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Abstract

Recently, Iwahori-Hecke algebras were associated to Kac-Moody groups over non-
Archimedean local fields. We introduce principal series representations for these alge-
bras. We study these representations and partially generalize Kato and Matsumoto
irreducibility criteria.

1 Introduction

1.1 The reductive case

Let G be a reductive group over a non-Archimedean local field K. To each open compact
subgroup K of G is associated a Hecke algebra HK . There exists a strong link between the
smooth representations of G and the representations of the Hecke algebras of G. Let I be
the Iwahori subgroup of G. Then the Hecke algebra HC is called the Iwahori-Hecke algebra
of G and plays an important role in the representation theory of G. Its representations
have been extensively studied. Let Y be the cocharacter lattice of G and W v be the Weyl
group of G. Then by the Bernstein-Lusztig relations, HC admits a basis (ZλHw)λ∈Y,w∈W v

such that
⊕

λ∈Y CZλ is a subalgebra of HC isomorphic to the group algebra C[Y ] of Y . We
identify

⊕
λ∈Y CZλ and C[Y ]. Let χ ∈ TC = Hom(Y,C∗). Then χ induces a representation

χ : C[Y ] → C. Inducing χ to H, one gets a representation Iχ of HC. These representations
were introduced by Matsumoto in [Mat77] and are called principal series representations.
We refer to [Sol09, Section 3.2] for a survey on this subject.

Matsumoto and Kato gave criterion for the irreducibility of Iχ. Let W v be the vectorial
(i.e finite) Weyl group of G. ThenW v acts on Y and thus it acts on TC. If χ ∈ TC, we denote
by Wχ the fixer of χ in W v. Let Φ∨ be the coroot lattice of G. Let q be the residue cardinal
of K. Then Kato proved the following theorem (see [Kat81, Theorem 2.4]):

Theorem 1. Let χ ∈ TC. Then Iχ is irreducible if and only if it satisfies the following
conditions:

1. Wχ is generated by the reflections that it contains,

2. for all α∨ ∈ Φ∨, χ(α∨) + χ−1(α∨) 6= q
1
2 + q−

1
2 .

When χ is regular, that is when Wχ = {1}, condition 1 is satisfied and this is a result
by Matsumoto (see[Mat77, Théorème 4.3.5]).
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1.2 The Kac-Moody case

Let G be a split Kac-Moody group over a non-Archimedean local field K. There is up to
now no definition of smoothness for the representations of G. However one can define certain
Hecke algebras in this framework. In [BK11] and [BKP16], Braverman and Kahzdan and
Patnaik defined the spherical Hecke algebra and the Iwahori-Hecke H of G when G is affine.
Bardy-Panse, Gaussent and Rousseau generalized these constructions to the case where G is
a general Kac-Moody group. They achieved this construction by using masures (also known
as hovels), which are an analogue of Bruhat-Tits buildings (see [GR08]). Together with
Abdellatif, we attached in [AH17] Hecke algebras to subgroups slightly more general than
the Iwahori subgroup.

Let Y be the cocharacter lattice of G andW v be the Weyl group of G. The Iwahori-Hecke
algebra HC of G admits a Bernstein-Lusztig presentation but it is no more indexed by Y . Let
T ⊂ A = Y ⊗R be the Tits cone of G. Then T is a convex cone and it satisfies T = A if and
only if G is reductive. Then HC can be embedded in an algebra BLHC called the Bernstein-
Lusztig-Hecke algebra of G. The algebra BLHC admits a basis (ZλHw)λ∈Y,w∈W v such that⊕

λ∈Y CZλ is isomorphic to the group algebra C[Y ] of Y . We identify
⊕

λ∈Y CZλ and C[Y ].
Then HC is isomorphic to the subalgebra

⊕
w∈W v ,λ∈Y + CZλHw. Let χ ∈ TC = Hom(Y,C∗).

Then χ induces a map χ : C[Y ]→ C and we can define the representation Iχ of BLHC induced
by χ. By restriction, this also defines a representation I+

χ ofHC. As Iχ admits a basis indexed
by the Weyl group of G, Iχ is infinite dimensional unless G is reductive. The aim of this
paper is to study these representations and in particular to study their irreducibility. As we
shall see (Lemma 2.5), Iχ is irreducible if and only if I+

χ is irreducible and we will mainly
study Iχ. We prove the following theorem, generalizing Matsumoto irreducibility criterion
(see Corollary 4.5):

Theorem 2. Let χ be a regular character. Then Iχ is irreducible if and only if for all α ∈ Φ∨,

χ(α∨) + χ−1(α∨) 6= q
1
2 + q−

1
2 .

We also generalize one implication of Kato’s criterion (see Theorem 4.7):

Theorem 3. Let χ ∈ TC. Assume that Iχ is irreducible. Then:

1. Wχ is generated by the reflections that it contains,

2. for all α∨ ∈ Φ∨, χ(α∨) + χ−1(α∨) 6= q
1
2 + q−

1
2 .

We then check the irreducibility of Iχ for some particular χ ∈ TC satisfying 1 and 2: when
Wχ is generated by one reflection, see Proposition 4.8 and when χ(λ) = 1 for all λ ∈ Y , when
the Kac-Moody matrix defining G is of size 2, see Theorem 4.13).

Frameworks Actually, following [BPGR16] we study Iwahori-Hecke algebras associated to
abstract masures. In particular our results also apply when G is an almost-split Kac-Moody
group over a non-Archimedean local field.

Organization of the paper In Section 2, we recall the definition of the Iwahori-Hecke
algebras and of the Bernstein-Lusztig-Hecke algebras and introduce principal series represen-
tation.

In Section 3, we study the C[Y ]-module induced by Iχ by restriction and we study the
intertwining operators from Iχ to Iχ′ , for χ, χ′ ∈ TC.

In Section 4, we establish an irreducibility criterion for Iχ (see Theorem 4.2). We then
apply it to obtain Theorem 2 and Theorem 3.

2



Acknowledgements I warmly thank Ramla Abdellatif and Stéphane Gaussent for discus-
sions on this topic.

Funding The author was supported by the ANR grant ANR-15-CE40-0012.

Contents
1 Introduction 1

1.1 The reductive case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Kac-Moody case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Iwahori-Hecke algebras 3
2.1 Standard apartment of a masure . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Iwahori-Hecke algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Principal series representations . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Sketch of the proof of irreducibility criteria . . . . . . . . . . . . . . . . . . . 6

3 Study of the R[Y ]-module structure and of intertwining operators 7
3.1 Weights for the R[Y ]-module structure . . . . . . . . . . . . . . . . . . . . . 7
3.2 Intertwining operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 A necessary condition for irreducibility . . . . . . . . . . . . . . . . . . . . . 10
3.4 Link with the works of Matsumoto and Kato . . . . . . . . . . . . . . . . . . 12

4 Study of the reducibility of Iχ 12
4.1 An irreducibility criterion for Iχ . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 The regular case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 One implication of Kato’s criterion . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Case where the fixer of χ is generated by one reflection . . . . . . . . . . . . 14
4.5 Irreducibility of I1 for size 2 Kac-Moody matrices . . . . . . . . . . . . . . . 14

2 Iwahori-Hecke algebras
Let G be a Kac-Moody group over a non-archimedean local field. Then Gaussent and
Rousseau constructed a space I, called a masure on which G acts, generalizing the con-
struction of the Bruhat-Tits buildings (see [GR08], [Rou16] and [Rou17]). Rousseau then
defined in [Rou11] an axiomatic definition of masures inspired by the axiomatic definition of
Bruhat-Tits buildings. We simplified it in [Héb17]. Masures satisfying these axiomatics are
called abstract masures because they might not be associated with some Kac-Moody group.

In [BPGR16], Bardy-Panse, Gaussent and Rousseau attached an Iwahori-Hecke algebra
HR to each abstract masure satisfying certain conditions and to each ring R. The algebra
HR is an algebra of functions defined on some pairs of chambers of the masure, equipped
with a convolution product. Then they prove that under some additional hypothesis on the
ring R (which are satisfied by R and C), HR admits a Bernstein-Lusztig presentation. In this
paper, we will only use the Bernstein-Lusztig presentation of HR and we do not introduce
masures (see [Héb18, Appendix A] for a definition). We however introduce the standard
apartment of a masure.
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2.1 Standard apartment of a masure

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (ai,j)i,j∈I
indexed by a finite set I, with integral coefficients, and such that :

(i) ∀ i ∈ I, ai,i = 2;

(ii) ∀ (i, j) ∈ I2, (i 6= j)⇒ (ai,j ≤ 0);

(iii) ∀ (i, j) ∈ I2, (ai,j = 0)⇔ (aj,i = 0).

A root generating system is a 5-tuple S = (A,X, Y, (αi)i∈I , (α
∨
i )i∈I) made of a Kac-Moody

matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite rank,
and of a free family (αi)i∈I (respectively (α∨i )i∈I) of elements in X (resp. Y ) called simple
roots (resp. simple coroots) that satisfy ai,j = αj(α

∨
i ) for all i, j in I. Elements of X

(respectively of Y ) are called characters (resp. cocharacters).
Fix such a root generating system S = (A,X, Y, (αi)i∈I , (α

∨
i )i∈I) and set A := Y ⊗ R.

Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A∗. In particular, the αi’s (with i ∈ I) will be seen as linear forms on A. This allows us to
define, for any i ∈ I, an involution ri of A by setting ri(v) := v−αi(v)α∨i for any v ∈ A. Let
S = {ri|i ∈ I} be the (finite) set of simple reflections. One defines the Weyl group of
S as the subgroup W v of GL(A) generated by S . The pair (W v,S ) is a Coxeter system,
hence we can consider the length `(w) with respect to S of any element w of W v. If s ∈ S ,
s = ri for some unique i ∈ I. We set αs = αi and α∨s = α∨i .

There is an action of the Weyl group W v on A∗ given by the following formula:

∀ x ∈ A, w ∈ W v, α ∈ A∗, (w.α)(x) := α(w−1.x) .

Let Φ := {w.αi|(w, i) ∈ W v × I} be the set or real roots: then Φ is a subset of the root
lattice Q :=

⊕
i∈I

Zαi.

As in the reductive case, define the fundamental chamber as Cv
f := {v ∈ A | ∀s ∈

S , αs(v) > 0}.
Let T :=

⋃
w∈W v

w.Cv
f be the Tits cone. This is a convex cone.

One sets Y + = Y ∩ T .

Remark 2.1. By [Kac94, §4.9] and [Kac94, § 5.8] the following conditions are equivalent:

1. the Kac-Moody matrix A is of finite type (i.e. is a Cartan matrix),

2. A = T

3. W v is finite.

2.2 Iwahori-Hecke algebras

Let us first recall briefly the construction of the Iwahori-Hecke algebra via its Bernstein-
Lusztig presentation, as done in [BPGR16, Section 6.6].

Let R1 = Z[(σs)s∈S , (σ
′
s)s∈S ], where (σs)s∈S , (σ

′
s)s∈S are two families of indeterminates

satisfying the following relations:

• if αs(Y ) = Z, then σs = σ′s;
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• if s, t ∈ S are are conjugate (i.e. such that αs(α∨t ) = αt(α
∨
s ) = −1), then σs = σt =

σ′s = σ′t.

To define the Iwahori-Hecke algebra HR1 associated with A and (σs, σ
′
s)s∈S , we first

introduce the Bernstein-Lusztig-Hecke algebra. Let BLHR1 be the free R1-vector-space with
basis (ZλHw)λ∈Y,w∈W v . For short, one sets Hw = Z0Hw for w ∈ W v and Zλ = ZλH1 for
λ ∈ Y . The Bernstein-Lusztig-Hecke algebra BLHR1 is the module BLHR1 equipped
with the unique product ∗ that turns it into an associative algebra and satisfies the following
relations (known as the Bernstein-Lusztig relations):

• (BL1) ∀ (λ,w) ∈ Y ×W v, Zλ ∗Hw = ZλHw;

• (BL2) ∀ s ∈ S ,∀ w ∈ W v, Hs ∗Hw =

{
Hsw if `(sw) = `(w) + 1

(σs − σ−1
s )Hw +Hsw if `(sw) = `(w)− 1

;

• (BL3) ∀ (λ, µ) ∈ Y 2, Zλ ∗ Zµ = Zλ+µ;

• (BL4) ∀ λ ∈ Y, ∀ i ∈ I, Hs ∗ Zλ − Zs.λ ∗ Hs = Qs(Z)(Zλ − Zs.λ), where Qs(Z) =
(σs−σ−1

s )+(σ′s−σ
′−1
s )Z−α

∨
s

1−Z−2α∨s

The existence and unicity of such a product ∗ comes from [BPGR16, Theorem 6.2].

Definition 2.2. Let R be an integral domain containing Z and f : R1 → R be a ring
morphism such that f(σs) and f(σ′s) are invertible in R for all s ∈ S . Then the Bernstein-
Lusztig-Hecke algebra of (A, (σs)s∈S , (σ

′
s)s∈S ) over R is the algebra BLHR = BLHR1⊗R1

R. Following [BPGR16, Section 6.6], the Iwahori-Hecke algebra HR associated with S
and (σs, σ

′
s)s∈S is now defined as the R-subalgebra of BLHR spanned by (ZλHw)λ∈Y +,w∈W v

(recall that Y + = Y ∩ T with T being the Tits cone). Note that for G reductive, we recover
the usual Iwahori-Hecke algebra of G, since Y ∩ T = Y .

Remark 2.3. 1. Let s ∈ S . Then if σs = σ′s, Qs(Z) = (σs−σ−1
s )

1−Z−α∨s
.

2. Let s ∈ S and λ ∈ Y . Then Qs(Z)(Zλ − Zs.λ) ∈ R[Y ]. Indeed, Qs(Z)(Zλ − Zs.λ) =
Qs(Z).Zλ(1− Z−αs(λ)α∨s ). Assume that σs = σ′s. Then

1− Z−αs(λ)α∨s

1− Z−α∨s
=



αs(λ)−1∑
j=0

Z−jα
∨
s if αs(λ) ≥ 0

− Zα∨s

−αs(λ)−1∑
j=0

Zjα∨s if αs(λ) ≤ 0,

and thus Qs(Z)(Zλ − Zs.λ) ∈ R[Y ]. Assume σ′s 6= σs. Then αs(Z) = 2Z and a similar
computation enables to conclude.

3. From (BL4) we deduce that for all s ∈ S , λ ∈ Y ,

Zλ ∗Hs −Hs ∗ Zs.λ = Qs(Z)(Zλ − Zs.λ).

4. When G is a split Kac-Moody group over a non-Archimedean local K with residue
cardinal q, we can choose R to be a ring containing Z[

√
q±1] and take f(σs) = f(σ′s) =√

q for all s ∈ S .

5. By (BL2), the family (Hw ∗ Zλ)w∈W v ,λ∈Y is also a basis of BLHR.
Definition 2.4. Let HR,W v =

⊕
w∈W v RHw ⊂ HR. Then HR,W v is a subalgebra of HR.

This is the Hecke algebra of the Coxeter group (W v,S ).
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2.3 Principal series representations

We now fix (A, (σs)s∈S , (σ
′
s)s∈S ) as in Subsection 2.2 and a ringR as in Definition 2.2. LetHR

and BLHR be the Iwahori-Hecke and the Bernstein-Lusztig Hecke algebras of (A, (σs)s∈S , (σ
′
s)s∈S )

over R.
Set TR = Hom(Y,R×). Let χ ∈ TR. Then χ induces a morphism of algebra χ : R[Y ]→ R

by the formula χ(
∑

y∈Y aye
y) =

∑
y∈Y ayχ(y), for

∑
aye

y ∈ R[Y ]. This equips R with a
structure of an R[Y ]-module.

Let Iχ = Ind
BLHR(χ) = BLHR ⊗R[Y ] R. For example if λ ∈ Y and s ∈ S , one has

Zλ.1⊗χ 1 = χ(λ)1⊗χ 1 and

Zλ.Hs⊗χ1 = Hs∗Zs.λ⊗χ1+Qs(Z)(Zλ−Zs.λ)⊗χ1 = χ(s.λ)Hi⊗χ1+χ
(
Qs(Z)(Zλ−Zs.λ)

)
⊗χ1.

Let h ∈ Iχ. Write h =
∑

λ∈Y,w∈W v hw,λHwZ
λ ⊗χ cw,λ, where (hw,λ), (cw,λ) ∈ R(W v×Y ),

which is possible by Remark 2.3. Thus

h =
∑

λ∈Y,w∈W v

hw,λcw,λχ(λ)Hw ⊗χ 1 =
( ∑
λ∈Y,w∈W v

hw,λcw,λχ(λ)Hw

)
1⊗χ 1.

Thus Iχ is a principal BLHR-module and Iχ is a free R-module with basis (Hw⊗χ 1)w∈W v . If
moreover R = F is a field Iχ = HW v ,F .1⊗χ 1 (see Definition 2.4 for the definition of HW v ,F).

Assume that R = F is a field. Let χ ∈ TF . Then Iχ induces a representation I+
χ of HF

by restriction. As a vector space, one has Iχ = I+
χ . By the following lemma, it suffices to

study the irreducibility of Iχ

Lemma 2.5. Let χ ∈ TF . Then Iχ is irreducible if and only if I+
χ is irreducible.

Proof. Assume that I+
χ is irreducible. Let V ⊂ Iχ be a BLHF -module. Then V is also an

HF -module and thus V = {0} or V = Iχ = I+
χ . Hence Iχ is irreducible.

Assume that Iχ is irreducible. Let V + ⊂ I+
χ , V + 6= {0} be an HF -submodule. Let

x ∈ V + \ {0}. Then BLHF .x = Iχ and thus there exists a ∈ BLHF such that a.x = 1 ⊗χ 1.
For λ ∈ Cv

f sufficiently dominant, Zλ.a ∈ HF and thus 1
χ(λ)

Zλ.a ∈ HF . Consequently
1⊗χ 1 = 1

χ(λ)
Zλ.a.x ∈ V + and hence V + = I+

χ : I+
χ is irreducible.

2.4 Sketch of the proof of irreducibility criteria

Our proof of irreducibility criteria is based the fact that C[Y ].x is finite dimensional if x ∈ Iχ
(see Lemma 3.1) and on the following well known result.

Theorem 2.6. (Frobenius) Let F be a field, V be a finite dimensional vector space over F
and G ⊂ GL(V ) be a commutative subgroup. Assume that for all g ∈ G, g is triangularizable.
Then there exists a basis B of V for which for every g ∈ G, the matrix of g in the basis B is
triangular.

Let us sketch our strategy to obtain irreducibility criteria for the Iχ, χ ∈ TC.
Let M be a BLHC-module. For χ ∈ TC, set M(χ) = {x ∈ M |Zλ.x = χ(λ)x, ∀λ ∈ Y }.

One has C.1⊗χ 1 ⊂ Iχ(χ) for all χ ∈ TC.
Let χ ∈ TC. Following Matsumoto, we define nontrivial intertwining operators φw : Iχ →

Iw.χ for all w ∈ W v (see Proposition 3.12). If Iχ is irreducible, these operators have to be
isomorphisms. We prove that these operators are isomorphisms if and only if χ is in some
subset UC of TC (see after Lemma 3.14 for the definition of UC and see Lemma 3.16) and we
deduce the condition (2) appearing in Theorem 1, 2 and 3.

6



We also prove that {χ′ ∈ TC| Iχ(χ′) 6= {0}} = W v.χ (see Proposition 3.13). If w ∈ W v

BLHC.1 ⊗w.χ 1 = Iw.χ, and thus Iw.χ is irreducible if and only if every BLHC-submodule of
Iw.χ contains 1 ⊗w.χ 1. Using Frobenius Theorem and Schur Lemma, we deduce that Iχ is
irreducible if and only if χ ∈ UC and dim Iχ(χ) = 1 (see Theorem 4.2). We then apply this
criterion to obtain Theorem 2 and Theorem 3.

3 Study of the R[Y ]-module structure and of intertwining
operators

Let χ, χ′ ∈ TR = Hom(Y,R×). Let M be a BLHR-module. For χ ∈ TR, set M(χ) = {x ∈
M |Zλ.x = χ(λ)x, ∀λ ∈ Y }.

In this section, we study the morphisms of BLHR-modules from Iχ to Iχ′ . We prove that
when R = F is a field, HomBLHF (Iχ, Iχ′) 6= {0} implies χ′ ∈ W v.χ (see Proposition 3.4).
Reciprocally, we prove that HomBLHF (Iχ, Iw.χ) 6= {0} for all w ∈ W v (see Proposition 3.12).

As we shall see, HomBLHF (Iχ, Iχ′) ' Iχ′(χ) (see Lemma 3.7). We thus study simultane-
ously the weight spaces Iχ(w.χ) for χ ∈ TF , w ∈ W v and the spaces HomBLHF−mod(Iχ, Iw.χ).

In Subsection 3.3 we prove that if Iχ is irreducible, then Iχ is isomorphic to Iw.χ for
all w ∈ W v. We deduce that if Iχ is irreducible, the values of χ satisfy some conditions,
see Lemma 3.16. This explains the condition (2) appearing in Theorems 1, 2 and 3 (see
Remark 3.15).

The definition we gave for Iχ is different from the definition of Matsumoto (see [Mat77,
(4.1.5)]). It seems to be well known that these definitions are equivalent. We justify this
equivalence in Subsection 3.4. We also explain why it seems difficult to adapt Kato’s proof
in our framework.

3.1 Weights for the R[Y ]-module structure

Let χ ∈ TR. Let x ∈ Iχ. Write x =
∑

w∈W v xwHw ⊗χ 1, with (xw) ∈ R(W v). Set supp(x) =
{w ∈ W v| xw 6= 0}. Equip W v with the Bruhat order. If w ∈ W v, set [1, w] = {v ∈ W v|v ≤
w} and [1, w) = {v ∈ W v| v < w}. If a finite set E is contained in W v, max(E) is the set of
elements of E that are maximal for the Bruhat order. Let R be a binary relation on W v (for
example R =“≤”, R =“�”, ...) and w ∈ W v. One sets

IRwχ =
⊕

v∈W v |vRw

RHv ⊗χ 1 = {x ∈ Iχ|supp(x) ⊂ {v ∈ W v|vRw}} ⊂ Iχ,

and

BLHRw

R =
⊕

v∈W v |vRw,λ∈Y

RHv ∗ Zλ = {
∑

v∈W v ,λ∈Y

aw,λHw ∗ Zλ|av,λ 6= 0 =⇒ vRw} ⊂ BLHR.

Lemma 3.1. Let λ ∈ Y and w ∈ W v. Then ZλHw ∈ BLH≤wR . In particular, if χ ∈ TR,
I≤wχ and I�wχ are R[Y ]-submodules of Iχ. In particular, if R = F is a field, F [Y ].x is finite
dimensional for all x ∈ Iχ.

Proof. We prove it by induction on `(w). If `(w) = 0, this is clear. Assume that `(w) > 0 and
that for all w′ ∈ W v such that `(w′) < `(w), ZλHw′ ∈ BLH≤w

′

R . Write w = sw′, with s ∈ S
and w′ ∈ W v such that `(w′) = `(w)−1. Let λ ∈ Y . By (BL4), one has Zλ∗Hs = aHs∗Zs.λ+b

7



for some a, b ∈ R. Then Zλ ∗ Hs = (aHsZ
s.λ + b) ∗ Hw′ ∈ Hs ∗ BLH≤w

′

R + BLH≤w
′

F by the
induction assumption. As s.[1, w′] ⊂ [1, w], we deduce that Hs ∗ BLH≤w

′

R + BLH≤wR ⊂ BLH≤w
′

R ,
and the lemma follows.

Lemma 3.2. Let λ ∈ Y and w ∈ W v. Then there exists u ∈ BLH<w
R such that ZλHw =

HwZ
w−1.λ + u. In particular if χ ∈ TR,

(Zλ.Hw −Hw.Z
w−1.λ)⊗χ 1 ∈ I<wχ ⊂ I�wχ .

Proof. We do it by induction on `(w). Let w ∈ W v be such that ZλHw = HwZ
w−1.λ + u,

with u ∈ BLH<w
R . Let s ∈ S and assume that `(ws) = `(w) + 1. Then by (BL4):

ZλHws = (HwZ
w−1.λ + u) ∗Hs = HwsZ

sw−1.λ + aHw + uHs,

for some a ∈ R. Moreover, u ∗Hs ∈ BLH<ws
R and the lemma follows.

For χ ∈ TR, set Wχ = {w ∈ W v| w.χ = χ}.

Lemma 3.3. Let χ, χ′ ∈ TR. Let x ∈ Iχ(χ′). Then if x 6= 0,

max
(
supp(x)

)
⊂ {w ∈ W v| w.χ = χ′}.

In particular, if Iχ(χ′) 6= {0}, then χ′ ∈ W v.χ and thus

{χ′ ∈ TR|Iχ(χ′) 6= {0}} ⊂ W v.χ.

Proof. Assume x 6= 0. Let w ∈ max(supp(x)). Write x = awHw⊗χ 1 +y, where aw ∈ R\{0}
and y ∈ I�wχ . Then by Lemma 3.2,

Zλ.x = awHwZ
w−1.λ ⊗χ 1 + y′ = χ(w−1.λ)awHw ⊗χ 1 + y′ = χ′(λ)awHw ⊗χ 1 + χ′(λ)y,

where y′ ∈ I�wχ . Therefore w.χ = χ′.

Proposition 3.4. (see 4.3.3 Théorème (iii) of [Mat77]) Let χ, χ′ ∈ TR and M ′ be a BLHR-
sub-module of Iχ′. Assume that there exists f ∈ HomBLHR−mod(Iχ,M

′)\{0}. Then χ′ ∈ W v.χ.

Proof. Let f ∈ HomBLHR(Iχ,M
′) \ {0}. As Iχ = BLHR.1 ⊗χ 1, f(1 ⊗χ 1) 6= 0. Therefore

f(1⊗χ 1) ∈M ′(χ) \ {0} and lemma 3.3 completes the proof.

Remark 3.5. Let χ ∈ TR. Let F be the field of fractions of R. Then one can regard χ as an
element χF of TF = Hom(Y,F∗). There is a natural inclusion Iχ ↪→ IχF of BLHR-modules
and one has Iχ(χ′) = IχF (χ′F) ∩ Iχ for all χ′ ∈ TR.

The following lemma will be crucial to define an intertwining operators Iχ → Is.χ, for
s ∈ S and thus to define intertwining operators Iχ → Iw.χ for all w ∈ W v.

Lemma 3.6. Let s ∈ S and χ ∈ TR be such that s.χ 6= χ. Then χ(Qs(Z)) ∈ Frac(R) is well
defined and I≤sχ ∩ Iχ(s.χ) = R.

(
Hs⊗χ 1−χ(Qs(Z))⊗χ 1

)
∩ Iχ. In particular, I≤sχ ∩ Iχ(s.χ) 6=

{0}.
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Proof. By Remark 3.5, we may assume that R = F is a field. If σs = σ′s, then Qs(Z) =
σs−σ−1

s

1−Z−α∨s
. Let λ ∈ Y be such that χ(s.λ) 6= χ(λ). Then χ(−αs(λ)α∨s ) 6= 1, hence χ(−α∨s ) 6= 1

and thus χ(Qs(Z)) is well defined. If σs 6= σ′s, then αs(Y ) = 2Z and thus χ2(α∨s ) 6= 1 by the
same reasoning. In both cases, χ(Qs(Z)) is well defined.

Let λ ∈ Y . Let a, b ∈ F . Then

Zλ.(aHs ⊗χ 1 + b⊗χ 1)− χ(s.λ)(aHs ⊗χ +b⊗χ 1)

=
(
χ(Qs(Z))χ(Zλ − Zs.λ)a+ (χ(λ)− χ(s.λ))b

)
⊗χ 1

= (χ(λ)− χ(s.λ))(aχ(Qs(Z)) + b)⊗χ 1.

As χ 6= s.χ, the lemma follows.

3.2 Intertwining operators

LetM be a BLHR-module and χ ∈ TR. For x ∈M(χ) define Υx : Iχ →M by Υx(u.1⊗χ 1) =
u.x, for all u ∈ BLHR. Then Υx is well defined. Indeed, let u ∈ BLHR be such that
u.1⊗χ 1 = 0. Then u ∈ R[Y ] and χ(u) = 0. Therefore u.x = 0 and hence Υx is well defined.
The following lemma, which is similar to the first form of “Frobenius reciprocity ” (see [Kat81,
Proposition 1.10]) is then easy to prove.

Lemma 3.7. Let M be a BLHR-module, χ ∈ TR x ∈ M(χ). Then Υx is well defined.
Moreover the map Υ : M(χ)→ HomBLHR−mod(Iχ,M) defined mapping each x ∈M(χ) to Υx

is an R-module isomorphism and Υ−1(f) = f(1⊗χ 1) for all f ∈ HomBLHR−mod(Iχ,M).

Corollary 3.8. (see [Mat77, (4.1.10)]) Let M be a BLHR-module such that there exists
ξ ∈M satisfying:

1. there exists χ ∈ TR such that ξ ∈M(χ),

2. M = BLHR.ξ.

Then there exists a surjective morphism φ : Iχ �M of BLHR-modules.

Proof. One can take φ = Υξ, where Υ is as in Lemma 3.7.

Proposition 3.9. (see [Mat77, Théorème 4.2.4]) Assume that R = F is a field. Let M
be an irreducible representation of BLHF containing a finite dimensional F [Y ]-submodule
M ′ 6= {0}. Then there exists χ ∈ TF such that there exists a surjective morphism of BLHF -
modules φ : Iχ �M .

Proof. By Frobenius Theorem (Theorem 2.6), there exists ξ ∈M ′ \{0} such that Zµ.ξ ∈ F .ξ
for all µ ∈ Y . Let χ ∈ TF be such that ξ ∈M(χ). Then we conclude with Corollary 3.8.

Recall that HR,W v =
⊕

w∈W v RHw ⊂ BLHR is a subalgebra of BLHR (see Definition 2.4).
If R is a binary relation on W v and w ∈ W v, set

HRw
R,W v =

⊕
v∈W v |vRw

RHv = {
∑
v∈W v

avHv|av 6= 0 =⇒ vRw}.

If χ ∈ TR, one has HR,W v .1⊗χ 1 = Iχ and if w ∈ W v, (H≤wR,W v \H<w
R,W v).1⊗χ 1 ⊂ I≤wχ \I<wχ
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Lemma 3.10. Let w ∈ W v and s ∈ S be such that ws > w. Then

(H≤wR,W v \ H<w
R,W v) ∗ (H≤sR,W v \ H<s

R,W v) ⊂ H≤wsR,W v \ H<ws
R,W v).

Proof. This follows from the fact that [1, w].[1, s] ⊂ [1, ws] and that [1, w).s∪ [1, w] ⊂ [1, ws].

Lemma 3.11. Let s1, . . . , sk ∈ S . For j ∈ J1, kK, set wj = sj−1 . . . s1 (where we set
s0 . . . s1 = 1) and χj = wj.χ. Set w = wk. Assume that χj 6= χj+1 for all j ∈ J1, k − 1K.
Then there exists f ∈ HomBLHR−mod(Iχ, Iw.χ) such that f(1⊗χ 1) ∈ I≤w−1

w.χ \ I<w−1

w.χ .

Proof. Let j ∈ J1, k − 1K. By Lemma 3.6, one can choose xj ∈ Iχj+1
(χj) ∩ I

≤sj
χj+1 \ {0}. Set

fj = Υxj ◦ . . . ◦ Υx1 ∈ HomBLHR−mod(Iχ, Iχj+1
) (where the Υxj : Iχj → Iχj+1

are defined in

Lemma 3.7). Let Pj : “fj(1⊗χ 1) ∈ I≤w
−1
j+1

χj+1 \ I
<w−1

j
wj+1 ”. Then P1 is true by Lemma 3.6. Let j ∈

J1, k−2K and assume that Pj is true. Write fj(1⊗χ1) = h.1⊗χj+1
1, where h ∈ H≤w

−1
j+1

R,W v \H
<w−1

j+1

R,W v .
Then one has Υxj+1

(
fj(1 ⊗χ 1)

)
= h.Υxj+1

(1 ⊗χj+1
1). Write xj+1 = h′.1 ⊗χj+2

1, where
h′ ∈ H≤sj+1

R,W v \ R.1 ⊗χj+1
1. Then fj+1(1 ⊗χ 1) = h.h′.1 ⊗χj+1

1. By Lemma 3.10, we deduce
that Pj+1 is true. Thus Pk−1 is true, which proves the proposition.

Proposition 3.12. (see [Kat81, (1.21)]). Let χ ∈ TR and w ∈ W v. Then one has
HomBLHR−mod(Iχ, Iw.χ) 6= {0}. More precisely, let wχ ∈ W v be such that wχ.χ = w.χ and
having minimal length for this property. Then there exists f ∈ HomBLHR−mod(Iχ, Iw.χ) such
that f(1⊗χ 1) ∈ I≤(wχ)−1

w.χ \ I<(wχ)−1

w.χ .

Proof. Write wχ = sk . . . s1, where k = `(wχ) and s1, . . . , sk ∈ S . For j ∈ J1, kK set
wj = sj−1 . . . s1 and χj = wj.χ. Let j ∈ J1, k − 1K. Then χj+1 6= χj. Indeed, suppose that
χj+1 = χj. Then wχ.χ = sk . . . sj . . . s1.χ = sk . . . ŝj . . . s1.χ, which is absurd by choice of wχ.
This is thus a consequence of Lemma 3.11.

Proposition 3.13. Let χ ∈ TR. Then {χ′ ∈ TR|Iχ(χ′) 6= {0}} = W v.χ.

Proof. By Lemma 3.3, we already know that {χ′ ∈ TR|Iχ(χ′) 6= {0}} ⊂ W v.χ. Let w ∈ W v

and f ∈ HomBLHR−mod(Iw.χ, Iχ) \ {0}. Then as BLHR.1 ⊗w.χ 1 = Iw.χ, f(1 ⊗w.χ 1) 6= 0. As
f(1⊗w.χ 1) ∈ Iχ(w.χ), the lemma follows.

3.3 A necessary condition for irreducibility

We now assume that R = F is a field. Let χ ∈ TF and s ∈ S be such that s.χ 6= χ. Recall
that Qs(Z) = (σs−σ−1

s )+(σ′s−σ
′−1
s )Z−α

∨
s

1−Z−2α∨s
. Set xχ,s = Hs⊗s.χ 1−χ(Qs(Z))1⊗s.χ 1. By Lemma 3.6,

xχ,s ∈ Is.χ(χ). Set fχ,s = Υxχ,s ∈ HomBLHF−mod(Iχ, Is.χ).

Lemma 3.14. Let χ ∈ TF and s ∈ S be such that χ′ = s.χ 6= χ. Then

fχ′,s ◦ fχ,s =
(
1 + χ(Qs(Z))χ′(Qs(Z))

)
IdIχ

and
fχ,s ◦ fχ′,s =

(
1 + χ(Qs(Z))χ′(Qs(Z))

)
IdI′χ .
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Proof. Let g = fχ′,s ◦ fχ,s. Then g ∈ HomBLHF−mod(Iχ, Iχ). Therefore it suffices to compute
g(1⊗χ 1). One has

g(1⊗χ 1) =
(
Hs − χ(Qs(Z))

)
.fχ′,s(1⊗χ′ 1)

=
(
Hs − χ(Qs(Z)

)
∗
(
Hs − χ′(Qs(Z))

)
.1⊗χ 1

=

(
(σi − σ−1

i )Hs − χ(Qs(Z))− χ′(Qs(Z)) + 1 + χ(Qs(Z))χ′(Qs(Z))

)
.1⊗χ 1

=
(
1 + χ(Qs(Z))χ′(Qs(Z))

)
⊗χ 1,

and the lemma follows by symmetry.

Let UF be the set of χ ∈ TF such that for all w ∈ W v and s ∈ S such that sw.χ 6= w.χ,
1 + χ(Qs(w.Z))χ(Qs(sw.Z)) 6= 0.

Remark 3.15. Assume that BLHF is associated with a split Kac-Moody group over a local
field of residue cardinal q. Let Φ∨ = W v.{α∨s |s ∈ S } be the coroot system. Then

UF = {χ ∈ TF | ∀w ∈ W v,∀α∨ ∈ Φ∨, χ(α∨) + χ−1(α∨) 6= q
1
2 + q−

1
2}.

Indeed, let χ ∈ UF . Let w ∈ W v and s ∈ S . Suppose that sw.χ = w.χ. Then w.χ(α∨s ) = 1.
Hence w.χ(α∨s ) + (w.χ(α∨s ))−1 = 2 6= q

1
2 + q−

1
2 . Suppose that sw.χ 6= w.χ. Then

(q
1
2 − q− 1

2 )2(
1− χ(w−1.α∨s )

)(
1− χ(w−1.α∨s )−1

) 6= −1,

or equivalently,
χ(w−1.α∨s ) + χ−1(w−1.α∨s ) 6= q

1
2 + q−

1
2 .

This proves one inclusion and similar computations yield the other inclusion.

Lemma 3.16. 1. Let χ ∈ UF . Then for all w ∈ W v, Iχ and Iw.χ are isomorphic as
BLHF -modules.

2. Let χ ∈ TF be such that Iχ is irreducible. Then χ ∈ UF .

Proof. Let χ ∈ UF . Let w ∈ W v and χ̃ = w.χ. Let s ∈ S . Assume that s.χ̃ 6= χ̃. Then by
Lemma 3.14, Iχ̃ is isomorphic to Is.χ̃ and 1 follows by induction.

Let χ ∈ TF be such that Iχ is irreducible. Let s ∈ S be such that s.χ 6= χ. Then fs.χ,s 6= 0
and Im(fs.χ,s) is an BLHF -submodule of Iχ: Im(fs.χ,s) = Iχ. Therefore fχ,s ◦ fs.χ,s 6= 0. By
Lemma 3.14, 1 + χ(Qs(Z))χ(Qs(s.Z)) 6= 0 and fχ,s : Iχ → Is.χ is an isomorphism. By
induction we deduce that Iw.χ is isomorphic to Iχ and thus irreducible for all w ∈ W v and
that χ ∈ UF .

Lemma 3.17. Let χ ∈ TF be such that Iw.χ ' Iχ (as a BLHF -module) for all w ∈ W v. Then
for all w ∈ W v, there exists a vector space isomorphism Iχ(χ) ' Iχ(w.χ).

Proof. Let w ∈ W v. Then by hypothesis, HomBLHF−mod(Iχ, Iχ) ' HomBLHF−mod(Iw.χ, Iw.χ).
Let φ : Iχ → Iw.χ be a BLHF -module isomorphism. Then φ induces an isomorphism of vector
spaces Iχ(w.χ) ' Iw.χ(w.χ). By Lemma 3.7,

Iχ(χ) ' HomBLHF−mod(Iχ, Iχ) ' HomBLHF−mod(Iw.χ, Iw.χ) ' Iw.χ(w.χ) ' Iχ(w.χ).
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3.4 Link with the works of Matsumoto and Kato

Assume that W v is finite. Then HC = BLHC. Let χ ∈ TC. Then by Subsection 2.3,
dimC Iχ = |W v|. One has Zλ.1 ⊗χ 1 = χ(λ)1 ⊗χ 1 for all λ ∈ Y and HC.1 ⊗χ 1 = Iχ. Thus
by [Mat77, Théorème 4.1.10] the definition we used is equivalent to Matsumoto’s one.

Assume that HC is associated with a split reductive group over a field with residue
cardinal q. For w ∈ W v, set Tw = q

1
2
`(w).Hw. Then by (BL2), one has : ∀ s ∈ S ,∀ w ∈ W v,

Ts ∗ Tw =

{
Tsw if `(sw) = `(w) + 1

(q − 1)Tw + qTsw if `(sw) = `(w)− 1.

Set 1′χ =
∑

w∈W v Tw ⊗χ 1. Then if s ∈ S , Ts.1χ = q1χ. Then by [Kat81, (1.19)], 1′χ is
proportional to the vector 1χ defined in [Kat81]. Kato proves Theorem 1 by studying whether
the following property is satisfied: “for all w ∈ W v, HC.1w.χ = Iw.χ” (see [Kat81, Lemma
2.3]). When W v is infinite, we do not know how to define an analogue of 1′χ and thus we do
not know how to adapt Kato’s proof.

4 Study of the reducibility of Iχ
In this Section, we study the reducibility of Iχ.

In Subsection 4.1, we prove that if χ ∈ UF , Iχ is irreducible if and only if dim Iχ(χ) = 1
(see Theorem 4.2).

In Subsection 4.2, we study the case where χ is regular and prove Matsumoto’s criterion
(see Corollary 4.5).

In Subsection 4.3 we prove one implication of Kato’s criterion (see Theorem 4.7).
In Subsection 4.4 and 4.5, we prove the irreducibility of Iχ in some particular cases where

χ is non regular.

4.1 An irreducibility criterion for Iχ
If B is a C-algebra with unity e and a ∈ B, set Spec(a) = {λ ∈ C| a− λe is not invertible}.
Recall the following theorem of Amitsur (see Théorème B.I of [Ren10]):

Theorem 4.1. Let B be a C-algebra with a unity e. Assume that the dimension of B over
C is countable. Then for all a ∈ B, Spec(a) 6= ∅.

Recall that UC is the set of χ ∈ TF such that for all w ∈ W v and s ∈ S with sw.χ 6= w.χ,
1 + w.χ(Qs(Z))ws.χ(Qs(Z)) 6= 0.

Theorem 4.2. Let χ ∈ TC. Then the following are equivalent:

1. Iχ is irreducible,

2. Iχ(χ) = C.1⊗χ 1 and χ ∈ UC,

3. EndBLHC−mod(Iχ) = C.Id and χ ∈ UC.

Proof. Assume that B = EndBLHC−mod(Iχ) 6= CId. By Lemma 3.7 and the fact that Iχ
has countable dimension, B has countable dimension. Let φ ∈ B \ CId. Then by Amitsur
Theorem, there exists γ ∈ Spec(B). Then φ − γId is non-injective or non-surjective and
therefore Ker(φ− γId) or Im(φ− γId) is a non-trivial BLHC-module, which proves that Iχ is
reducible. Using Lemma 3.16 we deduce that (1) implies (3).
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By Lemma 3.7, (2) is equivalent to (3).
Let χ ∈ TC satisfying (2). Then by Lemma 3.16 and Lemma 3.17, dim Iχ(w.χ) = 1 for

all w ∈ W v. By Lemma 3.16, for all w ∈ W v, there exists an isomorphism of BLHC-modules
fw : Iw.χ → Iχ. As C.fw(1 ⊗w.χ 1) ⊂ Iχ(w.χ) we deduce that Iχ(w.χ) = C.fw(1 ⊗w.χ 1) for
all w ∈ W v.

Let M 6= {0} be a BLHC-submodule of Iχ. Let x ∈ M \ {0}. Then M ′ = C[Y ].x is a
finite dimensional C[Y ]-module. Thus by Frobenius Theorem (Theorem 2.6), there exists
ξ ∈ M ′ \ {0} such that Zλ.ξ ∈ C.ξ for all λ ∈ Y . Then ξ ∈ I(χ′) for some χ′ ∈ TC.
By Proposition 3.13, χ′ = w.χ, for some w ∈ W v. Thus ξ ∈ C∗fw(1 ⊗w.χ 1). One has
BLHC.ξ = fw(BLHC.1 ⊗w.χ 1) = fw(Iw.χ) = Iχ ⊂ M . Hence Iχ is irreducible, which finishes
the proof of the theorem.

Remark 4.3. Actually, our proof of the equivalence between (2) and (3), and of the fact
that (2) implies (1) is valid when R = F is a field.

4.2 The regular case

Assume that R = F is a field. An element χ ∈ TF is said to be regular if w.χ 6= χ for all
w ∈ W v.

Proposition 4.4. (see [Kat81, Proposition 1.17]) Let χ ∈ TF be regular. Then for all
w ∈ W v, dim Iχ(w.χ) = 1 and Iχ =

⊕
w∈W v Iχ(w.χ).

Proof. By Lemma 3.3 dim Iχ(w.χ) ≤ 1 for all w ∈ W v and by Proposition 3.13, dim Iχ(w.χ) ≥
1 for all w ∈ W v and thus dim Iχ(w.χ) = 1 for all w ∈ W v.

Let v ∈ W v. By Lemma 3.3, Iχ(v.χ) ⊂ I≤vχ . Thus if w ∈ W v, one has
⊕

v≤w Iχ(v.χ) ⊂
I≤wχ . As these two vector-spaces have the same dimension,

⊕
v≤w Iχ(v.χ) = I≤wχ . Let x ∈

Iχ \ {0}. Then x ∈
∑

v∈supp(x) I
≤v
χ ⊂

⊕
w∈W v Iχ(w.χ), which concludes the proof of the

proposition.

Corollary 4.5. (see [Mat77, Théorème 4.3.5] Let χ ∈ TF be regular. Then Iχ is irreducible
if and only if χ ∈ UF .

Proof. By Lemma 3.16, if Iχ is irreducible, then χ ∈ UF .
Assume that χ ∈ UF . Then by Proposition 4.4, dim Iχ(χ) = 1 and we conclude with

Theorem 4.2 and Remark 4.3.

4.3 One implication of Kato’s criterion

Let R = {wsw−1|w ∈ W v, s ∈ S } be the set of reflections of W v. For χ ∈ TC, set
Wχ = {w ∈ W v| w.χ = χ}.

Lemma 4.6. Let χ ∈ TC be such thatWχ is not generated by R∩Wχ. Let E = Wχ\〈R∩Wχ〉.
Let w ∈ E be such that `(w) = min{`(v)| v ∈ E}. Write w = sk . . . s1, where k = `(w)
and s1, . . . , sk ∈ S . Then for all j ∈ J0, k − 1K, sj . . . s1.χ 6= sj+1 . . . s1.χ, where we set
s0 . . . s1 = 1.

Proof. Suppose that for some j ∈ J0, k − 1K, sj . . . s1.χ = sj+1 . . . s1.χ. Then

w.χ = sk . . . sj . . . s1.χ = sk . . . ŝj+1 . . . s1.χ.

By choice of w, sk . . . ŝj+1 . . . s1 ∈ 〈R ∩Wχ〉. Moreover, s1 . . . sj.sj+1.sj . . . s1 ∈ 〈R ∩Wχ〉.
Therefore w = sk . . . ŝj+1 . . . s1.s1 . . . sj.sj+1.sj . . . s1 ∈ 〈R ∩Wχ〉: a contradiction.
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Theorem 4.7. Let χ ∈ TC be such that Wχ is not generated by R∩Wχ. Then Iχ is reducible.

Proof. We take the same notations as in Lemma 4.6. For j ∈ J1, kK, set wj = sj−1. . . . .s1

and χj = wj.χ. Then by Lemma 4.6, χj 6= χj+1 for all j ∈ J1, k − 1K. By Lemma 3.11, there
exists f ∈ HomBLHC−mod(Iχ, Iw.χ) = HomBLHC−mod(Iχ, Iχ) such that f(1⊗χ1) ∈ I≤w−1

χ \I<w−1

χ .
Therefore f(1⊗χ 1) ∈ Iχ(χ) \ C1⊗χ 1. By Theorem 4.2, Iχ is reducible.

4.4 Case where the fixer of χ is generated by one reflection

Assume that R = F is a field.

Proposition 4.8. Let χ ∈ UF be such that Wχ = {1, t} for some reflection t. Then Iχ is
irreducible.

Proof. Write t = s1 . . . sj−1.sj.sj−1 . . . s1 for some s1, . . . , sj ∈ S . Let v = sj−1 . . . s1, s = sj
and χ̃ = v.χ. One has s.χ̃ = χ̃ and Wχ̃ = {1, s}. By Lemma 3.3, Iχ̃(χ̃) ⊂ I≤sχ̃ .

Let λ ∈ Y . Then Zλ.Hs ⊗χ̃ 1 = χ̃(λ)Hs ⊗χ̃ 1 + χ̃(Qs(Z)(Zλ − Zs.λ))1 ⊗χ̃ 1. Suppose
σs = σ′s. By Remark 2.3, χ̃((Qs(Z)(Zλ − Zs.λ)) = αs(λ). As there exists λ ∈ Y such that
αs(λ) 6= 0, we deduce that Hs⊗χ̃ 1 /∈ Iχ̃(χ̃) and thus Iχ̃(χ̃) = F .1⊗χ̃ 1. Similarly, if σs 6= σ′s,
Iχ̃(χ̃) = F .1⊗χ̃ 1. We conclude with Theorem 4.2 and Remark 4.3.

4.5 Irreducibility of I1 for size 2 Kac-Moody matrices

Assume that R = F is a field. Let 1 ∈ TF be defined by 1(λ) = 1 for all λ ∈ Y . One has
W1 = W v, which is generated by S . Thus when W v is finite (i.e. in the reductive case), I1
is irreducible, by Kato’s Theorem. The aim of this subsection is to prove the irreducibility
of I1 in the case where the Kac-Moody matrix defining A (see Subsection 2.1) is irreducible
(see [Kac94, §1.1]) and of size 2 (see Theorem 4.13).

Assume that |S | = 2 and that the Kac-Moody matrix of the root generating system S
is irreducible . This is equivalent to assuming that the Kac-Moody matrix of S is of the

form
(

2 a
b 2

)
, with a, b ∈ Z<0. As the case where W v is finite is a particular case of Kato’s

Theorem we assume thatW v is infinite, which is equivalent to the assumption that a, b ≤ −4
by [Kum02, Proposition 1.3.21]. The group W v is then the infinite dihedral group. Write
S = {s1, s2}. Then every element of W v admits a unique reduced writing involving s1 and
s2.

For w ∈ W v and x =
∑

v∈W v avHv ⊗1 1 ∈ I1, set πw(x) = aw.
The following lemma is easy to prove.

Lemma 4.9. Let w ∈ W v and s ∈ S be such that `(ws) = `(w) + 1. Let v ∈ W v be such
that v < w, then vs 6= w.

Lemma 4.10. Let w ∈ W v, s ∈ S be such that `(ws) = `(w) + 1 and λ ∈ Y . Then

πw(Zλ.Hws ⊗1 1) = αs(w
−1.λ).

Proof. Write ZλHw = HwZ
w−1.λ + u, where u ∈ BLH<w

C , which is possible by Lemma 3.2.
One has

ZλHws = (HwZ
w−1.λ + u) ∗Hs = HwsZ

sw−1.λ +HwQs(Z
w−1.λ) + u ∗Hs.
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Therefore

ZλHws ⊗1 1 = Hws ⊗1 1 + 1(Qs(Z
w−1.λ))Hw ⊗1 1 + u ∗Hs ⊗1 1.

By Lemma 4.9, πw(ZλHws ⊗1 1) = 1(Qs(Z
w−1.λ)).

Assume for example that αs(w−1.λ) ≥ 0. Then Qs(Z
w−1.λ) =

∑αs(w−1.λ)
j=0 Zw−1.λ−jα∨s and

thus 1(Qs(Z
w−1.λ)) = αs(w

−1.λ). Similarly if αs(w−1.λ) < 0, 1(Qs(Z
w−1.λ)) = αs(w

−1.λ),
and the lemma follows.

Lemma 4.11. Let w ∈ W v, s ∈ S be such that `(sw) = `(w) + 1 and λ ∈ Y . Then

πw(Zλ.Hsw ⊗1 1) = αs(λ).

Proof. One has ZλHsw = (HsZ
sλ + Qs(Z

λ)) ∗ Hw. Moreover Zs.λ ∗ Hw ∈ BLH≤wC . By a
reasoning similar to the one of the proof of Lemma 4.9, πw(HsZ

s.λHw) = 0. Moreover,
πw(Qs(Z

λ)Hw) = 1(w.Qs(Z
λ)) = α(λ) (where w.Zµ = Zw−1.µ for all µ ∈ Y ).

Recall that S = {s1, s2}. Set Ain = α−1
s1

({0}) ∩ α−1
s2

({0}) =
⋂
α∈Φ α

−1({0}) (where
Φ = {w.αi|w ∈ W v, i ∈ I}).

Lemma 4.12. Let w1, w2 ∈ W v. Then w1.α
−1
s1

({0}) ∩ w2.α
−1
s2

({0}) = Ain.

Proof. Recall that Cv
f = {x ∈ A|αs1(x) > 0 and αs2(x) > 0}. For J ⊂ {1, 2}, set

F v(J) = {x ∈ A|αsi(x) = 0∀i ∈ J and αsj(x) > 0∀i ∈ {1, 2} \ J}.

By [Rou11, 1.3], w1.F
v({1}) ∩ w2.F

v({2}) = ∅ and the fixer W v
i of F v({i}) satisfies

W v
i = 〈si〉. Thus F v({i}) is spherical (which means that the fixer of F v({i}) in W v is

finite). Recall that T =
⋃
w∈W v w.Cv

f . By [Rou11, 1.3], F v({i}) ⊂ T̊ for both i ∈ {1, 2} and
T̊ ∩−T̊ = ∅. Therefore w1.F

v({1})∩−w2.F
v({2}) = ∅. Moreover if i ∈ {1, 2} and j = 2− i,

α−1
si

({0}) = F v({j}) t Ain t −F v({j}) and the lemma follows.

Theorem 4.13. Assume that the matrix of the root generating system S is irreducible of size
2 and that W v is infinite. Then I1 is irreducible.

Proof. Let us prove that I1(1) = C.1⊗1 1. Let x ∈ I1 \C.1⊗1 1 and assume that x ∈ I1(1).
Let n = max{`(w)|w ∈ supp(x)}. Let w1, w2 ∈ W v be such that {w ∈ W v| `(w) = n} =
{w1, w2}. For i ∈ {1, 2}, set ai = πwi(x). Write S = {s1, s2}.

First assume that n is odd. Maybe exchanging s1 and s2, we may assume that the reduced
writing of w1 begins (and ends) with s1. Let v = s1w1. Then `(v) = n − 1, w1 = s1v and
w2 = vs2. Set av = πv(x). Then by Lemma 4.10 and Lemma 4.11,

πv(Zλ.x) = πv
(
Zλ.(a1Hw1 ⊗1 1 + a2Hw2 ⊗1 1 + avHv ⊗1 1)

)
= a1αs1(λ) + a2αs2(v

−1.λ) + av.

As x ∈ I1(1), we deduce that for all λ ∈ Y , a1αs1(λ) + a2αs2(v
−1.λ) + av = av and thus

a1αs1(λ) + a2αs2(v
−1.λ) = 0.

As Y spans A, we deduce that for all u ∈ A, a1αs1(u) + a2αs2(v
−1.u) = 0. By Lemma 4.12,

this is absurd. Therefore n is even.
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Let v = s1.w1. Maybe exchanging s1 and s2, we may assume that `(v) = `(w1)− 1. Then
w2 = v.s1. Set av = πv(x). Then by Lemma 4.10 and Lemma 4.11, for all λ ∈ Y ,

πv(Zλ.x) = a1αs1(λ) + a2αs1(v
−1.λ) + av = av

and hence
a1αs1(λ) + a2αs1(v

−1.λ) = 0.

As Y spans A, we deduce that for all u ∈ A, a1αs1(u) + a2αs2(v
−1.u) = 0. By hypothesis,

a1 6= 0 or a2 6= 0 and thus a1 6= 0 and a2 6= 0
Let u ∈ F v({1}). Then αs2(v−1.u) = 0. Consequently, v−1.F v({1}) = F v({1}) and hence

v = s1. But then w1 = 1: a contradiction. Therefore I1(1) = C.1⊗1 1 and by Theorem 4.2,
I1 is irreducible.
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