBt = (BsZ
s.λ+Ωs(Z

λ))Bt = BstZ
tsλ+BsΩt(Z

s.λ)+BtΩs(Z
λ)t+Ωt(Ωs(Z

λ)).

Therefore:

Zλ∗Kstv1 = Bst+αt(s.λ)Bs+αs(λ)Bt+ . . . and Zλ∗Ktsv1 = Bts+αt(λ)Bs+αs(t.λ)Bt+ . . .

Suppose that z = st and r = s. Let λ ∈ Y such that αs(λ) 6= 0 and αt(λ) = 0.
Then if ast, ats ∈ C, the coefficient in front of Brz = Bt of (Zλ − 1)(astKst + atsKts)v1 is
astαs(λ) + atsαs(t.λ) = (ast + ats)αs(λ). If the order of st is greater or equal to three, then
st 6= ts and (ast + ats)αs(λ) is not a multiple of

∑
r1rz>rz ar1rzgr1(Z

λ − 1). The same kind of
argument is used in the proof of Lemma 4.5, which implies Corollary 4.6.

A Existence of one dimensional representations of BLHC

In this section, we prove the existence of one dimensional representations of BLHC, when
σs = σ′

s = σ, for all s ∈ S .

Lemma A.1. Assume that F = C and that there exists σ ∈ C such that σs = σ′
s = σ for all

s ∈ S and such that |σ| 6= 1. Let ǫ ∈ {−1, 1} and τ ∈ TC be such that τ(α∨
s ) = σ2ǫ for all

s ∈ S . Then Iτ admits a unique maximal proper submodule M . Moreover, Iτ =M⊕C1⊗τ 1
and if x ∈ Iτ/M , then Zλ.x = τ(λ).x and Hw.x = (ǫσǫ)ℓ(w).x for all (w, λ) ∈ W v × Y .

Proof. By Lemma 6.2, such a τ exists. Let q = σ2. Let ht : Y → Q be a Z-linear map such
that ht(α∨

s ) = 1 for all s ∈ S . Then one has τ(α∨) = qǫht(α
∨) for all α∨ ∈ Φ∨.

Let s ∈ S . With the same notation as in Lemma 5.4, let φs = φ(s.τ, τ) : Is.τ → Iτ . Then
by Lemma 5.4 Ms := Im(φs) is a proper submodule of Iτ . Moreover, Hs− ǫσǫ⊗τ 1 ∈Ms. Let
M =

∑
s∈S

Ms. Let w ∈ W v \ {1} and w = s1 . . . sk be a reduced expression. Let v = wsk.
Then Hv.(Hsk − ǫσǫ) = Hw − ǫσǫHv ∈ Msk . Therefore, for all w ∈ W v \ {1}, there exists
xw ∈ M such that πH

w (xw) = 1 and xw ∈ M ∩ I≤w
τ . By induction on ℓ(w) we deduce that

M + C1⊗τ 1 = Iτ .
By [GR14, Lemma 2.4 a)], τ ∈ T reg

C . Moreover, by Proposition 3.5 (2), Iτ =
⊕

w∈W v Iτ (w.τ)
and if we choose ξv ∈ Iτ (v.τ)\{0} for all v ∈ W v, then (ξv)v∈W v is a basis of Iτ . For w ∈ W v,
let πξ

w : Iτ → C be the linear map defined by πξ
w(ξv) = δv,w for all v ∈ W v. As ξ1 ∈ C1⊗τ 1,

one has πξ
1(Ms) = {0} for all s ∈ S . Thus Iτ = M ⊕ C1 ⊗τ 1. Moreover, M ⊂ (πξ

1)
−1({0})

and by dimension M = πξ
1({0}). We deduce that M is the unique maximal proper submodule

of Iτ and the lemma follows.

B Examples of possibilities for Wτ for size 2 Kac-Moody

matrices

In this section, we prove that there exist size 2 Kac-Moody matrices such that for each
subgroup H of W v, there exist τ ∈ TC such that Wτ is isomorphic to H . We assume that
αs(Y ) = Z for all s ∈ S and thus W(τ) = Wτ . We already proved the existence of regular
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elements in Lemma 6.1. If τ ∈ TC is such that τ(α∨
s1
) = 1 and τ(α∨

s2
) is not a root of 1, then

Wτ = {1, s1}.

Lemma B.1. Let A = (ai,j)(i,j)∈J1,2K2 be a Kac-Moody matrix. Assume that a1,2 and a2,1 are
even and such that a1,2a2,1 is greater than 6. Let γ2 be a primitive 1

2
(a1,2a2,1−4)-th root of 1.

Let γ1 = γ
1
2
a1,2

2 . Let τ : Y = Zα∨
1 ⊕ Zα∨

2 → C∗ be the group morphism defined by τ(α∨
i ) = γi

for both i ∈ {1, 2}. Then Wτ = 〈s1s2〉 ≃ Z.

Proof. Let τ ′ ∈ TC and γ′i = τ ′(α∨
i ) for both i ∈ {1, 2}. For λ ∈ Y , one has (s2 − s1).λ =

α1(λ)α
∨
1 − α2(λ)α

∨
2 . Thus

s1.τ
′ = s2.τ

′ ⇐⇒ ∀λ ∈ Y, τ ′(α1(λ)α
∨
1 − α2(λ)α

∨
2 ) = 1

⇐⇒ ∀λ ∈ Y, γ
′α1(λ)
1 = γ

′α2(λ)
2

⇐⇒ (γ′1)
2 = (γ′2)

a1,2 and (γ′2)
2 = (γ′1)

a2,1 .

Thus s1.s2.τ = τ . Moreover s2.τ 6= τ and hence Wτ = 〈s1s2〉.

If τ = 1 : Y → {1}, then Wτ = 1. The following lemma proves that Wτ can be a proper
subgroup of W v isomorphic to the infinite dihedral group.

Lemma B.2. Let A = (ai,j)(i,j)∈J1,2K2 be an irreducible Kac-Moody matrix which is not a
Cartan matrix. One has a1,2a2,1 ≥ 4 and maybe considering tA, one may assume a1,2 ≤ −2.
Write W v = 〈s1, s2〉. Let γ2 be an a1,2-th primitive root of 1 and τ ∈ TC be defined by
τ(α∨

s1) = 1 and τ(α∨
s2) = γ2. Then Wτ = 〈s1, s2s1s2〉.

Proof. Let τ̃ = s2.τ . Let us prove that s1.τ̃ = τ̃ , i.e that τ̃(α∨
s1
) = 1. One has τ̃ (α∨

s1
) =

τ(s2.α
∨
s1) = τ(α∨

s1 − αs2(α
∨
s1)α

∨
s2) = τ(α∨

s2)
−a1,2 = 1. Thus Wτ ∋ {s1, s2s1s2}. Therefore

W v/Wτ = {Wτ , t.Wτ}. Moreover t /∈ Wτ , thus [W v : Wτ ] = 2 and hence Wτ = 〈s1, s2s1s2〉.
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∨
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