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Abstract

Recently, Iwahori-Hecke algebras were associated to Kac-Moody groups over non-
Archimedean local fields. We introduce principal series representations for these alge-
bras. We study these representations and partially generalize Kato and Matsumoto
irreducibility criteria.

1 Introduction

1.1 The reductive case

Let G be a reductive group over a non-Archimedean local field K. To each open compact
subgroup K of G is associated a Hecke algebra Hy. There exists a strong link between
the smooth representations of G and the representations of the Hecke algebras of G. Let 1
be the Iwahori subgroup of G. Then the Hecke algebra Hc¢ associated with I is called the
Iwahori-Hecke algebra of G and plays an important role in the representation theory of G.
[ts representations have been extensively studied. Let Y be the cocharacter lattice of G and
W be the vectorial (i.e finite) Weyl group of G. Then by the Bernstein-Lusztig relations,
Hc admits a basis (Z*H,, ) xeywew such that Drer CZ* is a subalgebra of H¢ isomorphic to
the group algebra C[Y] of Y. We identify @, .,, CZ* and C[Y]. Let 7 € T¢ = Hom(Y, C*).
Then 7 induces a representation 7 : C[Y] — C. Inducing 7 to Hc, one gets a representation
I. of Hc. These representations were introduced by Matsumoto in [Mat77] and are called
principal series representations. We refer to [S0l09, Section 3.2] for a survey on this
subject.

Matsumoto and Kato gave criteria for the irreducibility of I,. The group W?" acts on Y
and thus it acts on T¢. If 7 € T¢, we denote by W, the fixer of 7 in W?. Let ®¥ be the coroot
lattice of G. Let ¢ be the residue cardinal of K. Suppose that G is of adjoint type. Let W(;
be the subgroup of W, generated by the reflections that it contains. Then Kato proved the
following theorem (see [[<at81, Theorem 2.4]):

Theorem 1. Let 7 € T¢. Then I, is irreducible if and only if it satisfies the following
conditions:

1. W, = M/ET)’
2. for all ¥ € @Y, 7(a¥) #q.

When 7 is regular, that is when W, = {1}, condition (1) is satisfied and this is a result
by Matsumoto (see |Mat77, Théoréme 4.3.5]).
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1.2 The Kac-Moody case

Let G be a split Kac-Moody group over a non-Archimedean local field . There is up
to now no definition of smoothness for the representations of G. However one can define
certain Hecke algebras in this framework. In [BIKX11] and [BKP16], Braverman, Kazhdan and
Patnaik defined the spherical Hecke algebra and the Iwahori-Hecke H¢ of G when G is affine.
Bardy-Panse, Gaussent and Rousseau generalized these constructions to the case where G is
a general Kac-Moody group. They achieved this construction by using masures (also known
as hovels), which are an analogue of Bruhat-Tits buildings (see [GR08]). Together with
Abdellatif, we attached Hecke algebras to subgroups slightly more general than the Iwahori
subgroup (see [AH19]).

Let Y be the cocharacter lattice of G and W" be the Weyl group of G. The Iwahori-Hecke
algebra Hc of G admits a Bernstein-Lusztig presentation but it is no more indexed by Y. Let
T C A=Y ®R be the Tits cone of G. Then T is a convex cone and it satisfies 7 = A if and
only if G is reductive. Then Hc¢ can be embedded in an algebra BYH¢ called the Bernstein-
Lusztig-Hecke algebra of G. The algebra P"H¢ admits a basis (Z*H,,)xey.wew» such that
@D,y CZ* is isomorphic to the group algebra C[Y] of Y. We identify @, ., CZ* and C[Y].
Then Hc is isomorphic to the subalgebra ®weW’v,AeY+ CZ*H,,. Let 7 € Tc = Hom(Y,C*).
Then 7 induces a map 7 : C[Y] — C and we can define the representation I, of B*H¢ induced
by 7. By restriction, this also defines a representation I of Hc. As I, admits a basis indexed
by the Weyl group of GG, I, is infinite dimensional unless G is reductive. The aim of this
paper is to study these representations and in particular to study their irreducibility. As we
shall see (Proposition 4.2), I, is irreducible if and only if " is irreducible and we will mainly
study I.. We prove the following theorem, generalizing Matsumoto irreducibility criterion
(see Corollary 5.10):

Theorem 2. Let 7 be a regular character. Then I, is irreducible if and only if for all o € ®V,
(o) # q.
We also generalize one implication of Kato’s criterion (see Proposition 5.17). Suppose

that G is of adjoint type and let W) be the subgroup of W, generated by the reflections that
it contains. Then:

Theorem 3. Let 7 € Tr. Assume that I, is irreducible. Then:
1. W, = m7)7
2. for all ¥ € @Y, 7(a¥) # ¢.

We then obtain Kato’s criterion when the Kac-Moody group G is associated with a size
2 Kac-Moody matrix (see Theorem 6.40):

Theorem 4. Assume that G is associated with a size 2 Kac-Moody matrix. Let 7 € T¢.
Then [, is irreducible if and only if it satisfies the following conditions:

1. Wr = m'r)u
2. for all ¥ € @Y, 7(aV) # q.

In order to prove these theorems, we first establish the following irreducibility criterion.
For 7 € T set I,(17) = {z € I;|0.x = 7(0).x VO € C[Y]}. Then:

Theorem 5. (see Theorem 5.8) I, is irreducible if and only if:
e 7(aV) # qfor all ¥ € OV

e dim /(1) = 1.



Frameworks Actually, following [BPGR16] we study Iwahori-Hecke algebras associated to
abstract masures. In particular our results also apply when G is an almost-split Kac-Moody
group over a non-Archimedean local field.

Organization of the paper In Section 2, we recall the definition of the Iwahori-Hecke
algebras and of the Bernstein-Lusztig-Hecke algebras, introduce principal series representa-
tions and define an algebra BYH(T7) containing P¥H 7, where F is the field of coefficients of
BLH]:.

In Section 3, we study the F[Y]-module [, and we study the intertwining operators from
I.to I, for 7,7 € Tr.

In Section 4, we study principal series representations of H and their links with principal
series representations of BYH .

In Section 5, we establish Theorem 5. We then apply it to obtain Theorem 2 and Theo-
rem 3.

In Section 6 we regard the weights vectors of I, and use it to prove Kato’s irreductibility
criterion for size 2 Kac-Moody matrices.

There is an index of notations at the end of the paper.
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2 Iwahori-Hecke algebras

Let G be a Kac-Moody group over a non-archimedean local field. Then Gaussent and
Rousseau constructed a space Z, called a masure on which G acts, generalizing the con-
struction of the Bruhat-Tits buildings (see |[GROg|, [Roul6] and [Roul7]). Rousseau then
defined in [Roull] an axiomatic definition of masures inspired by the axiomatic definition of
Bruhat-Tits buildings. We simplified it in [Héb19]. Masures satisfying these axiomatics are
called abstract masures because they might not be associated with some Kac-Moody group.
In [BPGR16], Bardy-Panse, Gaussent and Rousseau attached an Iwahori-Hecke algebra
Hgr to each abstract masure satisfying certain conditions and to each ring R. The algebra
‘Hr is an algebra of functions defined on some pairs of chambers of the masure, equipped
with a convolution product. Then they prove that under some additional hypothesis on the
ring R (which are satisfied by R and C), Hz admits a Bernstein-Lusztig presentation. In this
paper, we will only use the Bernstein-Lusztig presentation of Hzr and we do not introduce
masures (see [Heb18, Appendix A| for a definition). We however introduce the standard
apartment of a masure. We restrict our study to the case where R = F is a field.

2.1 Standard apartment of a masure

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (a; ;)i jer
indexed by a finite set I, with integral coefficients, and such that :

(7,) Vie I, 7%} :2,
(i) ¥ (i,7) € I*, (i # j) = (aij < 0);
(¢48) Y (i,5) € I?, (a;; =0) & (a;; =0).



A root generating system is a 5-tuple S = (A, X, Y, («)ier, (o)

U)ier) made of a Kac-Moody
matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite rank,
and of a free family (o );e; (respectively (o )icr) of elements in X (resp. Y) called simple
roots (resp. simple coroots) that satisfy a;; = «o;(q;) for all 4,5 in I. Elements of X
(respectively of Y') are called characters (resp. cocharacters).

Fix such a root generating system S = (A, XY, (;)ier, () )icr) and set A := Y @ R.
Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A*. In particular, the o;’s (with ¢ € I') will be seen as linear forms on A. This allows us to
define, for any ¢ € I, an involution r; of A by setting 7;(v) := v — a;(v)a; for any v € A. Let
& = {r;|i € I} be the (finite) set of simple reflections. One defines the Weyl group of
S as the subgroup W of GL(A) generated by .. The pair (W",.) is a Coxeter system,
hence we can consider the length ¢(w) with respect to . of any element w of W*. If s € .7,
s = r; for some unique i € I. We set oy = o; and o) = ).

The following formula defines an action of the Weyl group W" on A*:

VeeAweW' acA (wa)r):=alw ).

Let @ := {w.coy|(w,i) € WY x I} (resp. @ = {w.o)|(w,i) € W" x I}) be the set of real
roots (resp. real coroots): then ® (resp. @) is a subset of the root lattice @ := @ Zaoy;

icl
(resp. coroot lattice Q¥ = @, ; Za;’). By [[Kum02, 1.2.2 (2)], one has RaY N @Y = {+a'}
and RaN® = {+a} for all a¥ € &Y and «a € P.

Fundamental chamber, Tits cone and vectorial faces As in the reductive case, define
the fundamental chamber as C} := {v € A | Vs € 7, a,(v) > 0}.

Let T := U w.C7 be the Tits cone. This is a convex cone (see [Kum02, 1.4]).
weWv
For J C .7, set FV(J) = {z € Aloj(xz) = 0Vj € J and o;(x) > 0Vj € .\ J}. A positive
vectorial face is a set of the form w.F"(J) for some w € W* and J C .. Then by [Rém02,

5.1 Théoréme (ii)], the family of positive vectorial faces of A is a partition of 7 and the
stabilizer of F(J) is W; = (J).
Onesets YT =Y NT.

Remark 2.1. By [Kac9/, §4.9] and [Kac9), § 5.8] the following conditions are equivalent:

1. the Kac-Moody matriz A is of finite type (i.e. is a Cartan matriz),
2. A=T
3. WV is finite.

2.2 Recalls on Coxeter groups
2.2.1 Bruhat order

Let (Wy, #) be a Coxeter system. We equip it with the Bruhat order <y, (see [BB05,
Definition 2.1.1]). We have the following characterization (see [BB05, Corollary 2.2.3|): let
u,w € Wy. Then u <y, w if and only if every reduced expression for w has a subword that
is a reduced expression for u. By [BB05, Proposition 2.2.9]|, (Wy, <y, ) is a directed poset,
i.e for every finite set E2 C Wy, there exists w € W} such that v <y, w for all v € E.

We write < instead of <y». For u,v € W we denote by [u,v], [u,v), ... the sets
{we W u<w <o}, {fweWu<w<uv}, ...
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2.2.2 Reflections and coroots

Let Z = {wsw™w € WY, s € ¥} be the set of reflections of WV. Let r € #. Write
r = wsw™ !, where w € W?, s € . and ws > w (which is possible because if ws < w, then
r = (ws)s(ws)™). Then one sets o, = w.as € P4 (resp. o = w.a) € ®Y). This is well
defined by the lemma below.

Lemma 2.2. Let w,w' € WY and s,s' € .7 be such that wsw™ = w's'w' ™! and ws > w,
w's' > w'. Then w.oy = w'.ag € Oy and w.a) = w'.a) € Y.

Proof. One has r(z) = © — w.as(x)w.ay = & — w.ay(z)w' .oy for all x € A and thus
w.as € R'w'.ay and w.a)! € R'w'.a). As ® and ¢V are reduced, w.ay = +w'.ay and
w.a) = +w'.a). By [Kum02, Lemma 1.3.13], w.oi, w'.cty € &4 and w.a),w'.c), € DY,
which proves the lemma. O

Lemma 2.3. Let r,r" € Z and w € W be such that w.ce, = o or w.ay = o). Then
wrw™t =17’

Proof. Write r = vsv~! and r = v/s'v'~! for 5,8’ € . and v,v' € W". Then v'lwv.ay = ay.
Thus by [Kum02, Theorem 1.3.11 (b5)], ' twvsv™'w™1v' = s and hence wrw=' =7¢'. O

Let r € Z. Then for all x € A, one has:
r(z) =z — a.(x)a).
Let oY € @Y. One sets r,v = wsw™! where (w, s) € W x .7 is such that oV = w.aY. This
is well defined, by Lemma 2.3. Thus o — r,v and r — « induce bijections ¢} — # and
KX — Q. IftreRx, r= wsw™ !, one sets o, = o,, which is well defined by assumption on
the o4, t € .7 (see Subsection 2.3).
For w € W, set Nov(w) = {a" € ®Y|w.a¥ € PV}

Lemma 2.4. ([Kum02, Lemma 1.3.14]) Let w € W¥. Then |Ngv(w)| = {(w) and if w =
S1...5p is a reduced expression, then Nov(w) = {a) ,s,.a) ... ... s0.a) }.

2.2.3 Reflections subgroups of a Coxeter group

If Wy is a Coxeter group, a Coxeter generating set is a set % such that (W, %) is a

Coxeter system. Let (Wy,.%)) be a Coxeter system and %y = {w.s.w™'|w € Wy, s € S}

be its set of reflections. A reflection subgroup of Wj is a group of the form W; = (%)

for some #, C %,. For w € Wy, set Ny, (w) = {r € Zlrw™ < w™'}. By [Dye90, 3.3] or

[Dye9l, 1], if S (Wh) = {r € Zo|Ng,(r) Wy = {r}}, then (Wy,.#(W))) is a Coxeter system.
Let (Wp, %) be a Coxeter system. The rank of (W, .7) is |-%].

Remark 2.5. 1. The rank of a Cozeter group is not well defined. For ezample, by [Miih05,
3], if k € Z>1 and n = 4(2k + 1) then the dihedral group of order n admits Coxeter
generating sets of order 2 and 3. However by [Rad99], all the Cozeter generating sets
of the infinite dihedral group have cardinal 2.

2. Using [Bou&1, IV 1.8 Proposition 7] we can prove that if (Wy, %) is a Coxeter system
of infinite rank, then every Coxeter generating set of Wy is infinite.



3. Reflection subgroups of finite rank Coxeter groups are not necessarily of finite rank.
Indeed, let Wy be the Coxeter group generated by the involutions si, s, s3, with s;s; of
infinite order when i # j € [1,3]. Let W} = (s1,82) C Wy and %, = {wszw™|w €
Wiy € Zy. Then Wy = (%1) has infinite rank. Indeed, let 1 : Wy — W{ be the group
morphism defined by Yy, = Idw; and 1 (s3) = 1. Then %, C kertp. Thus s3 appears
in the reduced writing of every nontrivial element of Wy. By [BB05, Corollary 1.4.4] if
r € %, then the unique element of Ny, (1) containing an sg in its reduced writing is r.

Thus (W) D %, is infinite.

2.3 Iwahori-Hecke algebras

In this subsection, we give the definition of the Iwahori-Hecke algebra via its Bernstein-Lusztig
presentation, as done in [BPGR16, Section 6.6].

Let Ry = Z[(0s)se.r, (0%)se.r], where (05)ser, (04)sc.r are two families of indeterminates
satisfying the following relations:

o if ay(Y) = Z, then o, = 0’;

e if 5,t € . are conjugate (i.e. such that a(a;) = ay(a)) = —1), then o5 = 0y = 0, =
/

;.

To define the Iwahori-Hecke algebra Hg, associated with A and (o, 0.)sc.s, we first
introduce the Bernstein-Lusztig-Hecke algebra. Let BXHz, be the free Ri-vector space with
basis (Z*H,)eywewv. For short, one sets H, = Z°H,, for w € W* and Z* = Z*H, for
A € Y. The Bernstein-Lusztig-Hecke algebra BLHp, is the module PXHy, equipped
with the unique product % that turns it into an associative algebra and satisfies the following
relations (known as the Bernstein-Lusztig relations):

o (BLI)Y (\,w) €Y x W*, Z*x H, = Z ,;

H,, if {(sw) =l(w)+1

BL2)Vse Y NweW' H,«H, = _ ) ;
* (BL2) Vs v * {(as—asl)Hw—l—st if {(sw) =/l(w)—1

o (BL3)V (\ ) € Y2, Z*x 21 = ZMn,

. (BL4)1V A€ Yl', Viel, Hx 7N — 7525 Hy = Qu(2)(Z* — Z), where Q,(Z) =
(0505 )+ (=o' 1) z~0

1_Z72ag/

The existence and uniqueness of such a product * comes from [BPGR 16, Theorem 6.2].

Definition 2.6. Let F be a field of characteristic 0 and f : Ry — F be a ring morphism
such that f(os) and f(ol) are invertible in F for all s € .. Then the Bernstein-Lusztig-
Hecke algebra of (A, (0,)scs,(0))scsr) over F is the algebra B'Hyr = BlHp, @, F.
Following [BPGR106, Section 6.6/, the Iwahori-Hecke algebra Hr associated with S and
(05,0%)ses is now defined as the F-subalgebra of PEHz spanned by (Z*H.,) ey + wewv (recall
that Y* =Y N'T with T being the Tits cone). Note that for G reductive, we recover the
usual Twahori-Hecke algebra of G, since Y N T =Y.

In certain proofs, when F = C, we will make additional assumptions on the o, and o/,
s € .. To avoid these assumptions, we can assume that oy, 0, € C and |og| > 1, |0%| > 1 for
all s € ..



Remark 2.7. 1. Let s € .. Then if o, = 0., Qs(Z) = (10_;;1)

2. Letse€ . and N € Y. Then Q,(Z)(Z* — Z**) € F|Y]. Indeed, Q,(Z)(Z* — Z3) =
Qs(2).2*(1 — Z=Nd) . Assume that o, = o’ Then

(as(N)—1
A if a,(\) >0
1 — Z—osWad B =0
1—Z- —as(\)—1
— 2% Y 2% i ay(\) <0,
\ 7=0

and thus Q,(Z)(Z* — Z5*) € F|Y]. Assume o', # o,. Then ay(Y) = 27Z and a similar
computation enables to conclude.

3. From (BL4) we deduce that for all s € ./, AN €Y,

ZAx Hy — Hyx Z°* = Q,(2)(Z* — Z°).

4. When G s a split Kac-Moody group over a non-Archimedean local field IC with residue
cardinal q, we can choose F to be a field containing Z[\/c_]il] and take f(os) = f(ol) =
Vq forall s € .7,

5. By (BL4), the family (H,, * Z*)wewo rey is also a basis of B2 H x.

We equip F[Y] with an action of W*. For § = >, axZ* € F[Y] and w € W, set
0Y =3 ey 2"

Lemma 2.8. Let§ € F[Y] andw € W°. Then @xH,—H, 0" " € P"HT" = @,_, H,F[Y].
In particular, BL’H;UJ = D, HoC[Y] is a left finitely generated F[Y]-submodule of BLY 7.

Proof. We do it by induction on ¢(w). Let # € F[Y] and w € W" be such that u :=
0H, — H,0" " € BLH(TF)<". Let s € .# and assume that ¢(ws) = ¢(w)+1. Then by (BL4):

0% Hyy = (Ho0" 4 u) % Hy = Hp0® " + aH, + uH,,

for some a € F. Moreover, by [Kum02, Corollary 1.3.19] and (BL2), u * H, € BMH(Tx)<ws
and the lemma follows. O

Definition 2.9. Let Hrw» = @ cpyo FHuw C Hr. Then Hrwe is a subalgebra of Hr. This
is the Hecke algebra of the Cozeter group (W, .7).

2.4 Principal series representations

In this subsection, we introduce the principal series representations of BVH .
We now fix (A, (05)sc.#, (0%)se.s) as in Subsection 2.3 and a field F as in Definition 2.6. Let

Hr and BYH » be the Iwahori-Hecke and the Bernstein-Lusztig Hecke algebras of (A, (05)se.s, (%) se.v)

over F.

Let T = Homg, (Y, F*) be the group of group morphism from Y to F*. Let 7 € T%. Then
7 induces an algebra morphism 7 : F[Y] — F by the formula 7(3_, oy aye’) = >° oy a,7(y),
for " a,e? € F[Y]. This equips F with the structure of a F[Y]-module.



Let I, = IndBLHf(T) = PNy @ppyy F. For example if A € Y, w € WY and s € ., one
" 72’10, 1=7(\N1®,1,H,* 2" ®, 1 =1(\)H, ®, 1 and
22 H@:1 = HxZ"®,14Q,(2)(Z* - Z°")®,1 = 7(s N H;®, 1+ 7(Qs(Z2)(Z* - Z**)) @ 1.
Let b € L. Write h = 3",y wews PunHuwZ* ®: cun, where (hyy), (cup) € FVY),
which is possible by Remark 2.7. Thus
h= > hupconTWH, @ 1= > hyacont(NH,)1 @, 1.

AeY,weWv AeY,weWv

Thus I, is a principal BYH r-module and (H,, ®; 1),ew~ is a basis of I,. Moreover I, =
Hwv 7.1 ®; 1 (see Definition 2.9 for the definition of Hy» 7).

2.5 The algebra BYH »(Tr)

In this subsection, we introduce an algebra BYH(Tx) containing B*H . This algebra will
enable us to regard the elements of I, as specializations at 7 of certain elements of BEH (T%).
When F = C, this will enable us to make 7 € T vary and to use density arguments and
basic algebraic geometry to study the 7.

2.5.1 Description of BLYH(T%)

Let PEH(T%) be the right F(Y) vector space @, cyo HoC(Y). We equip F(Y) with an

w. A
action of W". For 6 = M € F(Y) and w € W?, set 0¥ := &@’7%
2aey rZ

VA
Proposition 2.10. There exists a unique multiplication x on BYH(Tx) which equips BYH(Tr)
with the structure of an associative algebra and such that:

o F(Y) embeds into B H(Tx) as an algebra,
e (BL2) is satisfied,
e the following relation (BL4’) is satisfied:
forall e F(Y) ands € S, 0« Hi— Hyx0° = Q(Z)(0 — 6°).

The proof of this proposition is postponed to 2.5.2.
We regard the elements of F[Y] as polynomial functions on T by setting:

Za)\Z ZCL)\T

AeY ey

for all (ay) € F). The ring F[Y] is a unique factorization domain. Let § € F(Y) and
(f,g) € FIY] x F[Y]* be such that § = g and f and g are coprime. Set D(f) = {7 €
Tr|0(g) # 0}. Then we regard 6 as a map from D(f) to F by setting 0(7) = f(— for all
T € D(0).

For w € W*, let 7l : BLH(Tx) — F(Y') be defined by 7/ (3", cyro Huby) = by If 7 € T,
lt F(Y) = {£]f.9 € CIY] and g(7) # 0} € F(Y). Let BTy, = B HF (V). ©
BLH(T). This is a not a subalgebra of PMH (1) (consider for example <— % H, = H, *
ﬁ . for some well chosen A € Y, s € ./ and 7 € 1¢). It is however an Hyw r —
F(Y), bimodule. For 7 € Tr, we define ev, : BYH(T%), — Hw. r by ev.(h) = h(r) =
Y wewr Hubuw(T) if o= 3" o Hyby € H(Y),. This is a morphism of Hywr — F(Y),-
bimodule.



2.5.2 Construction of BYH(Tx)

We now prove the existence of B“H(T%). For this we use the theory of Asano and Ore of
rings of fractions: BYH (Tx) will be the ring BVH 7« (F[Y]\ {0})~".

Let V =Pz @7y F(Y) D PEHz, where PH £ is equipped with its structure of a right
F[Y]-module. As a right F(Y')-vector space, V = @, .yy» HoC(Y'). The left action of F[Y]
on PEH £ extends to an action of F[Y] on V by setting 6. %, o Hufw = D wewo (0-Huw) fu,
for all (f,) € F(Y)W") and § € F[Y]. This equips V with the structure of a (F[Y] - F(Y))-
bimodule.

Lemma 2.11. The left action of F[Y] on V' extends uniquely to a left action of F(Y) on V.
This equips V' with the structure of a (F(Y)-F(Y))-bimodule.

Proof. Let w € WY and P € F[Y]\ {0}. Let V=¥ = D1 ) HoF (Y). By Lemma 2.8, the
map mp : V=Y — V= defined by mp(h) = P.h is well defined. Thus the left action of F[Y]
on V=% induces a ring morphism ¢,, : F[Y]| — End, ,(V="), where End,, ,(V=") is the space
of endormophism of the C(Y)-vector space V=".

Let us prove that ¢, (P) is injective. Let h € V= Write h = Y ;o Hublw, with
0, € F(Y) for all w € W". Suppose that h # 0. Let v € W" be such that 6, # 0 and such
that v is maximal for this property for the Bruhat order. By Lemma 2.8, P xh # 0 and thus
Ow(P) is injective. Therefore it is invertible for all P € F[Y]. Thus ¢, extends uniquely to
a ring morphism (}S; cF(Y) = V. As (WY, <) is a directed poset, there exists an increasing
sequence (Wwy)nez., (for the Bruhat order) such that |, o, [1,w,] = W". Let m,n € Z>q be

such that m < n. Let P € F[Y] and f™ = G, (P) and f™ = ¢, (P). Then fﬁéwm = fm)

and thus for all § € F(Y) and z € BYH(TF), 0.2 := ¢y, (8)(z) is well defined, independently
of k € Z>o such that x € V="+_ This defines an action of F(Y) on V.

Let he V,0 € F(Y)and P € FIY]\ {0}. Let # = £.h. Then as V is a (F[Y]-F(Y))-
bimodule, (Pxx) %0 =h*60 = Px (z*0) and thus z 0 = & % (hx6) = (5 h) 6. Thus V
is a (F(Y) — F(Y))-bimodule. O

Lemma 2.12. The set F[Y] C BYH  satisfies the right Ore condition: for all P € F[Y] and
h e BL%]:, P*BL”H;ﬂh*C[Y] 7é @

Proof. Let P € F[Y] and h € BYHz. Then by definition, P (5 * h) = h € V. Moreover,
V = @, HoC(Y) and thus there exists § € F[Y] such that £« hx 6 € B“Hx. Then
P x % xhx0=hx0¢e PxBHznhx F[Y], which proves the lemma. O

Definition 2.13. Let R be a ring and r in R. Then r is said to be regular if for all
"€ R\ {0}, rr’ #0 and r'r # 0.

Let R be a ring and X C R a multiplicative set of reqular elements. A right ring of
fractions for R with respect to X is any overring S O R such that:

o Fuvery element of X 1is invertible in S.
e Every element of S can be expressed in the form ax™' for some a € R and x € X.

We can now prove Proposition 2.10. The uniqueness of such a product follows from (BL4").
By Lemma 2.8, the elements of F[Y]\ {0} are regular. By Lemma 2.12 and [GW04, Theorem
6.2|, there exists a right ring of fractions BXH (T%) for BYH  with respect to F[Y]\ {0}. Then
BLH(T¥) is an algebra over F and as a vector space, "'H(Tr) = @, ey (HuF[Y])(FY]\

{017 = Buews HuC(Y).
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Let (f,g) € F[Y] x (F[Y]\ {0}). Then it is easy to check that g * (H, * % + QS(Z))(é _
gis)) = H, and thus % « Hy = (Hg * gis + QS(Z)(% — gis) Let f € F[Y]. A straightforward
computation yields the formula g « Hy = H (g)s + QS(Z)(g - (5)3) which finishes the proof

of Proposition 2.10.

Remark 2.14. e Inspired by the proof of [BPGR16, Theorem 6.2] we could try to define
* on 'V as follows. Let 6,,0, € F[Y] and wy,wy € W*. Write 61 x Hyy = Y oo Hubuw,
with (0,) € FY)W). Then (Hy, * 01) % (Hy, * 02) = > (Huy * Hy) * (620,).
However it is not clear a priori that the so defined law is associative.

e Suppose that Hx is the Iwahori-Hecke algebra associated with some masure defined in
[BPCR16, Definition 2.5]. Using the same procedure as above (by taking S = {Y*|\ €
Y*}), we can construct the algebra B2 H x from the algebra Hy. In this particular case,
this gives an alternative proof of [BPGR 16, Theorem 6.2)].

3 Weight decompositions and intertwining operators

Let 7 € Tx. In this section, we study the structure of I, as a F[Y]-module and the set
Homery, , moa(I7, 1) for 7/ € Tr.

In Subsection 3.1, we study the weights of I, and decompose every BYH z-submodule of
I as a sum of generalized weight spaces (see Lemma 3.3).

In Subsection 3.2, we relate intertwining operators and weight spaces. We then prove the
existence of nontrivial intertwining operators I, — I, . for all w € W".

In Subsection 3.3, we prove that when W is infinite, then every nontrivial submodule
of I, is infinite dimensional. We deduce that contrary to the reductive case, there exist
irreducible representations of B » which does not embed in any .

3.1 Generalized weight spaces of [,

Let 7 € Tr. Let x € I;. Write v = ) iy Ty @7 1, with (2,,) € FW)_ Set supp(z) =
{w e W"| x,, # 0}. Equip W? with the Bruhat order. If £ is a finite subset of W, max(FE)
is the set of elements of E that are maximal for the Bruhat order. Let R be a binary relation
on W (for example R =¢<", R =%%”, ...) and w € W". One sets

= @ FH o LHy " = @ FH, "HITH™ = PHFY)
veEW?|vRw vRw vRw
and BLHRY = BLY(Tw) A 0By = @, .. H F[Y).

Let V be a vector space over F and E C End(V). For 7 € FF set V(1) = {v €
Vlew = 7(e).wVe € E} and V(7,gen) = {v € V|Ik € Zso|(e — 7(e)Id)*.v = 0,Ve € E}. Let
Wt(E) = {r € FE|V () # {0}}.

The following lemma is well known.

Lemma 3.1. Let V be a finite dimensional vector space over F. Let E C End(V') be a subset
such that for all e,¢’ € F,

1. e is triangularizable

2. ee =¢e.

11



Then V = D, cwim) V(7. gen) and in particular Wt(E) # 0.
For 7 € Tx, set W, = {w € W"| w.r = 7}.

Remark 3.2. Let 7 € Tr. By Lemma 2.8, I=" and ];w are F|Y|-submodules of I.. In
particular F[Y .z is finite dimensional for all x € I,.

Let M be a B¥H r-module. For 7 € T, set
M(r)={m & M|P.m =7(P).m VP € F[Y|}

and
M(r,gen) = {m € M|3k € Zso|VP € F[Y],(P — 7(P))*.m = 0} > M (7).

Let Wt(M) = {7 € Tx|M(7) # {0}} and Wt(M, gen) = {7 € Tx|M(7,gen) # {0} }.
Lemma 3.3. 1. Let 7,7 € Tr. Let x € I.(7/, gen). Then if z # 0,
max supp(z) C {w € W*| w.r = 7'}
In particular, if I.(7', gen) # {0}, then 7" € W".T and thus

Wt(I,) C W°.r.

2. Let 7 € Tr. Let M C I; be a F[Y]-submodule of I.. Then Wt(M) = Wt(M, gen) C
Wv.r and M = @, cwian M(x, gen). In particular, Wt(M) # 0.

Proof. (1) Let x € I.(7/,gen) \ {0}. Let w € maxsupp(z). Write 2 = a,,H,, ®, 1 +y, where
a, € F\ {0} and y € [7". Then by Lemma 2.8,

Ar=a,H, 7" @, 1+ Y =1(w NayHy @ 1+9y =7 (NawHy, @, 1+7(\)y,

where ' € 17" Therefore w.r = 7.

(2) Let w € W¥. Let P € F[Y] and mp : IS¥ — =% be defined by mp(z) = P.x for
all x € I=*. Then by Lemma 2.8, (mp — w.7(P)Id)(I=*) C I=*. By induction on (w) we
deduce that mp is triangularizable on I=* and Wt(I=%) C [1,w].7 C W".T.

Let x € M and M, = F[Y].xz. By the fact that (W, <) is a directed poset and by
Lemma 2.8, there exists w € W* such that M, C I=". Therefore, for all P € F[Y], mp :
M, — M, is triangularizable. Thus by Lemma 3.1, F[Y].2 = @, cwi(ur, gen) Mz (X, ge0) =

D, e Ma (X, gen). Consequently, M = 3, ¢\, My = @,y apgomy M (X gen) and We(M) ©
Unew WEISY) € W07,

Let x € Wt(M,gen). Let © € M(x,gen) \ {0} and N = F[Y].z. Then by Lemma 2.8,
N is a finite dimensional submodule of I,. By Lemma 3.1, Wt(N) # 0. As Wt(N) C {x},
X € Wt(M). Thus Wt(M,gen) C Wt(M) and as the other inclusion is clear, we get the

lemma.
O

Proposition 3.4. (see [Mat77, 4.3.8 Théoréme (iii)]) Let 7,7 € Tx and M (resp. M’')
be a BUH z-submodule of I, (resp. I.). Assume that Homevy, mea(M, M') \ {0}. Then
e W.T.

Proof. Let f € Homery (M, M’)\ {0}. Then by Lemma 3.3 (2), there exists w € W"/W;
such that f(M(w.7,gen)) # {0}. Then w.T € Wt(,/) and by Lemma 3.3 (1) the proposition
follows. O

12



An element 7 € Tx is said to be regular if w.r # 7 for all w € W" \ {1}. We denote by
T5* the set of regular elements of T'.

Proposition 3.5. (see [Kal81, Proposition 1.17]) Let 7 € Tr.
1. There exists a basis (§u)wewe of I, such that for all w € W?:

o & €15 and T (&,) =1
o ¢, € I.(w.T,gen).

Moreover, if w € W is minimal for < among {v € W*|v.r = w.T}, then &, € I.(w.T).
In particular, Wt(I.) = W".r.

2. If T is reqular, then I.(w.T,gen) = I.(w.T) is one dimensional for all w € W' and
I =@, cwo Ir(w.T).

Proof. (1) Let w € W". Then by Lemma 2.8, Lemma 3.1 and Lemma 3.3, I=" = @, cypo . 15"
Write Hy, ®71 = sy, To, where 1y € I=(v.7, gen) for allv € W?/W,. Letv € W?/W,
be such that 7 (x;) # 0. Then maxsupp(ry) = {w} and by Lemma 3.3, w.t = v.7.
Set &, = mxg. Then (&,)uew» is a basis of I, and has the desired properties. Let
w € W* be minimal for < among {v € W' v.r = w.t}. Let A € Y. Then by Lemma 2.8,
(Z* —w.T(N\).&y) € L(w.T,gen) N [=*. By Lemma 3.3, we deduce that (Z* —w.7())).&, = 0
and thus that &, € I, (w.7). Thus w.r € Wt(/;) and by Lemma 3.3, Wt(/;) = I.

(2) Suppose that 7 is regular. Let w € W¥ X € Y and « € I.(7,gen). Then by
Lemma 3.3 (1), x — 7 ()&, € I,(1,gen)NI=* = {0}. By (1), &, € I (w.7) and thus (1) =

I;(7,gen) is one dimensional. By Lemma 3.3, we deduce that I, = @, oo I-(w.T). O

3.2 Intertwining operators and weight spaces

In this subsection, we relate intertwining operators and weight spaces and study some con-
sequences. Let 7 € T». Using Subsection 3.1, we prove the existence of nonzero morphisms
I, — I, for all w € W', We will give a more precise construction of such morphisms in
Subsection 5.4.

Let M be a BYH r-module and 7 € T. For z € M(7) define T, : I, — M by T (u.1 ®,
1) = u.z, for all u € BVHz. Then T, is well defined. Indeed, let u € B*H r be such that
u.1®,1=0. Then u € F[Y] and 7(u) = 0. Therefore u.x = 0 and hence T, is well defined.

The following lemma is then easy to prove.

Lemma 3.6. (Frobenius reciprocity, see [KatS1, Proposition 1.10]) Let M be a BUHx-
module, 7 € Tr and x € M(7). Then the map Y : M(7) — Homsry . _ea(L7, M) map-
ping each x € M(7T) to Y, is a vector space isomorphism and Y71(f) = f(1 ®, 1) for all
fe HOmBL'H}__mOd<IT, M)

Proposition 3.7. (see [Mat77, (4.1.10)]) Let M be a BYHx-module such that there exists
€ € M satisfying:

1. there exists T € Tx such that & € M(1),
2. M =Bz €.
Then there exists a surjective morphism ¢ : . — M of BYH r-modules.

Proof. One can take ¢ = T¢, where T is as in Lemma 3.6. O
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Proposition 3.8. (see [Mat77, Théoréeme 4.2.4]) Let M be an irreducible representation of
BLY = containing a finite dimensional F|Y]-submodule M’ # {0}. Then there exists T € T
such that there exists a surjective morphism of BYH r-modules ¢ : I. — M.

Proof. By Lemma 3.1, there exists £ € M’ \ {0} such that Z#.& € F.€ for all u € Y. Let
7 € Tr be such that £ € M (7). Then we conclude with Proposition 3.7.
]

Remark 3.9. Let Z(B¥Hz) be the center of BYHz. When W7 is finite, it is well known
that BYH x is a finitely generated Z(BYHz) module and thus every irreducible representation
of BYH  is finite dimensional. Assume that W is infinite. Using the same reasoning as in
[AH19, Remark 4.52] we can prove that B“Hz is not a finitely generated Z(®“Hz)-module.
As we shall see (see Remark 5.11), when F = C, there exist irreducible infinite dimensional
representations of B¥H . However we do not know if there exist an irreducible representation
V of BvH z such that for all x € V \ {0}, F[Y].z is infinite dimensional or equivalently, a
representation which is not a quotient of a principal series representation.

Proposition 3.10. (see [KatS1, (1.21)]) Let T € Tr andw € W*. Then Homsryy, —moa (L7, Luw.r) 7
{0}

Proof. By Proposition 3.5 w.T7 € Wt(Z,) and we conclude with Lemma 3.6. O

3.3 Nontrivial submodules of I, are infinite dimensional

In this subsection, we prove that when W is infinite, then every submodule of I, is infinite
dimensional. We then deduce that there can exist an irreducible representation of P such
that V' does not embed in any I, for 7 € T¢.

Lemma 3.11. Assume that W is infinite. Let w € WV. Then there exists s € . such that
Sw > w.

Proof. Let Dp(w) = {s € .#|sw < w}. By the proof of [BB05, Lemma 3.2.3], . € Dy (w),

which proves the lemma. O

Proposition 3.12. (compare [Mat77, 4.2.4]) Let T € Tr. Let M C I, be a nonzero Hyw r-
submodule. Then the dimension of M is infinite. In particular, of V is a finite dimensional
irreducible representation of B*Hx, then Homz(V, L) = {0} for all T € Tx.

Proof. Let m € M \ {0}. Let ¢(m) = max{/(v)|v € supp(m)}. Let w € supp(m) be such
that ((w) = ¢(m). By Lemma 3.11 there exists (s,) € #%2t such that if w; = w and
Wpt1 = Spwy, for all n € Zsq, one has €(w,11) = l(w,) + 1 for all n € Z>,. Let m; = m and
Mpt+1 = Hg,.m,, for all n € Z>,. Then for all n € Z>,, w, € max (supp(mn)), which proves
that M is infinite dimensional. ]

As we shall see in Appendix A, there can exist finite dimensional representations of BXH.

4 Principal series representations of "“H r and Hr

In this section, we study principal series representations of H .

In Subsection 4.1, we prove that when 7 € T, the Hr-submodules of I, are exactly the
BLY » submodules of I, (see Proposition 4.2).

In Subsection 4.2, we study the existence of principal series representations of Hz that
do not extend to representations of BVH .
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4.1 Principal series representations regarded as modules over H r

One sets Y? = Y, T = Tr. Let Y* = Y N T (see Subsection 2.1 for the definition
of T). Let Hompon(Y", F) be the set of monoid morphisms from Y to F and TF =
Hompjon (Y, F)\ {0}. Let n € {0, +}. If 7 € T, x € T} and M is a F[Y"]-submodule of
I, one sets M(x, F[Y"]) = {m € M|P.m = x(P), VP € F[Y"]} and M(x, F[Y"],gen) =
{m € MP3k € Zso| (P — x(P)Id)*m = 0, VP € F[Y"}. Let Wt(M,F[Y")) = {r €
THIM(r, FIY"]) # {0}}.

Lemma 4.1. Let 7 € Tx. Let M C I, be a finite dimensional F[Y *]-submodule of I.. Then
M is an F[Y]-submodule of I,.

Proof. For n € Zxq set P(n): “every n-dimensional F[Y | submodule of I, is an F[Y]-
submodule”. Let n € Zs be such that P(n) is true. Let M’ be an n + 1-dimensional
F[Y*]-submodule of I,.

Assume |Wt(M, F[YT])| > 2. Let 7 € Wt(M). Then by a lemma similar to Lemma 3.3,

M=M(n, FlY'lgen)® @ M7, F[Y"] gen).
T'eWt(M)\{1}

Then M(ri, F[Y™*], gen) and €D, cwiay gy M (7', F[Y '], gen) are F[Y]-submodules of M
and have dimension at most n. Thus M is a F[Y]-submodule.

Assume that Wt(M) = {7’} for some 7 € Homg, (Y, F*). Let x € M \ {0} and k =
min{k’ € Zs1|(Z> — 7 (MN)I)* =0, YA € Y*}. Let M’ = {m € M|(Z* — 7(N)Id)*'.m =
0, YA € Y*}. Then M’ is a proper F[Y t]-submodule of M and thus it is an F[Y]-submodule.
Let A € Y*. Then (Z*—7/(\)Id).x € M’ and hence Z*.x = 7/(\)z+m), where m, € M’. Let
p €Y and v € C7NY (see Subsection 2.1 for the definition of C}) be such that y+v € Y.
Then = = %(Z”.x—mfj) and thus Z#.x = Z“.T,%V) (ZV.x—m),) = T,%y)(Z“Jr”.x—Z“.mf,) € M.

Therefore M is an F[Y]-submodule of I, which proves the lemma. O

Proposition 4.2. Let 7 € T and M C I,. Then M is an Hz-submodule of I. if and only
if M is a PYH p-submodule of I.. In particular, I, is irreducible as a B“Hr-module if and
only if I is irreducible as an Hr-module.

Proof. Let M C I, be a Hr-submodule. Then M is an F[Y ] submodule of ;. Thus
M =Y,y FIYtlz and by Lemma 4.1, M is an F[Y]-submodule of I,. As BlHr is
generated as an algebra by Hz and F[Y], we deduce the proposition. O

4.2 Degenerate principal series representations of Hr

Let 7 : Y — F be a monoid morphism. Then 7 induces an algebra morphism 7 : F[Y 1] — F
and thus this defines a representation I = Ind"”(7) = Hr ®zy+ F. Then if I is not
the restriction of a representations of B'Hr we call I a degenerate principal series
representation of 7. In this section we study the existence of degenerate principal series
representation of Hr. We prove that in some cases - for example when Hr is associated
with an affine root generating system or to a size 2 Kac-Moody matrix - there exists no
degenerate principal series representations of Hz (see Lemma 4.5). We prove that there exist
Kac-Moody matrices such that there exist degenerate principal series representations of Hr
(see Lemma 4.9).

Let resy+ : Homyon(Y, F) — Homyen(YF, F) be defined by resy+(7) = 7y+ for all
7 € Homypon (Y, F).
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Lemma 4.3. The map resy+ : Homg, (Y, F*) = Homyon (Y, F*) — Homyen (Y, F*) is a
bijection.

Proof. Let 7 € Homyon (Y, F*). Let v € C%. Let A € Y and n € Zx be such that A-+nv € T.

Then 7(\) = % and thus resy+ is injective.

Let 77 € Homyon (Y, F*). Let A € Y. Write A = A, — A, with A\, A_ € Y. Set
T(N\) = igj’ which does not depend on the choices of A\_ and A;. Then 7 € Hompon (Y, F*)

is well defined and resy+(7) = 7%, which finishes the proof. O

Lemma 4.4. Let 7 € Homyjon (Y, F) and x € Tr.
1. Suppose Homy . —moa(17, Iy) # {0}. Then there exists w € W such that T = w.xy+.
2. Suppose Homy, _mod(Iy, I}) # {0}. Then there exists w € W such that 7 = w.x|y+.

Proof. (1) Let ¢ € Homyy, —moa(I, 1) \ {0}. Let 2 = ¢(1 ®,+ 1). Then Z* .z = 7(\).x for
all A\ € Y*. By Lemma 2.8, Z .2 # 0 for all A € Y*. Thus 7()\) # 0 for all A € Y.

Let p €Y. Let v € C} NY be such that p+ v € Y*. Then ZF.x = %z Therefore
there exists x’ € T such that z € I,(x'). By Lemma 3.3, x’ € W".x. Moreover, XTY+ =T,
which proves (1).

(2) Let ¢ € Homyy, moa(Iy, I7) \ {0}. Let z = ¢(1 ®, 1). Then Z .z = x(\).z for all
A € Y. By a lemma similar to Lemma 3.3 we deduce that x|y+ € W".7, which proves the
lemma. 0J

One has Homyon (Y, (F,.)) = Home, (Y, F*) U {0}. Set A;, = (), ker(ay). Let T be

the interior of the Tits cone.

Lemma 4.5. Let 77 € HomMon(Y, (]:,.)). Assume that there exists X € Y1 such that
7H(A) = 0. Then v+ (TNY) = {0}. In particular, if T = TUA4,, then Homye (YT, (F,.) =
Homyon (Y, F*) U {0}.

Proof. Let p € 7 NY. Then for n > 0, np € A+ T. Indeed, np — A = n(p — %) € T for
n > 0. Hence 77 (nu) = (71 (u))" = 0. O

A face F¥ C T is called spherical if its fixer in W is finite.

Remark 4.6. 1. If A is associated to an affine Kac-Moody matriz, then T = T UAs, (see
[Heb18, Corollary 2.3.8] for example).

2. If A is associated to a size 2 indefinite Kac-Moody matriz, then T = TUA;,. Indeed, by
[ém02, Théoréme 5.2.8 ], T is the union of the spherical vectorial faces. By [Roull,
1.3, if J C % and w € WP, the fizer of w.F" is w.W"(J).w™'. Therefore the only
non-spherical face of T is A, and hence T = T UA,;,.

8. Let A = ()i ep,3) be a Kac-Moody matriz such that for alli # j, a; ja;; > 4. Then by
[Kum02, Proposition 1.3.21], WV is the free group with 3 generators sy, S, S3 of order
2. Thus for all J C .7 such that |J| =2, F'(J) is non-spherical. Hence T 2 T U Ay,.
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4.2.1 Construction of an element of Homy, (Y, F) \ Homyon (Y, F)

We now prove that there exist Kac-Moody matrices for which Homyo, (Y, F) # Homypon (Y, F).
Assume that A is associated to an invertible indefinite size 3 Kac-Moody matrix (see [[<ac94,
Theorem 4.3] for the definition of indefinite). Then one has A = A’ @ A;,, where A’ =
B,c; Ray. Maybe considering A/A;,, we may assume that A;, = {0}.

Recall that T is the disjoint union of the positive vectorial faces of A.

Lemma 4.7. Assume that there exists a non-spherical vectorial face F* # {0}. Let x € T
andy € T\ FV. Then [z,y]N F" C {z}.

Proof. Assume that y € 7. Then (z,y] € T and thus [z,y] N F* C {z}.

Assume that y ¢ 7. For a € T, we denote by F the vectorial face of 7 containing a. If
Fy = F), then [v,y] C Fy. As F} # I, we deduce that [z,y] N Y = (. We now assume
that Fy # F). As W" is countable, the number of positive vectorial faces is countable and
thus there exist u # u' € [x,y] such that FY = F". Then the dimension of the vector space
spanned by F is at least 2. Thus there exists w € W" such that F) = w.F"(J), for some
J C . such that |J| < 1. Then the fixer of F? is w.Wj.w™!, where W; = (J). Then W,
is finite and thus F? is spherical. Consequently, (z,y) = (z,u] U [u,y) C T and the lemma
follows. O

Lemma 4.8. Assume that there exists a non-spherical vectorial face F* # {0}. Then T \ F¥
and T \ {0} are convex.

Proof. Let x,y € T \ F. Suppose that [x,y] N FY # (). By Lemma 4.7, y € F" = F¥ U {0}
and hence y = 0. Let FY be the vectorial face containing x. Then [z,y) C FY and hence
[z,9) N F” = : a contradiction. Thus 7 \ F" is convex.

By [GR14, 2.9 Lemmal, there exists a basis (d5)scs of @, Ray such that 6,(7) > 0
for all s € .. Thus T \ {0} is convex and hence 7\ F* =T \ F*NT \ {0} is convex. [

Lemma 4.9. Assume that A is associated to an indefinite Kac-Moody matriz of size 3 such
that there exists a non-spherical face different from A;,. Assume moreover that (a))sc.s is a

basis of A. Then Homygo, (Y*, (F, )) 2 Homyyop (Y*, .7-"*) U {0}.

Proof. Let 7% = 14w : T — F. Let us prove that 7 € Homyjen (7, (F, .)).

Let 2,y € T. If 2,y € T\ F*, then  +y =2.5(x +y) € T \ F* by Lemma 4.8 and thus
THax+y)=0=7"(2)r"(y).

Suppose € F” and y € T\ F?, then 2 +y = 2.3(z +y) € T \ F* by Lemma 4.7. Thus
THr+y)=0="7"(2)7"(y).

Suppose v = {0} and y € T \ F*. Let F} be the vectorial face containing y. Then
(z,y] € F; and hence z +y € F;: 77(x +y) = 0 = 77(x)7"(y). Consequently, 7+ €
Homyion (7, (F, ).

Maybe considering w.F", for some w € W', we can assume F* C C'_}’ Then there exist
S1,52,53 € .7 such that .7 = {s1,55, 53} and F* = o' ({0}) N o, ({0}) Na ' (RY). Let
A € A be such that ag () = as,(A) = 0 and ag,(A) = 1. There exists n € Z>; such that
A € 1Y. Thus 7'|J{/+ € Homyion (Y, (F,.)) \ (Homyon (Y, F*) U {0}).

]

5 Study of the irreducibility of I,

In this section, we study the irreducibility of I,.
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In Subsection 5.1, we describe certain intertwining operators between I, and I, ., for s €
& and 7 € Tx. For this, we introduce elements F; € BYH(T) such that Fy(x)®,1 € I, (s.x)
for all x € Tx for which this is well defined.

In Subsection 5.2, we establish that the condition (2) appearing in Theorems 1, 2 and 3
is a necessary condition for the irreducibility of I.. This conditions comes from the fact that
when I is irreducible, certain intertwinners have to be isomorphisms.

In Subsection 5.3, we prove an irreducibility criterion for . involving the dimension of I
and the values of 7 (see Theorem 5.8). We then deduce Matsumoto criterion.

In Subsection 5.4 we introduce and study, for every w € W7, an element F,, € BVH(Tx)
such that F,(x) ®, 1 € I,(w.x) for every x € Tt for which this is well defined.

In Subsection 5.5 we prove one implication of Kato’s criterion (see Proposition 5.17).

The definition we gave for I, is different from the definition of Matsumoto (see [Mat77,
(4.1.5)]). It seems to be well known that these definitions are equivalent. We justify this
equivalence in Subsection 5.6. We also explain why it seems difficult to adapt Kato’s proof
in our framework.

5.1 Intertwining operators associated with simple reflections

Let s € .. In this subsection we define and study an element F, € BLYH(T%) such that
Fy(x) ®y 1 € I,(s.x) for all x such that Fy(x) is well defined.

Let s € & and Ty, = 0,H,. Let w € WY and w = s;...s; be a reduced writing. Set
Ty =Ty, ... Ts,. This is independent of the choice of the reduced writing by [BPGR16, 6.5.2].

Set By = T, — 0% € Hyv r. One has B2 = —(1 + 02)B,. Let (, = —0,Q4(Z) + 0% €
F(Y) C BYH(T¥). When o, = o, = /g for all s € ., we have ¢, = lliqZZ::SiY € F(Y). Let
Fy = B, + (, € BYH(TF).

Let a¥ € @Y. Write oY = w.a) for w € WY and s € .. We set (v = ().

Let oY € &Y. Write @ = w.a), with w € W" and s € . We set o,v = 0, and
o!v = w.ol. This is well defined by Lemma 2.4 and by the relations on the o, t € .7 (see
Subsection 2.3).

The ring F[Y] is a unique factorization domain. For oV, write (,v =

vl

a
nym cden e C[Y] are pairwise coprime. For example if oV € ®V is such that o,v = o/, we can
take (9" = 1— 7~ and in any case we will choose (4" among {1—-Z~" 142" 1—-772"}.

where

Remark 5.1. Let 7 € Tr and r = rov € #. Suppose that r.t # 7. Then (I (1) # 0.

oV

Indeed, let X € Y be such that 7(r.\) # 7(\). Then 7(r.A — ) = 7(aY)* ™ £ 1. Suppose
Oav = 0w, then (3" =1 — Z7 and thus 7(C%") # 0. Suppose o, = o’.. Then a,(\) € 27Z

thus T(o)) ¢ {—1,1} and hence 7(C") # 0.
Lemma 5.2. Let s € . and § € C(Y'). Then
OxF,=F,*6°

In particular, for all T € Tx such that T((3) # 0, Fy(1) ®, 1 € I (5.7) and Fy(7) ®,, 1 €
I, (7).

Proof. Let A € Y. Then

7% B, — By x 2" =0,(2* % H, — Hyx 7°) + 02(2°* = 2%)
=~ 0.QuZ)( 2P = 2Y) + 622 — 2
:CS(ZS'A - ZA)
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Thus Z* * F, = Z* % (B, + (,) = F, * Z** and hence 0 x F, = F, * 0° for all § € C[Y].
Let 6 € C[Y]\ {0}. Then 0 (F,* 5) = F, and thus § x F, = F, % 5-. Lemma follows. [

Lemma 5.3. Let s € .. Then F? = (,( € F(Y) C BYH(TF).

Proof. By Lemma 5.2, one has:
F? = (B+C)*F, = BHFA+Fox(5 = B2+ B+ B, (S +((F = By(—1—02+(+C)+(CE = G

O

5.2 A necessary condition for irreducibility

In this subsection, we establish that the condition (2) appearing in Theorems 1, 2 and 3 is a
necessary condition for the irreducibility of I..
Recall the definition of T from Subsection 3.2.

Lemma 5.4. Let 7 € T and s € . be such that 7(C3)7((¢d™)*) # 0. Let ¢(1,8.7) =
Yrm@snt i Ir = Lor and ¢(s.7,7) = Ypne.1 : Lsr — 1. Then

o(s.1, 7)o ¢(r,8.7) = 7((C°)Id;, and ¢(1,s.7) 0o d(s.7,7) = 7((:C*)Idy, .

Proof. By Lemma 5.2 and Lemma 3.6, ¢(s.7,7) and ¢(7,s.7) are well defined. Let f =
¢(s.1,7) o ¢(7,5.7) € Endery . _moa(L-). Then by Lemma 5.2 and Lemma 5.3:

F1®r 1) = ¢(s.7,7) (Fu(7) ®sr 1) = Fu(7).0(5.7,7) (1 @5 1) = Fi(7)* @ 1 = 7(CC7) @7 1.

By symmetry, we get the lemma.
O

Let Uz be the set of 7 € T such that for all o € ®Y, 7((2V™) # 0. When o, = 0, = /¢
for all s € .7, then Ur = {7 € Tr|T(a") # ¢, Vo’ € &'}

We assume that for all s € ., o/ ¢ {0, —0,, —0o;'}. Under this condition, if o € @V
and 7 € T are such that 7(¢") = 0, then 7(¢™™) # 0.

Lemma 5.5. 1. Let 7 € Ur. Then for allw € W?, I. and I, are isomorphic as B“H r-
modules.

2. Let 7 € T'r be such that I, is irreducible. Then T € Ur.

Proof. Let 7 € Ur. Let w € WY and 7 = w.T. Let s € .. Assume that s.7 # 7. Then by
Remark 5.1 and Lemma 5.4, I+ is isomorphic to I,z and (1) follows by induction.

Let 7 € T’r be such that I, is irreducible. Let s € ..

Suppose 7(¢4") = 0. Then by assumption, 7(¢™™) # 0. Moreover by Remark 5.1,
I, =1,

Suppose now 7(¢3°") # 0. Then (with the same notations as in Lemma 5.4), ¢(s.7,7) # 0
and Im(¢(s.7,7)) is a PYHr-submodule of I.: Im(¢(s.7,7)) = I.. Therefore ¢(7,s.7) o
¢(s.1,7) # 0. Thus by Lemma 5.4, ¢(7, s.7) is an isomorphism and 7((s(?) # 0. In particular,
r(CIm) £ 0.

Therefore in any cases, I, is isomorphic to I, and 7(¢M"™) # 0. By induction we deduce

that I,,, is isomorphic to I.. Thus [, , is irreducible for all w € W". Thus w.7(¢™™) # 0
for all w € W" and s € ./, which proves that 7 € Ur. O
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Lemma 5.6. Let 7 € T be such that I, ~ I. (as a BYHr-module) for all w € W*. Then
for all w e WY, there exists a vector space isomorphism I.(1) ~ I.(w.T).

Proof. Let w € W". Then by hypothesis, Homevy, _noa(L7, I-) &~ Homery, . pod(Lw.r; Lw.r)-
Let ¢ : I, — I, be a BYH r-module isomorphism. Then ¢ induces an isomorphism of vector
spaces I (w.T) ~ I, ;(w.T). By Lemma 3.6,

I (1) ~ Homery . moa(Lr, Ir) &~ Homevy . od (Jw.r Luwr) = Ly (w.T) =~ I (w.T).

5.3 An irreducibility criterion for I,

In this subsection, we give a characterization of irreducibility for I, for 7 € T¢.
If B is a C-algebra with unity e and a € B, one sets Spec(a) = {\ € C| a—M\e is not invertible}.
Recall the following theorem of Amitsur (see Théoréme B.I of [Renl0]):

Theorem 5.7. Let B be a C-algebra with unity e. Assume that the dimension of B over C
is countable. Then for all a € B, Spec(a) # 0.

Recall that Uc is the set of 7 € Tt such that for all oY € &Y, 7({2V™) # 0.
Theorem 5.8. Let 7 € T¢. Then the following are equivalent:

1. I, is irreducible,

2. I(1)=C1®,;1 and T € Uc,

3. Endery, moa(Lr) = CId and 7 € Ue.

Proof. Assume that B = Endery, 04(l;) # CId. By Lemma 3.6 and the fact that I;
has countable dimension, B has countable dimension. Let ¢ € B\ CId. Then by Amitsur
Theorem, there exists v € Spec(¢). Then ¢ — vId is non-injective or non-surjective and
therefore Ker(¢ — vId) or Im(¢ — ~Id) is a non-trivial BYHc-module, which proves that I, is
reducible. Using Lemma 5.5 we deduce that (1) implies (3).

By Lemma 3.6, (2) is equivalent to (3).

Let 7 € T¢ satistying (2). Then by Lemma 5.5 and Lemma 5.6, dim I, (w.7) = 1 for all
w € Wv. By Lemma 5.5, for all w € W, there exists an isomorphism of B c-modules
fw i lpr = L. As C.fy(1 ®y., 1) C I (w.T) we deduce that I (w.7) = C.f,(1 ®,., 1) for all
we Wv.

Let M # {0} be a BYHc-submodule of I.. Let x € M \ {0}. Then M’ = C[Y].z is a
finite dimensional C[Y]-module. Thus by Lemma 3.1), there exists £ € M’ \ {0} such that
Z2€ e Ctforall A\ €Y. Then & € I.(7) for some 7 € Te. By Lemma 3.3, 7/ = w.T, for
some w € W?. Thus £ € C*f,(1 ®y.-1). One has BrHc.& = f,(B'He 1 @, 1) = fu(lyr) =
I, C M. Hence I, is irreducible, which finishes the proof of the theorem. O

Remark 5.9. Actually, our proof of the equivalence between (2) and (3), and of the fact
that (2) implies (1) is valid when F is a field, without assuming F = C.

Recall that an element 7 € T is called regular if w.7 # 7 for all w € W".

Corollary 5.10. (see [Mat77, Théoréme 4.3.5] ) Let 7 € Tk be reqular. Then I, is irreducible
if and only if T € Ur.
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Proof. By Lemma 5.5, if I, is irreducible, then 7 € Ur.
Assume that 7 € Ux. Then by Proposition 3.5 (2), dim I (7) = 1 and we conclude with
Theorem 5.8 and Remark 5.9. O

Remark 5.11. Assume that F = C and that 0, = o, = \/q for all s € 7, for some q € Z>s.
Let (y;);es be a Z-basis of Y. Then the map Tc — (C*)? defined by T € T — (7(y;))jes 15 a
group isomorphism. We equip Tc with a Lebesgue measure through this isomorphism. Then
the set of measurable subsets of Tc having full measure does not depend on the choice of the
Z-basis of Y. Then Uc = (\weev{™ € Tc|m(aY) # q} has full measure in Tc. Moreover
Te™® D Maevvioy i7 € Telm(A) # 1} has full measure in Te and thus {7 € Tc|l; is irreducible}
has full measure in T¢.

Recall that Z = {wsw™!w € WY, s € .} is the set of reflections of W?°. For 7 € Tg, set
We={weWlwr=r}, & ={a’ € 0 dn(r) =0}, By = {r =rov € Z|a¥ € 0}
and

Wiy = (%) = ({r = rav € Z|5 (1) = 0}) C W™,
By Remark 5.1, Wy C W.. It is moreover normal in W,.. When a,(Y) = Z for all s € .7,
then Wiy = (W, NZ%).

Corollary 5.12. Let 7 € Tr be such that W, = Wy = {1,t} for some reflection t. Then I.
15 irreducible iof and only if T € Ur.

Proof. By Lemma 5.5, if I is irreducible, then 7 € Uz. Reciprocally, let 7 € Uz be such that
W, = Wy = {1,t}, for some t € Z. Write t = v"'sv for s € . and v € W". Let 7 = v.7.
One has 5.7 = 7 and W; = {1,s}. By Lemma 3.3, I;(7) C I=°.

Let A€ Y. Then Z)H, ®: 1 = 7(\)H, ®@; 1 + 7(Qs(Z)(Z* — Z5M))1 ®= 1.

Suppose o = o.,. Then as Wz = v.W;.v™t = {1, s}, one has 7(a) = 1. By Remark 2.7,
T(Qs(2)(ZA—=2Z°7)) = (05— )ag(N). Asthere exists A € Y such that a,()\) # 0, we deduce
that Hy ®z 1 ¢ I:(7) and thus I:(7) = F.1 ®: 1. Similarly, if o, # o/, then I:(7) = F.1®; 1.
By Theorem 5.8 and Remark 5.9, we deduce that I is irreducible. By Lemma 5.5 we deduce
that I is isomorphic to I> and thus I, is irreducible.

]

5.4 Weight vectors regarded as rational functions

In this subsection, we introduce and study elements F,, € BYH(T%), w € W, such that for
all x € T'’x such that F,,(x) is well defined, F,,(x) ®, 1 € I (w.x).

For w € W¥, let 7 : BLH(T%) — F(Y) be the right F(Y)-module morphism defined by
7I(T,) = 0y for all v € W,

w

Lemma 5.13. Let F' be a uncountable field containing F. Let P € F[Y] be such that
P(1) =0 for allT € TF®. Then P =0.

Proof. Let Fy C F be a countable field (one can take Fy = Q or Fy = FF, for some prime
power (). Write P = >,y axZ*, with ay € F for all A € Y. Let (y;)jes be a Z-basis of Y
and X; = Z¥% for all j € J. Let F; = F(ax|[A € V). Let (x;)jes € (F')’ be algebraically
independent over F;. Let 7 € T be defined by 7(y;) = x; for all j € J.

Let us prove that 7 € T®. Let w € W¥\ {1}. Let A € Y be such that w™'. A — X # 0.
Write w™ '\ — X = > ey with n; € Z for all j € J. Let Q = HJEJZ;” e FilZ;,5 € J].
Then @ # 1 and thus 7(w™ A = \) = Q((z;)jes) # 1. Thus w.r # 7 and 7 € T2 Thus
P(7) =0 and by choice of (x;);e; this implies P = 0. O
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Let w € W". Let w = s1...5s, be a reduced expression of w. Set F, = F; ... F,, =
(Bs, + ) ... (Bs, + () € BYH(T#). By the lemma below, this does not depend on the
choice of the reduced expression of w.

Lemma 5.14. (see [Ree07, Lemma 4.3]) Let w € W".

1. The element F,, € BYH(Tr) is well defined, i.e it does not depend on the choice of a
reduced expression for w.

2. One has F,, — T,, € BVH(TF)<v.
3. If0 e F(Y), then 0% Fy, = F, % 0" .

4. If 7 € Tr is such that (gv € F(Y), for all ¥ € Ngv(w), then F,, € BVH(T¥), and
Fu(r)1®, 1€ I (wr).

5. Let 7 € T¥®. Then F, € B'H(T¥),.

Proof. Let us prove (4) by induction on £(w). By Lemma 5.2, § % F,, = F,, « %" for all
0 € F(Y). Let n € Z>y and assume that (4) is true for all w € W? such that {(w) < n. Let
w € WY be such that {(w) < n+1. Write w = sv, with s € . and ¢(v) < n. By Lemma 2.4,
Ngv(sv) = Ngv(v) U{v ™ .aY}. Let 7 € Tr be such that be such that (,v € F(Y), for all
a” € Ngv(w). One has F,, = (B, + () * F,. As F, € BYH(T¥), and BVH(T%), is a left
Hyyo r-submodule of BYH(Tx), B, * F, € B*H(T¥),. One has (,x F, = F,* (¥ € BYH(T¥),
and hence F,, € B*H(Tr),.

Let 7 € Tr be such that (,v € F(Y), for all ¥ € Ngv(w). Let § € F[Y]|. Then
(0% F,) (1) = (Fyy % 60“ ") (1) = 7(6* )7(F,(r)), which finishes the proof of (4).

Let 7 € T7® and o¥ € ®V. Write oV = w.a) for w € W* and s € .. Then s.w™'.7 #
w~t.7 and by Remark 5.1, w=1.7(¢3") # 0 or equivalently 7(¢") # 0. By (4) we deduce
that F,, € BYH(Tr), for all 7 € T*, which proves (5).

Let us prove (2). Let v € W? be such that h := F, — T, € B (T%)<¥ and s € .¥ be such
that sv > v. Then

Fsv:(Ts_gg‘l'CS)*(Tv“‘h):Tsv‘l'(_U§+CS)*Tv“_(_ag“_gs)*h“‘Ts*h

By Lemma 2.8, (—02 + () * T, (—0% + (s) * h € BUH(Tx)=v. By [Kum02, Corollary 1.3.19],
s.[1,v) C [1,sv) and thus T, x h € BYH(Tx)<* thus Fy, — T,, € P*H(T#)<*". By induction
we deduce (2).

Let w=sy...5, = s} ...s bereduced expressions of w. Let F,, be associated to s;...s,
and F! be associated to s}...s.. Let F' be a uncountable field containing F. Then by

Proposition 3.5 (2), for all 7 € TZ# there exists 6(r) € F™ such that F, (1) = 0(7)F, (7).
Let v € W" be such that 7(F) # 0 and 0, = :ZE?,@ € F(Y). Then 0,(1) = 6(7) for all
7 € TR?. But by (2), 0(r) = 1 for all 7 € T5®. Thus by Lemma 5.13, # = 1 = 6, and
Fl = F,. 0

Remark 5.15. 1. When o, = o), for all s € .7, the condition (4) is equivalent to T(B") #
1 for all ﬁv € Ngv (w)
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5.5 One implication of Kato’s criterion

Recall the definition of W,y from Subsection 5.3.
In this subsection, we prove that if I is irreducible, then W, = /().

Lemma 5.16. Let 7 € T¢ be such that W, # Wiy, Let w € W, \ Wi,y be of minimal length.
Then F,, € PYH(Tx)..

Proof. Write w = sj...s1, where k = f(w) and s1,...,s, € .. Let j € [0,k —1]. Set

w; = Sj...s1. Suppose that w;. fjefl (1) = 0. Then FwjaY,, = S1---8i8j418;...51 € W)
J

Moreover as Wy C W, we have sj;;...51.7 = s;...51.7. Therefore

T=WT=5...5...51.T =Sk ...541...51.T,
and w' = s...5;41...51 € W,. By definition of w, w" € W(,). Consequently
o ~ . / .
w=S8g...Sj41..-51.51...55.8j41.55...51 =W ij‘a;/jJrl € mq—) .

a contradiction. Therefore w;.C3" (1) # 0 and by Lemma 2.4 and Lemma 5.14, F,, €

Sj+1

BLH(TF),. O
Proposition 5.17. Let 7 € I be such that W. # Wi,y. Then I is reducible.

Proof. Let w € W, \ Wi,y be of minimal length. Then by Lemma 5.16 and Lemma 5.14,
F,(1) ®; 1 € I(r). Moreover, 75 (F,(7) ®; 1) = 1 and thus F,(7) ®. 1 ¢ C1 ®, 1. We
conclude with Theorem 5.8.

O

5.6 Link with the works of Matsumoto and Kato

Assume that W? is finite. Then H¢ = BYHe. Let 7 € Te. Then by Subsection 2.4,
dime I, = [W?|. One has Z*1®,1 =7(\)1®, 1 forall A € Y and Hc.1 ®, 1 = I.. Thus by
[Mat77, Théoréme 4.1.10| the definition we used is equivalent to Matsumoto’s one.

Assume that Hc is associated with a split reductive group over a field with residue cardinal
g. Then by (BL2), one has:

Tow if ((sw) =l(w) +1
Vse S NweW? TyxT, = .
(¢ — 1Ty + qTs if ((sw) = l(w) — 1.

Set 17 = 3 cwo Tw ®- 1. Then if s € .7, T,. 1/ = ¢q1”. Then by [Katsl, (1.19)], 1/
is proportional to the vector 1, defined in [[Kat&1]. Kato proves Theorem 1 by studying
whether the following property is satisfied: “for all w € W", H¢.1), . = L,,” (see [[Kat&1,
Lemma 2.3]). When W is infinite, we do not know how to define an analogue of 1. and thus
we do not know how to adapt Kato’s proof.

6 Description of generalized weight spaces

In this section, we describe I(7,gen), when 7 € T¢ is such that W,y = W.. We then deduce
Kato’s criterion for size 2 matrices.

Let us sketch our proof of this criterion. By Theorem 5.8 and Proposition 5.17, it suffices
to study I;(7) when 7 € Ug is such that W, = W(;. For this, we begin by describing
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I;(7,gen). Let 7 € T¢ satisfying the above condition. By Dyer’s theorem, (W,,.7;) is a
Coxeter system, for some .7 C W;. Let r € 7. We study the singularity of F, at 7,
that is, we determine an (explicit) element § € C(Y') such that F, — 6 is defined at 7 (see
Lemma 6.20). Using this, we then describe I, (7, gen). We then deduce that when W, = W,
is the infinite dihedral group then I,(7) is irreducible. After classifying the subgroups of the
infinite dihedral group (see Lemma 6.39), we deduce Kato’s criterion for size 2 matrices.

In Subsection 6.1, we study the torus 1¢.

In Subsection 6.2, we introduce a new basis of Hyy» ¢ which enables us to have information
on the poles of the coefficients of the F),.

In Subsection 6.3, we give a recursive formula which enables us to have information on
the poles of the coefficients of the F,,.

In Subsection 6.4, we study the singularity of F,. at 7, for r € 7.

In Subsection 6.5, we give a description of I.(7,gen), when W, = W,

In Subsection 6.6, we prove that when W, = W/, is the infinite dihedral group and 7 € U,
then I is irreducible.

In Subsection 6.7, we prove Kato’s criterion for size 2 Kac-Moody matrices.

This section is strongly inspired by [Rec97].

In certain proofs, when F = C, we will make additional assumptions on the o4 and o/,
s € .. To avoid these assumptions, we can assume that oy, 0. € C and |og| > 1, |0l > 1 for
all s € .7.

6.1 The complex torus T

We assume that |os| € Ry for all s € .. Let (y;);jes be a Z-basis of Y. The map Tz — (C*)”
mapping each 7 € Tr on (7(y;))jes is a bijection. We identify T¢ and (C*)’. We equip T¢
with the usual topology on (C*)7. This does not depend on the choice of a basis (y;);cJ.

Lemma 6.1. The set {7 € Tc|V(w,\) € W\ {1} x (C{NY), w.r(A) # 7(A)} is dense in
Tc. In particular, Te® is dense in Tt.

Proof. Let A € C7NY. By [Bousl, V.Chap 4 §6 Proposition 5], for all w € W*\ {1},
w.\ # A Let (v;);es € (C*)7 be algebraically independent over Q and 7, € T¢ be defined
by 7,(y;) = v; for all j € J. Then w.7,(\) # 7,(A) for all w € W¥\ {1}. Let 7 € T¢. Let

(v™) e ((C*)’ )ZZO be such that 7™ is algebraically independent over Q for all n € Z>q and
such that 7™ — (7(y;));es. Then 7, — 7 and we get the lemma. O

Let A C R be a ring. We set Q% = @, Ao C A.
Lemma 6.2. Let () € (C*)”. Then there exists T € Te such that 7(a)) = 7, for all s € .

Proof. Let us prove that there exists n € Z>; such that %Q% oYnN Q(é The module Y N Qé
is a Z-submodule of the free module Y. Thus it is a free module and its rank is lower or
equal to the rank of Y. Let (y;);es be a Z-basis of Y N Qp. As af € Y NQy for all s € .7,
we have we have vectq(Y NQY) = Q. Therefore for all j € J, there exists (m;,) € Q7 such
that y; = >, mj s and thus there exists n € Z>; such that 1Qy DY NQY.

1
Let S be a complement of Y N Qg in Y ® Q. For s € .7, choose 7 € C* such that

1 1
()" =7, Let 7: 1Qy & S — C* be defined by 7(3>° ., “af + x) = [[,c,(74)* for all

s€s n
(as) €Z” and x € S. Let 7 = 7y. Then 7 € T¢ and 7(a)) =7, for all s € .7, 0O

24



6.2 A new basis of Hyc

Following [Rec97, 5], we now define a new basis (By,)wewr of Hyv ¢ which has “good proper-
ties” with respect to multiplication (see Lemma 6.6). This will enable us to have information
on the coefficient 7f (F,,) € C(Y), for w € W? (see Lemma 6.7 and Lemma 6.20). In the split
reductive case, we could use the Kazhdan-Lusztig basis of Hyy» ¢. In the general Kac-Moody
case however, there is up to now no Kazhdan-Lusztig basis of Hyv ¢

Let 7,7 € Te and € I.(7). Let Y27 be the B“Hc-modules morphism from I, to I,
sending h.1 ®; 1 to h.x for all h € BYH¢. This is well defined by Lemma 3.6.

Lemma 6.3. Let v € WY, s € .% be such that vs > v and T € T, Then:
Fos(s.7) = F,(s.7) % Fg(1) € Hwoc.

Proof. By Lemma 5.14 (5), Fs(s.7), F,(s.7) and Fy(7) are well defined.

Let 7 = s.7. By Lemma 5.14 z = F,(7) € I;(v.7), y := Fy(7) € I.(7) and z :=
Fos(1) ®, 1 € I.(vs.7). We have the following diagram:

[1)87'_]1)'?TU—T;[~ T I
TU T \T

By Proposition 3.5 (2), Y7o T7" € CYTY*"7. By evaluating at 1 ®,,.. 1 we deduce that
F,(s.7) * Fy(1) € CF,(s.7). Moreover wl (F,(s.7) * Fy(7)) = 1 = 7l (F,s(7) ®, 1), which
proves the lemma. O

Lemma 6.4. Let w € W and s € .7 be such that ws > w. Let mp, : Hyo © ’H;}ﬁs be
the right multiplication by Bs. Then mp, is well defined, diagonalizable and its ezgenvalues
are —(1+ 02) and 0, both with multiplicity 1221 ws”

Proof. Let v € [1,ws|. Then by [Kum02, Corollary 1.3.19], vs < max(w,ws) = ws. Thus
Hiie * Hy C Hiys’e and hence mp, is well defined.

We have Hii'e = My ¢ * My and Hip' o = CB, & C(T, + 1) and thus Hjj’e =
7'15[/15,@ *x B, + HS“U’, % (Ts + 1). The families (7}, * By)y<vs<ws and (T, * (Ts + 1)) pcvs<ws are
bases of Hngv,c * By and Hngv,c * (T, +1). Moreover, B> = —(1+02)B, and (T, +1)* B, = 0,
which proves the lemma. O
Lemma 6.5. Let 7 € T¢ be such that |T(a))| > 1 for all s € 7. Then T € TL5.

Proof. Let w € W”\{1}. Let A € CyNY. By [Bousl, V.Chap 4 §6 Proposition 5] w™'.\ # A

and by [GR14, Lemma 2.4 a)|, w " A=\ € (B, Z<or)) \{0}. Thus |w )| < 1 and hence
w.T #£T. !

Lemma 6.6. There exists a basis (By)wewy of Hwvc such that :
1. By=T,—0? forall s € .7,
2. By — T, € Hyi e for allw € W,
3. For allw e W" and s € . we have:

— (1+0?)B, if ws <w
B,B, = .
Bys + Z b(v,w)B, if ws > w,
vs<v<w

for some b(v,w) € C.
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Proof. Let 79 € T¢ be such that 75(a)) = o, for all s € ., whose existence is provided
by Lemma 6.2. For all s € ., |9(a))| > 1 and thus by Lemma 6.5, 7y is regular. By
Lemma 5.14, B, := F,,(7) is well defined for all w € W*". Then (By)wew~ satisfies (1) and
(2).

Let w € WV and s € . be such that ws < w. By Lemma 6.3, one has
B = F (T ) = Fws(S-TO) * F (T0> = Fws(S-TO) * Bs-

Moreover, B? = —(1 + 02)B, and thus B, * B, = —(1 + 02) B,,, hence (3) holds in this case.
Let w € WY and s € . be such that ws > w. By (2), H<ws = @velws] CB,. By
Lemma 6.4 and the first part of (3), if h € H;V%S(C is such that h * B, = —(1 + ¢2)h, then

h € @,,cpews Bo- Thus B, x By, — B, € @vs<v<w B,. Moreover, 71 (B % By — Bys) =0,
and therefore B, * By — B,,s € @, <vew Bv, which concludes the proof of the lemma. O

As (By)wewv is a C-basis of Hyv e, (Bw)wewr is a C(Y)-basis of the right module
BLA(Tk).

Let w € W¥. Write F\, = Y v BuPow, Where (p,.,) € C(Y)W*"). By an induction on
{(w) using Lemma 6.6 (2) we have P, ., H,C(Y) = P,,, B.C(Y) for all w € W*. Thus
for all v € W* such that v £ w, one has p,,, = 0. In [ReeO7, 5.3], Reeder gives recursive
formulae for the p, . The followmg lemma is a particular case of them.

Forv € WY, define 2 : Hyro c — (C(Y) by 72(3° ewv Bufu) = fo forall (f,) € C(Y)W").
Lemma 6.7. Let w € W". Then py 4 = (y : HBVENq\/ Cov.

Proof. We prove it by induction on E(w).
Let v € W" and assume that p;, = (,. Let s € . be such that vs > v. By Lemma 5.2
one has

F,, =F, x F|
:( Z Bupu,v) * Fs
ueWv
— Z B, * Fyp;, , = Z By * By, , + Z Bupj s
ucWv ueWv wEW?

By Lemma 6.6, we have 70 (3", o Bu * Boply ) = 0 and 70 (30, o Bubf () = pi.Cs- By
Lemma 2.4, Ngv(vs) = s.Nov(v) U{e} and thus 7’ (F,s) = p1,us = p} (s = Cus Which proves
the lemma. O

6.3 An expression for the coefficients of the F,, in the basis (7,)

In this subsection, we give a recursive formula for the coefficients of the F, in the basis
(T},)vewr (see formula (1) below and Lemma 6.9). We will deduce information concerning the
elements v € W such that 71 (F,) is well defined at 7, for a given 7 € Tt (see Lemma 6.10).

Let A € Y and w € W". By (BL4), Remark 2.7 (2) and an induction on ¢(w), there
exists (P (2))vewr € C[Y]W") such that Z* « T, = > o T * Powa(Z). Moreover
Pywx= Zw "X and for all v € W? \ [1,w], Pywr=0.

Let A € CyNY. Then by [Bousl, V.Chap 4 §6 Proposition 5], for all v,w € W" such
that v # w, one has v.A # w.A. Let w € W". Let w = s;...5s; be a reduced expression. Set
Quuwr(Z) =1 € C(Y). Forv e W\ [1,w], set Quuwr(Z) = 0. Define (Quuwr(Z))ven,w by
decreasing induction by setting:

1
Qv,w,)\(Z> = Zuw T _ gu i Z Qu,w,)\Pv,u,)\ € C(Y> (1)

w>u>v
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Lemma 6.8. Let A € CYNY, w € W and 7 € T¢™® be such that v.7(\) # 7()\) for all
ve WU\ {1}. Let x € I, be such that Z*.x = w.t(\).xz. Then z € I (w.7).

Proof. By Proposition 3.5 (2), we can write x = Y ;. 2, where x,, € I.(v.7) for allv € W,
One has Z* z—w.m7(N).x =0= > o (0.7(A) —w.T(N))zy. Asv.7(X) # w.T(X) for all v # w,
we deduce that x = z,,. OJ

Lemma 6.9. Let v,w € WY. Then 7l (F,) = Quuwnx, for any X € CyNY. In particular,
Qu.w does not depend on the choice of .

Proof. Let A € C} and h = Y vews ToQuw € BL(T¢). One has:

Z)\ x h = ZA * Z Tva,w,)\
veWv

- Z TuPu,v,AQv,w,)\

u,veWv

= Z Tu Z Pu,v,)\Qvﬂv,)\‘

ueWwv veWv
Let w € WP, Then:

—1 —1 —1 —1
Z Pu,v,)\Qv,w,)\ = Pu,u,)\Qu,w,A_l'Z Pu,v,)\Qv,w,)\ =7 ')\_l_(Zw -A_Zu -)\)Qu,w,)\ =Z" -)\Qu,w)n

veW? v>u

and therefore Z*.h = h.Z*" ",

Let A € CyNY and 7 € T¢™® be such that u.7(\) # 7(A) for all w € W¥\ {1}. Then
ev (Zxh) = ev.(h* Z°*) = w.r(\).h(7). By Lemma 6.8 we deduce that h(7) € I, (w.7).
By Proposition 3.5 (2) and Lemma 5.14 we deduce that h(7) = F,(7). By Lemma 6.1, we
deduce that h = F,,, which proves the lemma. O

Lemma 6.10. Letw € WY, 7 € Tz and v € [1,w]. Assume that for allu € [v,w), u.T # w.T.
Then for all u € [v,w], 7l (F,) € C(Y),.

Proof. We do it by decreasing induction on v. Suppose that for all u € (v,w), 71 (F,) €

u

C(Y),. Let A € C}NY be such that v.7(A) # w.7()\), which exists because C} MY generates
Y. By Lemma 6.9 we have

1
Wg(Fw) = Qv,w,)\ = ZwIx _ go LA Z Qu,w,)\Pv,u,)\-

w>u>v

We deduce that 7! (F,) € C(Y), because by assumption @Q, ., x» € C(Y), for all u € (v,w].
Lemma follows. O

6.4 T7-simple reflections and intertwining operators

Let 7 € Te. Following [Ree97, 14], we introduce 7-simple reflections (see Definition 6.11).
If .7, is the set of 7-simple reflections, then (1{;), ;) is a Coxeter system. We study, for
such a reflection 7, the singularity of F, at 7: we prove that F, — ¢, is in BYH(T¢), (see
Lemma 6.20). This enables us to define K, (7) = (F, — (.)(7) € Hwv c. This will be useful
to describe I, (T, gen).

We now define 7-simple reflections. Our definition slightly differs from [Ree97, Definition
14.2]. In many cases, these definitions are equivalent (see 6.4.3) but we do not know if they
are always equivalent.
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Definition 6.11. Let 7 € Te. A coroot Y € @Y and its corresponding reflection rgv are said
to be T-simple if Ny(rgv) N Wiy = {5"}. We denote by .7 the set of T-simple reflections.

Recall that @) = {a” € Y dn(r) =0} and Z(r) = {rav|a" € 00}

6.4.1 Coxeter structure of W,

We use the same notation as in 2.2.3. Then ., = (W) and thus (W, .7;) is a Coxeter
system.
Let <. and ¢; be the Bruhat order and the length on (W(;),.7;).

Lemma 6.12. Let x,y € W, be such that v <, y. Then x <y.

Proof. By definition, if z,y € W(;), then  <; y (resp. = < y) if there exist n € Z>¢ and
Tog = 2,21,...,T, =Yy € Wiy (resp . WY) such that (z;,2;41) is an arrow of the graph of
[Dye91, Definition 1.1] for all i« € [0,n — 1]. We conclude with [Dye91, Theorem 1.4] O

Remark 6.13. The orders < and <; can be different on W;): there can exist v,w € Wi
such that v and w are not comparable for <, and v < w. For ezample if W" = {s1, s2} is the
infinite dihedral group, r1 = s1 and ro = $28182 (see Lemma B.2), then r1 < ry but ri and ro
are not comparable for <.

6.4.2 Singularity of F, at 7 for a T-simple reflection

Lemma 6.14. Let r = rgv € ;. Then Nov(rgv) N @[, C {8"}.

Proof. Let f : ®{ — % be the map defined by f(a") = rov for all ¥ € ®Y. Then by
Subsection 2.2, f is a bijection. One has f(Nev(r) N Q(VT)) = Ng(r) N %(r). Moreover,
H(ry C WinyNZ. Thus

FTH(Na(r) N W) = {8Y} D fTH(Na(r) N %)) = Nov(r) N L.
]

Lemma 6.15. Let 7 € T and rgv € . Then there exists h' € BVH(T¢), such that
F,., = I.cden.
5\/

Proof. Using [BB05, 1. Exercise 10], we write rgv = wsw™! with w € WY, s € .% and
((wsw™) = 20(w) + 1. One has B8 = w.a). Let rgv = s,,...51 be a reduced expression
of rgv, with m € Zsy and s1,...,8, € .. Let k € [0,m — 1] and v = s...s;. Suppose
that F, = hj},.(C3")"®) where h), € BYH(T¢), and n(k) € Z>o. Then Foroo="F,, xF, =
(Bsyy + Copir) ¥ Fiy. One has (,,,, * Fy, = F,. ;);1 by Lemma 5.14.

By Lemma 6.14 if C;’;l is not defined in 7 then k = ((w). As B,, |, € Hw c and BLY(T¢),
is a left Hyw c-module, we can write Fj, ., = h;H.(CgS“)"(kH) where hj ., € PYH(T¢), and
n(k+1) <nk)if k # (w) and n(k+1) < n(k)+1if k = ¢(w), which proves the lemma. [

Lemma 6.16. Let h € BYH(T¢) and 7 € Te. Then

max{u € W"|r¥(n) ¢ C(Y),} = max{u € W*|z2(h) ¢ C(Y),}.
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Proof. Let v € max{u € W*|zH(h) ¢ C(Y),}. By 6.6 (2),

wl(h) = al(H)rxl (h) = 7l (H)xl () + > 7l (H)wl ().

u>v u>v

Moreover, by Lemma 6.6 (1) 72(H,) € C*. Thus 7Z(h) ¢ C(Y),. Similarly if v’ € max{u €
W@ u > v|rB(h) ¢ C(Y),}, then 7f1(h) ¢ C(Y),. Hence v € max{u € W*|r2(h) ¢ C(Y),}
and consequently max{u € W"|r2(h) ¢ C(Y),} C max{u € W"|zB(h) ¢ C(Y),}. By a
similar reasoning we get the other inclusion. O

Lemma 6.17. Let w € W". Suppose that for some s € ./, we have w. A — X\ € Ra for all
AeY. Then w e {Id, s}.

Proof. Let BY € Ngv(w). Write ¥ = ., ma), with ny € Z> for all t € .. Then
w.fY € ®Y and by assumption, n, = 0 for all t € .#\{s}. Therefore 8¥ € Z>oa!NPY = {a)}.
We conclude with Lemma 2.4. O

Lemma 6.18. Let x € Tc. Assume that there exists ¥ € ®Y such that rgv € W,. Then
there exists (xn) € (Tc)?20 such that:

® Xn 7 X,

o W, = (rgv) for alln € Z>y,
Xn B =

* Xn(BY) = x(BY) for all € Zo.

Proof. We first assume that ¥ = «a, for some s € .. Let (y;);es be a Z-basis of Y. For all
j € J, choose z; € C such that x(y;) = exp(z;). Let g : A — C be the linear map such that

g(y;) = z; for all j € J. Let V be a complement of Qf in A. Let n € Z>;. Let b = gla))
and (b") € C7\) be such that [b™ —g(a)| < L and such that the exp(b\™), t € .7\ {s} are

algebraically independent over Q. Let g, : A — C be the linear map such that g, («}') = bg")
for all t € . and g,(v) = g(v) for all v € V.. For n € Z>q set x,, = (exp og,)y € Tc. For all
z €A, g,(r) = g(x) and thus x,, — x.

Let n € Z>;. Then x(a)) = xn(a)) and thus s € W,,,. Let w € W,,,. Then w ' A=\ €
Zao! for all A € Y. By Lemma 6.17 we deduce that w € {Id, s}. Therefore W, = {Id, s}.

We no more assume that 5 = oy for some s € .. Write 8" = w.a! for some w € W"
and s € . Let Y = w'.y. Then s € W;. Thus there exists (X,) € (T¢)%2° such that
Xn — X and Wy, = {Id,s} for all n € Zso. Let (x,) = (w.X,). Then x,, — x and
Wy, = {1,rgv} for all n € Zs,.

Moreover, x(5Y) € {—1,1} and x,(8Y) € {—1,1} for all n € Z,. Maybe considering a
subsequence of (y,), we may assume that there exists e € {—1,1} such that x,(8Y) = € for
all n € Z>o. As x», = X, Xu(8Y) = € = x(B8"), which proves the lemma. O

Let C[Qy] = @/\GQ% CZ* C C[Y]. This is the group algebra of Q. Let C(Qy) C C(Y) be
the field of fractions of C[Qy] and H(Qy) = @, cp» HoC(Qy) C PVH(T¢). Thisis a (Hywc—
C(Qy))-bimodule of BEH(T¢) and a left C(Qy)-submodule of BYH (T¢). Consequently F,, €
H(Qy) for all w € W,

Let A = C[Z%|s € .#] C C[Qy]. This is a unique factorization domain and C(Qy) is the
field of fractions of A.

Lemma 6.19. Let ¥ € ®V. Then Z°" — 1 and Z°" + 1 are irreducible in A.
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Proof. Write ¥ = w.aY, where w € W¥ and s € .. Then Z°" = (Z°)v. O

Lemma 6.20. (see [licc97, Proposition 14.3]) Let T € Tg and r = rgv € /7. Then Fy —
CBV S BLH(T@)T.

Proof. One has Frg — (pv € H(Qy). Write F,,g — Qv = Y uewn Hug—z, with f,, g, € A and
fuNgy=1forall u € W°. Let u € (1,rpv). Let us prove that (3% A g, = 1. Suppose that
den A g, # 1. Then there exists n € {—1,1} such that Z%" + 5 divides g,.
Let x € T be such that x(8Y) = —n. By Remark 5.1, r5v € W,. Let (x,) € (Tc)?>0 be
such that x, — x and W, = {1,rgv} for all n € Z>(, and x,(8Y) = —n for all n € Zs.

whose existence is provided by Lemma 6.18. One has ¢,(x,) = 0 for all n € Z~,. Moreover
by Lemma 6.10, WE(F,%) = i;_: € C(Y),, for all n € Zso. Therefore, f,(x,) = 0 for all
n € Zso and thus f,(y) = 0.

By the Nullstellensatz (see [Lan02, IX, Theorem 1.5] for example), there exists n € Zsg
such that Z% + 7 divides f7 in A. By Lemma 6.19, Z°" + 7 is irreducible in A and thus
ZP" +p divides f,: a contradiction. Therefore Cgﬁn A g, = 1. By Lemma 6.15, g,(7) # 0.

Therefore {u € W*|n(F,,, — () ¢ C(Y).} € {1}. By Lemma 6.16 we deduce
that {u € VV”|7T5(FT§v — Grpv) & C(Y)-} C {1} Using Lemma 6.7 we deduce that {u €
We g (Frpy = Grpy) € C(Y):} = 0. By Lemma 6.16, {u € W*|r;/(F,,, — () € C(Y)-} =0,

which proves the lemma. O

6.4.3 Comparison of definitions of 7-simplicity

We now compare our definition of 7-simplicity and the one of Reeder (see [Ree97, Definition
14.2]). Let .75 be the set of 7-simple reflections r = rgv € W) N Z such that Nev(rgv) N
oy, = {8").

The advantage of our definition is that it is well adapted to the Coxeter structure of W,
and the advantage of Reeder’s one is that it is well adapted to the study of the singularity
F, at 7. Indeed, suppose that there exists r € % \ 5. Then ¢, € PYH(T¢),, thus by
Lemma 6.20, F, € BYH(T¢), and hence F,(7) ®,1 € I.(7) \ C1 ®, 1. However, when 7 € Uc,
and r € R then one can prove that F, ¢ BYH(T¢),. Thus in order to understand I, (7),
we need to compare the two definitions, see Lemma 6.22.

Lemma 6.21. 1. One has Z-) =
Wiy if and only if &7 C Z(7).

2. One has SR C H(ry. Moreover, ./, = SF if and only if s C R ().

wEVV(T)w'(yT N %(T)).w‘l. In particular, Z;y = % N

Proof. Let w € W;) and r € (). Let us prove that 7" := wrw™! € R(ry. One has

oy, € {w.a),wr.a)}. Let v € {w,wr} be such that ), = v.a;’. One has Cg?:“ = (C3M)"

and hence (3(7) = (¢39")"(7) = (¢2")(v™".7) = 0 because v € W) C W,. Thus 1’ =

wrw! € %(T;. Therefore UwEI/I/ET)w'(yT NAy)w™' C Azy. By [Dyedl, Theorem 3.3 (i)],
XN Wy = UweWmw&ﬁw‘1 and thus Z(;) C UwemT)w.yT.w‘l. Let © € (). Write

r = wr'w™, with w € Wy and ' € %. Then ' = w'rw € %), which proves that
‘@(7—) = UwEVV(T)w'(yT N %(7)).11}—1.

One has ./, C Z N W;) and thus if Z;) = #Z N W, then .7 C Z(;). Suppose that
S C H N W) Then by [Dye9d0, Theorem 3.3 (i),

AW = | wsw™ € % CZOWr,

weWr)
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which proves (1).

Let r = rgv € 1. Then 8" € (ID(VT) and thus r € %(;). Consequently .75 C Z,).
Thus if .7, = .7 one has Ry =KF N Wiy by (1).

Let f: ®Y — Z be the bijection defined by f(a") = rqv for all a¥ € &Y. Let r € Z.
Then f(Nev(r)N CI)E/T)) = Ny(r)NZr). Thus if Z(-y = ZNW, one has f(Ngv(r)N @E’T)) =
Ny(r) N W Thus if r € Z, r € #F if and only if r € ., which concludes the proof of
the lemma. O

Lemma 6.22. Let 7 € Tt be such that I, is irreducible. Then .7, = /R,

Proof. Let 7 € T be such that .7, # R Then if .7, C .#E* one has . C Ry
by Lemma 6.21 and thus ., = R by Lemma 6.21: a contradiction. Thus there exists
r=rg € .7 \ SR Then by the proof of Lemma 6.14, N(r) N @) = 0. Therefore
¢ € BVH(T¢),. By Lemma 6.20 we deduce that F, € BVH(T¢),. By Lemma 5.14, F,.(17)®,1 €
I.(7) \ C1 ®, 1 and by Theorem 5.8, I, is reducible. O

By the Lemma above and Kato’s criterion ([l[<at&1, Theorem 2.2), if 7 € U and Wi,y =
W, then ., = Yfed.

Lemma 6.23. Assume that a,(Y) =7 for all s € /. Then ., = SR,

Proof. Let r = 15v € W, NZ%. Then r.7(\) = 7(A — B(A)BY) = 7(\) = 7(\)7(BY)’V for
all A\ € Y. By assumption, there exists A\ € Y such that f(A\) = 1 and thus 7(8Y) = 1.
Moreover, ogv = ojy for all s € . and thus Cden =1 — 7% Thus r € (7). Consequently
Ry = X N Wy and thus by Lemma 6.21, . = FRee, O

Lemma 6.24. Let 7 € T¢ be such that (W;),.7;) is the infinite dihedral group. Then
yT — yTRee'

Proof. Write .7 = {ry,r2}. Every element of ;) has a unique reduced writing involving
and ry. By Lemma 6.21, W) = (UwGW(T)w.(YT N (7)).w™') and thus .; NZ(;) is nonempty.
Thus maybe exchanging the roles of r; and r;, we may assume that r; € %(;). By definition,
re € Wiry = (#(r)). Write ro = t;... 1, with k € Z>o and ty,...,t, € #). Suppose
r9 ¢ %(ry. Let i € [1,k]. Then by Lemma 6.21, one can write ¢; = w;riw; "t where w; € W)
Thus the number of r; appearing in the reduced decomposition of ¢; is odd. Therefore k is
even. Ast; € # for all i € [1, k] we deduce that £(¢;) is odd for all ¢ € [1, k]| and ¢(rq) is even.
We reach a contradiction with the fact that r, € #Z. Thus 7, € %) and by Lemma 6.21,
S = S Ree, O

6.5 Description of generalized weight spaces

In this subsection, we describe I.(7,gen) when W,y = W;, using the K, ...K, (1), for
1, ..., Tk € % (see Theorem 6.32).
For r € %, one sets K, = F, — (,v € B“H(1I¢). By Lemma 5.14 we have:

0+ K, =K, *0"+ (0" —0)¢ for all § € C(Y). (2)

Lemma 6.25. Let wi,wy € WY. Then there exists P € C(Y)* such that F,, * F,, =
Fyyw, * P. If moreover 7 € Ug, then one can write P = % with f,g € CIY]* and f(w.T) #0
for all w e W".
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Proof. Let u,v € W". Let us prove that if y € T¢®, then F, x F, € BVH(T¢),. Write
F, = Zu,gu H,0,, where 0,, € C(Y) for all ' < u. Then by Lemma 5.14,
FuxFy=Y HybyxF,=> HyF,*(0,)""

u' <u u' <u

By Lemma 5.14, 6,, € BYH(T¢), for all x € T¢® and thus (0,)" € BYH(T¢), for all
x € T¢®. Let x € Tp®. As BUH(T¢), is an Hyvc — C(Y), bimodule, we deduce that
F, « F, € BY3(T¢),.

Let u,v € W". Let us prove that there exists @) € C(Y) such that F, x F,, = F,,, * Q. Let
A € Y. Then by Lemma 5.14, one has Z*F,F, = F,xF,*Z@)™"* Therefore for all y € T,
there exists a(y) € C such that F,, * F,(x) = a(x)Fuv ( ). Write Fy,  F, = 3 oo Hu % 0,
and Fyp = Y e Hu %0y, where (0,), (0,) € C(Y)W"), Let Q = 9“” = Oyp. Let w € W be

such that 6, = 0. Then for all x € T5®, 6,,(x) = 0 and by Lemma 6.1, 0, =0 = Q8. Let
w € W* be such that 6, # 0. Then U := {x € T¢|0, € BVH(T¢), and 0,,(x) # O} is open
and dense in Tz. By Remark 5.11, 7¢™ has full measure in T¢ and thus U N T¢* is dense
in Te. Moreover ,,(x) = Q(x)0(x ) for all x € UNTEE and thus 6, = Q6. Consequently,
there exists @) € C(Y) such that F, * F, = F,, x Q.

Let 7 € Uc. Let wy € W, Let u € W? be such that there exists 6 = g € C(Y)* such
that F,, * F, = Fyu * 0, with f(w.7) # 0 for all w € W". Let s € .% be such that us > u.
Then by Lemma 5.3,

Fy, % Fus = Fipu % 0% Fy = Fy % Fy % 6°.

Suppose wius > wiu. Then F, ,x Fy = Fy, s and thus F,,, « Fs = Fy %0 and f*(w.7) # 0
for all w € W*. Suppose wyus < wiu. Then Fy % Fy = Fy,ue% (Fy)? and thus by Lemma 5.3,
Fou, % Fus = Fyus * (0°¢CS). By definition of U, one can write Fyy, % Fys = Fipus * % with
f,g € C[Y]* such that f(w.T) # 0 for all w € W" and the lemma follows. O

Remark 6.26. In [Rec97, Lemma 4.3 (2)], Reeder gives an explicit expression of F, x F,,
foru,v e Wv.

Let r € Z. Let Q. : C(Y) — C(Y) be defined by €,.(8) = (.(6" — 0) for all § € C(Y).
Lemma 6.27. Let r € ;. Then Q,(C(Y),) C C(Y),.

Proof. Write r = rgv, where ¥ € ®¥. Then one has 7(\) = A — f(A)8Y for all A € Y. Let
A € Y. Then with the same computation as in Remark 2.7 (2), we have that ,.(Z*) € C(Y),.
Thus Q,(0) € C(Y), for all § € C[Y].

Let 8 € C(Y),. Write § = 5, where f,g € C[Y] and g(7) # 0. Then (.(6" —0) =
CT(W). Moreover, ¢"(7) = g(r.7) = g(1) # 0 and as f'g € C[Y], we have that
(07— 0) € C(Y)s. O

We now assume that 7 € Uc.
For each w € W,y we fix a reduced writing w = ry ... 7, with k = f(w) and ry, ..., 7, € 7
and we set w = (r1,...,7). Let K, = K, ... K, € BVH(T¢).

Lemma 6.28. Letr € .. Then ®"H(T¢),* K, C PYH(T¢),. In particular, K,, € P*H(T¢),
Jor all w € W,
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Proof. Let w € WY and 0 € C(Y),. Then H,0 x K, = H,K,0" + H, % Q.(0). Using
Lemma 6.20, Lemma 6.27 and the fact that BYH(T¢), is a Hyec — C(Y),-bimodule, we
deduce that H,0 * K, € BVH(T¢),. Hence PYH(T¢), x K, C BVH(T¢),.

]

Lemma 6.29. Let w € W,). Then maxsupp(Ky(7)) = {w}.
Proof. Write w = (r1,...,ry) with rq,...,rp € . Then

Kﬂ ( Tiq Crzl) . ( Tip, Crzk) - 7"11 *Frig *ok Frik + Z FUPU?

v<rw

for some P, € C(Y'). By Lemma 6.25, there exist f, g € C[Y]* such that F}, *F}, x*.. b, =
Fw*g and f(7) # 0. One has 7/ (F,) = 1 and by Lemma 6.12, 7/ (F,) = 0 forall v € [1,w)<_
Thus using Lemma 6.28, one can moreover assume g(7) # 0. Therefore 72 (K,,) = 5 e C(Y),

and f(7) # 0, which proves the lemma. O

Let K(W5) = @weW(T)F C(Y). By Lemma 6.25 and Lemma 5.14, (W) is a sub-
algebra of BVH(T¢). Let K, = K(W) N BYH(T),. For w € Wy, set K(Wi)<" =
Bty v FoCY) and (W) = -, KLC(V)s.

Lemma 6.30. Let 0 € C(Y),; and w € W;. Then there exists ky,(0) € K= such that
0 Ky =Ky+0" " +Eky(6).

Proof. If w =1, this is clear. Suppose w > 1. Write w = vr with v € W) and r € .¥7 such
that v <, w. Suppose that  x K, = K, * 0" + k,(0) with k,() € K=7°. One has

Ox Ky,=0xK,*K, = (Kgé’f1 + kg(é’)) * K, = K, * o 4 K, % QT(Qvil) + ky(0) % K.

The sets (W)= = @, , FyC(Y) and PMH(T¢), are right C(Y),-submodules of
BLY{(T¢) and thus by Lemma 6.28 and Lemma 6.27, K, * Q.(8" ') € K= € KZ7v.

By Lemma 6.28, k,(0) * K, € BYH(T¢),. By Lemma 5.14 and [Xum02, Corollary 1.3.19],
koF. € K(W, )<Tmax(”’"” = K(W)<™. Consequently k, * K, € K= and K,Q,(0" ") +
ky(0)K, € K==, which proves the lemma. O

Lemma 6.31. One has K, = @ K,C(Y),.

weWr)

Proof. By Lemma 6.28, K, D @wEW(T) K,C(Y),.

For w € Wy, set K(Win)=" = @, LC(Y) C K(Wp). Let w € W Suppose that
for all v € [1,w)<,, one has K> = ®v’€[l,v}<T K,C(Y),. By Lemma 6.29, one can write
m(Ky) = L, with f,g € C[Y]such that f(r)g(r) # 0. Letz € K57 and 0 = 7}, (z) € C(Y)-.
By Lemma 6.28, Q%Kw € BLH(T¢),. Moreover, x — QgK € > KC=7. Therefore,

z € Doep ). KC(Y)r and the lemma follows.

7-’

vell,w)<,

U
Theorem 6.32. Let 7 € T be such that Wiy = W.. Then I.(7,gen) = ev,(K;) ®; 1.

Proof. Let w € W;yand § € C(Y),. Then by Lemma 6.30, (—7(6)) K, (7)®,1 € K<(7)®-
1. By an induction using Lemma 6.31 we deduce that K, (7) ®, 1 C I.(7, gen).

Let w € WY and E,, = (eVT(ICT) s 1) NI=*. By Lemma 6.29, dim E,, = |[WN{v €
W@ v < w}|. By Proposition 3.5, dim I, (7,gen)=* = [{v € W,|v < w}| = dim E,,. As
(W?, <) is a directed poset, I, = UwEW” I=¥, which proves the theorem. O
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6.6 Irreducibility of I, when W, = W, is the infinite dihedral group

In this subsection, we prove that if 7 € Uc is such that W, = W[,y and W(;) is isomorphic to
the infinite dihedral group, then I, is irreducible (see Lemma 6.38). Let us sketch the proof
of this lemma. We prove that I(7) = C1 ®, 1. For w € W), let nly : Z.(7,gen) — C be
defined 7 (3 o Ku(T)20) = 24, for all (z,) € CW), which is well defined by Lemma 6.29
and Theorem 6.32. We suppose that I.(7) \ C ®, 1 is nonempty and we consider one of its
elements z. We reach a contradiction by computing 7% (x), where w € W) is such that
(- (w) = max{/l-(v)|v € supp(z) N W} —

Let 7 € Up. Assume that (W,),.7;) is isomorphic to the infinite dihedral group (in
particular, |.7;| = 2 and every element of W(;) admits a unique reduced writing).

The following lemma is easy to prove.

Lemma 6.33. Let w € W,y and r € 7 be such that (. (wr) = {;(w) + 1. Let u € [1,w)<,
Then ur # w.

Lemma 6.34. Let 7 € Uc. Let r = rgv € %, where ¥ € ®Y. Then there exists a € C*
such that for all N € Y,

T((Z7 = ZNG) = ar(NB).
Proof. One has

1 1
G 1L o I

aYEeNgy (r) aveNgy (N\{BY} >

By Lemma 6.14 and by definition of Uc, 7([Jven,, o NGB ¢dn) #£ 0 and T([Taven,, () Cav™) # 0

If o3y = 0}y, one has Cd;,ZA = er'_AZ_ﬁZvA ZA% By Lemma 6.24, r € R and
thus 7(8Y) = 1. Thus by the same computation as in Remark 2.7, T(%) = BN)T(N).
Using a similar computation when ogv # O'/Bv, we deduce the lemma. O

Lemma 6.35. Let w € Wy and r € 7, be such that {(wr) = {.(w) + 1. Then there exists
a € C* such that for all N € Y, one has:

T2 % Ky (7) @7 1) = ar(N)a(w™N).

Proof. Let A € Y. Write Z* x K,, = K, * Zv ' 4k, where k € K=", which is possible by
Lemma 6.30. One has

2k Ky = (K % 2% 2 4 k) 5 Ky = Ky x 27 2 4 K, (27 = Z297NG) + ke * K
Therefore, using Lemma 6.33 and Lemma 6.34 we deduce
(2 Ko (7) @1 1) = T((277 2 = 27 NG) = ar()B(w N,
for some a € C*. O

Lemma 6.36. Let w € W, and r € 7, be such that (. (rw) = (- (w) + 1
One has 75(K, * K(WT) ™) = {0}.

Proof. Let u € W(;) and r € . be such that ru >, u. Then by Lemma 6.25 and
[Kum02, Corollary 1.3.19], F, « (W)= C K(W,)= < max(u.ru) and thus K, (W)= C
IC(W/E ) Tmax(u ru)
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Let v € [1,w)<,. If rv >, v, then by Lemma 6.25, there exists Q € C(Y') such that
F.x F, = F., *Q and thus K, x F, € F,, * Q@ + F,C(Y). By Lemma 6.33, 7v # w. Using
Lemma 6.29 and the fact w and rv have the same length, we deduce that 7 (K, * F,) = 0.

If rv <, v, then K, * F, € K(W))="" and thus n5 (K, * F,,) = 0 which finishes the proof
of the lemma. O

Lemma 6.37. Let w € W,, r € {ry,ra} be such that {.(rw) = {.(w) + 1. Then there exists
b € C* such that for all A € Y:

52 Ko (T) @7 1) = (M) (V).
Proof. One has
Z Ky = (2 % K,) % Ky = (K.Z™ + (27 = Z)G) * Koy(7).

One has Z"™* % K, € K(W;))=™. Thus by Lemma 6.36, 755 (K,.Z"* x K,)) = 0. Moreover,
by Lemma 6.34, there exists b € C* such that

T (27 = ZNGKy(T) @, 1) = wr((Z7 = ZN¢) = br(N) ey (N),
which proves the lemma. O

Lemma 6.38. Let 7 € Uc be such that W, = W, and that there exists i, € Z such that
(Wiry {r1,m2}) is isomorphic to the infinite dihedral group and that ri,7o are T-simple. Then
1. is irreducible.

Proof. Let us prove that I.(1) = C.1®, 1. Let z € I, \ C.1 ®, 1 and assume that z € I.(7).
Let n = max{{;(w)|lw € supp(x)}. Let w € Wi be such that ¢;(w) = n — 1. Then
there exist r,r" € . such that {v € W|l;(v) = n} = {rw,wr'}. By Theorem 6.32,
x € Zvewm CK,(7) @, 1. Let v = 7% (z) and v = 7& ,(2).

Set v, = & (x). Then by Lemma 6.35 and Lemma 6.37, there exist a,a’ € C* such that
forall A € Y,

(2 z) = T(\) (ayan(N) + dYw.am (X)) + 70) = T(A) Y-

Therefore {o,., w.a,.} is lineraly dependent and hence w.o,w € {*a,} = {a,,r.a,.}. By

Lemma 2.3 we deduce rw = wr’: a contradiction because [{rw,wr'}| = [{v € W[l (v) =
n} = 2.
Therefore I, = C1 ®, 1 and by Theorem 5.8, I is irreducible. O

6.7 Kato’s criterion when the Kac-Moody matrix has size 2

In this subsection, we prove Kato’s irreducibility criterion when || = 2 (see Theorem 6.40).
As the case where W is finite is a particular case of Kato’s theorem [[{at81, Theorem 2.2]
we assume that W is infinite.

This is equivalent to assuming that the Kac-Moody matrix of the root generating system

S is of the form , with a,b € Z-o and ab > 4 ([Kum02, Proposition 1.3.21]). The

2 a
(b5
system (W .%) is then the infinite dihedral group. Write . = {s1, s2}. Then every element
of W" admits a unique reduced writing involving s; and s,.

Let G be a group and a,b € G. For k € Zsq, we define Py(a,b) = aba... where the

products has k terms.
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Lemma 6.39. The subgroups of W" are exactly the ones of the following list:
1. {1}
2. (ry =A{1,r}, for somer € #
3. Z = (Par(s1, 82)) = (Par(s2,81)) = Z for k € Z>,
4. Rim = (Parg1(51,52), Pomy1(82,81)) = WY for k,m € Z>.

Proof. Let {1} # H C W" be a subgroup. Let n = min{{(w)|w € H \ {1}}.

First assume that n is even and set k = 2. Then P(sy, sp,n) = P(s2,s1,n)"" and as these
are the only elements having length n in W¥, H D Z;. Let w = P,(s1,s2). Let h € H\ {1}.
Write ((h) = an+1r with a € Z>; and r € [0,r — 1]. Then there exists € € {—1, 1} such that
h =w.h, with £(h") = r. Moreover, b’ € H and thus b’ = 1. Therefore H = Z;.

We now assume that n is odd. Maybe considering v Hv " for some v € W and exchanging
the roles of s; and s9, we may assume that s; € H. Assume H # (s1). Let n' = min{{(w)|w €
H\ (s1)}. Let w € H\ (s1) be such that ¢(w) = n’. Then the reduced writing of w begins and
ends with so. Thus n’ = 2n” + 1 for some n” € Zso. Then it is easy to see that H = Ry ,,»,
which finishes the proof. O

We prove in Appendix B that there exists size 2 Kac-Moody matrices such that for each
subgroup of W, there exists 7 € Tt such that W/, is isomorphic to this subgroup.

Theorem 6.40. Assume that the matriz of the root generating system S is of size 2. Let
7 € Ic. Then I is irreducible if and only iof T € Uc and W, = W,.

Proof. If W" is finite, this is a particular case of Kato’s theorem ([Kat81, Theorem 2.2]).
Suppose that W is infinite. By Lemma 5.5 and Proposition 5.17, if I, is irreducible, then
7 € Uc and W, = W(;). Reciprocally, suppose 7 € U and W, = W,). Then by Lemma 6.39,
cither Wiy = {1}, or Wiy = (r) for some r € Z or Wi,y = (ry,r9) for some 7,1, € #
and (Wi, {r1,72}) is isomorphic to the infinite dihedral group. In the first two cases, I,
is irreducible by Corollary 5.10 or Corollary 5.12. Suppose W(;) = (r1,r2). Then by Re-
mark 2.5 (1), (W), &) is isomorphic to the infinite dihedral group and I is irreducible by
Lemma 6.38. ]

Comments on the proofs of Kato’s criterion There are several proofs of Kato’s cri-
terion in the litterature. In [Ree92|, Reeder proves this criterion (see Corollary 8.7). In his
proof, he uses the R-group R, = {w € W [w(®/,NeY) = ¢/, Ny} This group is reduced
to {1} when W, = W, His proof uses Harich-Chandra completeness theorem, which - under
certain hypothesis on 7 - majorizes the dimension of the space of intertwining operators of
I,. Unfortunately, it seems that there exists up to now no equivalent of Harich-Chandra
completeness theorem available in the Kac-Moody framework.

In [Rog&5], Rogawski gives a proof of a particular case of Kato’s criterion (see Corollary
3.2). However, it seems that its proof uses the fact that every element x of I.(7) can be
written as a sum z = ), ;x; where J is a finite set and for all j € J, [maxsupp(z;)| = 1
and z; € I.(7). I do not know how to prove such a property.

In [Ree97], Reeder gives two proofs of Kato’s criterion or of weak versions of it (see
Corollary 4.6 and Theorem 14.7). Our proof of Theorem 6.40 is strongly inspired by the
proof of [Ree97, Theorem 14.7|. However, there are some points that I do not understand
in its proof. For example (with the same notation as in [Ree97]) I think that it is not
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clear why the only terms contributing to the coefficient of B,,v, are of the form rirz. For
example, suppose that 7 is the map 1 : Y — C defined by 1(\) =1 for all A € Y and that
0s =0, =q € ZL>y for all s €.. Then Wy = W" and the set of 1-simple reflections is .7.
By definition, Ky = B, for all s € .. Let s,t € . be such that s # t. By Lemma 6.6, one
has B;B; = By and BB, = By,. Let A € Y. Then:

7« Ky = Z BB, = (B, Z** +Q,(Z*))B; = By Z'*+ B, (Z°) + B, (ZM) +Qu(Q,(27)).
Therefore:
72 Kgvg = By +a(s.))Bs+ag(A)By+. .. and 2% K;yug = By +ay(N) Bs+as(tN) By + . ..

Suppose that z = st and r = s. Let A € Y such that ay(\) # 0 and ay(\) = 0.
Then if ay,a;s € C, the coefficient in front of B,, = B; of (Z* — 1)(ag Ky + a1sKis)vy is
a5 (A) + agss(t.N) = (ag + as)as(N). If the order of st is greater or equal to three, then
st # ts and (ag + ais)og(A) is not a multiple of Y ay 29y, (Z* — 1). The same kind of
argument is used in the proof of Lemma 4.5, which implies Corollary 4.6.

A Existence of one dimensional representations of BMH ¢

In this section, we prove the existence of one dimensional representations of B“Hc, when
os =0, =o0,forall se.7.

Lemma A.1. Assume that F = C and that there exists o € C such that o5 = o, = o for all
s € & and such that |o| # 1. Let ¢ € {—1,1} and 7 € Tt be such that T(a)) = o* for all

s € .. Then I. admits a unique mazimal proper submodule M. Moreover, I, = M &Cl®, 1
and if v € I./M, then Z .2 = 7(\).x and Hy,.x = (ed)" ™) .z for all (w,\) € WV x Y.

Proof. By Lemma 6.2, such a 7 exists. Let ¢ = 0. Let ht : Y — Q be a Z-linear map such
that ht(aY) = 1 for all s € .. Then one has 7(a") = ¢"*(") for all oV € &V,

Let s € .. With the same notation as in Lemma 5.4, let ¢5 = ¢(s.7,7) : Is, — I,. Then
by Lemma 5.4 M := Im(¢;) is a proper submodule of I.. Moreover, Hy —eo“®,1 € M;. Let
M =73, M, Let we WY\ {1} and w = s; ...5s; be a reduced expression. Let v = wsy.
Then H,.(Hs, — eo¢) = H,, — ec°H, € M, . Therefore, for all w € W@\ {1}, there exists
T, € M such that 7(z,) = 1 and z,, € M N I=*. By induction on ¢(w) we deduce that
M+Cle,1=1,.

By [GR14, Lemma 2.4 a)|, 7 € T¢™®. Moreover, by Proposition 3.5 (2), I, = @,y Ir(w.7)
and if we choose &, € I.(v.7)\ {0} for all v € W7, then (&,),ew is a basis of I.. For w € W?,
let wfu : I, — C be the linear map defined by 75 (&,) = Op forallv e W¥. As & € C1 ®, 1,
one has ¢ (M,) = {0} for all s € .. Thus I, = M & C1 ®, 1. Moreover, M C (7%)~*({0})
and by dimension M = 75({0}). We deduce that M is the unique maximal proper submodule
of I. and the lemma follows. O

B Examples of possibilities for IV, for size 2 Kac-Moody
matrices

In this section, we prove that there exist size 2 Kac-Moody matrices such that for each
subgroup H of WV, there exist 7 € T such that W, is isomorphic to H. We assume that
as(Y) = Z for all s € . and thus W,y = W,. We already proved the existence of regular
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clements in Lemma 6.1. If 7 € T¢ is such that 7(a ) = 1 and (o)) is not a root of 1, then
WT - {17 sl}'

Lemma B.1. Let A = (a; ;)i jep,2p be a Kac-Moody matriz. Assume that ay 2 and a1 are
even and such that a; a2 is greater than 6. Let vy be a primitive %(amam —4)-th root of 1.

1,
Let vy =3, Let 7:Y = ZaY ® Zawy — C* be the group morphism defined by () = 7;
for both i € {1,2}. Then W, = (s185) >~ Z.

Proof. Let 7/ € T¢ and ~, = 7/(«)) for both ¢ € {1,2}. For A € Y, one has (s — s1).A =
aj(N)ay — az(N)ay. Thus

s1.7 = 807 == VA € Y, 7 (ar(N)ay — az(N)ay) = 1

= VA €Y, W = 4™

= (1)° = (1) and (9)* = (77)™".
Thus s1.89.7 = 7. Moreover so.7 # 7 and hence W, = (s152). O

If r=1:Y — {1}, then W, = 1. The following lemma proves that W, can be a proper
subgroup of W isomorphic to the infinite dihedral group.

Lemma B.2. Let A = (ai7j)(i’j)€[[l’2]]2 be an wrreducible Kac-Moody matrix which is not a
Cartan matriz. One has ajsa91 > 4 and maybe considering 'A, one may assume ay o < —2.
Write WY = (s1,82). Let 72 be an aya-th primitive root of 1 and 7 € T be defined by

(o)) =1 and 7(a},) = v2. Then W, = (s1, 525152).

Proof. Let T = so.7. Let us prove that s,.7 = 7, i.e that (o) = 1. One has 7(ay) =
T(sz.ay) = T(a), — ag,(a))ay,) = 7(ay,)™? = 1. Thus W, > {si,s35152}. Therefore

Wv /W, = {W,,t.W,}. Moreover t ¢ W,, thus [W? : W.] = 2 and hence W, = (s1, 525152).
]
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