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Abstract

Recently, Iwahori-Hecke algebras were associated with Kac-Moody groups over non-
Archimedean local fields. We introduce principal series representations for these alge-
bras. We study these representations and partially generalize irreducibility criteria of
Kato and Matsumoto.

1 Introduction

1.1 The reductive case

Let G be a split reductive group over a non-Archimedean local field K. Let T" be a maximal
split torus of G and Y be the cocharacter lattice of (G,T'). Let B be a Borel subgroup of G
containing T'. Let Tz = Homg, (Y, C*). Then 7 can be extended to a character 7 : B — C*.
If 7 € T¢, the principal series representation (1) of G is the induction of 76'/2 from B to G,
where ¢ : B — R is the modulus character of B. More explicitly, this is the space of locally
constant functions f : G — C such that f(bg) = 76Y2(b)f(g) for every g € G and b € B.
Then G acts on I(7) by right translation.

To each open compact subgroup K of G is associated the Hecke algebra Hy. This is the
algebra of functions from G to C which have compact support and are K-bi-invariant. There
exists a strong link between the smooth representations of G and the representations of the
Hecke algebras of G. Let K; be the Iwahori subgroup of G. Then the Hecke algebra Hc¢
associated with K7 is called the Iwahori-Hecke algebra of G and plays an important role in
the representation theory of G.

The algebra Hc acts on I, ¢ := I(7)X7 by the formula

0.0 = [ )g.Fdulo). ¥(0.1) € He x 1(r)1,
G
where p is a Haar measure on . This formula can actually be rewritten as

6.f =ulKr) D 0(9)g.f, (b, f) € He x I(7)". (1)

9€G/K

Then I(7) is irreducible as a representation of G if and only I, ¢ is irreducible as a represen-
tation of Hc.

Let W be the vectorial Weyl group of (G,T). By the Bernstein-Lusztig relations, Hc
admits a basis (Z*H,,) eywew+ such that Doy CZ* is a subalgebra of Hc¢ isomorphic to
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the group algebra C[Y] of Y. We identify @,.,, CZ* and C[Y]. We regard 7 as an algebra
morphism 7 : C[Y] — C. Then [, is isomorphic to the induced representation I, =
Indg[%] (1) and we refer to [Sol09, Section 3.2] for a survey on this subject.

Matsumoto and Kato gave criteria for the irreducibility of I,. The group W?" acts on Y
and thus it acts on T¢. If 7 € T, we denote by W, the stabilizer of 7 in W". Let ®V be
the coroot lattice of GG. Let g be the residue cardinal of K. Let W(;) be the subgroup of W
generated by the reflections r,v, for ¥ € ®" such that 7(a¥) = 1. Then Kato proved the

following theorem (see [Kat&1, Theorem 2.4|):

Theorem 1. Let 7 € T¢. Then I, is irreducible if and only if it satisfies the following
conditions:

1. W, = V[/E'r)a
2. for all ¥ € @Y, 7(a¥) # ¢.

When 7 is regular, that is when W, = {1}, condition (1) is satisfied and this is a result
by Matsumoto (see [Mat77, Théoréme 4.3.5]).

1.2 The Kac-Moody case

Let G be a split Kac-Moody group over a non-Archimedean local field . We do not know
which topology on G could replace the usual topology on reductive groups over K. There is
up to now no definition of smoothness for the representations of G. However one can define
certain Hecke algebras in this framework. In [BIX11] and [BKP16], Braverman, Kazhdan and
Patnaik defined the spherical Hecke algebra and the Iwahori-Hecke H¢ of G when G is affine.
In [GR14] and [BPGR16], Bardy-Panse, Gaussent and Rousseau generalized these construc-
tions to the case where G is a general Kac-Moody group. They achieved this construction
by using masures (also known as hovels), which are analogous to Bruhat-Tits buildings (see
[GRO8]). Together with Abdellatif, we attached Hecke algebras to subgroups slightly more
general than the Iwahori subgroup (see [AH19]).

Let B be a positive Borel subgroup of G and 7" be a maximal split torus of G contained
in B. Let Y be the cocharacter lattice of G, W be the Weyl group of G and Y+ be the set
of dominant cocharacters of Y. The Bruhat decomposition does not hold on G: if G is not
reductive,

G+ = |—| K])\K]QG

ey ++

The set G is a sub-semi-group of G. Then Hc is defined to be the set of functions from
K \G"/K; to C which have finite support. The Iwahori-Hecke algebra H¢ of G admits a
Bernstein-Lusztig presentation but it is no longer indexed by Y. Let Y =, cppo w. YT C
Y. Then Y7 is the integral Tits cone and we have Y™ =Y if and only G is reductive. The
Bernstein-Lusztig-Hecke algebra of G is the space ""H¢ = @, .y C[Y|H,, subject to
to some relations (see subsection 2.3). Then Hc is isomorphic to @, cyv C[Y | H,.

Let Bf = BNGT. Let Tg = Hompyon(Y1,C) \ {0} and Tc = Homg, (Y, C*). Let
e € {+,0}. If ¢ € T¢ we define the space I/(7—'f\)E of functions f from G¢ to C such that
for every g € G and b € B, f(bg) = 76'/%(b)f(g). As we do not know which condition

could replace “locally constant”, we do not impose any regularity condition on the functions

—

of I(7¢)¢. Then G° acts by right translation on I(7¢)¢. Let I, e be the subspace of I(7¢)¢
of functions which are invariant under the action of K; and whose support satisfy some



finiteness conditions (see 6.2.1). Inspired by formula (1), we define an action of H¢ on I e ge
by
o.f= Y 0(9)g. L. V(b [) € He X Lege.

9€G/ K

As often in the Kac-Moody theory, the fact that this formula is well-defined is not obvious.
We prove some finiteness results on G to prove that the formula only involves finite sums
and that ¢.f is an element of I« ge (see Definition/Proposition 6.12).

We regard 7¢ as an algebra morphism C[Y¢] — C. Let <. be the representation of BLH
(where BUH . = H¢) defined by induction of 7¢ from C[Y] to BLE..

We prove the following proposition, which seems to indicate that the representations of
Hc correspond to representations of G and that the representations of BXH ¢ correspond to
representations of G:

Proposition 1. (see Proposition 6.28)
Let 7+ e T¢.

1. Suppose that 77 is not the restriction to Y™ of an element of T¢.

—

For every f € I(7%) \ {0}, for every G-module M, the restriction of M to G is not
isomorphic to GT.f.

For every x € I, \ {0}, for every PFHc-module M, the restriction of M to Hc is not
isomorphic to Hc.x.

2. Suppose that 77 is the restriction to Y of a (necessarily unique) element 7 of T¢.

Every element f* of IFJF\)Jr can be extended uniquely to an element f of I(7). Then
f* — fis an isomorphism of G™-modules.

The action of Hc on I, extends uniquely to an action of ®“H¢ on I, Then I, is
naturally isomorphic to I, as a BVHc-module.

Note that the existence of elements of T which do not extend to elements of T¢ depends
on GG. We prove that in some cases (for example when G is affine or associated with a size 2
Kac-Moody matrix) every element of T is the restriction of an element of Tz. We also prove
that for some size 3 Kac-Moody matrices, there exists 7 € T# which is not the restriction of
an element of 7t (see Lemma 6.20 and Lemma 6.24).

We then restrict our study to the elements 7+ of T which are the restriction of an element
7 of Te. We prove that 7, is irreducible if and only if I, is (see Proposition 2.12). We then
study the irreducibility of I.. We prove the following theorem, generalizing Matsumoto’s
irreducibility criterion (see Corollary 4.10):

Theorem 2. Let 7 be a regular character. Then I is irreducible if and only if for all ¥ € &V,
T(a”) # q.

We also generalize one implication of Kato’s criterion (see Lemma 4.5 and Proposi-
tion 4.17). Let W,y be the subgroup of W, generated by the reflections rov, for o € &
such that 7(a¥) = 1.

Theorem 3. Let 7 € 1. Assume that I, is irreducible. Then:

1. W, = m7)7



2. for all ¥ € @Y, 7(aV) # q.

We then obtain Kato’s criterion when the Kac-Moody group G is associated with a size
2 Kac-Moody matrix (see Theorem 5.35):

Theorem 4. Assume that G is associated with a size 2 Kac-Moody matrix. Let 7 € T¢.
Then [, is irreducible if and only if it satisfies the following conditions:

1. W, = m7)7
2. for all ¥ € @Y, 7(aV) #q.

In order to prove these theorems, we first establish the following irreducibility criterion.

For 7 € Tg set I.(1) = {z € I.|0.x = 7(0).2 V8 € C[Y]}. Then:
Theorem 5. (see Theorem 4.8) I, is irreducible if and only if:
o 7(aY) # q for all & € PV
e dim /[, (1) = 1.
Remark 1.1. Suppose that G is an affine Kac-Moody group. Then by [BFPGR16, 7], some

extension BLHc of BVHc contains the double affine Hecke algebra introduced in [Che92). It
would therefore be interesting to find a link between the representations of B He and those of
this algebra.

Framework Actually, following [BPGR16|] we study Iwahori-Hecke algebras associated
with abstract masures. In particular our results also apply when G is an almost-split Kac-
Moody group over a non-Archimedean local field. The definition of W(;) and the statements
given in this introduction are not necessarily valid in this case and we refer to Proposition 4.17,
Theorem 5.35 and Theorem 4.8 for statements valid in this frameworks.

Organization of the paper The paper is organized as follows. In a first part (sections 2
to 5) we consider “abstract” Iwahori-Hecke algebras. We define them using the Bernstein-
Lusztig presentation and they are a priori not associated with a group. The techniques
used are mainly algebraic, based on the Bernstein-Lusztig relations. In a second part (sec-
tion 6), we introduce Kac-Moody groups, masures and Iwahori-Hecke algebras associated
with groups, and we associate some principal series representations to these groups. The
techniques involved are mainly building theoretic.

In section 2, we recall the definition of the Iwahori-Hecke algebras and of the Bernstein-
Lusztig-Hecke algebras, introduce principal series representations and define an algebra BYH (T'%)
containing BYH 7, where F is the field of coefficients of BLH £.

In section 3, we study the F[Y]-module I, and we study the intertwining operators from
I. to I, for 7,7 € Tr.

In section 4, we establish Theorem 5. We then apply it to obtain Theorem 2 and Theo-
rem 3.

In section 5 we consider the weight vectors of I, and use them to prove Kato’s irreducibility
criterion for size 2 Kac-Moody matrices.

In section 6, we introduce Kac-Moody groups over local fields, masures, and Iwahori-
Hecke algebras of these groups. We introduce some principal series representations of these
groups, study them and relate them to the principal series representations studied in the
previous sections.

There is an index of notations at the end of the paper.
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2 Bernstein-Lusztig presentation of Iwahori-Hecke alge-
bras

Let G be a Kac-Moody group over a non-Archimedean local field. Then Gaussent and
Rousseau constructed a space Z, called a masure on which G acts, generalizing the construc-
tion of the Bruhat-Tits buildings (see [GROS], [Roul6] and [Roul7]). Rousseau then gave in
[Roull] an axiomatic definition of masures inspired by the axiomatic definition of Bruhat-
Tits buildings. We call a masure satisfying these axioms an abstract masure. It is a priori
not associated with any group.

In [BPGR16], Bardy-Panse, Gaussent and Rousseau attached an Iwahori-Hecke algebra
Hzr to each abstract masure satisfying certain conditions and to each ring R. The algebra
‘Hr is an algebra of functions defined on some pairs of chambers of the masure, equipped
with a convolution product. Then they prove that under some additional hypothesis on the
ring R (which are satisfied by R and C), Hz admits a Bernstein-Lusztig presentation. In
this section, we will only introduce the Bernstein-Lusztig presentation of Hz and we do not
introduce masures (we introduce them in section 6). We however introduce the standard
apartment of a masure. We restrict our study to the case where R = F is a field.

2.1 Standard apartment of a masure
2.1.1 Root generating system

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (a; ;)i jer
indexed by a finite set I, with integral coefficients, and such that :

(i) ¥ (i, 5) € I?, (i # j) = (ai; < 0);
(¢ii) ¥ (i,7) € I?, (a;; =0) < (a;; = 0).

\

A root generating system is a 5-tuple S = (A, X, Y, («;)ier, () )ier) made of a Kac-Moody
matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite rank,
and of a free family («;);es (respectively (a)ies) of elements in X (resp. Y') called simple
roots (resp. simple coroots) that satisfy a;; = «;(a)) for all 4,5 in I. Elements of X
(respectively of Y') are called characters (resp. cocharacters).

Fix such a root generating system S = (A, X,Y, (a;)ier, () )ier) and set A := Y @ R.
Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A*. In particular, the o;’s (with ¢ € I) will be seen as linear forms on A. This allows us to
define, for any 7 € I, an involution r; of A by setting 7;(v) := v — a;(v)a; for any v € A. Let
& = {r;|i € I} be the (finite) set of simple reflections. One defines the Weyl group of
S as the subgroup W* of GL(A) generated by .. The pair (W",.%) is a Coxeter system,
hence we can consider the length ¢(w) with respect to . of any element w of W*. If s € .7,
s = r; for some unique i € I. We set oy = o; and o) = o).

The following formula defines an action of the Weyl group W* on A*:

VeeAweW' acA (wa)r):=a(w ).
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Let @ := {w.cqy|(w,i) € WY x I} (resp. ® = {w.o)|(w,i) € W" x I}) be the set of real
roots (resp. real coroots): then ® (resp. @) is a subset of the root lattice @ := @ Zaoy;

icl
(resp. coroot lattice Q¥ = @, ; Za;’). By [[Kum02, 1.2.2 (2)], one has RaY N ®Y = {+a}
and RaN® = {+a} for all a¥ € &Y and a € P.

2.1.2 Fundamental chamber, Tits cone and vectorial faces

As in the reductive case, define the fundamental chamber as C} := {v € A | Vs €
S, as(v) > 0}.

Let T := U w.C7 be the Tits cone. This is a convex cone (see [Kum02, 1.4]).

weWv

For J C .7, set FV(J) = {z € Aloj(z) = 0Vj € J and o;(x) > 0Vj € .\ J}. A positive
vectorial face (resp. negative) is a set of the form w.F"(J) (—w.F"(J)) for some w € W"
and J C .. Then by [R¢m02, 5.1 Théoréme (ii)], the family of positive vectorial faces of A
is a partition of 7 and the stabilizer of F(J) is W, = (J).

One sets Y+ :YﬂC’_}’and Yt=vYnT.

Remark 2.1. By [Kac9/, §4.9] and [Kac9/, § 5.8] the following conditions are equivalent:
1. the Kac-Moody matriz A is of finite type (i.e. is a Cartan matriz),
2.A=T
3. W? s finute.

2.2 Recollections on Coxeter groups
2.2.1 Bruhat order

Let (Wp,-#) be a Coxeter system. We equip it with the Bruhat order <y, (see [BB05,
Definition 2.1.1]). We have the following characterization (see [BB05, Corollary 2.2.3|): let
u,w € Wy. Then u <y, w if and only if every reduced expression for w has a subword that
is a reduced expression for u. By [BB05, Proposition 2.2.9]|, (Wy, <y, ) is a directed poset,
i.e for every finite set 2 C W), there exists w € W, such that v <y, w for all v € E.

We write < instead of <pw. For u,v € W, we denote by [u,v], [u,v), ... the sets
{we W u<w <o}, {fweWu<w<uv}, ...

2.2.2 Reflections and coroots

Let Z = {wsw™w € WY, s € %} be the set of reflections of WV. Let r € Z. Write
r = wsw !, where w € W¥, s € . and ws > w (which is possible because if ws < w,
then r = (ws)s(ws)™"). Then one sets a, = w.a; € &, (resp. o = w.ay € ®Y). This is
well-defined by the lemma below.

Lemma 2.2. Let w,w' € W and s,s" € . be such that wsw™' = w's'w' ™" and ws > w,
w's' > w'. Then w.oy = w'.ag € Oy and w.a) = w'.a) € Y.

Proof. One has r(z) = © — w.as(x)w.a) = & — w.ay(z)w' .oy for all x € A and thus
w.as; € R'w'.ay and w.a) € R'w'.a). As ® and &Y are reduced, w.cy = +w'.ay and
w.o] = fw'.a). By [Kum02, Lemma 1.3.13], w.a,, .oy € 4 and w.o), w0 € OY,

which proves the lemma. O



Lemma 2.3. Let r,7’" € Z and w € WY be such that w.c, = a0 or w.o,) = o). Then
wrw™t =1’

Proof. Write r = vsv~!and 1’ = v's'v'~! for 5,5 € % and v, v’ € W?. Then v lwv.a, = .
Thus by [Kum02, Theorem 1.3.11 (b5)], ' twvsv™'w™1v' = s and hence wrw='=7¢'. O

Let r € Z. Then for all x € A, one has:
r(z) =z — a.(x)a).
Let oY € @Y. One sets r,v = wsw™! where (w, s) € W x . is such that oV = w.aY. This
is well-defined, by Lemma 2.3. Thus a¥ +— r,v and r — «, induce bijections &Y — # and
X — q)i. If r € Z, r = wsw™?, one sets o, = 0,, which is well-defined by assumption on
the oy, t € .7 (see Subsection 2.3).
For w € W, set Nov(w) = {a" € ®Y|w.a¥ € PV}

Lemma 2.4. ([Kum02, Lemma 1.3.14]) Let w € W". Then |Ngv(w)| = {(w) and if w =
S1...5, is a reduced expression, then Nov(w) = {a , sy.ar) L Sp ... Sg.00) )

Sp_17 "

2.2.3 Reflections subgroups of a Coxeter group

If Wy is a Coxeter group, a Coxeter generating set is a set % such that (W, %) is a

Coxeter system. Let (Wy,.%)) be a Coxeter system and %y = {w.s.w™|w € Wy, s € S}

be its set of reflections. A reflection subgroup of W is a group of the form W; = (%)

for some #, C %y. For w € Wy, set Ny, (w) = {r € Zlrw™ < w™'}. By [Dye90, 3.3] or

[Dyedl, 1), if S (Wy) = {r € Zo| N, (r)NWy = {r}}, then (W, .7 (W;)) is a Coxeter system.
Let (Wp, %) be a Coxeter system. The rank of (W, .7) is |-#].

Remark 2.5. 1. The rank of a Cozxeter group is not well-defined. For example, by [Miih05,
3, if k € Zs1 and n = 4(2k + 1) then the dihedral group of order n admits Coxeter
generating sets of order 2 and 3. However by [Rad99], all the Cozeter generating sets
of the infinite dihedral group have cardinal 2.

2. Using [Bous1, IV 1.8 Proposition 7] we can prove that if (Wy, %) is a Coxeter system
of infinite rank, then every Coxeter generating set of Wy is infinite.

3. Reflection subgroups of finite rank Coxeter groups are not necessarily of finite rank.
Indeed, let Wy be the Coxeter group generated by the involutions si, sa, s3, with s;s; of
infinite order when i # j € [1,3]. Let W} = (s1,82) C Wy and %, = {wszw™|w €
Wiy € %y. Then Wy = (%) has infinite rank. Indeed, let 1p : Wy — W be the group
morphism defined by Y, = Idw, and W(s3) = 1. Then %, C kerv. Thus s3 appears
in the reduced writing of every nontrivial element of Wy. By [BB05, Corollary 1.4.4] if
r € %1, then the unique element of Ng, (1) containing an s3 in its reduced writing is r.
Thus (W) D %, is infinite.

2.3 Iwahori-Hecke algebras

In this subsection, we give the definition of the Iwahori-Hecke algebra via its Bernstein-Lusztig
presentation, as done in [BPGR16, Section 6.6].

Let Ry = Z[(0s)se.s, (0%)se.r], where (05)se.s, (0%)se.r are two families of indeterminates
satisfying the following relations:



o if a,(Y) =7, then o, = 0l;

e if 5,t € .7 are such that the order of st is finite and odd (i.e if o) = ay(a)) = —1),
then oy = 0y = 0!, = 0.

To define the Iwahori-Hecke algebra Hg, associated with A and (oy,0%)scs, we first
introduce the Bernstein-Lusztig-Hecke algebra. Let BXHz, be the free Ri-vector space with
basis (Z*H,)eywewv. For short, one sets H, = Z°H,, for w € W* and Z* = Z*H, for
A € Y. The Bernstein-Lusztig-Hecke algebra ?Hr, is the module PXHy, equipped
with the unique product * that turns it into an associative algebra and satisfies the following
relations (known as the Bernstein-Lusztig relations):

o (BLL)V (\w) €Y x WY, Z*« H, = Z H,;

Hg, if {(sw) =l(w)+1

BL2 Y Hox Hy = |
* BL2)Vs €S VweW’ HyxHy {(as—a;1>Hw+st if (sw) = f(w) =1

o (BL3) V (A ) € Y2, Z) & Z¢ = Z 0,
e BL4)VANXe€Y, Viel HyxZ*— 7%« Hy = Q,(Z)(Z* — Z*?*), where Q,(Z) =

(03—0;1)+(0g—o‘g71)Z7°‘s
1—z—2a :

The existence and uniqueness of such a product * comes from [BPGR 16, Theorem 6.2].

Definition 2.6. Let F be a field of characteristic 0 and f : Ry — F be a ring morphism
such that f(os) and f(ol) are invertible in F for all s € .. Then the Bernstein-Lusztig-
Hecke algebra of (A, (0,)scs,(0))scr) over F is the algebra B'Hr = PlHp, @r, F.
Following [BPGR10, Section 6.6], the ITwahori-Hecke algebra Hz associated with S and
(05,0%)ses is now defined as the F-subalgebra of PEHx spanned by (Z*H.,) ey + wewv (recall
that Yt =Y N'T with T being the Tits cone). Note that for G reductive, we recover the
usual Twahori-Hecke algebra of G, since Y N T =Y.

In certain proofs, when F = C, we will make additional assumptions on the o, and o/,

s € .. To avoid these assumptions, we can assume that oy, 0, € C and |og| > 1, |0%| > 1 for
all s € .77,

Remark 2.7. 1. Let s € .. Then if o, = 0., Qs(Z) = (1”_;7:;)

2. Letse€ . and N\ € Y. Then Q.(Z)(Z* — Z**) € F|Y]. Indeed, Q,(Z)(Z* — Z3) =
Qs(2).2*(1 — Z=*WNd) . Assume that o, = o’ Then

(as(N)—1
N oz if a,(A) >0
1 — Z—as()\)a;/ B =0
1 — 7oy . —as()-1 ’
—Z% Y 2% i a,(\) <0,
\ 7=0

and thus Q,(Z)(Z* — Z5*) € F[Y]. Assume o', # o,. Then ay(Y) = 27Z and a similar
computation enables to conclude.

3. From (BL4) we deduce that for all s € ./, N €Y,
Z N« Hy — Hyx Z°* = Q,(2)(Z> — Z°).
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4. When G s a split Kac-Moody group over a non-Archimedean local field IC with residue
cardinal ¢, we can choose F to be a field containing Z[\/c_]il] and take f(os) = f(ol) =
V4 forall s € 7.

5. By (BL4), the family (H, * Z*)wews acy is also a basis of BXH x.

6. Letw € W andw = s1...5k, withk € Z>o and sy, ..., s € .7 be a reduced expression
of w. We set o, = 05, ...05,. This is well-defined, independently of the choice of a
reduced expression of w by the conditions imposed on the oy and by [BB05, Theorem

We equip F[Y] with an action of W*. For 0§ = >, axZ* € F[Y] and w € W, set

0v =" oy arx 2N

Lemma 2.8. Let§ € F[Y] andw € W*. Then 0xH,—H,+0*"" € B*H15" = @, _, HF[Y].
In particular, BEHZ" = D, H.C[Y] is a left finitely generated F[Y]-submodule of " H .

Proof. We do it by induction on ¢(w). Let § € F[Y] and w € W" be such that u :=
0H, — H,0° " € BLH(TF)<". Let s € .% and assume that ¢(ws) = £(w)+1. Then by (BL4):

0% H,, = (Hwe“f1 +u)* Hy = H, 0" + aH, + uH,,

for some a € F. Moreover, by [Kum02, Corollary 1.3.19] and (BL2), u * H, € BYH(Tx)<vs
and the lemma follows. O

Definition 2.9. Let Hrwo = @, cppo FHw C Hr. Then Hywe is a subalgebra of Hy. This
is the Hecke algebra of the Cozeter group (WY, .7).

2.4 Principal series representations

In this subsection, we introduce the principal series representations of BV z.

We now fix (A, (05)se.s, (0%)sc.r) as in Subsection 2.3 and a field F as in Definition 2.6.
Let Hr and BYH z be the Iwahori-Hecke and the Bernstein-Lusztig Hecke algebras of

(A, (05)ses, (0%)ser) Over F.

Let T’ = Homg, (Y, F*) be the group of homomorphisms from Y to F*. Let 7 € T%. Then
7 induces an algebra morphism 7 : F[Y] — F by the formula 7(}_, .y aye¥) = > oy a,7(y),
for > a,e? € F[Y]. This equips F with the structure of a F[Y]-module.

Let I, = Ind?[z,{]’f(f) = PLHr @7y F. For example if A € Y, w € WY and s € ., one
has:

210, 1=7\N1®, 1, Hy* Z* @, 1 =7(\)H, ®, 1 and

ZMH,®,1 = HxZ*®,14Q,(Z)(Z* - Z*")®,1 = 7(s N H;®, 1+7(Qs(Z2)(Z* - Z**)) ®, 1.

Let € ]T' Write h = Z)\GY,U)EW” h’w)\HwZ)\ ®r Cw,\; where (hw)\)a (Cw,A) S f(WUXY)v
which is possible by Remark 2.7. Thus

h= > hupcorTWH, @ 1= > hyrcorr(NH,)1 @, 1.

AEY,weW? AeY,weWv

Thus I, is a principal BYH r-module and (H,, ®; 1),ew~ is a basis of I,. Moreover I, =
Hywv 7.1 ®; 1 (see Definition 2.9 for the definition of Hyw 7).

The definition of principal series representations of Hr is very similar: we replace T'r by
TF = Hompon (Y, C)\ {0} and F[Y] by F[Y*] in the definition above. If 7 € T, we denote

by I;; the principal series representation of Hr associated with 7.
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Remark 2.10. Let 7 € Tr. By Lemma 2.8, [=* and 17" are FlY]-submodules of I,. In
particular F[Y].x is finite dimensional for all x € 1.

Lemma 2.11. Let 7 € Tx. Let M C I, be a finite dimensional F[Y *|-submodule of I,.
Then M is an F[Y'|-submodule of I.

Proof. Let A € Y*. Let ¢ : M — M be defined by ¢\(z) = Z .z, for all m € M.
Let x € ker(¢y). Then Z7*.Z*x = 0 = x and thus ¢, is an isomorphism. Moreover,
¢y (v) = Z Az forallz € M and thus Z*z € M, forallz € M. AsY* —Y~ =Y, we
deduce the lemma. ]

Proposition 2.12. Let 7 € T and M C I.. Then M is an Hz-submodule of L. if and only
if M is a BLYH r-submodule of I.. In particular, I, is irreducible as a B“H r-module if and
only if I 1s irreducible as an Hr-module.

Proof. Let M C I, be a Hz-submodule. Then M is an F[Y ]| submodule of I,. Let x € M.
Then by Remark 2.10, F[Y*].x C F[Y].x is finite dimensional. Thus M =} _, F[Y*].x
and by Lemma 2.11, M is an F[Y]-submodule of I,. As BYH r is generated as an algebra by
Hzr and F[Y], we deduce the proposition. a

2.5 The algebra BYH »(Tr)

In this subsection, we introduce an algebra BYH(T%) containing BYH . This algebra will
enable us to regard the elements of I, as specializations at 7 of certain elements of BLH (T%).
When F = C, this will enable us to make 7 € T vary and to use density arguments and
basic algebraic geometry to study the 7.

2.5.1 Description of B'H(Tr)

Let PYH(TF) be the right F(Y) vector space @, o HoF(Y). We equip F(Y) with an
action of W". For 0 = %LM € F(Y) and w € W", set 6" := Laey a2

acy bAZA T Ty aZvXC

Proposition 2.13. There exists a unique multiplication x on B H (Tx) which equips BYH(TF)
with the structure of an associative algebra and such that:

o F(Y) embeds into B2 H(Tx) as an algebra,
e (BL2) is satisfied,
e the following relation (BL4’) is satisfied:

forall e F(Y)ands € S, 0« Hi— Hyx 0° = Q(Z)(0 — 6°).

The proof of this proposition is postponed to 2.5.2.
We regard the elements of F[Y] as polynomial functions on T by setting:

T(Z axZ*) = Z axt(A),

ey rey

for all (ay) € F&). The ring F[Y] is a unique factorization domain. Let § € F(Y) and
(f,g) € FIY] x F[Y]* be such that § = g and f and g are coprime. Set D(f) = {7 €
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Tr|0(g) # 0}. Then we regard 6 as a map from D(f) to F by setting 0(7) = % for all
T € D(0).

For w € W*, let «lfl : B (Tr) — F(Y) be defined by 7l (3", o Huby) = by, for
(0,) € (Hwer)"" with finite support. If 7 € Tx, let F(Y), = {£|f,g € C[Y] and g(7) #
0} € F(Y). Let B*H(TF); = ®pews HoF(Y), C PEH(Tx). This is a not a subalgebra of
BLH(T) (consider for example 5= * H, = H % »5— + ... for some well chosen A € Y,
se€ .Y and 7 € T¢). It is however an Hyv r — F(Y), bimodule. For 7 € T, we define ev; :
BLH(TF); — Hwer by eve(h) = h(1) = 3 cwe Hubw(T) if b= 3" oo Hubw € H(Y)-.
This is a morphism of Hyw r — F(Y),-bimodule.

2.5.2 Construction of BVH(Tr)

We now prove the existence of BYH(T%). For this we use the theory of Asano and Ore of
rings of fractions: BLH (Tx) will be the ring BVH z » (F[Y]\ {0})~.

Let V =Bz @z F(Y) D BEH z, where BH £ is equipped with its structure of a right
F[Y]-module. As a right F(Y')-vector space, V = @, .o HuwF(Y). The left action of F[Y]
on BN r extends to an action of F[Y] on V by setting 0.3 o Hofw = D wewo(0-Huw) fu,
for € F[Y] and (f,) € F(Y)"" with finite support. This equips V with the structure of a
(FIY] = F(Y))-bimodule.

Lemma 2.14. The left action of F[Y] on V' extends uniquely to a left action of F(Y) on V.
This equips V' with the structure of a (F(Y)-F(Y'))-bimodule.

Proof. Let w € WY and P € F[Y]\ {0}. Let V=¥ = D1 ) HoF (Y). By Lemma 2.8, the
map mp : V= — V=" defined by mp(h) = P.h is well-defined. Thus the left action of F[Y]
on V=% induces a ring morphism ¢,, : F[Y]| — End, ,(V="), where End,, ,(V=") is the space
of endomorphisms of the F(Y)-vector space V=Y.

Let us prove that ¢, (P) is injective. Let h € V=*. Write h = > veitw) Hoblo, with
8, € F(Y) for all v € [1,w]. Suppose that h # 0. Let v € [1,w] be such that 6, # 0 and
such that v is maximal for this property for the Bruhat order. By Lemma 2.8, Pxh # 0 and
thus ¢, (P) is injective. As V=% is finite dimensional over F(Y'), we deduce that ¢,(P) is
invertible for all P € F[Y]. Thus ¢,, extends uniquely to a ring morphism b F (V) = V=,
As (W¥, <) is a directed poset, there exists an increasing sequence (wy,)nez., (for the Bruhat
order) such that (J, ;. [1,wn] = W". Let m,n € Z>q be such that m <n. Let P € F[Y]

and f™ = ¢, (P) and f™ = ¢, (P). Then f|($)§wm = f™ and thus for all § € F(Y) and

z € BLU(TR), 0.2 := ¢y, (0)(z) is well-defined, independently of k € Zsg such that z € V<ws,
This defines an action of F(Y) on V.

Let he V,0 € F(Y)and P € FIY]\ {0}. Let # = £.h. Then as V is a (F[Y]-F(Y))-
bimodule, (P*2) %60 = h 6 = P« (z%0) and thus x x0 = £ % (h%60) = (5 h) x6. Thus V
isa (F(Y)— F(Y))-bimodule. O

Lemma 2.15. The set F[Y] C BYH x satisfies the right Ore condition: for all P € F[Y]\{0}
and h € BVH z\ {0}, P+ BYH N h* F[Y] # {0}.

Proof. Let P € F[Y]\ {0} and h € B"H#\ {0}. Then by definition, P x (5 *h) = h € V.
Moreover, V = @, cppo HoF (V) and thus there exists 6 € F[Y]\ {0} such that & % h 0 €
BLH 7\ {0}. Then P+ 5 «h*0 =hx*0 € P x5z N h« F[Y], which proves the lemma. O

Definition 2.16. Let R be a ring and r in R. Then r is said to be regular if for all
"€ R\ {0}, r’ #0 and r'r #0.
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Let R be a ring and X C R a multiplicative set of reqular elements. A right ring of
fractions for R with respect to X is any overring S O R such that:

o Fuvery element of X 1is invertible in S.
e Every element of S can be expressed in the form ax™' for some a € R and x € X.

We can now prove Proposition 2.13. The uniqueness of such a product follows from (BL4").
By Lemma 2.8, the elements of F[Y]\ {0} are regular. By Lemma 2.15 and |G W04, Theorem
6.2], there exists a right ring of fractions BVH (T%) for BYH z with respect to F[Y]\ {0}. Then
BLH(T#) is an algebra over F and as a vector space, "YH(Tr) = @, ey (Ho FY])(FY]\
{01 = e HoF(Y)

Let (f,g9) € F[Y] x (F[Y]\ {O}) Then it is easy to check that g (Hy* - +Qs(2))(; —

gl)) H and thus % * Hy = (Hyx L +Q.(Z )(— — g%) Let f € F[Y]. A straightforward

computation yields the formula £ 5 * H H, x ( ) +Qs(Z )( (5)5) which finishes the proof
of Proposition 2.13.

Remark 2.17. e Inspired by the proof of [BPGR16, Theorem 6.2] we could try to define
* on'V as follows. Let 0,0, € FIY] and wy, wy € W¥. Write 61 x Hyy = > o Hubw,
with (0,) € FY)W). Then (Hy, * 01) % (Hy, * 02) = >y (Huy * Hy) * (620,).

However it is not clear a priori that the so defined law s associative.

e Suppose that Hx is the Iwahori-Hecke algebra associated with some masure defined in
|BPGR16, Definition 2.5]. Using the same procedure as above (by taking S = {Y*|\ €
Y*}), we can construct the algebra B2 Hx from the algebra Hx. In this particular case,
this gives an alternative proof of [BPGR 10, Theorem 6.2].

3 Weight decompositions and intertwining operators

Let 7 € Tx. In this section, we study the structure of I, as a F[Y]-module and the set
Homery, , moa(I7, 1) for 7/ € Tr.

In Subsection 3.1, we study the weights of I, and decompose every BYH r-submodule of
I as a sum of generalized weight spaces (see Lemma 3.2).

In Subsection 3.2, we relate intertwining operators and weight spaces. We then prove the
existence of nontrivial intertwining operators I, — I, . for all w € W".

In Subsection 3.3, we prove that when W is infinite, then every nontrivial submodule
of I, is infinite dimensional. We deduce that contrary to the reductive case, there exist
irreducible representations of B » which does not embed in any .

3.1 Generalized weight spaces of I,

Let 7 € Tr. Let x € I,. Write 2 = > _ypo T H, ®; 1, with (2,) € FW. Set supp(z) =
{w e W"| x,, # 0}. Equip W? with the Bruhat order. If E' is a finite subset of W max(FE)
is the set of elements of E that are maximal for the Bruhat order. Let R be a binary relation
on W (for example R =¢<", R =*%", ...) and w € W". One sets

f*= € FH, @, 1 Hw 7" =@ FH, "HITH)™ =P HFY
veW?|vRw vRw vRw
and PUHE" = BLH(Tr)R0 0 By = @, HLF[Y].
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Let V be a vector space over F and E C End(V). For 7 € FF set V(1) = {v €
Vlew = 7(e).wVe € E} and V(7,gen) = {v € V|Ik € Zso|(e — 7(e)Id)*.v = 0,Ve € E}. Let
Wt(E) = {7 € FE|V(r) # {0}}.

The following lemma is well known.

Lemma 3.1. Let V be a finite dimensional vector space over F. Let E C End(V') be a subset
such that for all e, e’ € E,

1. e is triangularizable
2. ed =¢e.
Then V = €D, cwim) V(7. gen) and in particular Wt(E) # 0.

For 7 € T, set W, = {w € W"| w.r =7}.
Let M be a B¥H r-module. For 7 € T, set

M(r) = {m € M|P.m = r(P).m VP € F[Y]}

and
M(7,gen) = {m € M|3k € Z>o|VP € F[Y],(P — 7(P))*.m = 0} D M(7).

Let Wt(M) = {7 € Tx|M(7) # {0}} and Wt(M, gen) = {7 € T'r|M(7,gen) # {0}}.
Lemma 3.2. 1. Let 7,7 € Tx. Let x € I.(7', gen). Then if v # 0,
max supp(z) C {w € W"| w.r =71'}.
In particular, if I.(7', gen) # {0}, then 7" € W".T and thus
Wt(L) C W7,
2. Let 7 € Tr. Let M C I, be a F[Y|-submodule of I.. Then Wt(M) = Wt(M, gen) C
Wt and M = &P any M(x, gen). In particular, Wt(M) # 0.

Proof. (1) Let x € I.(7/,gen) \ {0}. Let w € maxsupp(z). Write 2 = a,,H,, ®; 1 +y, where
a, € F\ {0} and y € 17", Then by Lemma 2.8,

xEWt(M

Ar=a,H, 7" @, 1+ v =1(w NawyHy, @, 1+y =7 (NawH, @, 1+ 7Ny,

where ' € 17", Therefore w.r = 7.

(2) Let w € W°. Let P € F[Y] and mp : ISV — IS be defined by mp(z) = P.x for
all x € I=". Then by Lemma 2.8, (mp — w.7(P)Id)(I=*) C I=*. By induction on (w) we
deduce that mp is triangularizable on I=* and Wt(I=%) C [1,w].7 C W".T.

Let x € M and M, = F[Y].xz. By the fact that (W <) is a directed poset and by
Lemma 2.8, there exists w € W@ such that M, C I=“. Therefore, for all P € F[Y],

p: M, — M, is triangularizable. Thus by Lemma 3.1,

FlY]x = @ M, (x, gen) @ M, (x, gen).

XEWt(My,gen) XEW? T

Consequently, M = >_ .\ My = D, cwi(as,gen) M (X gen) and Wt(M) C U, epe Wt(I=v) C
We.r.

Let x € Wt(M,gen). Let © € M(x,gen) \ {0} and N = F[Y].xz. Then by Lemma 2.8,
N is a finite dimensional submodule of I,. By Lemma 3.1, Wt(N) # 0. As Wt(N) C {x},
X € Wt(M). Thus Wt(M,gen) C Wt(M) and as the other inclusion is clear, we get the
lemma. O
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Proposition 3.3. (see [Mat77, 4.3.83 Théoreme (iii)]) Let 7,7 € Tx and M (resp. M’)
be a BEHz-submodule of I, (resp. I.). Assume that Homsry, noq(M, M') \ {0}. Then
e W'.r.

Proof. Let f € Homery, (M, M’) \ {0}. Then by Lemma 3.2 (2), there exists w € W"/W;
such that f(M(w.7,gen)) # {0}. Then w.r € Wt(I,/) and by Lemma 3.2 (1) the proposition
follows. O

An element 7 € Tx is said to be regular if w.r # 7 for all w € W" \ {1}. We denote by
T5* the set of regular elements of T'.

Proposition 3.4. (see [Kal81, Proposition 1.17]) Let 7 € Tr.
1. There exists a basis (§u)wewr of I such that for all w € W":

o {, €IV and T (¢,) =1

o ¢, € I.(w.T,gen).

Moreover, if w € WY is minimal for < among {v € W'|v.T = w.T}, then &, € I.(w.T).
In particular, Wt(1;) = W".T.

2. If T is regular, then I.(w.T,gen) = I.(w.T) is one dimensional for all w € WY and
I = @ e Ir(w.T).

Proof. (1) Let w € W". Then by Lemma 2.8, Lemma 3.1 and Lemma 3.2,

=" = @ I="(v.7, gen).
TeEWv /Wr

Write Hy, ®,1 =3,y jwy, @3, where 2y € I=¥(v.7, gen) for all v € W* /W, Let v € W"/W,
be such that 78 (x;) # 0. Then maxsupp(ry) = {w} and by Lemma 3.2, w.t = v.7.
Set &, = @xg. Then (&,)uew» is a basis of I, and has the desired properties. Let
w € W* be minimal for < among {v € W' v.r = w.t}. Let A € Y. Then by Lemma 2.8,
(Z* —w.T(N\).&y) € I (w.T,gen) N [=*. By Lemma 3.2, we deduce that (Z* —w.7()\)).&, = 0
and thus that &, € I, (w.7). Thus w.r € Wt(/;) and by Lemma 3.2, Wt([;) = I.

(2) Suppose that 7 is regular. Let w € WY A € Y and = € I.(1,gen). Then by
Lemma 3.2 (1), v — 7 (2)&, € I, (1,gen) NI~ = {0}. By (1), &, € I.(w.T) and thus I, (1) =
I;(7,gen) is one dimensional. By Lemma 3.2, we deduce that I, = @, .y I-(w.T). O

3.2 Intertwining operators and weight spaces

In this subsection, we relate intertwining operators and weight spaces and study some con-
sequences. Let 7 € T». Using Subsection 3.1, we prove the existence of nonzero morphisms
I, — I,, for all w € W". We will give a more precise construction of such morphisms in
Subsection 4.4.

Let M be a BYH r-module and 7 € T. For z € M(7) define Y, : I, — M by T, (u.1 ®,
1) = u.x, for all u € BYH . Then Y, is well-defined. Indeed, let u € BXHr be such that
u.1®,1=0. Then u € F[Y] and 7(u) = 0. Therefore u.x = 0 and hence T, is well-defined.
The following lemma is then easy to prove.
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Lemma 3.5. (Frobenius reciprocity, see [KatS1, Proposition 1.10/) Let M be a BUHx-
module, 7 € Tr and x € M(7). Then the map Y : M(7) — Homsry . _ea(Lr, M) map-
ping each x € M(1) to YT, is a vector space isomorphism and T7'(f) = f(1 @, 1) for all
fe HOmBL’H}__mOd<IT, M)

Proposition 3.6. (see [Mat77, (4.1.10)]) Let M be a BYHz-module such that there exists
¢ € M satisfying:

1. there exists T € Tx such that §& € M(T),
2. M =Bz €.
Then there ewists a surjective morphism ¢ : I, — M of BYH r-modules.
Proof. One can take ¢ = T¢, where T is as in Lemma 3.5. O

Proposition 3.7. (see [Mat77, Théoréeme 4.2.4]) Let M be an irreducible representation of
BLY = containing a finite dimensional F|Y]-submodule M’ # {0}. Then there exists 7 € Tr
such that there exists a surjective morphism of BYH r-modules ¢ : I. — M.

Proof. By Lemma 3.1, there exists £ € M’ \ {0} such that Z+.{ € F.§ for all p € Y. Let
7 € T be such that £ € M (7). Then we conclude with Proposition 3.6. O

Remark 3.8. Let Z(BYH ) be the center of BYHr. When WV is finite, it is well known
that BYH x is a finitely generated Z(BYHz) module and thus every irreducible representation
of BYH r is finite dimensional. Assume that W? is infinite. Using the same reasoning as in
[AH19, Remark 4.32] we can prove that P*H x is not a finitely generated Z(P“Hzx)-module.
As we shall see (see Remark 4.11), when F = C, there exist irreducible infinite dimensional
representations of BYH . However we do not know if there exist an irreducible representation
V' of BvH z such that for all x € V \ {0}, F[Y].x is infinite dimensional or equivalently, a
representation which is not a quotient of a principal series representation.

Proposition 3.9. (see [Kat81, (1.21)]) Let T € Tx and w € W'. Then

HomBLH]:—mod(Iﬂ Iw-T) 7é {O}

Proof. By Proposition 3.4 w.t € Wt(1,) and we conclude with Lemma 3.5. O

3.3 Nontrivial submodules of I, are infinite dimensional

In this subsection, we prove that when W is infinite, then every submodule of I, is infinite
dimensional. We then deduce that there can exist an irreducible representation of B¥H¢ such
that V' does not embed in any I, for 7 € T¢.

Lemma 3.10. Assume that W is infinite. Let w € WV. Then there exists s € . such that
Sw > w.

Proof. Let Dp(w) = {s € .#|sw < w}. By the proof of [BB05, Lemma 3.2.3], . € D (w),

which proves the lemma. O

Proposition 3.11. (compare [Mat77, 4.2.4]) Let T € Tr. Let M C I, be a nonzero Hy x-
submodule. Then the dimension of M is infinite. In particular, of V is a finite dimensional
irreducible representation of B*Hx, then Homsry,, nea(V, I;) = {0} for all 7 € T.
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Proof. Let m € M \ {0}. Let {(m) = max{{(v)|v € supp(m)}. Let w € supp(m) be such
that £(w) = ¢(m). By Lemma 3.10 there exists (s,) € #%?2! such that if w; = w and
Wpt1 = Spwy, for all n € Zsq, one has €(w,11) = l(w,) + 1 for all n € Z>;. Let m; = m and
Mp+1 = Hg,.m,, for all n € Z,. Then for all n € Z>1, w,, € max (supp(mn)), which proves
that M is infinite dimensional. O

As we shall see in Appendix A, there can exist finite dimensional representations of B“Hc.

4 Study of the irreducibility of I,

In this section, we study the irreducibility of I,.

In Subsection 4.1, we describe certain intertwining operators between I and I, ,, for s €
& and 7 € Tx. For this, we introduce elements Fy € BYH(Tx) such that Fy(x)®,1 € I, (s.x)
for all x € Tx for which this is well-defined.

In Subsection 4.2, we establish that the condition (2) appearing in Theorems 1, 2 and 3
is a necessary condition for the irreducibility of I.. This conditions comes from the fact that
when [ is irreducible, certain intertwinners have to be isomorphisms.

In Subsection 4.3, we prove an irreducibility criterion for I, involving the dimension of I
and the values of 7 (see Theorem 4.8). We then deduce Matsumoto criterion.

In Subsection 4.4 we introduce and study, for every w € W?, an element F,, € BVH(TF)
such that F,(x) ®, 1 € I, (w.x) for every x € Tt for which this is well-defined.

In Subsection 4.5 we prove one implication of Kato’s criterion (see Proposition 4.17).

The definition we gave for I, is different from the definition of Matsumoto (see [Mat77,
(4.1.5)]). It seems to be well known that these definitions are equivalent. We justify this
equivalence in Subsection 4.6. We also explain why it seems difficult to adapt Kato’s proof
in our framework.

4.1 Intertwining operators associated with simple reflections

Let s € .. In this subsection we define and study an element F, € BUYH(T¥) such that
Fy(x) ®y 1 € I,(s.x) for all x such that Fy(x) is well-defined.

Let s € . and Ty, = 0,H,. Let w € WY and w = s;...s; be a reduced writing. Set
Ty =Ts, ... Ts,. This is independent of the choice of the reduced writing by [BPGR16, 6.5.2].

Set B, = Ty — 02 € Hyvr. One has B> = —(1 + 0?)B,. Let (, = —0,Q4(Z) + 02 €
F(Y) C P*H(Tr). When o, = o, = /g for all s € .7, we have (, = lliqZZ::j € F(Y). Let
Fy = By + ( € PMH(TF).

Let oY € @Y. Write oY = w.a) for w € WY and s € .. We set (v = ().

Let ¥ € &Y. Write a = w.a), with w € W* and s € .¥. We set o,v = 0, and
olv = w.ol. This is well-defined by Lemma 2.4 and by the relations on the o, t € .77 (see
Subsection 2.3).

The ring F[Y] is a unique factorization domain. For oV, write (,v = %d% where

aV
mum cden ¢ F[Y] are pairwise coprime. For example if " € @ is such that o,v = o’ we can
take (4" = 1—Z*" and in any case we will choose (4" among {1—Z-*", 1+ 2" 1-Z"2"},

Remark 4.1. Let 7 € Tr and r = rov € #. Suppose that r.1 # 7. Then 3% (1) # 0.
Indeed, let X € Y be such that 7(r.\) # 7(\). Then 7(r.A — \) = 7(aY)* ™ £ 1. Suppose
Oav = 0, then (I =1 — Z7% and thus T(CI") # 0. Suppose o, = o' Then a,(\) € 27

thus 7(o)) ¢ {—1,1} and hence 7(C) # 0.
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Lemma 4.2. Let s € . and § € F(Y). Then
OxF,=F,*6°
In particular, for all T € Tx such that T((3") # 0, Fy(1) ®, 1 € I(5.7) and Fy(7) ®,, 1 €
I, (7).
Proof. Let A € Y. Then
Z % By — By x 2% =0,(Z" « Hy — Hy % Z°) + 0X(Z2°* — Z7)
= —0.Q(2)(Z* = Z*) + 02(2° = Z7)
(2 - 2,
Thus Z* * F, = Z* * (B, + (,) = F, * Z** and hence 0 x I, = F, * 0° for all § € F[Y].
Let § € F[Y]\{0}. Then 6 (F,  55) = F and thus § % F, = F, * 5-. Lemma follows. [
Lemma 4.3. Let s € .. Then F? = (,( € F(Y) C BYH(TF).
Proof. By Lemma 4.2, one has:
F? = (B + () * F,
=By« F,+ F, %
= Bs2 + Bs(s + Bs(J + GG
= Bi(—1 =07+ G+ () +G¢

4.2 A necessary condition for irreducibility

In this subsection, we establish that the condition (2) appearing in Theorems 1, 2 and 3 is a
necessary condition for the irreducibility of I..
Recall the definition of T from Subsection 3.2.

Lemma 4.4. Let 7 € Tr and s € . be such that 7((3)7((¢2)%) # 0. Let ¢(7,5.7) =
Tr e, 1L = Loy and ¢(s.7,7) = T g1 Lor — L. Then

o(s.1, 1) o o(r,s.7) = 7((C)Idy, and (7, s.7) o p(s.7,7) = 7((:C5)1dy, .
Proof. By Lemma 4.2 and Lemma 3.5, ¢(s.7,7) and ¢(7,s.7) are well-defined. Let f =
¢(s.7,7) 0 ¢(7,5.7) € Enderyy, —moa(7). Then by Lemma 4.2 and Lemma 4.3:
FA @, 1) = ¢(s5.7,7) (Fo(T) @55 1) = Fy(7).0(5.7,7) (1 @5, 1) = Fy(7)2 @, 1 = 7(¢C) @ 1.
By symmetry, we get the lemma. O

Let Uz be the set of 7 € T such that for all o € ®Y, 7((2V™) # 0. When o, = 0, = \/q
for all s € ., then Ur = {17 € Tr|T(a) # ¢q, Vo’ € '}

We assume that for all s € ., o/ ¢ {0, —0s, —0;'}. Under this condition, if ¥ € ®V
and 7 € T are such that 7(C4%") = 0, then 7(¢24™) # 0.

oV

Lemma 4.5. 1. Let 7 € Ur. Then for allw € W?, I. and I, are isomorphic as B“H z-
modules.
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2. Let 7 € T'r be such that I is irreducible. Then T € Ur.

Proof. Let 7 € Ur. Let w € WY and 7 = w.r. Let s € . Assume that s.7 # 7.
Then by Remark 4.1, ¢%(7) # 0 and ({*(s.7) # 0. Therefore (,(7), (,(s.7) are well-
defined and hence F,(7), F,(7) are well-defined. Let ¢(7,s.7) = Tp#)e.,1 : I = I,7 and
o(s.7,7) = Tp»)@:1 : Ls7 = Iz. Then by Lemma 4.4,

O(s.7,7) 0o d(T,5.7) = 7((sC:)Id. and &(7,s.7) o ¢(s.7,7) = 7((C2)Idy, ..

By definition of Uz, 7(((7) = T(()T(CE) # 0 and thus ¢(7,s.7) and ¢(s.7,7) are isomor-
phisms. Consequently I- is isomorphic to I, ; and (1) follows by induction.

Let 7 € T be such that I, is irreducible. Let s € .%.

Suppose 7(¢4") = 0. Then by assumption, 7(¢™™®) # 0. Moreover by Remark 4.1,
Iy, =1,

Suppose now 7(¢4°") # 0. Then (with the same notations as in Lemma 4.4), ¢(s.7,7) # 0
and Im(¢(s.7,7)) is a PMHr-submodule of I.: Im(¢(s.7,7)) = I.. Therefore ¢(7,s.7) o
¢(s.7,7) # 0. Thus by Lemma 4.4, ¢(7, s.7) is an isomorphism and 7((s(?) # 0. In particular,

T(¢"™) # 0.

Therefore in any cases, I, is isomorphic to I, and 7({M"™) # 0. By induction we deduce
that I, is isomorphic to I,. Thus [, . is irreducible for all w € W". Thus w.7({™™) # 0
for all w € W" and s € ./, which proves that 7 € Ur. O

Lemma 4.6. Let 7 € T be such that I, ~ I, (as a BYHr-module) for all w € W*. Then
for all w € W, there exists a vector space isomorphism I (1) ~ I.(w.T).

Proof. Let w € W". Then by hypothesis, Homsvy,_noa({7, Ir) &~ Homsry, . mod(Lw.rs Lw.r)-
Let ¢ : I, — I, be a B¥H r-module isomorphism. Then ¢ induces an isomorphism of vector
spaces I.(w.T) ~ I, (w.T). By Lemma 3.5,

I (1) >~ Homeryy . moa (L, Ir) &~ Homevy . med (Lw.r Lwr) = L (w.T) =~ I (w.T). O

4.3 An irreducibility criterion for /.

In this subsection, we give a characterization of irreducibility for I, for 7 € T¢.
If B is a C-algebra with unity e and a € B, one sets

Spec(a) = {\ € C| a — Xe is not invertible}.
Recall the following theorem of Amitsur (see Théoréme B.I of [Renl0]):

Theorem 4.7. Let B be a C-algebra with unity e. Assume that the dimension of B over C
is countable. Then for all a € B, Spec(a) # 0.

Recall that Uc is the set of 7 € Tt such that for all o € &Y, 7({2V™) # 0.
Theorem 4.8. Let 7 € I¢. Then the following are equivalent:

1. I, is irreducible,

2. I.(1)=C1®,1 and 7 € Ug,

3. Endery,_moa(Lr) = C.Id and 7 € Ue.

19



Proof. Assume that B = Endery,_mea(l;) # Cld. By Lemma 3.5 and the fact that I,
has countable dimension, B has countable dimension. Let ¢ € B\ CId. Then by Amitsur
Theorem, there exists v € Spec(¢). Then ¢ — 4Id is non-injective or non-surjective and
therefore Ker(¢ — ~vId) or Im(¢ — Id) is a non-trivial B“H¢c-module, which proves that I is
reducible. Using Lemma 4.5 we deduce that (1) implies (3).

By Lemma 3.5, (2) is equivalent to (3).

Let 7 € T¢ satistying (2). Then by Lemma 4.5 and Lemma 4.6, dim [, (w.7) = 1 for all
w € WY. By Lemma 4.5, for all w € W, there exists an isomorphism of B“#c-modules
fw:ilwr = L. As C.f,(1 ®y.r 1) C I (w.T) we deduce that I.(w.7) = C.f,(1 ®,., 1) for all
we Wv.

Let M # {0} be a BHc-submodule of I.. Let x € M \ {0}. Then M’ = C[Y].z is a
finite dimensional C[Y]-module. Thus by Lemma 3.1), there exists £ € M’ \ {0} such that
72 & e Céforall N €Y. Then € € I(7) for some 7 € Te. By Lemma 3.2, 7/ = w.T, for
some w € WY, Thus £ € C*f,(1 ®,., 1). One has

Bl = fuP"Hed @pr 1) = fu(lp,) = I, C M.
Hence [, is irreducible, which finishes the proof of the theorem. O

Remark 4.9. Actually, our proof of the equivalence between (2) and (3), and of the fact
that (2) implies (1) is valid when F is a field, without assuming F = C.

Recall that an element 7 € T is called regular if w.7 # 7 for all w € W".

Corollary 4.10. (see [Mat77, Théoréme 4.3.5] ) Let 7 € Tk be reqular. Then I, is irreducible
if and only if T € Ur.

Proof. By Lemma 4.5, if I, is irreducible, then 7 € Ur.
Assume that 7 € Uxr. Then by Proposition 3.4 (2), dim I (7) = 1 and we conclude with
Theorem 4.8 and Remark 4.9. O

Remark 4.11. Assume that F = C and that 0, = 0, = \/q for all s € .7, for some q € Z>,.
Let (y;);es be a Z-basis of Y. Then the map Tc — (C*)” defined by T € T — (7(y;))jes 5 a
group isomorphism. We equip Te with a Lebesgue measure through this isomorphism. Then
the set of measurable subsets of T having full measure does not depend on the choice of the
Z-basis of Y. Then Ug = (\veeviT € Tc|T(aY) # q} has full measure in Tc. Moreover
T2 D Maey\oy 17 € Telm(N) # 1} has full measure in Tc and thus {1 € Tc|I; is irreducible}
has full measure in T¢.

Recall that Z = {wsw™|w € W, s € S} is the set of reflections of W*. For 7 € T¢, set
W:i: {weW|wr =1} @) ={a"€ Y |Cdr (1) =0}, By = {r = rov € Z|a € Dy}
an

Wiy = (%) = ({r = rav € Z|CGE (1) = 0}) C W™,

oV

By Remark 4.1, Wy C W.. It is moreover normal in W,. When a,(Y) = Z for all s € .7,
then Wiy = (W, NZ).

Corollary 4.12. Let 7 € Tr be such that W, = Wy = {1,t} for some reflection t. Then I,
15 irreducible iof and only if T € Ur.

Proof. By Lemma 4.5, if I is irreducible, then 7 € Ur. Conversely, let 7 € Ur be such that
W, = Wy = {1,t}, for some t € Z. Write t = v"'sv for s € . and v € W". Let 7 = v.7.
One has 5.7 = 7 and W; = {1,s}. By Lemma 3.2, I;(7) C I=°.
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Let A€ Y. Then Z) H, ®: 1 = F(\)H, ®@; 1 + 7(Qs(Z2)(Z* — Z5M))1 ®= 1.

Suppose o = ol,. Then as Wz = v.W;.v™t = {1, s}, one has 7(a) = 1. By Remark 2.7,
T(Qs(2)(ZA—=Z%7)) = (0,—07 )as(N). Asthere exists A € Y such that a,()\) # 0, we deduce
that Hy ®z 1 ¢ I:(7) and thus I:(7) = F.1 ®: 1. Similarly, if o, # o/, then I:(7) = F.1®; 1.
By Theorem 4.8 and Remark 4.9, we deduce that I- is irreducible. By Lemma 4.5 we deduce
that I is isomorphic to I> and thus I, is irreducible. ]

4.4 Weight vectors regarded as rational functions

In this subsection, we introduce and study elements F,, € BYH(T%), w € W, such that for
all x € T such that F,(x) is well-defined, Fi,(x) ®, 1 € I, (w.x).

For w € W?, let 7l : BLH(T%) — F(Y) be the right F(Y)-module morphism defined by
7 (T,) = 8,4 for all v e W?.

w

Lemma 4.13. Let F' be a uncountable field containing F. Let P € F[Y] be such that
P(t) =0 for all T € TX®. Then P = 0.

Proof. Let Fy C F be a countable field (one can take Fy = Q or Fy = FF, for some prime
power (). Write P = 3", .y axZ*, with ay € F for all A € Y. Let (y;)jes be a Z-basis of Y
and X; = Z¥% for all j € J. Let F; = F(ax|A € V). Let (x;)jes € (F')’ be algebraically
independent over F;. Let 7 € T be defined by 7(y;) = x; for all j € J.

Let us prove that 7 € T, Let w € W*\ {1}. Let A € Y be such that w™'.\ — X # 0.
Write w™ A — \ = > ey with n; € Z for all j € J. Let Q = HJEJZ;” e FilZ;,5 € J].
Then @ # 1 and thus 7(w™ A = \) = Q((z;)jes) # 1. Thus w.r # 7 and 7 € T2, Thus
P(1) =0 and by choice of (z;);e; this implies P = 0. O

Let w € W". Let w = s1...5s, be a reduced expression of w. Set F, = F; ... F,, =
(Bs, +Cs,) ... (Bs, + Cs,) € B¥H(T¥). By the lemma below, this does not depend on the
choice of the reduced expression of w.

Lemma 4.14. (see [Rec97, Lemma 4.3]) Let w € W".

1. The element F,, € BYH(T%) is well-defined, i.e it does not depend on the choice of a
reduced expression for w.

2. One has F,, — T, € B"H(TF)<v.
3. If0 e F(Y), then 0% F, = F, %0 .

4. If 7 € Tr is such that (gv € F(Y), for all BV € Ngv(w), then F,, € BVH(T%), and
Fu(r)1®, 1€ I (wr).

5. Let 7 € T¥®. Then F, € B'H(T¥),.

Proof. Let us prove (4) by induction on ¢(w). By Lemma 4.2, 6 x F,, = F,, « 0*  for all
0 € F(Y). Let n € Z>y and assume that (4) is true for all w € W? such that {(w) < n. Let
w € WY be such that {(w) < n+1. Write w = sv, with s € . and ¢(v) < n. By Lemma 2.4,
Ngv(sv) = Ngv(v) U{v t.aY}. Let 7 € Tr be such that be such that (,v € F(Y), for all
a” € Ngv(w). One has F,, = (B, + () * F,. As F, € BYH(T¥), and BVH(T%), is a left
Hyyo F-submodule of BYH(T%), Bs* F, € BYH(T%),. One has (,* F, = F, * v e BYY(Tw),
and hence F,, € BYH(Tr),.

21



Let 7 € T’ be such that (,v € F(Y), for all &” € Ngv(w). Let 6 € F[Y]. Then
(0% Fu)(7) = (Fu x 0°)(7) = 7(0" )7 (Fy (7)),
which finishes the proof of (4).

Let 7 € T7® and o¥ € ®V. Write oV = w.a) for w € W* and s € .. Then s.w .7 #
w~t.7 and by Remark 4.1, w=1.7(¢%") # 0 or equivalently 7(C3") # 0. By (4) we deduce
that F,, € BYH(Tr), for all 7 € T5*, which proves (5).

Let us prove (2). Let v € W? be such that h := F, — T, € B (T%)<¥ and s € .¥ be such
that sv > v. Then

Fo=(Ts—02+¢)* (Ty+h) =T+ (=02 + ) Ty + (=02 + () h+ T, x h.

By Lemma 2.8,
(=07 +Go) * T, (=07 + (o) * h € PRH(TF) ="

By [Kum02, Corollary 1.3.19], s.[1,v) C [1, sv) and thus Tyxh € BUH (Tx)<*% thus F,, — T}, €
BLY (T#)<*v. By induction we deduce (2).

Let w=sy...5, = s} ...s be reduced expressions of w. Let F,, be associated to s;...s,
and F! be associated to s}...s.. Let F’ be a uncountable field containing F. Then by

T

Proposition 3.4 (2), for all 7 € TZ*# there exists 6(r) € F™ such that F, (1) = 0(7)F, (7).
Let v € WY be such that 7%(F)) # 0 and 6, = mp (Fu) ¢ F(Y). Then 0,(7) = 6(7) for all

i (F,)
T € TFF. But by (2), (1) = 1 for all 7 € T%%. Thus by Lemma 4.13, § = 1 = 6, and
F! = F,. 0

Remark 4.15. 1. When o, = o), for all s € .7, the condition (4) is equivalent to T(B") #
1 for all 5\/ € Ngv (w)

4.5 One implication of Kato’s criterion

Recall the definition of ;) from Subsection 4.3.
In this subsection, we prove that if I, is irreducible, then W, = W(,).

Lemma 4.16. Let 7 € T¢ be such that W, # Wiy, Let w € W, \ Wiy be of minimal length.
Then F,, € BYH(Tx)..

Proof. Write w = sj...s1, where k = f(w) and s1,...,s, € .. Let j € [0,k —1]. Set

w; = s;...s1. Suppose that w;. fjefl (1) = 0. Then TwjaY, = S1---8j8j418;...51 € Wi
J

Moreover as Wy C W, we have s;;;...51.7 = s;...51.7. Therefore

T=WT=S8...5...5.T = Sj...541...51.T,
and w' = sp...5;41...51 € W,. By definition of w, w’" € W(,). Consequently

JR— o —_— , .
W= S i1 SIS Sj28j41:8] - 51 = Wy € Wi :

a contradiction. Therefore w;.C%" (1) # 0 and by Lemma 2.4 and Lemma 4.14, F, €

Sj+1

BLH(TF),. O
Proposition 4.17. Let 7 € T¢ be such that W, # Wi.). Then I, is reducible.

Proof. Let w € W, \ W) be of minimal length. Then by Lemma 4.16 and Lemma 4.14,
F(1) ®; 1 € I(r). Moreover, m,(F,(7) ®; 1) = 1 and thus F,(7) ®. 1 ¢ C1 ®, 1. We

w

conclude with Theorem 4.8. O
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4.6 Link with the works of Matsumoto and Kato

Assume that W? is finite. Then H¢ = BYHe. Let 7 € 1. Then by Subsection 2.4,
dime I, = [W?|. One has Z*1®,1 =7(\)1®, 1 forall A € Y and Hc.1 ®, 1 = I.. Thus by
[Mat77, Théoréme 4.1.10| the definition we used is equivalent to Matsumoto’s one.

Assume that Hc is associated with a split reductive group over a field with residue cardinal
g. Then by (BL2), one has:

Tow if ((sw) =l(w) +1

Vse S NweW", To+T, = .
§ T et {(q—l)Tw+quw if {(sw) =Ll(w)— 1.

Set 17 = > cwo Tw ®- 1. Then if s € ., T,. 1] = ql’. Then by [Katsl, (1.19)], 1,
is proportional to the vector 1, defined in [[Kat&1]. Kato proves Theorem 1 by studying
whether the following property is satisfied: “for all w € W Hc.1), = I,.” (see [[Kat&1,
Lemma 2.3]). When W7 is infinite, we do not know how to define an analogue of 1/. and thus
we do not know how to adapt Kato’s proof.

5 Description of generalized weight spaces

In this section, we describe Ir(7,gen), when 7 € T¢ is such that Wy = W.. We then deduce
Kato’s criterion for size 2 matrices.

Let us sketch our proof of this criterion. By Theorem 4.8 and Proposition 4.17, it suffices
to study I;(7) when 7 € Ug is such that W, = W{;. For this, we begin by describing
I.(7,gen). Let 7 € Tt satisfying the above condition. By Dyer’s theorem, (W,,.7;) is a
Coxeter system, for some .7 C W;. Let r € 7. We study the singularity of F, at 7,
that is, we determine an (explicit) element # € C(Y) such that F, — 6 is defined at 7 (see
Lemma 5.19). Using this, we then describe I (7, gen). We then deduce that when W, = W,
is the infinite dihedral group then I,(7) is irreducible. After classifying the subgroups of the
infinite dihedral group (see Lemma 5.34), we deduce Kato’s criterion for size 2 matrices.

In Subsection 5.1, we study the torus Tt.

In Subsection 5.2, we introduce a new basis of Hyy» ¢ which enables us to have information
on the poles of the coefficients of the F,,.

In Subsection 5.3, we give a recursive formula which enables us to have information on
the poles of the coefficients of the F,,.

In Subsection 5.4, we study the singularity of F, at 7, for r € 7.

In Subsection 5.5, we give a description of I,(7, gen), when W, = W,

In Subsection 5.6, we prove that when W, = 1¥{;)is the infinite dihedral group and 7 € U,
then I, is irreducible.

In Subsection 5.7, we prove Kato’s criterion for size 2 Kac-Moody matrices.

This section is strongly inspired by [RecO7].

In certain proofs, when F = C, we will make additional assumptions on the oy and o/,

s € .. To avoid these assumptions, we can assume that oy, 0, € C and |og| > 1, |0} > 1 for
all s € 7.

5.1 The complex torus Tt

We assume that |os| € Ry for all s € .. Let (y;);jes be a Z-basis of Y. The map Tg — (C*)”
mapping each 7 € Tr on (7(y;))jes is a bijection. We identify T and (C*)7. We equip Tt
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with the usual topology on (C*)7. This does not depend on the choice of a basis (y;);c.

Lemma 5.1. The set {7 € Tc|V(w,\) € WY\ {1} x (C;NY), w.r(A) # 7(A)} is dense in
Tc. In particular, Te® is dense in Tt.

Proof. Let A € C7NY. By [Bousl, V.Chap 4 §6 Proposition 5], for all w € W*\ {1},
w\ # N\ Let (v;)jes € (C*)7 be algebraically independent over Q and 7., € T be defined
by 7,(y;) = v; for all j € J. Then w.,(\) # 7,(A) for all w € W\ {1}. Let 7 € T¢. Let
(v™) e ((C*)’ )ZZO be such that 7™ is algebraically independent over Q for all n € Z>q and
such that v — (7(y;));es. Then 7,y — 7 and we get the lemma. O

Let A C R be a ring. We set Q% = @, Aa) C A.
Lemma 5.2. Let (v,) € (C*)”. Then there exists T € Tt such that 7(a)) = 7, for all s € ..

Proof. Let us prove that there exists n € Zx; such that Q7 DY N Q- The module Y N Qg
is a Z-submodule of the free module Y. Thus it is a free module and its rank is lower or
equal to the rank of Y. Let (y;);es be a Z-basis of Y N Qp. As af € Y NQy for all s € .7,
we have we have vectg (Y NQY) = Q. Therefore for all j € J, there exists (m;,) € Q@7 such
that y; = Y., m;say and thus there exists n € Z; such that +Qy DY N QY.

1
Let S be a complement of Y N Qé inY ®Q. For s € ., choose v € C* such that
1

(v&)" =7, Let 7: QY & S — C* be defined by 7(}>_,., “a) +z) = Hsey(vj)as for all

ses n
(as) €Z” and x € S. Let 7 = 7jy. Then 7 € Tt and 7(a)) = 7, for all s € .. O

5.2 A new basis of Hy ¢

In [KL79], Kazhdan and Lusztig defined the Kazhdan-Lusztig basis (Cy)wewy of Hyv ¢ in
the case where o, = ¢ for all s € .. This basis is defined by its properties with respect
to some involution of Hyw ¢ and by the fact that C,, — T, € €@, <0 CT, , for w € W* (see
[KL.79, Theorem 1.1] for a precise statement). This basis was then defined in the general
case (where the oy, s € S need not be all equal) see [Lus83, 6] for example. We now define
a basis (By)wewr of Hywc from the Kazhdan-Lusztig basis (Cy)wewr and then compute
the coefficient in front of B; of the expansion of F, in the basis (B,),ewv, for w € W (see
Lemma 5.4). This will enable us to have information on the coefficient 7{(F,) € C(Y), for
w € WY (see Lemma 5.4 and Lemma 5.19). Our computation relies on certain multiplicative
properties of (B,,) (see Lemma 5.3) and we will not need the precise definition of the Kazhdan-
Lusztig basis.

Let (Cy)wewv be the basis introduced in [Lus83, 6]. For w € WY we set B, =
(-1)"™g,C,, where o, is defined in Remark 2.7 (6). Then for s € .#, one has B, = T, — 02
and thus this notation is coherent with the notation B, introduced in Subsection 4.1.

Lemma 5.3. The basis (By)wewr Satisfies:
1. By=T,—0? forall s € .7,
2. By — T, € Hyi e for allw € W,
3. For allw € WY and s € . we have:

— (1+02)B, if ws <w
B,Bs = .
Bys + Z b(v,w)B, if ws > w,
vs<v<w

for some b(v,w) € C.
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Proof. (2) is a consequence of [LLus83, 2. Proposition].
(3) Let w € W* and s € . be such that ws < w. By [Lus83, 6.4], Cy,(Hs + o;1) = 0,
thus (—1)" e, Cy (T, + 1) = 0 and hence B, (T, +1 — 02 — 1) = B,B, = —(02 + 1)B,,.
Let w € WY and s € . be such that ws > w. Then by [Lus83, 6.3], one has C,(—Cj) €
Cuws + @D, per, CC, and thus

(—1)"g,,Cy(—0,Cy) = ByB, € (—1) g, O + @ CB, = B, + @ CB,,

vs<v<w vs<v<w
which proves the lemma. O

As (By)wewv is a C-basis of Hyv e, (By)wewr is a C(Y)-basis of the right module
BLY(T¢).

Let w € W*. Write I, = Y o BuDo.w, Where (py.) € C(Y)W"). By an induction on
((w) using Lemma 5.3 (2) we have @, ., HCY) = P,., B.C(Y) for all w € W". Thus
for all v € W such that v £ w, one has p,,, = 0. In [RecO7, 5.3], Reeder gives recursive
formulae for the p,,,. The following lemma is a particular case of them.

For v € W, define 7 : BEH(T) — C(Y) by n2(X,cwe Bufu) = fo for all (f,) €
C(y)W™),

Lemma 5.4. Let w € WY. Then py., = (y = HBVENq>v(w) Cav.

Proof. We prove it by induction on ¢(w).
Let v € W" and assume that p;, = (,. Let s € . be such that vs > v. By Lemma 4.2
one has

F,, =F, x F,
:( Z Bupu,v) * Fs
ueWv
=Y BuxFpl,= > BuxBpl,+ Y BuplCe
ueWv ueEWv weWwv

By Lemma 5.3, we have m{ (3", o Bu * B.p;,,) = 0 and T2 (> wew Bup§.Cs) = 1§ .Cs- By
Lemma 2.4, Ngv(vs) = 5. Nev(v) U{a)} and thus 7 (Fys) = p1,0s = P} (s = Cos Which proves
the lemma. O

Remark 5.5. In the proof of Lemma 5.4, we only used the properties of (By)wewr described
in Lemma 5.8 and not its precise definition. In [Ree97, Lemma 5.2/, Reeder gives an ele-
mentary proof of the existence of a basis (By)wewr satisfying Lemma 5.3. Its proof can be
adapted to our framework to construct a basis (B,,) without using Kazhdan-Lusztig basis.

5.3 An expression for the coefficients of the F, in the basis (7))

In this subsection, we give a recursive formula for the coefficients of the F, in the basis
(T},)vew (see formula (2) below and Lemma 5.7). We will deduce information concerning the
elements v € W* such that 1 (F,) is well-defined at 7, for a given 7 € Tt (see Lemma 5.8).

Let A € Y and w € W". By (BL4), Remark 2.7 (2) and an induction on ¢(w), there
exists (Pyuw(Z))vews € C[Y]W") such that Z* « T, = > o T * Powa(Z). Moreover
Pywx= Z% "X and for all v € W? \ [1,w], Pywr=0.

Let A € CyNY. Then by [Bousl, V.Chap 4 §6 Proposition 5], for all v,w € W* such
that v # w, one has v.A # w.A. Let w € W". Let w = s;...s; be a reduced expression. Set

25



Quuwr(Z) =1 € C(Y). Forve W\ [1,w], set Quuwr(Z) = 0. Define (Quuwr(Z))venw by

decreasing induction by setting:

1
Qv,w,)\(Z> = Zwilj‘ — ZU71_)\ Z Qu,w,)\Pv,u,)\ S C(Y> (2)

w>u>v

Lemma 5.6. Let A € C{NY, w € WY and 7 € T¢™® be such that v.7(\) # 7()\) for all
ve WU\ {1}. Let x € I, be such that Z*.x = w.t(\).xz. Then z € I (w.7).

Proof. By Proposition 3.4 (2), we can write x = ) v ¥, Where ,, € I (v.7) for allv € W,
One has Z*z—w.t7(A).x = 0= >y (v.7(A) —w.T(N))xy. Asv.7(A) # w.m(A) for all v # w,
we deduce that x = x,,. ]

Lemma 5.7. Let v,w € WY. Then 7l (F,) = Quuwnx, for any X € CyNY. In particular,
Qu.w does not depend on the choice of .

Proof. Let A € C} and h = Y vewy LoQuw € BL{(T¢). One has:

Z)\ xh = ZA * Z Tva,w,)\

veW?

= Z TuPu,v,AQv,w,A

u,veWv

= Z Tu Z Pu,v,)\QvﬂU,)\‘

ueWv veW?

Let w € WP, Then:

Z Pu,v,)\Qv,w,)\ - Pu,u,)\Qu,w,)\ + Z Pu,v,)\Qv,w,)\

veWv v>U

— Zufl.)\ 4 (wal.)\ o ZU?l.A)Quﬂu’)\
= Zwil)\Qu,w,)\v

and therefore Z*.h = h.Z% .

Let A € Oy NY and 7 € T¢™® be such that uw.7(\) # 7(A) for all w € W\ {1}. Then
ev (Zxh) = ev.(h* Z**) = w.r(\).h(7). By Lemma 5.6 we deduce that h(7) € I, (w.7).
By Proposition 3.4 (2) and Lemma 4.14 we deduce that h(7) = F,(7). By Lemma 5.1, we
deduce that h = F,, which proves the lemma. O

Lemma 5.8. Let w € W, 7 € Tt and v € [1,w]. Assume that for allw € [v,w), u.T # w.T.
Then for all u € [v,w], 7L (F,) € C(Y),.
Proof. We do it by decreasing induction on v. Suppose that for all u € (v,w), 71 (F,) €

C(Y),. Let A € C}NY be such that v.7(A) # w.7()\), which exists because C} MY generates
Y. By Lemma 5.7 we have

1
7-(-1711(}7’111) - Qv,w)\ = Zw-IXx _ vl Z Qu,w,APv,u,A~

w>u>v

We deduce that 71 (F,) € C(Y), because by assumption Q. » € C(Y), for all u € (v, w).
Lemma follows. O
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5.4 T1-simple reflections and intertwining operators

Let 7 € T¢. Following [Ree97, 14], we introduce 7-simple reflections (see Definition 5.9).
If 7, is the set of 7-simple reflections, then (1{;), ;) is a Coxeter system. We study, for
such a reflection r, the singularity of F, at 7: we prove that F, — ¢, is in BVH(T¢), (see
Lemma 5.19). This enables us to define K, (7) = (F, — (.)(7) € Hwv . This will be useful
to describe I,(7, gen).

We now define 7-simple reflections. Our definition slightly differs from [Ree97, Definition
14.2]. These definitions are equivalent (see Lemma 5.13).

Definition 5.9. Let 7 € Tz. A coroot Y € @Y and its corresponding reflection rgv are said
to be T-simple if Ny(rgv) N Wiy = {rgv}. We denote by 7, the set of T-simple reflections.

Recall that @7, = {a" € Y [¢d(1) = 0} and Zr) = {rov|a’ € 0}

5.4.1 Coxeter structure of ;) and comparison of the definitions of 7-simplicity

We use the same notation as in 2.2.3. Then ./, = (W) and thus (W), .7;) is a Coxeter
system.
Let <, and ¢, be the Bruhat order and the length on (W;),.7;).

Lemma 5.10. Let x,y € W7 be such that x <. y. Then x <1y.

Proof. By definition, if z,y € W(;), then o <; y (resp. = < y) if there exist n € Z>¢ and
Ty = ,21,...,0, =Yy € Wiy (resp . WY) such that (z;,2;41) is an arrow of the graph of
[Dye9l, Definition 1.1] for all @ € [0,n — 1]. We conclude with [Dye91, Theorem 1.4] O

Remark 5.11. The orders < and <; can be different on W;): there can exist v,w € Wi
such that v and w are not comparable for <, and v < w. For example if W = {s1, sa} is the
infinite dihedral group, r1 = s1 and ro = $28182 (see Lemma B.2), then r1 < ry but ri and ro
are not comparable for <.

Set @y, =@ ,NPL and @) =7 NPL. Forw € W(,), set Noy (w) = Nov(w)NP(,.

Lemma 5.12. Let w € Wi, Then w.(ID(VT) = Q(VT) and w. Ry wt = R

Proof. Let a” € ®,. One has den ' — (¢dem)w and hence

w.av T

Cat (1) = (G5 (1) = () (w™.r) = 0

because w € W) C W,. Thus w.a’ € @E’T) and 7, av = vrevv~! € (), which proves the
lemma. ]

We now prove that our definition of 7-simplicity is equivalent to the definition of [Rec97,
14.2|. This equivalence will be useful in our study of the weight spaces of I. and thus in the
study of the irreducibility of I.. Indeed, our definition of 7-simplicity is well adapted to the
study of the Coxeter structure of W(;) whereas Reeder’s one is well adapted to the study of
the singularity F;. at 7.

Lemma 5.13. 1. One has 7 C Z N Wiy = ().
2. Letr=ry € #. Thenr € 7 if and only if Nov(rgv) N @[y ={B"}.
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8. Let w € Wiry. Let w = ri...1 be a reduced writing of Wiy, with k = {.(w) and
r,...,75 € 5. Then |N¢(vﬂ(w)| = {oy,rha) oo Tk To.) }oand [Nev(w) N
O =k =t:(w).

Proof. We begin by proving a part of (3). By Lemma 5.10 and [Kum02, Lemma 1.3.13], for
v € Wy and r € 7, one has (-(vr) > {-(v) if and only if vr >, v if and only if vr > v if
and only if v.a,” € @ if and only if v.a,’ € D7, .

One has Noy (w) = {a” € &,  Jwa’ € &7, }. Then using the same proof as in
[[Kum02, Lemma 1.3.14], one has Nq>(vT)(w) D) rray, oo T 2.0 b and

Hay ,rea) oo k.o ] =k =L (w).

We now prove (1) and (2). Let f : ®Y — % be the map defined by f(a") = rqv
for ¥ € ®Y. Then by Subsection 2.2, f is a bijection. Let r = rgv € ;. One has
f(Nq>v (r)yn (ID(VT)) = Ny(r) N Z(7). Moreover, Z(-y C W;yNZ. Thus

FHNa(r) O W) = {B"} D fTH(Na(r) N Z ) = Nev(r) N @,

Moreover, [Ngv(r) N @[ > 1 and thus [Nev(r)N @7, | = {#'}. In particular, ¥ € ¢/, and
e %(7-). Thus ., C %(T).

By [Dye90, Theorem 3.3 (i), Z N W,y = UweW(T)w&&w‘1 and thus by Lemma 5.12,
KN Wiy C UwemT)w.%(T).w_l = Z(r). As by definition, Z(;) C W;)N Z, we deduce that
Ry = WiryN %, which proves (1).

Let r =g € %. Suppose that Nev(rgv) N @) = {5"}. Then

F (Na (rge) V@) = {rae} = Nalrg) 0 Biey = Nalra) 0 W,

which proves (2).
Let o € Ny (w). Then there exists j € [2,k] such that r;...rp.0” € @7, and
Tio1...Tpa € <I>(VT)7_. Thusrj_;...rp.a’ € N@(VT)(T]') = {a,Yj} and hence oV =17y, .. .rj_l.arvj,

which concludes the proof of the lemma. O

5.4.2 Singularity of F, at 7 for a 7-simple reflection

Lemma 5.14. Let 7 € Tg and rgv € . Then there exists h' € BVH(T¢), such that
F. ., =h.Cd.

7‘6\/

Proof. Using [BB05, 1. Exercise 10], we write rgv = wsw™! with w € WY, s € . and
((wsw™) = 20(w) + 1. One has B8 = w.a). Let rgv = s,,...51 be a reduced expression
of rgv, with m € Zs¢ and s1,...,8, € .. Let k € [0,m — 1] and v = s...s;. Suppose
that F, = h;.((’gﬁn)”(k) where h), € BYH(T¢), and n(k) € Zso. Then Fooo="F,, xF, =
(Bsyy + Copir) ¥ Fiy. One has (,,,, * Fy, = F,. ;’;1 by Lemma 4.14.

By Lemma 5.13 if ;’;1 is not defined in 7 then k = ((w). As B,, |, € Hw c and BLY(Te),
is a left Hyw c-module, we can write Fj, ., = h§€+1.(g"3€n)’7(k+1) where hj ., € BYH(T¢), and
n(k+1) <n(k)if k # (w) and n(k+1) < n(k)+1if k = ¢(w), which proves the lemma. [

Lemma 5.15. Let h € BYH(T¢) and 7 € Te. Then

max{u € W"|r¥(h) ¢ C(Y),} = max{u € W*|z2(h) ¢ C(Y),}.
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Proof. Let v € max{u € W°|zH(h) ¢ C(Y),}. By 5.3 (2),

wl(h) = al(H)rxl (h) = 7l (H)xl () + > 7l (H)wl ().

u>v u>v

Moreover, by Lemma 5.3 (1) #2(H,) € C*. Thus 7Z(h) ¢ C(Y),. Similarly if v’ € max{u €
W@ u > v|rB(h) ¢ C(Y),}, then 7f1(h) ¢ C(Y),. Hence v € max{u € W*|r2(h) ¢ C(Y),}
and consequently max{u € W"|r2(h) ¢ C(Y),} C max{u € W"|zB(h) ¢ C(Y),}. By a
similar reasoning we get the other inclusion. O

Lemma 5.16. Let w € W". Suppose that for some s € ./, we have w. A — X € Ra for all
AeY. Then w e {Id, s}.

Proof. Let BY € Ngv(w). Write ¥ = ., ma), with ny € Z> for all t € .. Then
w.fY € ®Y and by assumption, n, = 0 for all t € .#\{s}. Therefore 8¥ € Z>oa!NPY = {a)}.
We conclude with Lemma 2.4. O

Lemma 5.17. Let x € Te. Assume that there exists ¥ € ®Y such that rgv € W, Then
there exists (xn) € (Tc)?20 such that:

® Xn 7 X,

o W, = (rgv) for alln € Z>y,
Xn B =

o Xn(BY) = x(BY) for all € Zo.

Proof. We first assume that 5" = oy, for some s € .. Let (y;);es be a Z-basis of Y. For all
j € J, choose z; € C such that x(y;) = exp(z;). Let g : A — C be the linear map such that

g(yj) = z; for all j € J. Let V be a complement of Qf in A. Let n € Z>;. Let b = gla))
and (b)) € C7\) be such that [b{™ —g(a)| < L and such that the exp(b™), t € .7\ {s} are

algebraically independent over Q. Let g, : A — C be the linear map such that g, («}') = bg")
for all t € . and g,(v) = g(v) for all v € V.. For n € Z>q set x,, = (exp og,)y € Tc. For all
z €A, g,(r) = g(x) and thus x,, — x.

Let n € Z>;. Then x(a)) = xn(a)) and thus s € W,,,. Let w € W,,,. Then w ' A=\ €
Zao! for all A € Y. By Lemma 5.16 we deduce that w € {Id, s}. Therefore W, = {Id, s}.

We no more assume that 5 = oy for some s € .. Write 8" = w.a! for some w € W"
and s € . Let Y = w'.y. Then s € W;. Thus there exists (X,) € (T¢)%2° such that
Xn — X and Wy, = {Id,s} for all n € Zso. Let (x,) = (w.X,). Then x,, — x and
Wy, = {1,rgv} for all n € Zs,.

Moreover, x(5Y) € {—1,1} and x,(8Y) € {—1,1} for all n € Z,. Maybe considering a
subsequence of (y,), we may assume that there exists e € {—1,1} such that x,(8Y) = € for
all n € Z>o. As x», = X, Xu(8Y) = € = x(B8"), which proves the lemma. O

Let C[Qy] = @/\GQ% CZ* C C[Y]. This is the group algebra of Q. Let C(Qy) C C(Y) be
the field of fractions of C[Qy] and H(Qy) = @, cp» HoC(Qy) C PVH(T¢). Thisis a (Hywc—
C(Qy))-bimodule of BEH(T¢) and a left C(Qy)-submodule of BYH (T¢). Consequently F,, €
H(Qy) for all w € W,

Let A = C[Z%|s € .#] C C[Qy]. This is a unique factorization domain and C(Qy) is the
field of fractions of A.

Lemma 5.18. Let ¥ € ®V. Then Z°" —1 and Z°" + 1 are irreducible in A.
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Proof. Write ¥ = w.aY, where w € W¥ and s € .. Then Z°" = (Z°)v. O

Lemma 5.19. (see [liec97, Proposition 14.3]) Let T € Tg and r = rgv € S Then Fy —
CBV S BLH(T@)T.

Proof. One has Fiy — (v € H(Qy). Write Fry — Qv = Y wewy Hu f“, with f,, 9, € A and
fuNgy=1forallu e W". Let u e (1,rsv). Let us prove that (9" A g, = 1. Suppose that
¢4 A gy # 1. Then there exists n € {—1,1} such that Z°" 4 7 divides g,,.

Let x € T be such that x(8Y) = —n. By Remark 4.1, r5v € W,. Let (x,) € (Tc)?>0 be
such that x,, — x and W, = {1,7gv} for all n € Zs(, and x,(8") = —n for all n € Z>,.
whose existence is provided by Lemma 5.17. One has ¢,(x,) = 0 for all n € Z~y. Moreover
by Lemma 5.8, Wf(Frg) = g—z € C(Y),, forall n € Zs(. Therefore, f,(x,) = 0for alln € Z,
and thus f,(x) = 0.

By the Nullstellensatz (see [Lan02, IX, Theorem 1.5] for example), there exists n € Zsg
such that Z% + 7 divides f7 in A. By Lemma 5.18, Z°" + 7 is irreducible in A and thus
ZP" +p divides f,: a contradiction. Therefore Cg@“ A g, = 1. By Lemma 5.14, g,(7) # 0.

Therefore {u € W*|r[(F,,, — () ¢ C(Y).} € {1}. By Lemma 5.15 we deduce
that {u € W"|rB(F, rov — Grav) & C(Y)-} C {1}. Using Lemma 5.4 we deduce that {u €
We g (Frpy —Grpv) € C(Y):} = 0. By Lemma 5.15, {u € W*|r/(F,,, —¢r,0) € C(Y)-} =0,

which proves the lemma. O

5.5 Description of generalized weight spaces

In this subsection, we describe I (7, gen) for 7 € Uc when W) = W, using the K, ... K, (7),
for ry,...,r € % (see Theorem 5.27).
For r € %, one sets K, = F, — (,v € B“H(1¢). By Lemma 4.14 we have:

O+ K, =K, x0"+ (6" —0)( for all 0 € C(Y). (3)

Lemma 5.20. Let wy,wy € WY. Then there exists P € C(Y)* such that F,, x F,, =
Fyw, * P. If moreover 7 € Ug, then one can write P = g with f,g € CIY]* and f(w.T) #0
for all w e W".

Proof. Let u,v € W". Let us prove that if y € T¢®, then F, x F, € BYH(T¢),. Write
Fy =<y Hubw, where 0,y € C(Y) for all u’ < u. Then by Lemma 4.14,
F, xF, = Z H,0, *F, = Z H, x F, (Qu/)fl

u' <u u' <u

1

By Lemma 4.14, 6, € BYH(T¢), for all x € T-*® and thus (0,)" € BYH(T¢), for all
x € Te®. Let x € Te®. As BYH(Tt), is an Hyvc — C(Y), bimodule, we deduce that
F, « F, € BYH(T¢),.

Let u,v € W". Let us prove that there exists Q € C(Y') such that F, x F, = F,, Q. Let
A\ € Y. Then by Lemma 4.14, one has Z F,xF, = F,«F,«Z®) "2 Therefore for all y € %,
there exists a(x) € C such that F, x F,(x) = a(x)F ( ). Write F, x Fy = Y7 o Hy % 0,
and F, = 3, oo Hu * 0, where (8,,), (0,) € C(Y)WV). Let Q = GZ” = Ouy. Let w € WY be

such that 6, = 0. Then for all y € T, 0,(x) = 0 and by Lemma 5.1, Hw =0=QFf,. Let
w € W" be such that 6, # 0. Then U := {x € T¢|0, € P*H(T¢), and 6,(x) # 0} is open
and dense in Tg. By Remark 4.11, T2 has full measure in T¢ and thus U N T¢™ is dense
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in Te. Moreover 0,,(x) = Q(x)8(x) for all x € U N TE® and thus 6, = Qf,,. Consequently,
there exists @) € C(Y) such that F, x F, = F,, * Q.

Let 7 € Ug. Let wy € W*. Let u € W* be such that there exists 6 = g € C(Y)* such
that F,, * F,, = F,,, % 0, with f(w.7) # 0 for all w € W". Let s € . be such that us > u.
Then by Lemma 4.3,

Fy, % Fus = Fupu 0% Fy = Fy % Fy % 6°.

Suppose wyus > wiu. Then F, ,* Fy = Fy s and thus F,,, « Fs = Fy, %0 and f*(w.7) # 0
for all w € W". Suppose wyus < wyu. Then F,, ,x Fy = F % (F,)? and thus by Lemma 4.3,

Fu, % Fus = Fuus x (0°CCE). By definition of U, one can write Fy, % Fys = Fipus * % with
f,3 € C[Y]* such that f(w.T) # 0 for all w € W* and the lemma follows. O

Remark 5.21. In [Ree97, Lemma 4.3 (2)], Reeder gives an explicit expression of F, * F,,
foru,v e Wv.

Let r € Z. Let Q, : C(Y) — C(Y) be defined by €2,.(6) = (.(6" — 0) for all § € C(Y).
Lemma 5.22. Let r € ;. Then Q,(C(Y),) C C(Y)-.

Proof. Write r = rgv, where 5 € ®V. Then one has r(\) = A — S(\)5Y for all A € Y. Let
A € Y. Then with the same computation as in Remark 2.7 (2), we have that ,.(Z*) € C(Y),.
Thus Q,.(0) € C(Y), for all § € C[Y].

Let 8 € C(Y),. Write 0 = 5, where f,g € C[Y] and g(7) # 0. Then (.(0" — 0) =
Q(W) Moreover, ¢"(7) = g(r.7) = g(1) # 0 and as f"g € C[Y], we have that
G (6" —0) e C(Y),. O

We now assume that 7 € Uc.

For each w € W,y we fix a reduced writing w = ry ... 7, with k = {(w) and 11, ..., 7, € 7%
and we set w = (r1,...,r;). Let K, = K,, ... K,, € BVH(T¢).

Lemma 5.23. Letr € .%,. Then B"H(T¢), * K, C BYH(T¢),. In particular, K,, € B*H(T¢),
for all w € Wy,

Proof. Let w € WY and 0 € C(Y),. Then H,0 x K, = H,K,0" + H, % Q.(0). Using
Lemma 5.19, Lemma 5.22 and the fact that BYH(T¢), is a Hyec — C(Y),-bimodule, we
deduce that H,0 * K, € BVH(T¢),. Hence PLH(Tt), x K, C BVH(T¢),. 0O

Lemma 5.24. Let w € W, Then maxsupp (K, (7)) = {w}, where max is defined with
respect to the order < on W".

Proof. Write w = (r1,...,ry) with rq, ..., 7, € . Then

Ky=(F, —G.).- (B, —C,)=F, «F, ... xF, + Y FP,

v<sw

for some P, € C(Y). By Lemma 5.20, there exist f, g € C[Y]* such that F}., «F,, *...xF, =
Fw*g and f(7) # 0. One has 7/ (F,) = 1 and by Lemma 5.10, 7/ (F,) = O for allv € [1,w)<_.
Thus using Lemma 5.23, one can moreover assume g(7) # 0. Therefore 72 (K,,) = 5 e C(Y),

and f(7) # 0, which proves the lemma.
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Let K(W5) = @wEW(T) F,C(Y). By Lemma 5.20 and Lemma 4.14, (W) is a sub-
algebra of BVH(T¢). Let K, = K(Wi) N BYH(TE),. For w € Wy, set KW~ =
By oerw FuCO) and K57 = @, ., K,.C(YV).

Lemma 5.25. Let 0 € C(Y); and w € W;. Then there exists ky,(0) € K= such that
0% Ky =Ky+0" " +Eky(6).

Proof. If w =1, this is clear. Suppose w >, 1. Write w = vr with v € W(;) and r € .7 such
that v <, w. Suppose that 6 K, = K, 8" + k,(f) with k,(f) € K=7°. One has

Ox Ky,=0xK,*K, = (Kgé’f1 + kg(é’)) * K, = K, * o 4 K, % QT(Qvil) + ky(0) % K.

The sets K(Wi;)=" = @, , FyC(Y) and PYH(T¢), are right C(Y),-submodules of
BL9{(T¢) and thus by Lemma 5.23 and Lemma 5.22, K, * Q.(8" ) € K= € K=7v.

By Lemma 5.23, k,(0) * K, € BVH(T¢),. By Lemma 4.14 and [[<um02, Corollary 1.3.19),
kyFy € K(Wip) <maxr) — k(W) <. Consequently k, * K, € K= and K,Q.(0° ") +
k,(0)K, € K=", which proves the lemma. O

Lemma 5.26. One has K, = @ K,C(Y),.

weW(r)

Proof. By Lemma 5.23, K, D @weW(T) K,C(Y),.

For w € Wy, set K(Win)=™" = P, , LC(Y) C K(Wp). Let w € W) Suppose that
for all v € [1,w)<,, one has K=" = @, ¢y, KwC(Y);. By Lemma 5.24, one can write
Tl (Ky) = £7 with f, g € C[Y]such that f(7)g(7) # 0. Let z € K=% and 0 = 7 (z) € C(Y),.
By Lemma 5.23, 04K, € BLY(Tt),. Moreover, = — 05Ky € D epiw)-. IC=v. Therefore,

© € Dyepiw).. KuC(Y): and the lemma follows. O

<

Theorem 5.27. Let 7 € Uc be such that Wiy = W.. Then I.(1,gen) = ev.(K,) ®; 1.

Proof. Let w € Wy and § € C(Y).. As w € W, 0" € C(Y)yr = C(Y), and 7(0* ') =
7(#). Then by Lemma 5.25, (6 — 7(6))Kyu(7) @, 1 € K<*(7) ®, 1. By an induction using
Lemma 5.26 we deduce that K, (7) ®, 1 C I(, gen).

Let w € WY and E,, = (eVT(ICT) s 1) NI=*. By Lemma 5.24, dim E,, = |[WyN{v €
W@ v < w}|. By Proposition 3.4, dim I, (,gen)=* = [{v € W,|v < w}| = dim E,,. As

(W, <) is a directed poset, I, = J, cpro /=, which proves the theorem. O

5.6 Irreducibility of [, when W, = W, is the infinite dihedral group

In this subsection, we prove that if 7 € Uc is such that W, = W,y and W,y is isomorphic to
the infinite dihedral group, then I, is irreducible (see Lemma 5.33). Let us sketch the proof of
this lemma. We prove that I,(7) = C1®, 1. For w € W, let 75 : Z,.(7, gen) — C be defined
as 8 (3 ,cwe Ko(T)3) = 24, for all (z,) € CW)| which is well-defined by Lemma 5.24
and Theorem 5.27. We suppose that [(7) \ C1 ®, 1 is nonempty and we consider one of
its elements z. We reach a contradiction by computing 75 (x), where w € W) is such that
(- (w) = max{/l,(v)|v € supp(z) N W} — 1.

Let 7 € Uc. Assume that (W), 7) is isomorphic to the infinite dihedral group (in
particular, |.7;| = 2 and every element of W(,) admits a unique reduced writing).

The following lemma is easy to prove.
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Lemma 5.28. Let w € Wiy and r € 7, be such that {-(wr) = {-(w) + 1. Let u € [1,w)<,
Then ur # w.

Lemma 5.29. Let 7 € Ug. Let r = rgv € 7, where ¥ € ®Y. Then there exists a € C*
such that for all N € Y,

T((Z7 = Z2M)¢) = ar(N)B(N).
Proof. One has

1 1
¢ = o I e 1 =

avENgy (r) aveNgy (M\{Bv} >

By Lemma 5.13 and by definition of U,

(I G #Aoandr( [T G # 0

aveNgy (M\{8"} aVENgy (r)

If 63w = oy, one has LoE = I = 2P o1 By Lemma 5.13, r € %,y and

1-28Y 1—2z8Y
5\/
thus 7(5Y) = 1. Thus by the same computation as in Remark 2.7, T(%) = BA)T(A).
Using a similar computation when ogv # O'/BV, we deduce the lemma. O

Lemma 5.30. Let w € Wiy and r € .7 be such that {-(wr) = {.(w) + 1. Then there exists
a € C* such that for all N € Y, one has:

T2 % Ko (7) @7 1) = ar(N)a (w™N).

Proof. Let A € Y. Write Z* x K,, = K, * Zv ' A 4 k, where k € K=, which is possible by
Lemma 5.25. One has

2% Kyr = (K % Z° 2 4 k) % Ky = Ko % 27 A 4 Ky, (27 = 297 N) + k* K
Therefore, using Lemma 5.28 and Lemma 5.29 we deduce

(2 Ky (1) @, 1) = 7((Z77 " = Z27N¢,) = ar(V)B(w™N),
for some a € C*. O

Lemma 5.31. Let w € W, and r € 7, be such that (. (rw) = (- (w) + 1
One has 75(K, * K(WT) ™) = {0}.

Proof. Let u € W(;) and r € . be such that ru >, u. Then by Lemma 5.20 and
[K<um02, Corollary 1.3.19], Fy % (W)= C K(Wip)STmexwre) and thus K, + K(W,)S™ C
IC(W/E ) Tmax(uru)

Let v € [1,w)<,. If rv >, v, then by Lemma 5.20, there exists Q € C(Y') such that
F.x F, = F,, *Q and thus K, x F, € F,, * Q + F,C(Y). By Lemma 5.28, rv;«éw Using
Lemma 5.24 and the fact w and rv have the same length we deduce that (K, x F,) = 0.

If rv <; v, then K, x F, € K(W)="" and thus 7% (K, % F,) = 0 which ﬁmshes the proof
of the lemma. O

Lemma 5.32. Let w € W,, r € .7 be such that (. (rw) = {;(w) + 1. Then there exists
b € C* such that for all A € Y:

T (22 K (T) @7 1) = b1 (V) (N).
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Proof. One has
Z Ky = (22 % K,) % Ky = (K. 2™ + (27 = ZM)() * Ky (7).

One has Z"™* % K,, € K(W;))=™. Thus by Lemma 5.31, 7§ (K,.Z"* x K,)) = 0. Moreover,
by Lemma 5.29, there exists b € C* such that

T (27 = Z G Ku(7) @7 1) = wr (27 = ZY)¢) = br(Na, (M),
which proves the lemma. O

Lemma 5.33. Let 7 € Uc be such that W, = W;y and such that there exists ri,ry € S such
that (Wiz), {r1,72}) is isomorphic to the infinite dihedral group. Then I, is irreducible.

Proof. Let us prove that I.(7) = C.1®, 1. Let 2 € I, \ C.1 ®, 1 and assume that = € I.(7).
Let n = max{{;(w)|lw € supp(x)}. Let w € Wi, be such that ¢;(w) = n — 1. Then
there exist r,r" € ./ such that {v € W|l;(v) = n} = {rw,wr'}. By Theorem 5.27,
T € Y pem,, CHu(7) @7 1. Let v = 7K (z) and o/ = 75 ,(2).

Set 7, = 7X(x). Then by Lemma 5.30 and Lemma 5.32, there exist a,a’ € C* such that
forall A € Y,

o (Z*x) = T(\) (avon(N) + dy'w.am (X) + 7) = T(A) V-

Therefore {c,.,w.q,/} is linearly dependent and hence w.a,r € {Fa,.} = {a,,r.a,}. By
Lemma 2.3 we deduce rw = wr’: a contradiction because |{rw,wr'}| = [{v € Wp|l-(v) =
n}l = 2.

Therefore I, = C1 ®, 1 and by Theorem 4.8, I is irreducible. ]

5.7 Kato’s criterion when the Kac-Moody matrix has size 2

In this subsection, we prove Kato’s irreducibility criterion when || = 2 (see Theorem 5.35).
As the case where W is finite is a particular case of Kato’s theorem [[<at81, Theorem 2.2]
we assume that W is infinite.

This is equivalent to assuming that the Kac-Moody matrix of the root generating system

S is of the form , with a,b € Z-o and ab > 4 ([Kum02, Proposition 1.3.21]). The

2 a
(s 5)
system (W, .} is then the infinite dihedral group. Write . = {1, so}. Then every element
of W¥ admits a unique reduced writing involving s; and s,.

Let G be a group and a,b € G. For k € Zsq, we define Py(a,b) = aba... where the

products has k terms.

Lemma 5.34. The subgroups of WV are exactly the ones of the following list:
1. {1}
2. (ry={1,r}, for somer € #
3. Zy = (Pa(s1,82)) = (Pa(sa,51)) ~Z for k € Z>,

4. Rk,m = <P2k+1(51> 52), P2m+1(82a 81)> ~W?" for k,m € Li>g.

34



Proof. Let {1} # H C W" be a subgroup. Let n = min{/(w)|w € H \ {1}}.

First assume that n is even and set k = %. Then P(sy, 55, n) = P(s2,s1,n)"" and as these
are the only elements having length n in W¥, H D Z;. Let w = P,(s1,s2). Let h € H\ {1}.
Write £(h) = an+r with a € Z>, and r € [0,7 —1]. Then there exists ¢ € {—1, 1} such that
h = w.h, with £(h') = r. Moreover, b’ € H and thus i’ = 1. Therefore H = Zj.

We now assume that n is odd. Maybe considering v Hv~ for some v € W and exchanging
the roles of s; and s5, we may assume that s; € H. Assume H # (s1). Let n’ = min{/(w)|w €
H\ (s1)}. Let w € H\ (s1) be such that ¢(w) = n’. Then the reduced writing of w begins and
ends with so. Thus n’ = 2n” + 1 for some n” € Z>(. Then it is easy to see that H = Ry ,,»,
which finishes the proof. O

We prove in Appendix B that there exists size 2 Kac-Moody matrices such that for each
subgroup of W, there exists 7 € Tt such that W, is isomorphic to this subgroup.

Theorem 5.35. Assume that the matriz of the root generating system S is of size 2. Let
7 € Ic. Then I is irreducible if and only iof T € Uc and W, = W,

Proof. If W" is finite, this is a particular case of Kato’s theorem ([Kat81, Theorem 2.2]).
Suppose that W is infinite. By Lemma 4.5 and Proposition 4.17, if I, is irreducible, then
T € U and W, = W,). Reciprocally, suppose 7 € Ug and W, = W(;). Then by Lemma 5.34,
either W) = {1}, or W) = (r) for some r € Z or W,y = (ri,r2) for some ry,ry € #
and (Wi, {r1,72}) is isomorphic to the infinite dihedral group. In the first two cases, I,
is irreducible by Corollary 4.10 or Corollary 4.12. Suppose W(;) = (r1,r2). Then by Re-
mark 2.5 (1), (W), ;) is isomorphic to the infinite dihedral group and I, is irreducible by
Lemma 5.33. 0J

Comments on the proofs of Kato’s criterion There are several proofs of Kato’s cri-
terion in the literature. In [Ree92], Reeder proves this criterion (see Corollary 8.7). In his
proof, he uses the R-group R, = {w € Wr[w(®/,N®Y) = ¢/, Ny} This group is reduced
to {1} when W, = W(,. His proof uses Harish-Chandra completeness theorem, which - under
certain hypothesis on 7 - majorizes the dimension of the space of intertwining operators of
I,. Unfortunately, it seems that there exists up to now no equivalent of Harish-Chandra
completeness theorem available in the Kac-Moody framework.

In [Rog85], Rogawski gives a proof of a particular case of Kato’s criterion (see Corollary
3.2). However, it seems that its proof uses the fact that every element x of I.(7) can be
written as a sum z =, ;x; where J is a finite set and for all j € J, [maxsupp(z;)| = 1
and z; € I.(7). I do not know how to prove such a property.

In [Ree97], Reeder gives two proofs of Kato’s criterion or of weak versions of it (see
Corollary 4.6 and Theorem 14.7). Our proof of Theorem 5.35 is strongly inspired by the
proof of [Ree97, Theorem 14.7].

6 Towards principal series representations of G

Suppose that Hc¢ is associated with a reductive group G. Then for every open compact
subgroup K’ of G' and every smooth representation V., VX' is naturally equipped with the
structure of an Hyr ¢ module, where Hgs ¢ is the Hecke algebra associated with K’ with
coefficients in C. Moreover, the assignment V + VX induces a bijection between the
following sets:

e cquivalence classes of irreducible smooth representations V of G such that VX' # {0},
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e isomorphism classes of simple H c-modules (see [BH0G, 4.3] for example).

In the Kac-Moody case, we do not know how to define “smooth” for a representation of
G. We know that for any topological group structure on GG, K; is not compact open (see
[AH19, Theorem 3.1]). The hope is that there should be a link between representations of G
satisfying some regularity conditions and representations of H¢ or BXHc. -

Let € € {+,0}. In this section, we associate to every 7 € T a representation I(7¢)¢ of
G¢. The pri@p\al series representation associated with 7 should correspond to the space of

elements of I(7¢)¢ which satisfy some regularity condition. We define an action of H z on some
subspace Ire e of (1 (Tf)f)KI. We then prove that I ge is isomorphic (as an Hz-module) to
the representation I;‘ o+ introduced in section 2. We then study the extendability of I(7¢)e

and I« ge to representations of G and BLY .
For simplicity, we only introduce split Kac-Moody groups, although our results also apply
to almost-split Kac-Moody groups over local fields, see [Roul7].

In subsection 6.1, we introduce split Kac-Moody groups over local fields, masures, their
Iwahori-Hecke algebras and principal series representations.

In subsection 6.2 we prove that the actions of Hr on I, o+ and I, ¢ are well-defined and
prove that I, o+ is isomorphic to I..

In subsection 6.3 we study under which condition I, o+ and I extend to representations
of G and of B*H x, for 7 € T, We give examples of 7 € Tx (for particular choices of G)
such that I, g+ and I7 do not extend to representations of G and of BVH £.

6.1 Kac-Moody groups over local fields and masures
6.1.1 Split Kac-Moody groups over local fields and masure

Let Gs be the group functor associated in [11t&87] with the generating root datum S, see
also [Rem02, 8|. Let (K, w) be a non-Archimedean local field where w : K — Z U {400} is a
valuation. Let G = Gs(K) be the split Kac-Moody group over K associated with S.
The group G is generated by the following subgroups:

e the fundamental torus 7' = T(K), where T = Spec(Z[X]),
e the root subgroups U, = U,(K), each isomorphic to (K, +) by an isomorphism z,.

In [GRO8] and [Roul6] (see also [Roul7]) the authors associate a masure Z on which the
group G acts. We recall briefly the construction of this masure. Let N be the normalizer
of T in G. Then they define an action of N on A, see [GR08, 3.1|. For n € N denote by
v(n) : A — A the affine automorphism of A induced by the action of N on A. Then v(t) is a
translation, for every ¢t € T and v(N) = WY x Y. For every w € W" x Y, we choose ny € N
such that v(ny) = w.

The masure Z is defined to be the set G x A/ ~, for some equivalence relation ~ (see
|GRRO8, Definition 3.15]). Then G acts on Z by g.[h, x| = [gh, z| for g,h € G and x € A, where
[h, x] denotes the class of (h, z) for ~. The map z — [1, z] is an embedding of A in Z and we
identify A with its image. Then N is the stabilizer of A in G and it acts on A by v. If « € ®
and a € K, then z,(a) € U, fixes the half-apartment D, @) = {y € A| a(y) + w(a) > 0}
and for all y € A\ Dy uw(a), Tala).y ¢ A.

An apartment is a set of the form g.A, for ¢ € G. We have 7 = UgeGg.A. Then
7 satisfies axioms (MA i), (MA ii) and (MA iii) of [Héb18, Appendix A| or [Héb20]. These

axioms describe the following properties.
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(MA i) Let A be an apartment of Z. Then A = g.A, for some g € G. We can then transport
every notion which is preserved by v(N) = W" x Y to A (in particular, we can define
a segment, a hyperplane, ... in A).

(MA ii) This axiom asserts that if A and A’ are two apartments such that AN A" is “large
enough”, then A N A’ is a finite intersection of half-apartments (i.e of sets of the form
h.Dyy, for a € @, k € Z, if A = h.A) and there exists g € G such that A’ = g.A and
g fixes AN A’. When G is an affine Kac-Moody group, this is true for every pair of
apartments A, A’ without any assumption on AN A’.

(MA iii) This axiom asserts that for some pairs of filters on Z, there exists an apartment con-
taining them. This axiom is the building theoretic translation of some decompositions
of G (e.g Iwasawa decomposition).

A filter on a set E is a nonempty set V of nonempty subsets of E such that, for all
subsets S, S’ of £, if S, 8" € Vthen SNS" €V and, if S’ C S, with S’ € V then S € V.

Let E, E' be sets, ' C E and V be a filter on E’. One says that a set {2 C F contains V
if there exists {2’ € V such that ' C Q (or equivalently if Q € Vif E=FE’). Let f: E — E.
One says that f fixes V if there exists €)' € V such that f fixes (7.

6.1.2 Cartan decomposition, Tits preorder on Z and sub-semi-group G

Let K = Gs(O), where O is the ring of integers of K. Then K is the fixator of 0 € A C T
in G. For A € Y, choose n, € T such that n, induces the translation on A by the vector \.
Unless G is reductive, the Cartan decomposition of G does not hold: U/\ey++ Kn\K C G,
where YT = C'_}’ NY. For z,y € A, one writes v < y if y —x € T (where T is the
Tits cone). If z,y € Z, one writes x < y if there exists ¢ € G such that g.x,g.y € A and
g.x < g.y. This defines a G-invariant preorder on Z by [Roull, Théoréme 5.9]. We call it
the Tits preorder on Z. Let G = {g € G|g.0 > 0} (see [BKP16, 1.2.2] for a more explicit
description of G*, when G is affine). Then G is a sub-semi-group of G (as < is transitive)
and we have G* = | |, .1+ Kn,K: the Cartan decomposition holds on G*. Note that when
G is reductive, G = G* since T = A. A type 0 vertex is a point of the form ¢.0 for some
g € G. We set Zy = G.0. Then the map g — ¢.0 induces a bijection between G /K and Zj.
Let z,y € T be such that x < y. Let A;, As be apartments containing x and y. Let
[z,y]la, (resp. [x,y]a,) be the segment in A; (resp. Aj) joining z to y. Then by [Roull,
Proposition 5.4|, [x,y]a, = [z,y]a, and there exists ¢ € G such that g.A; = Ay and ¢ fixes
[z,y]a,- We thus simply write [z,y]. Let h € G be such that h.A; = A. Then as < is
G-invariant, h.x < h.y and thus h.y — h.x € T. Replacing h by nh for some n € N, we may
assume that h.y —h.x € C'_}’ One sets d¥" " (z,y) = h.y—h.z € C'_}’ We thus get a G-invariant

vectorial distance d¥ ' : T X< T — CY, where T x< T is the set of pairs x,y € Z such that
z < y. It is denoted d” in [((R14]. When moreover z,y € Zy, then d*" " (z,y) € Y**. This

distance parametrizes the K double cosets: if ¢ € GT and A € YT, then g € KnyK if and
only if d7(0,¢.0) = \.

6.1.3 Local faces and chambers

Recall the definition of vectorial faces from subsection 2.1. A local face of A (we omit the
adjective “local” in the sequel) is a filter on A associated with a point  and with a vectorial
face F'Y. The point z is the vertex of I’ and F" is its direction. More precisely the chamber
F = F, pv associated to « and F" is the filter on A consisting of the sets QN (z + F"), where
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(2 is a neighborhood of x in A. We call F' positive (resp. negative) if F'V is. When F" is
a vectorial chamber (resp. a vectorial panel, that is when F" is a codimension one face of a
vectorial chamber), we call F' a chamber (resp. panel). As the sets of local faces, of positive
faces, of local chambers, ... are stable under the action of W" x Y, we extend these notions
to Z: alocal face F' (resp. positive, negative) is a filter on Z generated by g.F' for some local
face (resp. positive, negative) Fj and some g € G. Its vertex is vert(F) = g.\, where X\ is
the vertex of Fj. This does not depend on the choices of g and Fjy such that F' = g.F.

We denote by Cy the local positive chamber associated with 0 and C%. A type 0 positive
local chamber is a filter of the form ¢.C; for some g € G. Equivalently, this is a positive
chamber based at a type 0 vertex. We denote by ;" the set of positive type 0 chambers of
7.

We say that a chamber C' of A dominates a panel P of A if C' and P are based at the
same vertex and if PV C CV, where O and P are the vectorial faces defining C' and P.

We say that a chamber C' of Z dominates a panel P of Z if there exists g € GG such that
g.C,g.P C A and such that ¢g.C' dominates g.P. Then every type 0 local panel is dominated
by exactly ¢+ 1 chambers, where ¢ is the cardinal of the residue cardinal of /. In particular,
7 has finite thickness: every panel is dominated by finitely many chambers. This property
is crucial in order to apply the finiteness results of [GR14] and [BPGR16].

Let W+ = WY x Y*. Then W is a sub-semi-group of W* x Y.If C,C" € %", we
write C'° < C" if vert(C') < vert(C'). Let 6, x< 6, = {(C,C") € €,;'|C < C'}. Let
(C,C") € 6,5 x< €, Then by |Roull, Proposition 5.5 or [Heh20, Proposition 5.17], there
exists an apartment A = ¢g.A containing C' and C’. Then ¢.C' C A and thus there exists
w € W? x Y such that ¢.C = w.Cy. Maybe replacing g by ng'g, we may assume that
g.C = Cf. Then g.C" > C and thus there exists v.€ W7 such that ¢g.C' = v.Cy". One sets
dV"(C,C") = v. By [Roull, Proposition 5.5 or [[1¢h18, Theorem 4.4.17], v does not depend
on the choice of A. This defines a G-invariant “W-distance” dV" : € x< 6,7 — W+,

Let C,C" be two chambers of the same sign and based at the same vertex. We say that
C and C' are adjacent if they dominate a common panel. A gallery I" between C' and C’
is a finite sequence I' = (C4,...,C,) such that n € Zs,, C; = C, C, = C" and C;, C;4 are
adjacent for every i € [1,n— 1]. The gallery I is called minimal if n is the minimum length
among all the lengths of the galleries joining C' to C". If the vertex of C' and C" is in Zy, then
the length of a minimal gallery between C' and C” is £(w), where w = dV" (C,C") € W".

6.1.4 Iwahori subgroup and Iwahori-Hecke algebras associated with G

Let K be the fixator of Cy in G. This is the Iwahori subgroup of G (see also [BKP16,
(3.8)] for a more explicit description in the affine case). The map g — ¢.Cy induces a
bijection between /K and CKOJF. For w € WY XY, we choose ny € N such that n, induces
w on A. Then we have the Bruhat decomposition (see [BPGR16, 1.11]):

G+: |_| K[’/LWK[.

weW+

In terms of masures, this decomposition has the following interpretation: for every C, C" €
%, such that vert(C) < vert(C’), there exists an apartment containing C' and C’. Note
that d"" parametrizes the K; double cosets: if ¢ € G*, then ¢ € K nwK; if and only if
w=dV'(Cf, 9.C).

Let Z be a ring. For w € W, we denote by T, the indicator function of KnK;.
Then the Iwahori-Hecke algebra of G with coefficients in # is the free Z-module H¢ »
with basis (Tw)wew+ equipped with the product * such that Ty * Ty = > 4 ¥, With
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ayw = [(Kmy K0 nuKmy! Kr)/K;| for u,v,w € WT. The fact that such an algebra is
well-defined is [BPGR16, Theorem 2.4| (the definition of the Ty, in [BPGRI16, 2] is slightly
different but we obtain the same algebra).

Let F be a field as in Definition 2.6. Let ¢ be the residue cardinal of IC. As in [BPGRI16,
5.7), we assume that there exists §'/2 € T such that §'/2(ay) = /g for every s € .. If

F = C, such a map exists by Lemma 5.2. For w € WY Cc W+, set H,, = q_%é(w)Tw € Ha r.
For A € Y™ set Z* =072 (AT} € He r. By [BPGRIG6, 5], we have the following proposition.

Proposition 6.1. Let ¢ : {Z*\ € YTTY U {T,|lw € W} C Hor — BUHz be defined by
L(ZN) = Z* and L(T,,) = T,y for N € YT and w € WY, Then v extends uniquely to an algebra
morphism v : Ha r — B¥Hzr. Moreover, (Hea.r) = Hr and v is injective.

6.1.5 Iwasawa decomposition and retractions centered at eco

Let € € {—,+} and U. = (Ua| a € ®.). We denote by eco the germ of eC} at infinity: this
is the filter on Z composed with the sets containing a translate of eC’}. Then U. fixes eoo,
which means that for every u € U,, there exists x € A such that u fixes z + €Cj.

Let C be a chamber of Z. Then there exists an apartment containing C' and eco. This
means that there exists 2 € C, y € A and an apartment containing QUy+€eC%. In particular
for every x € Z, there exists an apartment containing z and eco. When C' € 6" and x € T,
these results correspond to the following decompositions:

G = |_| UngyKr and G = |_| Un\K.

weWvxY A€Y

Let z € Z. Let A be an apartment containing x and eco. Then by (MA ii), there exists
h € G such that h.A = A and h fixes AN A. We set peoo(z) = h.x. This is well-defined,
independently of the choices of A and h. Then p.(x) is the unique element of U.x N A.
Then peoo : Z — A is a retraction called the retraction onto A centered at ecc.

6.1.6 Towards principal series representations of Gt and G

Let B =TU, be the positive standard Borel subgroup of G. In term of masures, B is
stabilizer of 400 in G (by [Héb18, Lemma 3.4.1]), which means that B is the set of g € G
such that there exists a,a’ € A such that g.(a + C}) = (a’ + C}) and such that there exists
a translation f of A such that g.x = f(x) for every x € a + C}. Let BT = G" N B and
T*t+=TnG*.

Lemma 6.2. We have T™ C Bt Cc TVU,.

Proof. Let g € BT. Write g = tu with ¢t € T and u € U,. Then as ¢ normalizes U, (by
[Rem02, 8.3.3]), there exists u' € Uy such that g = u't. Then pi(g.0) = ¢.0. Moreover by
[Roull, Corollaire 2.8], pioo(g.0) > 0 and thus ¢.0 > 0, which proves the lemma. O

Remark 6.3. Unless G is reductive, TTU, D BT. Indeed, let us prove that U, is not
contained in Gt. Let s € 7. Take a € K such that w(a) = —2. Set u = z,,(a) € U,. Let
A" =w.A. Then A'NA is the half-apartment D,, —o = {x € Alag(x)—2 > 0}. Let Do be the
half-apartment of A" opposite to D, _o. By [Roull, Proposition 2.9 2)], A= D_,,2UDy
is an apartment of . As 0 ¢ D, o, u.0 € Da. Then A3 0,u.0. Let g € G be such that
g.A = A and such that g fites D_o 5. Letr: A — A be defined by r(z) = s.z + 2a) for
x € A. Then by [Heb10, Lemma 3.4/, g.u.0 = r.0 = 2a). By the lemma below, g.u.0 and
0 = ¢g.0 are not comparable for <. We deduce that u.0 and O are not comparable for <, which
proves that u ¢ GT.
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Recall the definition of indecomposable Kac-Moody matrices from [Kac94, §1.1].

Lemma 6.4. Assume that G is associated with an indecomposable Kac-Moody matriz A
which is not a Cartan matriz. Then for all s € .7, af € A\ (T U-T).

Proof. We first assume that A is of affine type (see [[<ac94, Theorem 4.3| for the definition).
Then there exists 6 € @, Ry, such that 7 = 67 1(R%) U,y s '({0}) (see [Heb18,
Corollary 2.3.8|). By [Xac94, Proposition 5.2 a) and Theorem 5.6b)|, w.0 = § for every
w e Wv. Let € A be such that §(z) = 0 and # > 0. Then there exists w € W? such that
w.x € C}. Then §(z) = d(w.z) = 0. Thus w.x € Nyeyp oy ({0}). As ay(a)) =2, 0 ¢ T.
As s.a) = —a) we have o) € A\ (T U-=T).

We now assume that A is of indefinite type. Then by [[<ac94, Proposition 5.8 c¢)| and
|[GR14, 2.9 Lemmal, o) € A\ T. As s.a) = —a) we deduce that o € A\ (TU-T). O

Let TF = Homppon(Y, F*). Let 7 € Tr (resp. 7 € T5). We regard 7 as a homomo-
morphism 7" — F* (resp. as a monoid morphism 7t — F) by setting 7(t) = 7(¢.0) for
every t € T (resp. t € TT). We extend 7 to a homomorphism B — F* (resp. to a monoid
morphism BT — F) by setting 7(tu) = 7(t), for every t € T and u € U, (resp 7(tu) = 7(t)
for every t € T" and u € U, such that tu € B*). By [Roul6, Proposition 1.5 (DR5)] (note
that there is a misprint in this proposition, Z is in fact T'), T N U, = {1}. This implies that
7 : B — F* is well-defined. The fact that 7 is a homomorphism follows from the fact that ¢
normalizes U for every t € T' (by [Rém02, 8.3.3|).

Lemma 6.5. 1. Let g € G and v € W*. Then g € Bn,K; if and only if pioo(9.C) €
v.Cy +Y. In particular G = | |,cyro By K.

2. We have G = || cppo B0, K.

Proof. There exists v € W* and A\ € Y such that p;(9.C5) = v.C5 + A\. Thus there
exists t € T and v € W such that p,.(9.Cy) = tn,.Cy. Hence ¢.Cf = utn,.Cj and g €
utn,K; C Bn,Kj, for some u € U,. Conversely if g € Bn,K;, then p,.(9.C{) € v.Cf +Y,
which proves (1).

As G* is a sub-semi-group of G, | | ey B n,K; C G*. Let g € G*. By (1), we can
write g = bn,k, with b € B, v € W" and k € K;. Then b.0 = ¢.0 > 0 and hence b € BT,
which proves (2). O

6.2 Action of Hr on I, g+ and I, ¢
6.2.1 Well-definedness of the action

—_—

Let € € {+,0}. For 7 € T , we define I(7)¢ to be the set of functions f from G to F such
that for all b € B¢ and g € G°, one has f(bg) = (6"/27)(b)f(g). The group G (resp. semi-
group G1) acts on I/(?) (resp. ﬁT)\JF) by right translation. When G is reductive, the principal
series representation associated with 7 is the subset I(7) of functions of 17;) which are locally
constant. Then I, = I(7)%7. When G is not reductive, we do not know which condition could
replace “locally constant”. The hope is that the principal series representation of GG associated
with 7 should be the set of functions of I/(\T) satisfying some “regularity condition”.

o — —

Let 7 € T%. Let I(7)§, be the set of f € I(7)¢ such that there exists a finite set /" C W"

—

such that supp(f) C U,ep BnoKp. Let I ge = (E’)\EH)KI be the set of elements of (1),
which are invariant under the action of K;. For v,w € W", define f,, € I, ge by fu(n,) =1
if and only v = w. Then by Lemma 6.5, (f,)wew~ is a basis of I ge.
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Fix 7 € T'. Following [BH06, 4.2.2], we would like to define an action of Hz on I, ge by
o.f= > 69)gf Vb f)€MHr x L.

QEG+/KI

However, we need to prove that such an action is well-defined. The main difficulties are to
prove that if ¢ € Hr, f € I, g and h € G, then:

> ¢l9)f(hg)

geGT /Ky

only involves finitely many terms and that ¢.f also has finite support. The aim of this
section is to prove these results. For this, we use the masure Z, finiteness results of [GROS]
and [GR14] and the theory of Hecke paths introduced by Kapovich and Millson in [[XMOg].
In [GRO8] and [GR14], the authors mainly use p_,,. As we use p,,, we adapt their results
to our framework.

Let A € YT, A A-path of A is a continuous piecewise linear map 7 : [0,1] — A such
that for every t €]0,1[, 7’_(t), 7’.(t) € W".X (where ©’_(¢) and 7’_(t) denote the left-hand and
right-hand derivatives of = at t) and 7/, (0), 7" (1) € W".X\. A Hecke path of A of shape A
with respect to C is a A-path satisfying [:1R 14, 1.8 Definition|, with 3; satisfying £;(C}) < 0.
Hecke paths are the images by retractions of preordered segments in Z. More precisely:
Theorem 6.6. (see [(R0S, Theorem 6.2])

Let x,y € T be such that v <y and A = d*" " (z,y) € C'_}’ Let v : [0,1] — A be an affine
parametrization of the segment x,y. Then py o7 is a Hecke path of shape \ with respect to
CY from pyoo(t) 10 pro(y).

By definition of Hecke paths and by [[KXum02, Lemma 1.3.13], we have the following lemma.
Lemma 6.7. Let \ € C_}’ and 7 : [0,1] — A be a Hecke path of shape A\ with respect to
C7. Fort € [0,1] where it makes sense, we write 7', (t) = w' (t).A and 7_(t) = w’(t).,
where w'_(t),w',(t) € W have minimal lengths for these properties. Then for all t,t" € [0,1]
such that 0 <t < t' < 1, we have w'_(t) < w' (t) < w' (t') < w! (t'), where we delete the
derivatives that do not make sense (fort =0 ort' =1).

Theorem 6.8. (see [G111], 5.2]) Let v € Ty, A€ Y™ and p €Y. Then

{yely>w, & (x,y) = X and pyoo(y) = 1}
is finite.
Lemma 6.9. Let y € Zy and C be a type 0 positive local chamber of A. Then
{C" € 6 |vert(C") =y and p,o(C") = C}

s finite.

Proof. Let A be an apartment containing y and 4+o0o. Then by (MA ii), there exists g € G
such that g.A = A and g fixes ANA. Maybe working with pyo 4 = g7 '.p. o instead of p, o,
we can thus assume that y is in A. Let C" € 6" be such that vert(C") = y and p,(C") = C.
Let A" be an apartment containing C” and +oo. Then A’ contains y and by (MA ii), A’

contains y+ C . Let h € G be such that h fixes A’NA and h.A’ = A. Then p, (C") = h.C".
Therefore

dV(Cy+Cf) = dV (WO h(y + CF)) = dV T (Coy+CF ) € W, (4)
Using [AH19, Lemma 5.5 we deduce that {C" € €, |vert(C’) = y and p,(C") = C} is
finite. O
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Let z € Zy and C € 6, be such that C' > z (i.e vert(C') > x). By [Hcb20, Proposition
5.17|, there exists an apartment A containing z and C. Then there exists g € G such that
g A=A gzr=0and gCf € Y+ Cy. Then g.vert(C) > ¢.0 and thus g.vert(C) € Y.
One sets d* " (0,C) = g.vert(C). This does not depend on the choices we made by [[Teh18,
Theorem 4.4.17]. This defines a G-invariant “distance” d*" : 7y x< €7 — Y.

Lemma 6.10. Let v € W°, A€ Y. Then
E:={CeC|C>0,pin(C) €v.CH+Y and d” (0,C) = \}

is finite.
Suppose moreover that A\ € Y and that v =1. Then E = {\ + C; }.

Proof. In order to prove that F is finite, we begin by proving that vert(F) := {vert(C)|C €
E‘} is finite. To that end, our idea is to study, for each C' € E, the path T = p .05 : [0,1] —
A, where 7 is the segment joining 0 to vert(C'). We want to prove that 7/ (1) lies in a finite
set depending only on v and A. In order to use the assumption that p,.(C) € Y +v.Cy,
it is convenient to extend slightly the segment 4 and this is why we consider a segment
7 :[0,1] = Z such that v(0) = 0 and ~(3) = vert(C).

Let C' € E. Let A be an apartment containing 0 and C. Let g € G be such that g.A = A,
g.0=0and g.(A\+C;) = C. Let v:[0,1] — A be defined by v(t) = g.2tA. Then 7™ = p 07
is a Hecke path with respect to +o0o of shape 2). Let wy € W be such that (wy)™'.A € Y+
and such that w, has minimum length for this property. Set Cy = g.(A + wy.Cy ). Then:

dV(C,Cy) = dV (9. N+ CF), g (A +wa.CF)) = dVT (A + CF AN+ wy.Cf ) = w.

Take a minimal gallery I" from C to C. Then I" has length ¢(w,) and py(I') is a gallery
from pioo(C) 10 pioo(Cy). Therefore

w = A" (p10o(C), proo(Ch)) € WP and L(w) < £(wy).

Moreover, by definition of E, p,+(C) = v+v.Cy, for some v € Y. Consequently, pio(C)) =
v+ vw.Cy. Therefore for € €]0,3] small enough, 7([3,5 + ¢]) C v 4+ vw.C} and thus
7. (3) = 2vw.\. By Lemma 6.7, /(1) = w.) for some u € W such that £(u) < £(v)+£(wy).

Let now 7 : [0,1] — A be defined by 5(t) = g.tA for t € [0,1] and T = p; ©5. Then by
what we proved above, 7’ (0) = u.\. By [BPGR16, Lemma 1.8] we have

u=7_(1) <qv 7(1) = 7(0) = paoc (vert(C)) <gv AT, L(u) < L(v) + ((wy),
where ATT is the unique element of Y™ N WY \. We deduce that
F = pioo(vert(E)) = {pio(vert(C))|C € E}

is finite.

Let v € F. Let E, = {C € E|p;oo(C) = v +0.Ci }. If C € E,, then d (0, vert(C)) =
AT and pio(vert(C)) = v. Using Theorem 6.8 we deduce that {vert(C)|C € E,} is finite.
By Lemma 6.9, F, is finite and thus £ = UueF E, is finite.

Suppose now that v = 1 and that A € Y™+, Take C' € E. We use the same notation as
in the beginning of the proof. Then we have 7r’_(%) = A = 1.\ and by Lemma 6.7 we deduce
that there exists e > 0 such that m(¢) = 2tA for every ¢ € [0, 3 + €. Moreover 7(0) € A
and thus by [[1¢b17, Lemma 3.4] we deduce that ([0, 3 + ¢]) C A. Therefore C' C A. Thus
pioo(C) = C = v+ Cf for some v € Y. Moreover d”" (0,C) = A + Cf and thus v = X\,
which proves that E' = {\ + C; } and completes the proof of the lemma. O
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In the next lemma, we use the projection of a chamber on a vertex introduced in [BPGR 16,
1.9]. Let z € A and C be a positive chamber of A such that y := vert(C') > z. Let C" be
the positive vectorial chamber of A such that C' = F, cv. Take £ € C”. Then there exists
a positive vectorial chamber C¥ C A such that = + C” O conv(z,ly,y + €£]), for € > 0
small enough, where conv denotes the convex hull. Then the chamber pr,(C) = F, 5. is the
projection of C'on z. Let now = € Z and C' be a positive chamber of Z such that vert(C') > x.
Then there exists g € G such that g.x, g.C C A. We set pr (C) = g_l.(prg.w(g.C’)). This is
the projection of C' on x. Then by [Hé¢bh18, Theorem 4.4.17], pr,(C') does not depend on
the choice of g, every apartment containing = and C' contains pr,(C) and every h € G fixing

z and C fixes pr, (C).

Lemma 6.11. Let w € W and v € W". Then:
1. Upews (numw Kp 0 Bn,Kp) /K7 is finite,
2. {u € WY n,KingK; N Bn,K; # 0} is finite.

Proof. Set F' = |J,cpo (nu K nw K 0 Bn,Kp) /K. Let u € W¥ and g € n,KnwK;. Set
C' = ¢.Cf. Then dV" (u.C{,C) = w. Thus there exists h € G such that h~'.A contains
u.Cy,C and such that h.u.Cj = Cf,h.C = w.Cf. Write w = M (e wr = A+ w.x
for every z € A). Set ' = n,-1h. Then A'"'.A = h™'.A contains 0,C, .0 = 0 and
W.C=w ' X+Ci. Thus d (0,C) = w=".\. Therefore

FCf c{Ce€|C>0,piae(C) €v.CH+Y and d (0,C) = w™ A}

By Lemma 6.10, F.C{ is finite, which proves that F' is finite.

Let u € W be such that there exists g € n,KnwK; N Bn,K;. Let P = {pr,(C")|C" €
F.Cf}. Let C = g.Cf. Then as V" (u.Cf,C) = w, there exists h € G such that h~".A
contains u.Cy", C, hu.Cf = Cf and h.C' = w.C. Then h.pry(C) = pry(w.Cy ). Therefore

w' = d"" (ha.Cf , hprg(C)) = dV (u.Cf , pro(C)) = V" (CF, pro(w.CF)) € W.
Consequently there exists C' € P such that " (u.Cy, C") = w'. Consequently,

Uu) = £(d"" (u.Cf,CF)) < e(w') + g}gf(dW*(O', ).

This proves (2). O
Definition/Proposition 6.12. Let ¢ € {+,0} and 7 € T%. Let ¢ € Hr and f € I, e.

Define ¢.f € I, by
o.f= Y olgg.f

gEG*/KI

Then . is well-defined and induces an action of Hr on I ge.

Proof. To prove that ¢.f is a well-defined element of I, g, it suffices to prove it for ¢ = T},
and f = f,, forv e WY and w € WT. Let g € G and h € G°. Suppose that Ty (g)f,(hg) #
0. Then g € KmnwK; N h 'Bn,K;. Write h = bn,k, with b € B and k € K;. Then
KmwKr N k™ n1Bn,K; # (). Therefore

g c KingKrnN ]{I_IHJIBHUK[ = k_l(K[nwK[ N k_lnngan[). (5)
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By Lemma 6.11,

Y Twl9)fulhg) = > Tw(9)fo(hg)

geEGT /Ky gEK rnw KiNk—In, ' Bn, K1 /K

is well-defined. Thus Ty.f, is a well-defined map G — F. The fact that it is right K-
invariant and that Ty.f(bh) = 6Y/27(b)Ty.f(h), for B € B¢ are clear.

Let u € W". Suppose that Ty,.f,(n,) # 0. Then by (5), KnwK; Nn,'Bn,K; # (. By
Lemma 6.11 we deduce that {u € W*| Ty.f,(n,) # 0} is finite, which proves that Ty.f, is
an element of I ge.

The fact that (¢ * ¢').f = ¢.(¢'.f) for every f € I, ge, ¢, ¢’ € Hr is an easy consequence
of the fact that ¢ x ¢'(h) = >_ v /i, 9(9)¢ (g~ h) for every h € G* /K. O

6.2.2 Isomorphism between I: and I, -

Let 7 : Y — F be a monoid morphism. Then 7 induces an algebra morphism 7 : F[Y 1] — F
and thus this defines a representation It = Indzﬁ,ﬂ(f) = Hr Qv+ F. Let € € {+,0}.
The aim of this section is to prove that if 7 € (T%)¢ then the map I¢ — I, g defined by
h.l®; 1+ h.fi, for h € Hz is well-defined and is an isomorphism of Hz-modules (see
Proposition 6.17). To that end, we prove that Z*.f; = 7(\)f; for A € Y*. For this we begin
by proving that if A\ € Y** then Z*.f; = 7(\)f1. In the reductive case, this is sufficient to
deduce the result for any A € Y = Y'*, since Z* is invertible for A € Y*+*. In the Kac-Moody
case however, Z* is not necessarily invertible for A € Y. We thus prove that if f € I, g is
such that Z*.f = 0 for A € Y+ sufficiently dominant, then f = 0.

Lemma 6.13. Let w € WV. Then Ty,.f1 = fu-1.

Proof. Let v € W*.Then Ty. fi(nv) = - ca+ /i, Tw(9) [1(nwg). Suppose that T, fi(n,) # 0.
Then there exists g € Krn, K; Nn,; ' BK; and thus n,Kn,K; N BK; # ().

Let h € nyKin,K; N BK; and C = h.CJ. Then dV' (v.C5,C) = w and p,s(C) €
Y + Cf. Therefore vert(C') = 0 and hence p,(C) = Cf". By formula (4) of the proof of
Lemma 6.9, we have C' = C;. Consequently C = Cf, v = w™', supp(T,,.f1) C Bn,—1K;
and T,. f(n,-1) = 1. Therefore T,,.f1 = fu-1. O

Lemma 6.14. Let w e WY and A € Y N C}’. Then:
1. supp(Tx-fuw) C Uy<w BroKr.
2. Tx.fuw(ny) # 0.

Proof. Let v € W". Suppose that Ty.f,(n,) # 0. Then X := n,Kn,K; N Bn, K| is non-
empty. Let g € X. Let v:[0,1] — Z be defined by v(t) = g.t.A for t € [0,1]. Let m = poo07.
Then 7 is a Hecke path of shape A from 0 to py (Vert(C’)). For t € [0,1] where it makes
sense, write 7’ () = w_(t).\, 7 (t) = w’ (¢).\, where w’_(¢) and w’, () have minimum lengths
for these properties. By the proof of Lemma 6.10, w’ (1) < w (we have wy = 1 in this case).
Using Lemma 6.7 we deduce that w’, (0) < w. Let Cro+) (resp. Cyo+)) be the local chamber
based at 0 and containing m(t) (resp. y(t)) for t € [0, 1] near 0. Then

AV (CF, Cror) = AV (p10o(CF), i (Coory)) = AV (CF, Crony) = W (0).
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Let us prove that C,o+) = v.Cy. Let A be an apartment containing v.Cy and C. Let
h € G be such that h.A = A and such that h fixes v.Cy. Then

dV(CH A+ C) =d" (WO T (A + CF))
=
=dV" (v.CF, B L (N CY))
—dV' (v.Cf, ).

As A contains v.Cy", C and h™'.(\ + Cy ), we deduce that h~'.(A+ Cy) = C. In particular,
h='\ = g.\ and thus by [Roull, Proposition 5.4], v(t) = h~'.t.\ for all ¢t € [0,1]. Let &
be a neighborhood of 0 in A such that h pointwise fixes Q = "N v.C}. Then for ¢ € [0, 1]
small enough, v(t) € Q and thus C,o+) = v.Cy. Consequently, y(t) € A for t € [0, 1] small
enough, thus C,+) C A, thus Cg+) = Cro+) = v.Cy and hence v = w/, (0) < w. Therefore:

supp(7h.fuw) C U Bn,Kj.

v<w

Suppose now that v = w. Then with the same notation as above, one has v’ (0) = w.
Therefore w < w’ (t) < w and w < w/ (t) < w for every ¢t € [0,1] and hence 7 is the line
segment from 0 to w.\. Therefore if g € n, KnyK;NBn,K;, then pio(9.C) = w.(A+CF).
Consequently

nijnAKI N anK[ C U+nw.,\nwK1,

and n, , € T. Thus

T)\-fw(nw) = Z fw(nwg)

QGKITLAKII'_]TLZ}BTLU)KI/KI
= [n,KmyK; N anKI/KI|7'51/2(w.)\).

Moreover n,ny € n,KnyK; N Bn, Ky, which proves that T).f,(n,) # 0. O
Lemma 6.15. Let f € I; ge. Suppose that for some p €Y NCY, T,.f =0. Then f = 0.

Proof. Write f =" v @ fuw, where (a,) € F"" has finite support. Suppose that f % 0.
Let w € supp((a,)) be maximal for the Bruhat order. Then by Lemma 6.14, T),.f(n,) =
awTy. fu(n) # 0. We reach a contradiction and thus f = 0. O

Lemma 6.16. Let A € Y. Then Z*.f; = 7(\).f1.

Proof. First assume that A € Y. Then Z* = 6~Y/2(\)T), by [BPCGR16, 5.7 and Theorem
5.5]. By Lemma 6.14, supp(7.f1) = BK; and thus T.f; € Ffi.

We have nyK; € KmnyK; N BK;. Let g € KinyK; N BK;. Let C = g.Cf. Then
pioo(C) €Y +Cf and @ (0,C) = X. Thus by Lemma 6.10, C = A + C. Hence g € n)K;
and K K; N BK; = nyK;. Therefore Ty.fi(1) = fi(\) = §/27(\). Hence T\.f, =
S22\ fi and Z*. f1 = 7(A) f1.

Let now A € Y*. Then by [BPGR16, Theorem 5.5] and the fact that Z* = 6= 1/2(\)X?,
one has T,.Z*.fi = 6 V2N Doy fr = TN+ w)6Y2(u) fr = Tp(t(N).f1) for p € Y suffi-
ciently dominant. Thus by Lemma 6.15, Z*.f; = 7(\). fi, which proves the lemma. O

Proposition 6.17. Let € € {+,0}. Let 7 € T%. Then the map ¢ : IS¢ — I.ge defined by
¢(h1®; 1) — h.fy for h € Hx is well-defined and is an isomorphism of Hz-modules.

45



Proof. By Lemma 3.5 and Lemma 6.16, ¢ is well-defined. Let x € I¢ be such that ¢(z) = 0.
Write z = >~ o a7 ®; 1, with (a,) € FW’. Then ¢(x) = > wewy @y fi. Suppose that
x # 0. Let w € W" be such that a, # 0 and such that w is maximal for this property (for
the Bruhat order). Then by Lemma 6.14 and Lemma 6.13, ¢(2)(n,-1) = Ty fi(n,-1) # 0:
a contradiction. Therefore x = 0 and ¢ is injective. By Lemma 6.13 and Lemma 6.5,
(T f1)wew is a basis of I ge. Consequently ¢ is surjective, which proves the proposition. O

6.3 Extendability of representations of G* and Hr

In this subsection, we study the extendability of I+ g+ (resp. I} ) to a representation of G
(resp. PXH ), for 7 € T'F. We obtain a criterion depending on the extendability of 77 to an
element of Tz (see Proposition 6.28).

6.3.1 Extendability of elements of T

Recall that if 7 : YT — F is a monoid morphism [ = Ind;l[];ﬂ(T) = Hr Qry+] F is a
representation of Hz. If I is not the restriction of a representation of BLH r we call I a
non-extendable principal series representation of Hr. In this section we study the
existence of non-extendable principal series representations of Hr. We prove that in some
cases - for example when Hz is associated with an affine root generating system or to a size
2 Kac-Moody matrix - every principal series representations of Hr can be extended to a
representation of BYH x (see Lemma 6.20). We prove that there exist Kac-Moody matrices
such that Hr admits non-extendable principal series representations (see Lemma 6.24).

Let resy+ : Homypon (Y, F) — Homyon(Y'F, F) be defined by resy+(7) = 7y+ for all
7 € Homypon (Y, F).

Lemma 6.18. The map resy+ : Homg, (Y, F*) = Homypon (Y, F*) — Homypon (Y, F*) is a
bijection.

Proof. Let 7 € Homyon (Y, F*). Let v € C%. Let A € Y and n € Zx be such that A-+nv € T.

Then 7(\) = % and thus resy+ is injective.

Let 77 € Homyon (Y, F*). Let A € Y. Write A = A, — A, with A\, A_ € Y. Set

T(\) = igj’ which does not depend on the choices of A\_ and A;. Then 7 € Hompon (Y, F*)

is well-defined and resy+(7) = 7%, which finishes the proof. O

Lemma 6.19. Let 7 € Homyo, (Y, F) and x € Tr.
1. Suppose Homy . —moa(I7, Iy) # {0}. Then there exists w € W such that T = w.xy+.
2. Suppose Homy, _mod(Iy, I}) # {0}. Then there exists w € W such that 7 = w.x|y+.

Proof. (1) Let ¢ € Homyy, —moa(I, 1) \ {0}. Let 2 = ¢(1 ®,+ 1). Then Z .z = 7(\).x for
all \ € Y*. By Lemma 2.8, Z .2 # 0 for all A € Y*. Thus 7(\) # 0 for all A € Y.

Let p €Y. Let v € C} NY be such that p+ v € Y*. Then ZF.x = %:p Therefore
there exists x’ € Tr such that z € [,(x'). By Lemma 3.2, X’ € W".x. Moreover, X1Y+ =T,
which proves (1).

(2) Let ¢ € Homyy, moa(Iy, I7) \ {0}. Let z = ¢(1 ®, 1). Then Z .z = x(\).z for all
A € Y. By a lemma similar to Lemma 3.2 we deduce that x|y+ € W".7, which proves the
lemma. 0J
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One has Homyon (Y, (F,.)) = Home, (Y, F*) U {0}. Set A;, = (), ker(ay). Let T be

the interior of the Tits cone.

Lemma 6.20. Let 77 € Hompyion (Y, (F, )) Assume that there exists X € Y such that
7H(A) = 0. Then+(TNY) = {0}. In particular, if T = TUA4,, then Homyje (YT, (F,.) =
Homyon (Y, F*) U {0}.

Proof. Let pu € 7 NY. Then for n > 0, np € A+ T. Indeed, np— A = n(p — %) € T for
n > 0. Hence 7% (nu) = (71 (u))" = 0. O

A face F¥ C T is called spherical if its fixator in W is finite.

Remark 6.21. 1. If A is associated to an affine Kac-Moody matriz, then T = T U Ain
(see [Heb1S, Corollary 2.3.8] for example).

2. If A is associated to a size 2 indefinite Kac-Moody matriz, then T = TUA;,. Indeed, by
[Rém02, Théoréme 5.2.8 ], T is the union of the spherical vectorial faces. By [Roull,
1.3],if J C . and w € W, the fizator of w.F" is w.W"(J).w™". Therefore the only
non-spherical face of T is A, and hence T = TUA,,.

8. Let A = (i) ep,3) be a Kac-Moody matriz such that for alli # j, a; ja;; > 4. Then by
[Kum02, Proposition 1.3.21], WV is the free group with 3 generators sy, S, S3 of order
2. Thus for all J C .7 such that |J| =2, F'(J) is non-spherical. Hence T 2 T UAy,.

6.3.2 Construction of an element of Homy, (Y, F) \ Homye, (Y, F)

We now prove that there exist Kac-Moody matrices for which
Homyon (Y, F) # Hompyon (Y, F).

Assume that A is associated to an invertible indefinite size 3 Kac-Moody matrix (see [[Kac94,
Theorem 4.3] for the definition of indefinite). Then one has A = A’ & A;,, where A’ =
P, Ray. Maybe considering A/A;,, we may assume that A;, = {0}.

Recall that T is the disjoint union of the positive vectorial faces of A.

Lemma 6.22. Assume that there exists a non-spherical vectorial face F* # {0}. Let x € T
andy € T\ F*. Then [z,y]N F* C {z}.

Proof. Assume that y € 7. Then (z,y] € T and thus [z,y] N F* C {z}.

Assume that y ¢ 7. For a € T, we denote by F? the vectorial face of 7 containing a. If
EF} = FJ, then [x,y] C F}. As I} # F", we deduce that [z,y] N F” = (. We now assume
that I, # FJ. As IW" is countable, the number of positive vectorial faces is countable and
thus there exist v # u’ € [z, y] such that F)’ = F. Then the dimension of the vector space
spanned by F! is at least 2. Thus there exists w € W such that F! = w.F"(J), for some
J C . such that |J| < 1. Then the fixator of FV is w.Wj.w™!, where W; = (J). Then W
is finite and thus F? is spherical. Consequently, (z,y) = (z,u] U [u,y) C T and the lemma
follows. O

Lemma 6.23. Assume that there exists a non-spherical vectorial face F* # {0}. Then T\ F
and T \ {0} are convex.
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Proof. Let x,y € T\ F". Suppose that [z,y] N FY # (. By Lemma 6.22, y € F* = F* U {0}
and hence y = 0. Let FY be the vectorial face containing x. Then [z,y) C FY and hence
[z,9) N F* = (: a contradiction. Thus 7 \ F" is convex.

By [GR14, 2.9 Lemmal, there exists a basis (d5)scs of @, Ray such that 6,(7) > 0
for all s € .. Thus T \ {0} is convex and hence 7\ F* =T \ F*NT \ {0} is convex. [

Lemma 6.24. Assume that A is associated with an indefinite Kac-Moody matriz of size 3
such that there exists a non-spherical face different from A;,. Assume moreover that () )se.»

is a basis of A. Then Homy, (Y, (F,.)) 2 Homyen (Y7, F*) U{0}.

Proof. Let 75 = 14w : T — F. Let us prove that 7 € Homyjen (7, (F, .)).

Let 2,y € T. lf w2,y € T\ F?, then x +y = 2.3(x+y) € T \ F’ by Lemma 6.23 and thus
THax+y)=0=7"(2)r"(y).

Suppose z € F* and y € T\ F?, then x +y = 2.5(x +y) € T \ F* by Lemma 6.22. Thus
THrty)=0="7"(2)7"(y).

Suppose # = {0} and y € T \ F*. Let F} be the vectorial face containing y. Then
(z,y] € F; and hence z +y € F;: 77(x +y) = 0 = 77(x)7"(y). Consequently, 7+ €
Homyion (7, (F, ).

Maybe considering w.F"”, for some w € W" we can assume FV C C’” Then there exist
S1, 52,83 € . such that 5” = {s1,82,53} and F* = o '({0}) N as‘l({O}) Na;'(RY). Let
A € A be such that ag, (\) = a,,(A) = 0 and a,,(N) = 1. There exists n & Z>, such that
A€ 1Y. Thus 7'|J{/+ € Hompion (Y, (F,.)) \ (Homyen (Y, F*) U{0}). O

6.3.3 Extension of the representations from G* to G

We now study under which condition the representation I, g+ of G* extends to a represen-
tation of G, for 7 € TF.

Lemma 6.25. Let g € G. Then fort € T such that t.0 is sufficiently dominant, tg € G*.

Proof. Let g € G and x = ¢g.0. There exists an apartment containing —oo and z, i.e there
exists g € G such that g.A N A contains a — C7F, for some a € A. For ¢ € C7} sufficiently
dominant, a — ¢ < x. In particular, there exists y € A such that y < x. For A € Y**
sufficiently dominant, y + A > 0. Then ny.y = y + XA > 0. As < is G-invariant, ny.y < ny.x
and thus 0 < ny.z = nyg.0. Therefore nyg € G™. O

Let x,y € Z. We write :L'<y (resp. :17<y) if there exists g € G such that gx, g.y € A and
y—xz €T (resp. y—x € T U{0}). This does not depend on the choice of g.

If G is reductive, then < y for every x,y € Z. We now assume that G is not reductive.
Then for every = € A, for every y € z + C}, one has r<yand y £ .

Lemma 6.26. Let x,y,z € Z. Suppose that x <y, y<z and z £ y. Then 2<z.

Proof. Let A be an apartment containing y and z. Let F}, be a positive face of A based at
y and containing [y, y'] for ¥ € [y, z] near y. Then by [Héb18, Theorem 4.4.17], there exists
an apartment A’ containing £, and x. Then A’ contains [y, y'] for some ' € [y, z] near y. In

the apartment A’, one has y<y’ and z < y. Consequently x<y' (because T +TCT) W
thus have 2<y’ and y/<z. Using [Roull, Théoréme 5.9] we deduce that <z. As z <y and
2z Ly, we have x # z, which proves the result. !

Lemma 6.27. 1. Let 7 € T be such that that T 18 the restriction of some element of Tr (still

denoted 7). Then every element of I( )t uniquely extends to an element of I( ).
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2. Let 7 € TE be such that T is not the restriction of some element of Tx. Then for every
f: G — F such that for all g € G* and b € BT, f(bg) = (6'27)(b)f(g), one has

f=0.

3. Let 7 € T be such that T is not the restriction of some element of Tr. Then there
exists t € T" such that for every f € I g+, t.f = 0.

— —

Proof. (1) Let f € I(r)*. Suppose that there exists f € I(r) extending f. Let g € G.
Let t € T be such that tg € G*. Then f(tg) = (6"/27)(t)f(g9) = f(tg) and thus f(g) =
(6127 (t))"" f(tg). Thus f is unique if it exists.

We now set f'(g) = (6Y/27(t))~ f(tg), for t € T such that ¢.0 is dominant and such that
tg € G, which exists by Lemma 6.25. Let us prove that f’ is well-defined. Let ¢, € T be
such that tg,t'g € G* and such that t.0,#.0 € Y™*. Then

f(tt'g) = (r62)(t') f(tg) = (16')(t) f(¥'g)

so that f(t'g) (751/2(15’))_1 = f(tg) (751/2(15))_1. This prove that f’ is well-defined. In partic-
ular, f’ extends f.

Let now t € T and g € G. Let us prove that f'(tg) = 76Y2(t)f'(g). Let t' € T be such
that t'g,t'tg € GT. Then

1'(g) = F(it'g) (027 (1) ™" = 76Y2(F) f (tg) (02 (1)

which proves that f'(tg) = 76Y2(t) f'(g).
Let now g € Gt and uw € U,. Let t € T be such that tg,tu € G*. Then f'(tug) =
76'2(t) f'(ug) and f'(tug) = 76'2(tu) f'(g) = 76'/(t) f(g). Thus

T6'2(t)f'(9) = 762 (1) f'(ug)

and hence f'(ug) = f'(g) for every u € U, and g € G™.
Let now g € G and v € U,. Let t € T be such that tug,tg € GT. As t normalizes U,
we can write tu = ut for some v’ € U,. Then

F'(ug) = f'(tug) (r6"V2(t)) " = f'(u'tg) (r6"2(1)) " = f/(tg) (r6"2(1) " = F'(g).
Let b € B and g € G. Write b = tu, with t € T and u € U,. Then we have

f'(bg) = f'(tug) = 76'%() f'(ug) = 7' 2(t) f'(9) = 76" *(0) f'(9)
and thus f’ € ﬁ;) and f" extends f. This proves (1).

(2) Let 7 € T# be such that 7 is not the restriction of some element of T%. Then by
Lemma 6.18, there exists ¢ € T such that 7(¢) = 0. Let f : G — F be such that for all g € G*
and b € BT, f(bg) = (6'7)(b)f(g). Let g € G. Then f(g) = f(tt~'g) = T6"2(t) f(t~'g) = 0,
which proves (2).

(3) By Lemma 6.20, one has 7(t') = 0 for every ¢’ € T such that .0 € T. Let ¢t € T be
such that t.0 € C}. Let g € GT and f € I g+. Then t.0>0 and t.0 £ 0. Therefore gt.0>¢.0
and gt.0 £ ¢.0. Moreover g.0 > 0 and thus by Lemma 6.26 we have ¢g¢.0>0. Using Lemma 6.5
we write gt = bn,k, with b € BY, v € WY and k € K;. Then ¢t.0 = b.0, which proves that
b.0>0. Write b = «/t', with v/ € U, and ¢’ € T. Then by Theorem 6.6, p o (b.0) = #'.0>0
and thus 7(#') = 0. Therefore f(gt) =t.f(g) = 7062(#') f(n,k) = 0, which proves (3). O

1

= f(tg)(r8"2(t)) ",

Proposition 6.28. Let 7+ € T.
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1. Suppose that 7" is not the restriction to Y of an element of Tr.

—

For every f € I(t7) \ {0}, for every G-module M, the restriction of M to G is not
isomorphic to GT.f.

For every x € I, \ {0}, for every B z-module M, the restriction of M to Hz is not
isomorphic to Hr.x.

2. Suppose that 7" is the restriction to Y of a (necessarily unique) element T of Tr.

Every element f* of IF:F\)Jr can be extended uniquely to an element f of I(1). Then
ft e fis an isomorphism of GT-modules.

The action of Hy on I, extends uniquely to an action of ®*Hx on I,. Then I, is
naturally isomorphic to I. as a B*H r-module.

Proof. (1) By Lemma 6.18, there exists A € Y" such that 7% (\) = 0. Then if z € I, \ {0},
Z*x = 0. If M is a BYH r-module, one has Z=*.Z .y = y # 0 for every y € M \ {0}. The
similar statement for G is a consequence of Lemma 6.27(3).

(2) The statement for [(/7-+\)+ follows from Lemma 6.27(1). The statement for I, follows
from Proposition 2.12. By Proposition 6.17, the actions of Hr on I, g+ and I, extend to
actions of P r on I, g+ and I, . O

A Existence of one dimensional representations of BMH ¢

In this section, we prove the existence of one dimensional representations of B“Hc, when
os =0, =o0,forall se.7.

Lemma A.1. Assume that F = C and that there exists o € C such that o5 = o, = o for all
s € & and such that |o| # 1. Let ¢ € {—1,1} and 7 € Tt be such that T(a)) = o* for all

s € .. Then I, admits a unique mazimal proper submodule M. Moreover, I, = M &Cl®, 1
and if v € I./M, then Z .2 = 7(\).x and Hy,.x = (ed)" ™ .z for all (w,\) € W¥ x Y.

Proof. By Lemma 5.2, such a 7 exists. Let ¢ = 0. Let ht : Y — Q be a Z-linear map such
that ht(aY) = 1 for all s € .. Then one has 7(a") = ¢"*(") for all oV € &V,

Let s € .. With the same notation as in Lemma 4.4, let ¢5 = ¢(s.7,7) : Is, — I,. Then
by Lemma 4.4 M, := Im(¢) is a proper submodule of .. Moreover, H; —eo®®, 1 € M,. Let
M =73, M, Let we WY\ {1} and w = s;...5s; be a reduced expression. Let v = wsy.
Then H,.(Hs, — eo¢) = H,, — ec*H, € M, . Therefore, for all w € W¥\ {1}, there exists
T, € M such that 77(z,) = 1 and z,, € M N I=*. By induction on {(w) we deduce that
M+Cle,1=1,.

By [GR14, Lemma 2.4 a)|, 7 € T¢™®. Moreover, by Proposition 3.4 (2),

I, = @ I (w.T)

weWwv

and if we choose &, € I.(v.7)\ {0} for all v € W¥, then (&,),ewv is a basis of I,. For w € W,
let 7§ : I, — C be the linear map defined by 75,(&,) = d,.,, for all v € W". As & € Cl ®, 1,
one has 7$(M,) = {0} for all s € .. Thus I, = M & C1 ®, 1. Moreover, M C (75)~*({0})
and by dimension M = 75({0}). We deduce that M is the unique maximal proper submodule
of I, and the lemma follows. O
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Remark A.2. Actually, the representations constructed in Lemma A.1 generalize the well

known trivial representation (when ¢ = 1) and Steinberg representation (when € = —1).
For simplicity, we assumed all the og, 0., to be equal, but this is not necessary. We can
also construct these representations directly by setting triv(H,) = oy, triv(Z%) = 0,0,

St(H,) = —o;', St(Z%) = o 0’~". Using the fact that the relations (BL1) to (BL4) are

preserved by triv and St, we can extend them to representations of PYHe over C.

B Examples of possibilities for IV, for size 2 Kac-Moody
matrices

In this section, we prove that there exist size 2 Kac-Moody matrices such that for each
subgroup H of W", there exist 7 € T such that W, is isomorphic to H. We assume that
as(Y) = Z for all s € . and thus W;) = W,. We already proved the existence of regular
elements in Lemma 5.1. If 7 € Tt is such that 7(o) = 1 and 7(a)) is not a root of 1, then
WT = {]., Sl}.

Lemma B.1. Let A = (a; ;)i )ep2p2 be a Kac-Moody matriz. Assume that ay o and ag, are
even and such that a; a2 is greater than 6. Let v, be a primitive %(amam —4)-th root of 1.

lCL
Let vy =3 %, Let 7:Y = ZaY ® Zaw — C* be the group morphism defined by () = 7;
for both i € {1,2}. Then W, = (s182) ~ Z.

Proof. Let 7/ € T¢ and ~, = 7/(¢)) for both ¢ € {1,2}. For A € Y, one has (s — s1).A =
a;(AN)ay — az(N)ay. Thus

51.7 = 85.7 = VA €Y, 7 (ar(N)a) — aa(N)ay) =1

=AY,y =4

= (1) = () and (1) = ()
Thus s1.s9.7 = 7. Moreover so.7 # 7 and hence W, = (s13). O

Ifr=1:Y — {1}, then W, = 1. The following lemma proves that W, can be a proper
subgroup of W isomorphic to the infinite dihedral group.

Lemma B.2. Let A = (a;;)i )en,2p be an irreducible Kac-Moody matriz which is not a
Cartan matriz. One has a1 2a91 > 4 and maybe considering ‘A, one may assume a; 5 < —2.
Write WY = (s1,s2). Let 72 be an aya-th primitive root of 1 and 7 € T be defined by

(o)) =1 and 7(a),) = v2. Then W, = (s1,525152).

Proof. Let T = s5.7. Let us prove that s;.7 = 7, i.e that 7(a)) = 1. One has 7(a},) =
T(s2.ay) = T(a), — ag(a))ay,) = 7(ay,)™? = 1. Thus W, > {s1,s25152}. Therefore

Wv /W, = {W,,t.W,}. Moreover t ¢ W,, thus [W? : W.] = 2 and hence W, = (s1, 52512).
O
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