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Abstract

Recently, Iwahori-Hecke algebras were associated with Kac-Moody groups over non-

Archimedean local fields. We introduce principal series representations for these alge-

bras. We study these representations and partially generalize irreducibility criteria of

Kato and Matsumoto.

1 Introduction

1.1 The reductive case

Let G be a split reductive group over a non-Archimedean local field K. Let T be a maximal
split torus of G and Y be the cocharacter lattice of (G, T ). Let B be a Borel subgroup of G
containing T . Let TC = HomGr(Y,C∗). Then τ can be extended to a character τ : B → C∗.
If τ ∈ TC, the principal series representation I(τ) of G is the induction of τδ1/2 from B to G,
where δ : B → R∗

+ is the modulus character of B. More explicitly, this is the space of locally
constant functions f : G → C such that f(bg) = τδ1/2(b)f(g) for every g ∈ G and b ∈ B.
Then G acts on I(τ) by right translation.

To each open compact subgroup K of G is associated the Hecke algebra HK . This is the
algebra of functions from G to C which have compact support and are K-bi-invariant. There
exists a strong link between the smooth representations of G and the representations of the
Hecke algebras of G. Let KI be the Iwahori subgroup of G. Then the Hecke algebra HC

associated with KI is called the Iwahori-Hecke algebra of G and plays an important role in
the representation theory of G.

The algebra HC acts on Iτ,G := I(τ)KI by the formula

φ.f =

∫

G

φ(g)g.fdµ(g), ∀(φ, f) ∈ HC × I(τ)KI ,

where µ is a Haar measure on G. This formula can actually be rewritten as

φ.f = µ(KI)
∑

g∈G/KI

φ(g)g.f, ∀(φ, f) ∈ HC × I(τ)KI . (1)

Then I(τ) is irreducible as a representation of G if and only Iτ,G is irreducible as a represen-
tation of HC.

Let W v be the vectorial Weyl group of (G, T ). By the Bernstein-Lusztig relations, HC

admits a basis (ZλHw)λ∈Y,w∈W v such that
⊕

λ∈Y CZλ is a subalgebra of HC isomorphic to
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the group algebra C[Y ] of Y . We identify
⊕

λ∈Y CZλ and C[Y ]. We regard τ as an algebra
morphism τ : C[Y ] → C. Then Iτ,G is isomorphic to the induced representation Iτ =
IndHC

C[Y ](τ) and we refer to [Sol09, Section 3.2] for a survey on this subject.
Matsumoto and Kato gave criteria for the irreducibility of Iτ . The group W v acts on Y

and thus it acts on TC. If τ ∈ TC, we denote by Wτ the stabilizer of τ in W v. Let Φ∨ be
the coroot lattice of G. Let q be the residue cardinal of K. Let W(τ) be the subgroup of Wτ

generated by the reflections rα∨ , for α∨ ∈ Φ∨ such that τ(α∨) = 1. Then Kato proved the
following theorem (see [Kat81, Theorem 2.4]):

Theorem 1. Let τ ∈ TC. Then Iτ is irreducible if and only if it satisfies the following
conditions:

1. Wτ = W(τ),

2. for all α∨ ∈ Φ∨, τ(α∨) 6= q.

When τ is regular, that is when Wτ = {1}, condition (1) is satisfied and this is a result
by Matsumoto (see [Mat77, Théorème 4.3.5]).

1.2 The Kac-Moody case

Let G be a split Kac-Moody group over a non-Archimedean local field K. We do not know
which topology on G could replace the usual topology on reductive groups over K. There is
up to now no definition of smoothness for the representations of G. However one can define
certain Hecke algebras in this framework. In [BK11] and [BKP16], Braverman, Kazhdan and
Patnaik defined the spherical Hecke algebra and the Iwahori-Hecke HC of G when G is affine.
In [GR14] and [BPGR16], Bardy-Panse, Gaussent and Rousseau generalized these construc-
tions to the case where G is a general Kac-Moody group. They achieved this construction
by using masures (also known as hovels), which are analogous to Bruhat-Tits buildings (see
[GR08]). Together with Abdellatif, we attached Hecke algebras to subgroups slightly more
general than the Iwahori subgroup (see [AH19]).

Let B be a positive Borel subgroup of G and T be a maximal split torus of G contained
in B. Let Y be the cocharacter lattice of G, W v be the Weyl group of G and Y ++ be the set
of dominant cocharacters of Y . The Bruhat decomposition does not hold on G: if G is not
reductive,

G+ :=
⊔

λ∈Y ++

KIλKI ( G.

The set G+ is a sub-semi-group of G. Then HC is defined to be the set of functions from
KI\G+/KI to C which have finite support. The Iwahori-Hecke algebra HC of G admits a
Bernstein-Lusztig presentation but it is no longer indexed by Y . Let Y + =

⋃
w∈W v w.Y ++ ⊂

Y . Then Y + is the integral Tits cone and we have Y + = Y if and only G is reductive. The
Bernstein-Lusztig-Hecke algebra of G is the space BLHC =

⊕
w∈W v C[Y ]Hw subject to

to some relations (see subsection 2.3). Then HC is isomorphic to
⊕

w∈W v C[Y +]Hw.
Let B+ = B ∩ G+. Let T+

C = HomMon(Y
+,C) \ {0} and TC = HomGr(Y,C∗). Let

ǫ ∈ {+, ∅}. If τ ǫ ∈ T ǫ
C we define the space Î(τ ǫ)ǫ of functions f from Gǫ to C such that

for every g ∈ Gǫ and b ∈ Bǫ, f(bg) = τδ1/2(b)f(g). As we do not know which condition
could replace “locally constant”, we do not impose any regularity condition on the functions

of Î(τ ǫ)ǫ. Then Gǫ acts by right translation on Î(τ ǫ)ǫ. Let Iτǫ,Gǫ be the subspace of Î(τ ǫ)ǫ

of functions which are invariant under the action of KI and whose support satisfy some
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finiteness conditions (see 6.2.1). Inspired by formula (1), we define an action of HC on Iτǫ,Gǫ

by

φ.f =
∑

g∈G/KI

φ(g)g.f, ∀(φ, f) ∈ HC × Iτǫ,Gǫ.

As often in the Kac-Moody theory, the fact that this formula is well-defined is not obvious.
We prove some finiteness results on G to prove that the formula only involves finite sums
and that φ.f is an element of Iτǫ,Gǫ (see Definition/Proposition 6.12).

We regard τ ǫ as an algebra morphism C[Y ǫ] → C. Let Iǫτǫ be the representation of BLHǫ
C

(where BLH+
C = HC) defined by induction of τ ǫ from C[Y ǫ] to BLHǫ

C.
We prove the following proposition, which seems to indicate that the representations of

HC correspond to representations of G+ and that the representations of BLHC correspond to
representations of G:

Proposition 1. (see Proposition 6.28)
Let τ+ ∈ T+

C .

1. Suppose that τ+ is not the restriction to Y + of an element of TC.

For every f ∈ Î(τ+) \ {0}, for every G-module M , the restriction of M to G+ is not
isomorphic to G+.f .

For every x ∈ I+τ+ \ {0}, for every BLHC-module M , the restriction of M to HC is not
isomorphic to HC.x.

2. Suppose that τ+ is the restriction to Y + of a (necessarily unique) element τ of TC.

Every element f+ of Î(τ+)+ can be extended uniquely to an element f of Î(τ). Then
f+ 7→ f is an isomorphism of G+-modules.

The action of HC on I+τ+ extends uniquely to an action of BLHC on I+τ+ . Then I+τ+ is
naturally isomorphic to Iτ as a BLHC-module.

Note that the existence of elements of T+
C which do not extend to elements of TC depends

on G. We prove that in some cases (for example when G is affine or associated with a size 2
Kac-Moody matrix) every element of T+

C is the restriction of an element of TC. We also prove
that for some size 3 Kac-Moody matrices, there exists τ ∈ T+

C which is not the restriction of
an element of TC (see Lemma 6.20 and Lemma 6.24).

We then restrict our study to the elements τ+ of T+
C which are the restriction of an element

τ of TC. We prove that I+τ+ is irreducible if and only if Iτ is (see Proposition 2.12). We then
study the irreducibility of Iτ . We prove the following theorem, generalizing Matsumoto’s
irreducibility criterion (see Corollary 4.10):

Theorem 2. Let τ be a regular character. Then Iτ is irreducible if and only if for all α∨ ∈ Φ∨,

τ(α∨) 6= q.

We also generalize one implication of Kato’s criterion (see Lemma 4.5 and Proposi-
tion 4.17). Let W(τ) be the subgroup of Wτ generated by the reflections rα∨ , for α∨ ∈ Φ∨

such that τ(α∨) = 1.

Theorem 3. Let τ ∈ TC. Assume that Iτ is irreducible. Then:

1. Wτ = W(τ),
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2. for all α∨ ∈ Φ∨, τ(α∨) 6= q.

We then obtain Kato’s criterion when the Kac-Moody group G is associated with a size
2 Kac-Moody matrix (see Theorem 5.35):

Theorem 4. Assume that G is associated with a size 2 Kac-Moody matrix. Let τ ∈ TC.
Then Iτ is irreducible if and only if it satisfies the following conditions:

1. Wτ = W(τ),

2. for all α∨ ∈ Φ∨, τ(α∨) 6= q.

In order to prove these theorems, we first establish the following irreducibility criterion.
For τ ∈ TC set Iτ (τ) = {x ∈ Iτ |θ.x = τ(θ).x ∀θ ∈ C[Y ]}. Then:

Theorem 5. (see Theorem 4.8) Iτ is irreducible if and only if:

• τ(α∨) 6= q for all α∨ ∈ Φ∨

• dim Iτ (τ) = 1.

Remark 1.1. Suppose that G is an affine Kac-Moody group. Then by [BPGR16, 7], some

extension B̃LHC of BLHC contains the double affine Hecke algebra introduced in [Che92]. It
would therefore be interesting to find a link between the representations of BLHC and those of
this algebra.

Framework Actually, following [BPGR16] we study Iwahori-Hecke algebras associated
with abstract masures. In particular our results also apply when G is an almost-split Kac-
Moody group over a non-Archimedean local field. The definition of W(τ) and the statements
given in this introduction are not necessarily valid in this case and we refer to Proposition 4.17,
Theorem 5.35 and Theorem 4.8 for statements valid in this frameworks.

Organization of the paper The paper is organized as follows. In a first part (sections 2
to 5) we consider “abstract” Iwahori-Hecke algebras. We define them using the Bernstein-
Lusztig presentation and they are a priori not associated with a group. The techniques
used are mainly algebraic, based on the Bernstein-Lusztig relations. In a second part (sec-
tion 6), we introduce Kac-Moody groups, masures and Iwahori-Hecke algebras associated
with groups, and we associate some principal series representations to these groups. The
techniques involved are mainly building theoretic.

In section 2, we recall the definition of the Iwahori-Hecke algebras and of the Bernstein-
Lusztig-Hecke algebras, introduce principal series representations and define an algebra BLH(TF )
containing BLHF , where F is the field of coefficients of BLHF .

In section 3, we study the F [Y ]-module Iτ and we study the intertwining operators from
Iτ to Iτ ′ , for τ, τ ′ ∈ TF .

In section 4, we establish Theorem 5. We then apply it to obtain Theorem 2 and Theo-
rem 3.

In section 5 we consider the weight vectors of Iτ and use them to prove Kato’s irreducibility
criterion for size 2 Kac-Moody matrices.

In section 6, we introduce Kac-Moody groups over local fields, masures, and Iwahori-
Hecke algebras of these groups. We introduce some principal series representations of these
groups, study them and relate them to the principal series representations studied in the
previous sections.

There is an index of notations at the end of the paper.
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2 Bernstein-Lusztig presentation of Iwahori-Hecke alge-

bras

Let G be a Kac-Moody group over a non-Archimedean local field. Then Gaussent and
Rousseau constructed a space I, called a masure on which G acts, generalizing the construc-
tion of the Bruhat-Tits buildings (see [GR08], [Rou16] and [Rou17]). Rousseau then gave in
[Rou11] an axiomatic definition of masures inspired by the axiomatic definition of Bruhat-
Tits buildings. We call a masure satisfying these axioms an abstract masure. It is a priori
not associated with any group.

In [BPGR16], Bardy-Panse, Gaussent and Rousseau attached an Iwahori-Hecke algebra
HR to each abstract masure satisfying certain conditions and to each ring R. The algebra
HR is an algebra of functions defined on some pairs of chambers of the masure, equipped
with a convolution product. Then they prove that under some additional hypothesis on the
ring R (which are satisfied by R and C), HR admits a Bernstein-Lusztig presentation. In
this section, we will only introduce the Bernstein-Lusztig presentation of HR and we do not
introduce masures (we introduce them in section 6). We however introduce the standard
apartment of a masure. We restrict our study to the case where R = F is a field.

2.1 Standard apartment of a masure

2.1.1 Root generating system

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix A = (ai,j)i,j∈I
indexed by a finite set I, with integral coefficients, and such that :

(i) ∀ i ∈ I, ai,i = 2;

(ii) ∀ (i, j) ∈ I2, (i 6= j) ⇒ (ai,j ≤ 0);

(iii) ∀ (i, j) ∈ I2, (ai,j = 0) ⇔ (aj,i = 0).

A root generating system is a 5-tuple S = (A,X, Y, (αi)i∈I , (α
∨
i )i∈I) made of a Kac-Moody

matrix A indexed by the finite set I, of two dual free Z-modules X and Y of finite rank,
and of a free family (αi)i∈I (respectively (α∨

i )i∈I) of elements in X (resp. Y ) called simple
roots (resp. simple coroots) that satisfy ai,j = αj(α

∨
i ) for all i, j in I. Elements of X

(respectively of Y ) are called characters (resp. cocharacters).
Fix such a root generating system S = (A,X, Y, (αi)i∈I , (α

∨
i )i∈I) and set A := Y ⊗ R.

Each element of X induces a linear form on A, hence X can be seen as a subset of the dual
A∗. In particular, the αi’s (with i ∈ I) will be seen as linear forms on A. This allows us to
define, for any i ∈ I, an involution ri of A by setting ri(v) := v−αi(v)α

∨
i for any v ∈ A. Let

S = {ri|i ∈ I} be the (finite) set of simple reflections. One defines the Weyl group of
S as the subgroup W v of GL(A) generated by S . The pair (W v,S ) is a Coxeter system,
hence we can consider the length ℓ(w) with respect to S of any element w of W v. If s ∈ S ,
s = ri for some unique i ∈ I. We set αs = αi and α∨

s = α∨
i .

The following formula defines an action of the Weyl group W v on A∗:

∀ x ∈ A, w ∈ W v, α ∈ A∗, (w.α)(x) := α(w−1.x).
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Let Φ := {w.αi|(w, i) ∈ W v × I} (resp. Φ∨ = {w.α∨
i |(w, i) ∈ W v × I}) be the set of real

roots (resp. real coroots): then Φ (resp. Φ∨) is a subset of the root lattice Q :=
⊕

i∈I

Zαi

(resp. coroot lattice Q∨ =
⊕

i∈I Zα
∨
i ). By [Kum02, 1.2.2 (2)], one has Rα∨ ∩Φ∨ = {±α∨}

and Rα ∩ Φ = {±α} for all α∨ ∈ Φ∨ and α ∈ Φ.

2.1.2 Fundamental chamber, Tits cone and vectorial faces

As in the reductive case, define the fundamental chamber as Cv
f := {v ∈ A | ∀s ∈

S , αs(v) > 0}.
Let T :=

⋃

w∈W v

w.Cv
f be the Tits cone. This is a convex cone (see [Kum02, 1.4]).

For J ⊂ S , set F v(J) = {x ∈ A|αj(x) = 0∀j ∈ J and αj(x) > 0∀j ∈ S \J}. A positive
vectorial face (resp. negative) is a set of the form w.F v(J) (−w.F v(J)) for some w ∈ W v

and J ⊂ S . Then by [Rém02, 5.1 Théorème (ii)], the family of positive vectorial faces of A
is a partition of T and the stabilizer of F v(J) is WJ = 〈J〉.

One sets Y ++ = Y ∩ Cv
f and Y + = Y ∩ T .

Remark 2.1. By [Kac94, §4.9] and [Kac94, § 5.8] the following conditions are equivalent:

1. the Kac-Moody matrix A is of finite type (i.e. is a Cartan matrix),

2. A = T

3. W v is finite.

2.2 Recollections on Coxeter groups

2.2.1 Bruhat order

Let (W0,S0) be a Coxeter system. We equip it with the Bruhat order ≤W0 (see [BB05,
Definition 2.1.1]). We have the following characterization (see [BB05, Corollary 2.2.3]): let
u, w ∈ W0. Then u ≤W0 w if and only if every reduced expression for w has a subword that
is a reduced expression for u. By [BB05, Proposition 2.2.9], (W0,≤W0) is a directed poset,
i.e for every finite set E ⊂W0, there exists w ∈ W0 such that v ≤W0 w for all v ∈ E.

We write ≤ instead of ≤W v . For u, v ∈ W v, we denote by [u, v], [u, v), . . . the sets
{w ∈ W v|u ≤ w ≤ v}, {w ∈ W v|u ≤ w < v}, . . ..

2.2.2 Reflections and coroots

Let R = {wsw−1|w ∈ W v, s ∈ S } be the set of reflections of W v. Let r ∈ R. Write
r = wsw−1, where w ∈ W v, s ∈ S and ws > w (which is possible because if ws < w,
then r = (ws)s(ws)−1). Then one sets αr = w.αs ∈ Φ+ (resp. α∨

r = w.α∨
s ∈ Φ∨

+). This is
well-defined by the lemma below.

Lemma 2.2. Let w,w′ ∈ W v and s, s′ ∈ S be such that wsw−1 = w′s′w′−1 and ws > w,
w′s′ > w′. Then w.αs = w′.αs′ ∈ Φ+ and w.α∨

s = w′.α∨
s′ ∈ Φ∨

+.

Proof. One has r(x) = x − w.αs(x)w.α
∨
s = x − w′.αs′(x)w

′.α∨
s′ for all x ∈ A and thus

w.αs ∈ R∗w′.αs′ and w.α∨
s ∈ R∗w′.α∨

s′. As Φ and Φ∨ are reduced, w.αs = ±w′.αs′ and
w.α∨

s = ±w′.α∨
s . By [Kum02, Lemma 1.3.13], w.αs, w

′.αs′ ∈ Φ+ and w.α∨
s , w

′.α∨
s′ ∈ Φ∨

+,
which proves the lemma.
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Lemma 2.3. Let r, r′ ∈ R and w ∈ W v be such that w.αr = αr′ or w.α∨
r = α∨

r′. Then
wrw−1 = r′.

Proof. Write r = vsv−1 and r′ = v′s′v′−1 for s, s′ ∈ S and v, v′ ∈ W v. Then v′−1wv.αs = αs′.
Thus by [Kum02, Theorem 1.3.11 (b5)], v′−1wvsv−1w−1v′ = s′ and hence wrw−1 = r′.

Let r ∈ R. Then for all x ∈ A, one has:

r(x) = x− αr(x)α
∨
r .

Let α∨ ∈ Φ∨. One sets rα∨ = wsw−1 where (w, s) ∈ W v × S is such that α∨ = w.α∨
s . This

is well-defined, by Lemma 2.3. Thus α∨ 7→ rα∨ and r 7→ α∨
r induce bijections Φ∨

+ → R and
R → Φ∨

+. If r ∈ R, r = wsw−1, one sets σr = σs, which is well-defined by assumption on
the σt, t ∈ S (see Subsection 2.3).

For w ∈ W v, set NΦ∨(w) = {α∨ ∈ Φ∨
+|w.α∨ ∈ Φ∨

−}.

Lemma 2.4. ([Kum02, Lemma 1.3.14]) Let w ∈ W v. Then |NΦ∨(w)| = ℓ(w) and if w =
s1 . . . sr is a reduced expression, then NΦ∨(w) = {α∨

sr , sr.α
∨
sr−1

, . . . , sr . . . s2.α
∨
s1}.

2.2.3 Reflections subgroups of a Coxeter group

If W0 is a Coxeter group, a Coxeter generating set is a set S0 such that (W0,S0) is a
Coxeter system. Let (W0,S0) be a Coxeter system and R0 = {w.s.w−1|w ∈ W0, s ∈ S0}
be its set of reflections. A reflection subgroup of W0 is a group of the form W1 = 〈R1〉
for some R1 ⊂ R0. For w ∈ W0, set NR0(w) = {r ∈ R0|rw−1 < w−1}. By [Dye90, 3.3] or
[Dye91, 1], if S (W1) = {r ∈ R0|NR0(r)∩W1 = {r}}, then (W1,S (W1)) is a Coxeter system.

Let (W0,S0) be a Coxeter system. The rank of (W0,S0) is |S0|.

Remark 2.5. 1. The rank of a Coxeter group is not well-defined. For example, by [Müh05,
3], if k ∈ Z≥1 and n = 4(2k + 1) then the dihedral group of order n admits Coxeter
generating sets of order 2 and 3. However by [Rad99], all the Coxeter generating sets
of the infinite dihedral group have cardinal 2.

2. Using [Bou81, IV 1.8 Proposition 7] we can prove that if (W0,S0) is a Coxeter system
of infinite rank, then every Coxeter generating set of W0 is infinite.

3. Reflection subgroups of finite rank Coxeter groups are not necessarily of finite rank.
Indeed, let W0 be the Coxeter group generated by the involutions s1, s2, s3, with sisj of
infinite order when i 6= j ∈ J1, 3K. Let W ′

0 = 〈s1, s2〉 ⊂ W0 and R1 = {ws3w−1|w ∈
W ′

0} ⊂ R0. Then W1 = 〈R1〉 has infinite rank. Indeed, let ψ : W0 → W ′
0 be the group

morphism defined by ψ|W ′
0
= IdW ′

0
and ψ(s3) = 1. Then R1 ⊂ kerψ. Thus s3 appears

in the reduced writing of every nontrivial element of W1. By [BB05, Corollary 1.4.4] if
r ∈ R1, then the unique element of NR0(r) containing an s3 in its reduced writing is r.
Thus S (W1) ⊃ R1 is infinite.

2.3 Iwahori-Hecke algebras

In this subsection, we give the definition of the Iwahori-Hecke algebra via its Bernstein-Lusztig
presentation, as done in [BPGR16, Section 6.6].

Let R1 = Z[(σs)s∈S , (σ
′
s)s∈S ], where (σs)s∈S , (σ

′
s)s∈S are two families of indeterminates

satisfying the following relations:
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• if αs(Y ) = Z, then σs = σ′
s;

• if s, t ∈ S are such that the order of st is finite and odd (i.e if αs(α
∨
t ) = αt(α

∨
s ) = −1),

then σs = σt = σ′
s = σ′

t.

To define the Iwahori-Hecke algebra HR1 associated with A and (σs, σ
′
s)s∈S , we first

introduce the Bernstein-Lusztig-Hecke algebra. Let BLHR1 be the free R1-vector space with
basis (ZλHw)λ∈Y,w∈W v . For short, one sets Hw = Z0Hw for w ∈ W v and Zλ = ZλH1 for
λ ∈ Y . The Bernstein-Lusztig-Hecke algebra BLHR1 is the module BLHR1 equipped
with the unique product ∗ that turns it into an associative algebra and satisfies the following
relations (known as the Bernstein-Lusztig relations):

• (BL1) ∀ (λ, w) ∈ Y ×W v, Zλ ∗Hw = ZλHw;

• (BL2) ∀ s ∈ S , ∀ w ∈ W v, Hs ∗Hw =

{
Hsw if ℓ(sw) = ℓ(w) + 1

(σs − σ−1
s )Hw +Hsw if ℓ(sw) = ℓ(w)− 1

;

• (BL3) ∀ (λ, µ) ∈ Y 2, Zλ ∗ Zµ = Zλ+µ;

• (BL4) ∀ λ ∈ Y, ∀ i ∈ I, Hs ∗ Zλ − Zs.λ ∗ Hs = Qs(Z)(Z
λ − Zs.λ), where Qs(Z) =

(σs−σ−1
s )+(σ′

s−σ′−1
s )Z−α∨

s

1−Z−2α∨
s

.

The existence and uniqueness of such a product ∗ comes from [BPGR16, Theorem 6.2].

Definition 2.6. Let F be a field of characteristic 0 and f : R1 → F be a ring morphism
such that f(σs) and f(σ′

s) are invertible in F for all s ∈ S . Then the Bernstein-Lusztig-

Hecke algebra of (A, (σs)s∈S , (σ
′
s)s∈S ) over F is the algebra BLHF = BLHR1 ⊗R1 F .

Following [BPGR16, Section 6.6], the Iwahori-Hecke algebra HF associated with S and
(σs, σ

′
s)s∈S is now defined as the F-subalgebra of BLHF spanned by (ZλHw)λ∈Y +,w∈W v (recall

that Y + = Y ∩ T with T being the Tits cone). Note that for G reductive, we recover the
usual Iwahori-Hecke algebra of G, since Y ∩ T = Y .

In certain proofs, when F = C, we will make additional assumptions on the σs and σ′
s,

s ∈ S . To avoid these assumptions, we can assume that σs, σ
′
s ∈ C and |σs| > 1, |σ′

s| > 1 for
all s ∈ S .

Remark 2.7. 1. Let s ∈ S . Then if σs = σ′
s, Qs(Z) =

(σs−σ−1
s )

1−Z−α∨
s

.

2. Let s ∈ S and λ ∈ Y . Then Qs(Z)(Z
λ − Zs.λ) ∈ F [Y ]. Indeed, Qs(Z)(Z

λ − Zs.λ) =
Qs(Z).Z

λ(1− Z−αs(λ)α∨
s ). Assume that σs = σ′

s. Then

1− Z−αs(λ)α∨
s

1− Z−α∨
s

=





αs(λ)−1∑

j=0

Z−jα∨
s if αs(λ) ≥ 0

− Zα∨
s

−αs(λ)−1∑

j=0

Zjα∨
s if αs(λ) ≤ 0,

and thus Qs(Z)(Z
λ − Zs.λ) ∈ F [Y ]. Assume σ′

s 6= σs. Then αs(Y ) = 2Z and a similar
computation enables to conclude.

3. From (BL4) we deduce that for all s ∈ S , λ ∈ Y ,

Zλ ∗Hs −Hs ∗ Zs.λ = Qs(Z)(Z
λ − Zs.λ).
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4. When G is a split Kac-Moody group over a non-Archimedean local field K with residue
cardinal q, we can choose F to be a field containing Z[

√
q±1] and take f(σs) = f(σ′

s) =√
q for all s ∈ S .

5. By (BL4), the family (Hw ∗ Zλ)w∈W v,λ∈Y is also a basis of BLHF .

6. Let w ∈ W v and w = s1 . . . sk, with k ∈ Z≥0 and s1, . . . , sk ∈ S be a reduced expression
of w. We set σw = σs1 . . . σsk . This is well-defined, independently of the choice of a
reduced expression of w by the conditions imposed on the σs and by [BB05, Theorem
3.3.1 (ii)].

We equip F [Y ] with an action of W v. For θ =
∑

λ∈Y aλZ
λ ∈ F [Y ] and w ∈ W v, set

θw :=
∑

λ∈Y aλZ
w.λ.

Lemma 2.8. Let θ ∈ F [Y ] and w ∈ W v. Then θ∗Hw−Hw∗θw−1 ∈ BLH<w
F :=

⊕
v<wHvF [Y ].

In particular, BLH≤w
F :=

⊕
v≤wHvC[Y ] is a left finitely generated F [Y ]-submodule of BLHF .

Proof. We do it by induction on ℓ(w). Let θ ∈ F [Y ] and w ∈ W v be such that u :=
θHw−Hwθ

w−1 ∈ BLH(TF)
<w. Let s ∈ S and assume that ℓ(ws) = ℓ(w)+1. Then by (BL4):

θ ∗Hws = (Hwθ
w−1

+ u) ∗Hs = Hwsθ
sw−1

+ aHw + uHs,

for some a ∈ F . Moreover, by [Kum02, Corollary 1.3.19] and (BL2), u ∗Hs ∈ BLH(TF)
<ws

and the lemma follows.

Definition 2.9. Let HF ,W v =
⊕

w∈W v FHw ⊂ HF . Then HF ,W v is a subalgebra of HF . This
is the Hecke algebra of the Coxeter group (W v,S ).

2.4 Principal series representations

In this subsection, we introduce the principal series representations of BLHF .
We now fix (A, (σs)s∈S , (σ

′
s)s∈S ) as in Subsection 2.3 and a field F as in Definition 2.6.

Let HF and BLHF be the Iwahori-Hecke and the Bernstein-Lusztig Hecke algebras of
(A, (σs)s∈S , (σ

′
s)s∈S ) over F .

Let TF = HomGr(Y,F×) be the group of homomorphisms from Y to F∗. Let τ ∈ TF . Then
τ induces an algebra morphism τ : F [Y ] → F by the formula τ(

∑
y∈Y aye

y) =
∑

y∈Y ayτ(y),
for

∑
aye

y ∈ F [Y ]. This equips F with the structure of a F [Y ]-module.

Let Iτ = Ind
BLHF

F [Y ] (τ) =
BLHF ⊗F [Y ] F . For example if λ ∈ Y , w ∈ W v and s ∈ S , one

has:
Zλ.1⊗τ 1 = τ(λ)1⊗τ 1, Hw ∗ Zλ ⊗τ 1 = τ(λ)Hw ⊗τ 1 and

Zλ.Hs⊗τ 1 = Hs∗Zs.λ⊗τ 1+Qs(Z)(Z
λ−Zs.λ)⊗τ 1 = τ(s.λ)Hi⊗τ 1+τ

(
Qs(Z)(Z

λ−Zs.λ)
)
⊗τ 1.

Let h ∈ Iτ . Write h =
∑

λ∈Y,w∈W v hw,λHwZ
λ ⊗τ cw,λ, where (hw,λ), (cw,λ) ∈ F (W v×Y ),

which is possible by Remark 2.7. Thus

h =
∑

λ∈Y,w∈W v

hw,λcw,λτ(λ)Hw ⊗τ 1 =
( ∑

λ∈Y,w∈W v

hw,λcw,λτ(λ)Hw

)
1⊗τ 1.

Thus Iτ is a principal BLHF -module and (Hw ⊗τ 1)w∈W v is a basis of Iτ . Moreover Iτ =
HW v,F .1⊗τ 1 (see Definition 2.9 for the definition of HW v,F).

The definition of principal series representations of HF is very similar: we replace TF by
T+
F = HomMon(Y

+,C)\{0} and F [Y ] by F [Y +] in the definition above. If τ ∈ T+
F , we denote

by I+τ+ the principal series representation of HF associated with τ+.
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Remark 2.10. Let τ ∈ TF . By Lemma 2.8, I≤w
τ and I

�w
τ are F [Y ]-submodules of Iτ . In

particular F [Y ].x is finite dimensional for all x ∈ Iτ .

Lemma 2.11. Let τ ∈ TF . Let M ⊂ Iτ be a finite dimensional F [Y +]-submodule of Iτ .
Then M is an F [Y ]-submodule of Iτ .

Proof. Let λ ∈ Y +. Let φλ : M → M be defined by φλ(x) = Zλ.x, for all m ∈ M .
Let x ∈ ker(φλ). Then Z−λ.Zλ.x = 0 = x and thus φλ is an isomorphism. Moreover,
φ−1
λ (x) = Z−λ.x for all x ∈ M and thus Z−λ.x ∈ M , for all x ∈ M . As Y + − Y − = Y , we

deduce the lemma.

Proposition 2.12. Let τ ∈ TF and M ⊂ Iτ . Then M is an HF -submodule of Iτ if and only
if M is a BLHF -submodule of Iτ . In particular, Iτ is irreducible as a BLHF -module if and
only if Iτ is irreducible as an HF -module.

Proof. Let M ⊂ Iτ be a HF -submodule. Then M is an F [Y +] submodule of Iτ . Let x ∈ M .
Then by Remark 2.10, F [Y +].x ⊂ F [Y ].x is finite dimensional. Thus M =

∑
x∈M F [Y +].x

and by Lemma 2.11, M is an F [Y ]-submodule of Iτ . As BLHF is generated as an algebra by
HF and F [Y ], we deduce the proposition.

2.5 The algebra BLHF(TF)

In this subsection, we introduce an algebra BLH(TF) containing BLHF . This algebra will
enable us to regard the elements of Iτ as specializations at τ of certain elements of BLH(TF).
When F = C, this will enable us to make τ ∈ TC vary and to use density arguments and
basic algebraic geometry to study the Iτ .

2.5.1 Description of BLH(TF )

Let BLH(TF) be the right F(Y ) vector space
⊕

w∈W v HwF(Y ). We equip F(Y ) with an

action of W v. For θ =
∑

λ∈Y aλZ
λ

∑
λ∈Y bλZλ ∈ F(Y ) and w ∈ W v, set θw :=

∑
λ∈Y aλZ

w.λ

∑
λ∈Y bλZw.λ .

Proposition 2.13. There exists a unique multiplication ∗ on BLH(TF) which equips BLH(TF )
with the structure of an associative algebra and such that:

• F(Y ) embeds into BLH(TF) as an algebra,

• (BL2) is satisfied,

• the following relation (BL4’) is satisfied:

for all θ ∈ F(Y ) and s ∈ S , θ ∗Hs −Hs ∗ θs = Qs(Z)(θ − θs).

The proof of this proposition is postponed to 2.5.2.
We regard the elements of F [Y ] as polynomial functions on TF by setting:

τ(
∑

λ∈Y

aλZ
λ) =

∑

λ∈Y

aλτ(λ),

for all (aλ) ∈ F (Y ). The ring F [Y ] is a unique factorization domain. Let θ ∈ F(Y ) and
(f, g) ∈ F [Y ] × F [Y ]∗ be such that θ = f

g
and f and g are coprime. Set D(θ) = {τ ∈
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TF |θ(g) 6= 0}. Then we regard θ as a map from D(θ) to F by setting θ(τ) = f(τ)
g(τ)

for all

τ ∈ D(θ).
For w ∈ W v, let πH

w : BLH(TF ) → F(Y ) be defined by πH
w (

∑
v∈W v Hvθv) = θw, for

(θv) ∈ (HW v,F)
W v

with finite support. If τ ∈ TF , let F(Y )τ = { f
g
|f, g ∈ C[Y ] and g(τ) 6=

0} ⊂ F(Y ). Let BLH(TF)τ =
⊕

w∈W v HwF(Y )τ ⊂ BLH(TF ). This is a not a subalgebra of
BLH(TF) (consider for example 1

Zλ−1
∗ Hs = Hs ∗ 1

Zs.λ−1
+ . . . for some well chosen λ ∈ Y ,

s ∈ S and τ ∈ TC). It is however an HW v,F −F(Y )τ bimodule. For τ ∈ TF , we define evτ :
BLH(TF)τ → HW v,F by evτ (h) = h(τ) =

∑
w∈W v Hwθw(τ) if h =

∑
w∈W v Hwθw ∈ H(Y )τ .

This is a morphism of HW v,F −F(Y )τ -bimodule.

2.5.2 Construction of BLH(TF)

We now prove the existence of BLH(TF). For this we use the theory of Asano and Ore of
rings of fractions: BLH(TF) will be the ring BLHF ∗ (F [Y ] \ {0})−1.

Let V = BLHF ⊗F [Y ]F(Y ) ⊃ BLHF , where BLHF is equipped with its structure of a right
F [Y ]-module. As a right F(Y )-vector space, V =

⊕
w∈W v HwF(Y ). The left action of F [Y ]

on BLHF extends to an action of F [Y ] on V by setting θ.
∑

w∈W v Hwfw =
∑

w∈W v(θ.Hw)fw,
for θ ∈ F [Y ] and (fw) ∈ F(Y )W

v

with finite support. This equips V with the structure of a
(F [Y ]−F(Y ))-bimodule.

Lemma 2.14. The left action of F [Y ] on V extends uniquely to a left action of F(Y ) on V .
This equips V with the structure of a (F(Y )-F(Y ))-bimodule.

Proof. Let w ∈ W v and P ∈ F [Y ] \ {0}. Let V ≤w =
⊕

v∈[1,w]HvF(Y ). By Lemma 2.8, the

map mP : V ≤w → V ≤w defined by mP (h) = P.h is well-defined. Thus the left action of F [Y ]
on V ≤w induces a ring morphism φw : F [Y ] → Endv.s(V

≤w), where Endv.s(V
≤w) is the space

of endomorphisms of the F(Y )-vector space V ≤w.
Let us prove that φw(P ) is injective. Let h ∈ V ≤w. Write h =

∑
v∈[1,w]Hvθv, with

θv ∈ F(Y ) for all v ∈ [1, w]. Suppose that h 6= 0. Let v ∈ [1, w] be such that θv 6= 0 and
such that v is maximal for this property for the Bruhat order. By Lemma 2.8, P ∗h 6= 0 and
thus φw(P ) is injective. As V ≤w is finite dimensional over F(Y ), we deduce that φw(P ) is

invertible for all P ∈ F [Y ]. Thus φw extends uniquely to a ring morphism φ̃w : F(Y ) → V ≤w.
As (W v,≤) is a directed poset, there exists an increasing sequence (wn)n∈Z≥0

(for the Bruhat
order) such that

⋃
n∈Z≥0

[1, wn] = W v. Let m,n ∈ Z≥0 be such that m ≤ n. Let P ∈ F [Y ]

and f (m) = φ̃wm
(P ) and f (n) = φ̃wn

(P ). Then f
(n)

|V ≤wm
= f (m) and thus for all θ ∈ F(Y ) and

x ∈ BLH(TF), θ.x := φ̃wk
(θ)(x) is well-defined, independently of k ∈ Z≥0 such that x ∈ V ≤wk.

This defines an action of F(Y ) on V .
Let h ∈ V , θ ∈ F(Y ) and P ∈ F [Y ] \ {0}. Let x = 1

P
.h. Then as V is a (F [Y ]-F(Y ))-

bimodule, (P ∗ x) ∗ θ = h ∗ θ = P ∗ (x ∗ θ) and thus x ∗ θ = 1
P
∗ (h ∗ θ) = ( 1

P
∗ h) ∗ θ. Thus V

is a (F(Y )−F(Y ))-bimodule.

Lemma 2.15. The set F [Y ] ⊂ BLHF satisfies the right Ore condition: for all P ∈ F [Y ]\{0}
and h ∈ BLHF \ {0}, P ∗ BLHF ∩ h ∗ F [Y ] 6= {0}.

Proof. Let P ∈ F [Y ] \ {0} and h ∈ BLHF \ {0}. Then by definition, P ∗ ( 1
P
∗ h) = h ∈ V .

Moreover, V =
⊕

w∈W v HwF(Y ) and thus there exists θ ∈ F [Y ] \ {0} such that 1
P
∗ h ∗ θ ∈

BLHF \ {0}. Then P ∗ 1
P
∗ h ∗ θ = h ∗ θ ∈ P ∗ BLHF ∩ h ∗ F [Y ], which proves the lemma.

Definition 2.16. Let R be a ring and r in R. Then r is said to be regular if for all
r′ ∈ R \ {0}, rr′ 6= 0 and r′r 6= 0.
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Let R be a ring and X ⊂ R a multiplicative set of regular elements. A right ring of

fractions for R with respect to X is any overring S ⊃ R such that:

• Every element of X is invertible in S.

• Every element of S can be expressed in the form ax−1 for some a ∈ R and x ∈ X.

We can now prove Proposition 2.13. The uniqueness of such a product follows from (BL4’).
By Lemma 2.8, the elements of F [Y ]\{0} are regular. By Lemma 2.15 and [GW04, Theorem
6.2], there exists a right ring of fractions BLH(TF) for BLHF with respect to F [Y ]\{0}. Then
BLH(TF) is an algebra over F and as a vector space, BLH(TF) =

⊕
w∈W v(HwF [Y ])(F [Y ] \

{0})−1 =
⊕

w∈W v HwF(Y ).
Let (f, g) ∈ F [Y ]× (F [Y ] \ {0}). Then it is easy to check that g ∗

(
Hs ∗ 1

gs
+Qs(Z)

)
(1
g
−

1
gs
)
)
= Hs and thus 1

g
∗ Hs = (Hs ∗ 1

gs
+ Qs(Z)(

1
g
− 1

gs
). Let f ∈ F [Y ]. A straightforward

computation yields the formula f
g
∗Hs = Hs ∗ (fg )s+Qs(Z)(

f
g
− (f

g
)s) which finishes the proof

of Proposition 2.13.

Remark 2.17. • Inspired by the proof of [BPGR16, Theorem 6.2] we could try to define
∗ on V as follows. Let θ1, θ2 ∈ F [Y ] and w1, w2 ∈ W v. Write θ1 ∗Hw2 =

∑
w∈W v Hwθw,

with (θw) ∈ F(Y )(W
v). Then (Hw1 ∗ θ1) ∗ (Hw2 ∗ θ2) =

∑
w∈W (Hw1 ∗ Hw) ∗ (θ2θw).

However it is not clear a priori that the so defined law is associative.

• Suppose that HF is the Iwahori-Hecke algebra associated with some masure defined in
[BPGR16, Definition 2.5]. Using the same procedure as above (by taking S = {Y λ|λ ∈
Y +}), we can construct the algebra BLHF from the algebra HF . In this particular case,
this gives an alternative proof of [BPGR16, Theorem 6.2].

3 Weight decompositions and intertwining operators

Let τ ∈ TF . In this section, we study the structure of Iτ as a F [Y ]-module and the set
HomBLHF−mod(Iτ , Iτ ′) for τ ′ ∈ TF .

In Subsection 3.1, we study the weights of Iτ and decompose every BLHF -submodule of
Iτ as a sum of generalized weight spaces (see Lemma 3.2).

In Subsection 3.2, we relate intertwining operators and weight spaces. We then prove the
existence of nontrivial intertwining operators Iτ → Iw.τ for all w ∈ W v.

In Subsection 3.3, we prove that when W v is infinite, then every nontrivial submodule
of Iτ is infinite dimensional. We deduce that contrary to the reductive case, there exist
irreducible representations of BLHF which does not embed in any Iτ .

3.1 Generalized weight spaces of Iτ

Let τ ∈ TF . Let x ∈ Iτ . Write x =
∑

w∈W v xwHw ⊗τ 1, with (xw) ∈ F (W v). Set supp(x) =
{w ∈ W v| xw 6= 0}. Equip W v with the Bruhat order. If E is a finite subset of W v, max(E)
is the set of elements of E that are maximal for the Bruhat order. Let R be a binary relation
on W v (for example R =“≤”, R =“�”, ...) and w ∈ W v. One sets

IRw
τ =

⊕

v∈W v|vRw

FHv ⊗τ 1,HW v,F
Rw =

⊕

vRw

FHv,
BLH(TF )

Rw =
⊕

vRw

HvF(Y )

and BLHRw
F = BLH(TF)

Rw ∩ BLHF =
⊕

vRw HvF [Y ].
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Let V be a vector space over F and E ⊂ End(V ). For τ ∈ FE set V (τ) = {v ∈
V |e.v = τ(e).v∀e ∈ E} and V (τ, gen) = {v ∈ V |∃k ∈ Z≥0|(e− τ(e)Id)k.v = 0, ∀e ∈ E}. Let
Wt(E) = {τ ∈ FE|V (τ) 6= {0}}.

The following lemma is well known.

Lemma 3.1. Let V be a finite dimensional vector space over F . Let E ⊂ End(V ) be a subset
such that for all e, e′ ∈ E,

1. e is triangularizable

2. ee′ = e′e.

Then V =
⊕

τ∈Wt(E) V (τ, gen) and in particular Wt(E) 6= ∅.
For τ ∈ TF , set Wτ = {w ∈ W v| w.τ = τ}.
Let M be a BLHF -module. For τ ∈ TF , set

M(τ) = {m ∈M |P.m = τ(P ).m ∀P ∈ F [Y ]}
and

M(τ, gen) = {m ∈M |∃k ∈ Z≥0|∀P ∈ F [Y ], (P − τ(P ))k.m = 0} ⊃M(τ).

Let Wt(M) = {τ ∈ TF |M(τ) 6= {0}} and Wt(M, gen) = {τ ∈ TF |M(τ, gen) 6= {0}}.
Lemma 3.2. 1. Let τ, τ ′ ∈ TF . Let x ∈ Iτ (τ

′, gen). Then if x 6= 0,

max supp(x) ⊂ {w ∈ W v| w.τ = τ ′}.
In particular, if Iτ (τ ′, gen) 6= {0}, then τ ′ ∈ W v.τ and thus

Wt(Iτ ) ⊂W v.τ.

2. Let τ ∈ TF . Let M ⊂ Iτ be a F [Y ]-submodule of Iτ . Then Wt(M) = Wt(M, gen) ⊂
W v.τ and M =

⊕
χ∈Wt(M)M(χ, gen). In particular, Wt(M) 6= ∅.

Proof. (1) Let x ∈ Iτ (τ
′, gen) \ {0}. Let w ∈ max supp(x). Write x = awHw ⊗τ 1 + y, where

aw ∈ F \ {0} and y ∈ I
�w
τ . Then by Lemma 2.8,

Zλ.x = awHwZ
w−1.λ ⊗τ 1 + y′ = τ(w−1.λ)awHw ⊗τ 1 + y′ = τ ′(λ)awHw ⊗τ 1 + τ ′(λ)y,

where y′ ∈ I
�w
τ . Therefore w.τ = τ ′.

(2) Let w ∈ W v. Let P ∈ F [Y ] and mP : I≤w
τ → I≤w

τ be defined by mP (x) = P.x for
all x ∈ I≤w

τ . Then by Lemma 2.8, (mP − w.τ(P )Id)(I≤w
τ ) ⊂ I<w

τ . By induction on ℓ(w) we
deduce that mP is triangularizable on I≤w

τ and Wt(I≤w
τ ) ⊂ [1, w].τ ⊂W v.τ .

Let x ∈ M and Mx = F [Y ].x. By the fact that (W v,≤) is a directed poset and by
Lemma 2.8, there exists w ∈ W v such that Mx ⊂ I≤w

τ . Therefore, for all P ∈ F [Y ],
mP :Mx →Mx is triangularizable. Thus by Lemma 3.1,

F [Y ].x =
⊕

χ∈Wt(Mx,gen)

Mx(χ, gen) =
⊕

χ∈W v.τ

Mx(χ, gen).

Consequently, M =
∑

x∈M Mx =
⊕

χ∈Wt(M,gen)M(χ, gen) and Wt(M) ⊂ ⋃
w∈W v Wt(I≤w

τ ) ⊂
W v.τ .

Let χ ∈ Wt(M, gen). Let x ∈ M(χ, gen) \ {0} and N = F [Y ].x. Then by Lemma 2.8,
N is a finite dimensional submodule of Iτ . By Lemma 3.1, Wt(N) 6= ∅. As Wt(N) ⊂ {χ},
χ ∈ Wt(M). Thus Wt(M, gen) ⊂ Wt(M) and as the other inclusion is clear, we get the
lemma.
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Proposition 3.3. (see [Mat77, 4.3.3 Théorème (iii)]) Let τ, τ ′ ∈ TF and M (resp. M ′)
be a BLHF -submodule of Iτ (resp. Iτ ′). Assume that HomBLHF−mod(M,M ′) \ {0}. Then
τ ′ ∈ W v.τ .

Proof. Let f ∈ HomBLHF
(M,M ′) \ {0}. Then by Lemma 3.2 (2), there exists w ∈ W v/Wτ

such that f
(
M(w.τ, gen)

)
6= {0}. Then w.τ ∈ Wt(Iτ ′) and by Lemma 3.2 (1) the proposition

follows.

An element τ ∈ TF is said to be regular if w.τ 6= τ for all w ∈ W v \ {1}. We denote by
T reg
F the set of regular elements of TF .

Proposition 3.4. (see [Kat81, Proposition 1.17]) Let τ ∈ TF .

1. There exists a basis (ξw)w∈W v of Iτ such that for all w ∈ W v:

• ξw ∈ I≤w
τ and πH

w (ξw) = 1

• ξw ∈ Iτ (w.τ, gen).

Moreover, if w ∈ W v is minimal for ≤ among {v ∈ W v|v.τ = w.τ}, then ξw ∈ Iτ (w.τ).
In particular, Wt(Iτ ) = W v.τ .

2. If τ is regular, then Iτ (w.τ, gen) = Iτ (w.τ) is one dimensional for all w ∈ W v and
Iτ =

⊕
w∈W v Iτ (w.τ).

Proof. (1) Let w ∈ W v. Then by Lemma 2.8, Lemma 3.1 and Lemma 3.2,

I≤w
τ =

⊕

v∈W v/Wτ

I≤w
τ (v.τ, gen).

Write Hw⊗τ 1 =
∑

v∈W v/Wτ
xv, where xv ∈ I≤w

τ (v.τ, gen) for all v ∈ W v/Wτ . Let v ∈ W v/Wτ

be such that πH
w (xv) 6= 0. Then max supp(xv) = {w} and by Lemma 3.2, w.τ = v.τ .

Set ξw = 1
πH
w (xv)

xv. Then (ξu)u∈W v is a basis of Iτ and has the desired properties. Let

w ∈ W v be minimal for ≤ among {v ∈ W v|v.τ = w.τ}. Let λ ∈ Y . Then by Lemma 2.8,
(Zλ−w.τ(λ).ξw) ∈ Iτ (w.τ, gen)∩ I<w

τ . By Lemma 3.2, we deduce that (Zλ −w.τ(λ)).ξw = 0
and thus that ξw ∈ Iτ (w.τ). Thus w.τ ∈ Wt(Iτ ) and by Lemma 3.2, Wt(Iτ ) = Iτ .

(2) Suppose that τ is regular. Let w ∈ W v, λ ∈ Y and x ∈ Iτ (τ, gen). Then by
Lemma 3.2 (1), x−πH

w (x)ξw ∈ Iτ (τ, gen)∩I<w
τ = {0}. By (1), ξw ∈ Iτ (w.τ) and thus Iτ (τ) =

Iτ (τ, gen) is one dimensional. By Lemma 3.2, we deduce that Iτ =
⊕

w∈W v Iτ (w.τ).

3.2 Intertwining operators and weight spaces

In this subsection, we relate intertwining operators and weight spaces and study some con-
sequences. Let τ ∈ TF . Using Subsection 3.1, we prove the existence of nonzero morphisms
Iτ → Iw.τ for all w ∈ W v. We will give a more precise construction of such morphisms in
Subsection 4.4.

Let M be a BLHF -module and τ ∈ TF . For x ∈ M(τ) define Υx : Iτ → M by Υx(u.1⊗τ

1) = u.x, for all u ∈ BLHF . Then Υx is well-defined. Indeed, let u ∈ BLHF be such that
u.1⊗τ 1 = 0. Then u ∈ F [Y ] and τ(u) = 0. Therefore u.x = 0 and hence Υx is well-defined.
The following lemma is then easy to prove.
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Lemma 3.5. (Frobenius reciprocity, see [Kat81, Proposition 1.10]) Let M be a BLHF -
module, τ ∈ TF and x ∈ M(τ). Then the map Υ : M(τ) → HomBLHF−mod(Iτ ,M) map-
ping each x ∈ M(τ) to Υx is a vector space isomorphism and Υ−1(f) = f(1 ⊗τ 1) for all
f ∈ HomBLHF−mod(Iτ ,M).

Proposition 3.6. (see [Mat77, (4.1.10)]) Let M be a BLHF -module such that there exists
ξ ∈M satisfying:

1. there exists τ ∈ TF such that ξ ∈M(τ),

2. M = BLHF .ξ.

Then there exists a surjective morphism φ : Iτ ։M of BLHF -modules.

Proof. One can take φ = Υξ, where Υ is as in Lemma 3.5.

Proposition 3.7. (see [Mat77, Théorème 4.2.4]) Let M be an irreducible representation of
BLHF containing a finite dimensional F [Y ]-submodule M ′ 6= {0}. Then there exists τ ∈ TF
such that there exists a surjective morphism of BLHF -modules φ : Iτ ։M .

Proof. By Lemma 3.1, there exists ξ ∈ M ′ \ {0} such that Zµ.ξ ∈ F .ξ for all µ ∈ Y . Let
τ ∈ TF be such that ξ ∈M(τ). Then we conclude with Proposition 3.6.

Remark 3.8. Let Z(BLHF) be the center of BLHF . When W v is finite, it is well known
that BLHF is a finitely generated Z(BLHF) module and thus every irreducible representation
of BLHF is finite dimensional. Assume that W v is infinite. Using the same reasoning as in
[AH19, Remark 4.32] we can prove that BLHF is not a finitely generated Z(BLHF)-module.
As we shall see (see Remark 4.11), when F = C, there exist irreducible infinite dimensional
representations of BLHF . However we do not know if there exist an irreducible representation
V of BLHF such that for all x ∈ V \ {0}, F [Y ].x is infinite dimensional or equivalently, a
representation which is not a quotient of a principal series representation.

Proposition 3.9. (see [Kat81, (1.21)]) Let τ ∈ TF and w ∈ W v. Then

HomBLHF−mod(Iτ , Iw.τ) 6= {0}.

Proof. By Proposition 3.4 w.τ ∈ Wt(Iτ ) and we conclude with Lemma 3.5.

3.3 Nontrivial submodules of Iτ are infinite dimensional

In this subsection, we prove that when W v is infinite, then every submodule of Iτ is infinite
dimensional. We then deduce that there can exist an irreducible representation of BLHC such
that V does not embed in any Iτ , for τ ∈ TC.

Lemma 3.10. Assume that W v is infinite. Let w ∈ W v. Then there exists s ∈ S such that
sw > w.

Proof. Let DL(w) = {s ∈ S |sw < w}. By the proof of [BB05, Lemma 3.2.3], S * DL(w),
which proves the lemma.

Proposition 3.11. (compare [Mat77, 4.2.4]) Let τ ∈ TF . Let M ⊂ Iτ be a nonzero HW v,F -
submodule. Then the dimension of M is infinite. In particular, if V is a finite dimensional
irreducible representation of BLHF , then HomBLHF−mod(V, Iτ ) = {0} for all τ ∈ TF .
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Proof. Let m ∈ M \ {0}. Let ℓ(m) = max{ℓ(v)|v ∈ supp(m)}. Let w ∈ supp(m) be such
that ℓ(w) = ℓ(m). By Lemma 3.10 there exists (sn) ∈ S Z≥1 such that if w1 = w and
wn+1 = snwn for all n ∈ Z≥1, one has ℓ(wn+1) = ℓ(wn) + 1 for all n ∈ Z≥1. Let m1 = m and
mn+1 = Hsn.mn for all n ∈ Z≥1. Then for all n ∈ Z≥1, wn ∈ max

(
supp(mn)

)
, which proves

that M is infinite dimensional.

As we shall see in Appendix A, there can exist finite dimensional representations of BLHC.

4 Study of the irreducibility of Iτ

In this section, we study the irreducibility of Iτ .
In Subsection 4.1, we describe certain intertwining operators between Iτ and Is.τ , for s ∈

S and τ ∈ TF . For this, we introduce elements Fs ∈ BLH(TF) such that Fs(χ)⊗χ 1 ∈ Iχ(s.χ)
for all χ ∈ TF for which this is well-defined.

In Subsection 4.2, we establish that the condition (2) appearing in Theorems 1, 2 and 3
is a necessary condition for the irreducibility of Iτ . This conditions comes from the fact that
when Iτ is irreducible, certain intertwinners have to be isomorphisms.

In Subsection 4.3, we prove an irreducibility criterion for Iτ involving the dimension of Iτ
and the values of τ (see Theorem 4.8). We then deduce Matsumoto criterion.

In Subsection 4.4 we introduce and study, for every w ∈ W v, an element Fw ∈ BLH(TF )
such that Fw(χ)⊗χ 1 ∈ Iχ(w.χ) for every χ ∈ TC for which this is well-defined.

In Subsection 4.5 we prove one implication of Kato’s criterion (see Proposition 4.17).
The definition we gave for Iτ is different from the definition of Matsumoto (see [Mat77,

(4.1.5)]). It seems to be well known that these definitions are equivalent. We justify this
equivalence in Subsection 4.6. We also explain why it seems difficult to adapt Kato’s proof
in our framework.

4.1 Intertwining operators associated with simple reflections

Let s ∈ S . In this subsection we define and study an element Fs ∈ BLH(TF) such that
Fs(χ)⊗χ 1 ∈ Iχ(s.χ) for all χ such that Fs(χ) is well-defined.

Let s ∈ S and Ts = σsHs. Let w ∈ W v and w = s1 . . . sk be a reduced writing. Set
Tw = Ts1 . . . Tsk . This is independent of the choice of the reduced writing by [BPGR16, 6.5.2].

Set Bs = Ts − σ2
s ∈ HW v,F . One has B2

s = −(1 + σ2
s)Bs. Let ζs = −σsQs(Z) + σ2

s ∈
F(Y ) ⊂ BLH(TF ). When σs = σ′

s =
√
q for all s ∈ S , we have ζs =

1−qZ−α∨
s

1−Z−α∨
s

∈ F(Y ). Let

Fs = Bs + ζs ∈ BLH(TF).
Let α∨ ∈ Φ∨. Write α∨ = w.α∨

s for w ∈ W v and s ∈ S . We set ζα∨ = (ζs)
w.

Let α∨ ∈ Φ∨. Write α = w.α∨
s , with w ∈ W v and s ∈ S . We set σα∨ = σs and

σ′
α∨ = w.σ′

s. This is well-defined by Lemma 2.4 and by the relations on the σt, t ∈ S (see
Subsection 2.3).

The ring F [Y ] is a unique factorization domain. For α∨, write ζα∨ =
ζnum
α∨

ζden
α∨

where

ζnumα∨ , ζdenα∨ ∈ F [Y ] are pairwise coprime. For example if α∨ ∈ Φ∨ is such that σα∨ = σ′
α∨ we can

take ζdenα∨ = 1−Z−α∨

and in any case we will choose ζdenα∨ among {1−Z−α∨

, 1+Z−α∨

, 1−Z−2α∨}.

Remark 4.1. Let τ ∈ TF and r = rα∨ ∈ R. Suppose that r.τ 6= τ . Then ζdenα∨ (τ) 6= 0.
Indeed, let λ ∈ Y be such that τ(r.λ) 6= τ(λ). Then τ(r.λ − λ) = τ(α∨

r )
αr(λ) 6= 1. Suppose

σα∨ = σ′
α∨, then ζdenα∨ = 1 − Z−α∨

r and thus τ(ζdenα∨ ) 6= 0. Suppose σr = σ′
r. Then αr(λ) ∈ 2Z

thus τ(α∨
r ) /∈ {−1, 1} and hence τ(ζdenα∨ ) 6= 0.
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Lemma 4.2. Let s ∈ S and θ ∈ F(Y ). Then

θ ∗ Fs = Fs ∗ θs.

In particular, for all τ ∈ TF such that τ(ζdens ) 6= 0, Fs(τ) ⊗τ 1 ∈ Iτ (s.τ) and Fs(τ) ⊗s.τ 1 ∈
Is.τ(τ).

Proof. Let λ ∈ Y . Then

Zλ ∗Bs − Bs ∗ Zs.λ =σs(Z
λ ∗Hs −Hs ∗ Zs.λ) + σ2

s(Z
s.λ − Zλ)

=− σsQs(Z)(Z
sλ − Zλ) + σ2

s (Z
s.λ − Zλ)

=ζs(Z
s.λ − Zλ).

Thus Zλ ∗ Fs = Zλ ∗ (Bs + ζs) = Fs ∗ Zs.λ and hence θ ∗ Fs = Fs ∗ θs for all θ ∈ F [Y ].
Let θ ∈ F [Y ] \ {0}. Then θ ∗ (Fs ∗ 1

θs
) = Fs and thus 1

θ
∗Fs = Fs ∗ 1

θs
. Lemma follows.

Lemma 4.3. Let s ∈ S . Then F 2
s = ζsζ

s
s ∈ F(Y ) ⊂ BLH(TF).

Proof. By Lemma 4.2, one has:

F 2
s = (Bs + ζs) ∗ Fs

= Bs ∗ Fs + Fs ∗ ζss
= B2

s +Bsζs +Bsζ
s
s + ζsζ

s
s

= Bs(−1 − σ2
s + ζs + ζss) + ζsζ

s
s

= ζsζ
s
s .

4.2 A necessary condition for irreducibility

In this subsection, we establish that the condition (2) appearing in Theorems 1, 2 and 3 is a
necessary condition for the irreducibility of Iτ .

Recall the definition of Υ from Subsection 3.2.

Lemma 4.4. Let τ ∈ TF and s ∈ S be such that τ(ζdens )τ((ζdens )s) 6= 0. Let φ(τ, s.τ) =
ΥFs(τ)⊗s.τ 1 : Iτ → Is.τ and φ(s.τ, τ) = ΥFs(τ)⊗τ 1 : Is.τ → Iτ . Then

φ(s.τ, τ) ◦ φ(τ, s.τ) = τ(ζsζ
s
s )IdIτ and φ(τ, s.τ) ◦ φ(s.τ, τ) = τ(ζsζ

s
s )IdIs.τ .

Proof. By Lemma 4.2 and Lemma 3.5, φ(s.τ, τ) and φ(τ, s.τ) are well-defined. Let f =
φ(s.τ, τ) ◦ φ(τ, s.τ) ∈ EndBLHF−mod(Iτ ). Then by Lemma 4.2 and Lemma 4.3:

f(1⊗τ 1) = φ(s.τ, τ)
(
Fs(τ)⊗s.τ 1

)
= Fs(τ).φ(s.τ, τ)

(
1⊗s.τ 1

)
= Fs(τ)

2 ⊗τ 1 = τ(ζsζ
s
s )⊗τ 1.

By symmetry, we get the lemma.

Let UF be the set of τ ∈ TF such that for all α∨ ∈ Φ∨, τ(ζnumα∨ ) 6= 0. When σs = σ′
s =

√
q

for all s ∈ S , then UF = {τ ∈ TF |τ(α∨) 6= q, ∀α∨ ∈ Φ∨}.
We assume that for all s ∈ S , σ′

s /∈ {σ−1
s ,−σs,−σ−1

s }. Under this condition, if α∨ ∈ Φ∨

and τ ∈ TF are such that τ(ζdenα∨ ) = 0, then τ(ζnumα∨ ) 6= 0.

Lemma 4.5. 1. Let τ ∈ UF . Then for all w ∈ W v, Iτ and Iw.τ are isomorphic as BLHF -
modules.
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2. Let τ ∈ TF be such that Iτ is irreducible. Then τ ∈ UF .

Proof. Let τ ∈ UF . Let w ∈ W v and τ̃ = w.τ . Let s ∈ S . Assume that s.τ̃ 6= τ̃ .
Then by Remark 4.1, ζdens (τ̃) 6= 0 and ζdens (s.τ̃) 6= 0. Therefore ζs(τ), ζs(s.τ̃) are well-
defined and hence Fs(τ̃), Fs(τ̃ ) are well-defined. Let φ(τ̃ , s.τ̃) = ΥFs(τ̃)⊗s.τ̃1 : Iτ̃ → Is.τ̃ and
φ(s.τ̃ , τ̃) = ΥFs(τ̃)⊗τ̃ 1 : Is.τ̃ → Iτ̃ . Then by Lemma 4.4,

φ(s.τ̃ , τ̃) ◦ φ(τ̃ , s.τ̃) = τ̃(ζsζ
s
s )IdIτ̃ and φ(τ̃ , s.τ̃) ◦ φ(s.τ̃ , τ̃) = τ̃ (ζsζ

s
s )IdIs.τ̃ .

By definition of UF , τ̃ (ζsζ
s
s ) = τ̃ (ζs)τ̃(ζ

s
s ) 6= 0 and thus φ(τ̃ , s.τ̃) and φ(s.τ̃ , τ̃) are isomor-

phisms. Consequently Iτ̃ is isomorphic to Is.τ̃ and (1) follows by induction.
Let τ ∈ TF be such that Iτ is irreducible. Let s ∈ S .
Suppose τ(ζdens ) = 0. Then by assumption, τ(ζnums ) 6= 0. Moreover by Remark 4.1,

Is.τ = Iτ .
Suppose now τ(ζdens ) 6= 0. Then (with the same notations as in Lemma 4.4), φ(s.τ, τ) 6= 0

and Im
(
φ(s.τ, τ)

)
is a BLHF -submodule of Iτ : Im

(
φ(s.τ, τ)

)
= Iτ . Therefore φ(τ, s.τ) ◦

φ(s.τ, τ) 6= 0. Thus by Lemma 4.4, φ(τ, s.τ) is an isomorphism and τ(ζsζ
s
s ) 6= 0. In particular,

τ(ζnums ) 6= 0.
Therefore in any cases, Iτ is isomorphic to Is.τ and τ(ζnums ) 6= 0. By induction we deduce

that Iw.τ is isomorphic to Iτ . Thus Iw.τ is irreducible for all w ∈ W v. Thus w.τ(ζnums ) 6= 0
for all w ∈ W v and s ∈ S , which proves that τ ∈ UF .

Lemma 4.6. Let τ ∈ TF be such that Iw.τ ≃ Iτ (as a BLHF -module) for all w ∈ W v. Then
for all w ∈ W v, there exists a vector space isomorphism Iτ (τ) ≃ Iτ (w.τ).

Proof. Let w ∈ W v. Then by hypothesis, HomBLHF−mod(Iτ , Iτ ) ≃ HomBLHF−mod(Iw.τ , Iw.τ).
Let φ : Iτ → Iw.τ be a BLHF -module isomorphism. Then φ induces an isomorphism of vector
spaces Iτ (w.τ) ≃ Iw.τ(w.τ). By Lemma 3.5,

Iτ (τ) ≃ HomBLHF−mod(Iτ , Iτ ) ≃ HomBLHF−mod(Iw.τ , Iw.τ) ≃ Iw.τ(w.τ) ≃ Iτ (w.τ).

4.3 An irreducibility criterion for Iτ

In this subsection, we give a characterization of irreducibility for Iτ , for τ ∈ TC.
If B is a C-algebra with unity e and a ∈ B, one sets

Spec(a) = {λ ∈ C| a− λe is not invertible}.

Recall the following theorem of Amitsur (see Théorème B.I of [Ren10]):

Theorem 4.7. Let B be a C-algebra with unity e. Assume that the dimension of B over C
is countable. Then for all a ∈ B, Spec(a) 6= ∅.

Recall that UC is the set of τ ∈ TC such that for all α∨ ∈ Φ∨, τ(ζnumα∨ ) 6= 0.

Theorem 4.8. Let τ ∈ TC. Then the following are equivalent:

1. Iτ is irreducible,

2. Iτ (τ) = C.1⊗τ 1 and τ ∈ UC,

3. EndBLHC−mod(Iτ ) = C.Id and τ ∈ UC.

19



Proof. Assume that B = EndBLHC−mod(Iτ ) 6= CId. By Lemma 3.5 and the fact that Iτ
has countable dimension, B has countable dimension. Let φ ∈ B \ CId. Then by Amitsur
Theorem, there exists γ ∈ Spec(φ). Then φ − γId is non-injective or non-surjective and
therefore Ker(φ− γId) or Im(φ− γId) is a non-trivial BLHC-module, which proves that Iτ is
reducible. Using Lemma 4.5 we deduce that (1) implies (3).

By Lemma 3.5, (2) is equivalent to (3).
Let τ ∈ TC satisfying (2). Then by Lemma 4.5 and Lemma 4.6, dim Iτ (w.τ) = 1 for all

w ∈ W v. By Lemma 4.5, for all w ∈ W v, there exists an isomorphism of BLHC-modules
fw : Iw.τ → Iτ . As C.fw(1⊗w.τ 1) ⊂ Iτ (w.τ) we deduce that Iτ (w.τ) = C.fw(1⊗w.τ 1) for all
w ∈ W v.

Let M 6= {0} be a BLHC-submodule of Iτ . Let x ∈ M \ {0}. Then M ′ = C[Y ].x is a
finite dimensional C[Y ]-module. Thus by Lemma 3.1), there exists ξ ∈ M ′ \ {0} such that
Zλ.ξ ∈ C.ξ for all λ ∈ Y . Then ξ ∈ Iτ (τ

′) for some τ ′ ∈ TC. By Lemma 3.2, τ ′ = w.τ , for
some w ∈ W v. Thus ξ ∈ C∗fw(1⊗w.τ 1). One has

BLHC.ξ = fw(
BLHC.1 ⊗w.τ 1) = fw(Iw.τ) = Iτ ⊂M.

Hence Iτ is irreducible, which finishes the proof of the theorem.

Remark 4.9. Actually, our proof of the equivalence between (2) and (3), and of the fact
that (2) implies (1) is valid when F is a field, without assuming F = C.

Recall that an element τ ∈ TF is called regular if w.τ 6= τ for all w ∈ W v.

Corollary 4.10. (see [Mat77, Théorème 4.3.5] ) Let τ ∈ TF be regular. Then Iτ is irreducible
if and only if τ ∈ UF .

Proof. By Lemma 4.5, if Iτ is irreducible, then τ ∈ UF .
Assume that τ ∈ UF . Then by Proposition 3.4 (2), dim Iτ (τ) = 1 and we conclude with

Theorem 4.8 and Remark 4.9.

Remark 4.11. Assume that F = C and that σs = σ′
s =

√
q for all s ∈ S , for some q ∈ Z≥2.

Let (yj)j∈J be a Z-basis of Y . Then the map TC → (C∗)J defined by τ ∈ TC 7→ (τ(yj))j∈J is a
group isomorphism. We equip TC with a Lebesgue measure through this isomorphism. Then
the set of measurable subsets of TC having full measure does not depend on the choice of the
Z-basis of Y . Then UC =

⋂
α∨∈Φ∨{τ ∈ TC|τ(α∨) 6= q} has full measure in TC. Moreover

T reg
C ⊃ ⋂

λ∈Y \{0}{τ ∈ TC|τ(λ) 6= 1} has full measure in TC and thus {τ ∈ TC|Iτ is irreducible}
has full measure in TC.

Recall that R = {wsw−1|w ∈ W v, s ∈ S } is the set of reflections of W v. For τ ∈ TC, set
Wτ = {w ∈ W v| w.τ = τ}, Φ∨

(τ) = {α∨ ∈ Φ∨
+|ζdenα∨ (τ) = 0}, R(τ) = {r = rα∨ ∈ R|α∨ ∈ Φ∨

(τ)}
and

W(τ)= 〈R(τ)〉 = 〈{r = rα∨ ∈ R|ζdenα∨ (τ) = 0}〉 ⊂W v.

By Remark 4.1, W(τ) ⊂ Wτ . It is moreover normal in Wτ . When αs(Y ) = Z for all s ∈ S ,
then W(τ)= 〈Wτ ∩ R〉.

Corollary 4.12. Let τ ∈ TF be such that Wτ = W(τ) = {1, t} for some reflection t. Then Iτ
is irreducible if and only if τ ∈ UF .

Proof. By Lemma 4.5, if Iτ is irreducible, then τ ∈ UF . Conversely, let τ ∈ UF be such that
Wτ = W(τ) = {1, t}, for some t ∈ R. Write t = v−1sv for s ∈ S and v ∈ W v. Let τ̃ = v.τ .

One has s.τ̃ = τ̃ and Wτ̃ = {1, s}. By Lemma 3.2, Iτ̃ (τ̃ ) ⊂ I≤s
τ̃ .
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Let λ ∈ Y . Then Zλ.Hs ⊗τ̃ 1 = τ̃ (λ)Hs ⊗τ̃ 1 + τ̃ (Qs(Z)(Z
λ − Zs.λ))1⊗τ̃ 1.

Suppose σs = σ′
s. Then as W(τ̃ ) = v.W(τ).v

−1 = {1, s}, one has τ̃ (α∨
s ) = 1. By Remark 2.7,

τ̃((Qs(Z)(Z
λ−Zs.λ)) = (σs−σ−1

s )αs(λ). As there exists λ ∈ Y such that αs(λ) 6= 0, we deduce
that Hs ⊗τ̃ 1 /∈ Iτ̃ (τ̃ ) and thus Iτ̃ (τ̃) = F .1⊗τ̃ 1. Similarly, if σs 6= σ′

s then Iτ̃ (τ̃) = F .1⊗τ̃ 1.
By Theorem 4.8 and Remark 4.9, we deduce that Iτ̃ is irreducible. By Lemma 4.5 we deduce
that Iτ is isomorphic to Iτ̃ and thus Iτ is irreducible.

4.4 Weight vectors regarded as rational functions

In this subsection, we introduce and study elements Fw ∈ BLH(TF), w ∈ W v, such that for
all χ ∈ TF such that Fw(χ) is well-defined, Fw(χ)⊗χ 1 ∈ Iχ(w.χ).

For w ∈ W v, let πT
w : BLH(TF) → F(Y ) be the right F(Y )-module morphism defined by

πT
w(Tv) = δv,w for all v ∈ W v.

Lemma 4.13. Let F ′ be a uncountable field containing F . Let P ∈ F [Y ] be such that
P (τ) = 0 for all τ ∈ T reg

F ′ . Then P = 0.

Proof. Let F0 ⊂ F be a countable field (one can take F0 = Q or F0 = Fℓ for some prime
power ℓ). Write P =

∑
λ∈Y aλZ

λ, with aλ ∈ F for all λ ∈ Y . Let (yj)j∈J be a Z-basis of Y
and Xj = Zyj for all j ∈ J . Let F1 = F(aλ|λ ∈ Y ). Let (xj)j∈J ∈ (F ′)J be algebraically
independent over F1. Let τ ∈ TF ′ be defined by τ(yj) = xj for all j ∈ J .

Let us prove that τ ∈ T reg
F . Let w ∈ W v \ {1}. Let λ ∈ Y be such that w−1.λ − λ 6= 0.

Write w−1.λ− λ =
∑

j∈J njyj with nj ∈ Z for all j ∈ J . Let Q =
∏

j∈J Z
nj

j ∈ F1[Zj, j ∈ J ].

Then Q 6= 1 and thus τ(w−1.λ − λ) = Q((xj)j∈J) 6= 1. Thus w.τ 6= τ and τ ∈ T reg
F ′ . Thus

P (τ) = 0 and by choice of (xj)j∈J this implies P = 0.

Let w ∈ W v. Let w = s1 . . . sr be a reduced expression of w. Set Fw = Fsr . . . Fs1 =
(Bsr + ζsr) . . . (Bs1 + ζs1) ∈ BLH(TF ). By the lemma below, this does not depend on the
choice of the reduced expression of w.

Lemma 4.14. (see [Ree97, Lemma 4.3]) Let w ∈ W v.

1. The element Fw ∈ BLH(TF) is well-defined, i.e it does not depend on the choice of a
reduced expression for w.

2. One has Fw − Tw ∈ BLH(TF)
<w.

3. If θ ∈ F(Y ), then θ ∗ Fw = Fw ∗ θw−1
.

4. If τ ∈ TF is such that ζβ∨ ∈ F(Y )τ for all β∨ ∈ NΦ∨(w), then Fw ∈ BLH(TF)τ and
Fw(τ).1 ⊗τ 1 ∈ Iτ (w.τ).

5. Let τ ∈ T reg
F . Then Fw ∈ BLH(TF )τ .

Proof. Let us prove (4) by induction on ℓ(w). By Lemma 4.2, θ ∗ Fw = Fw ∗ θw−1
for all

θ ∈ F(Y ). Let n ∈ Z≥0 and assume that (4) is true for all w ∈ W v such that ℓ(w) ≤ n. Let
w ∈ W v be such that ℓ(w) ≤ n+1. Write w = sv, with s ∈ S and ℓ(v) ≤ n. By Lemma 2.4,
NΦ∨(sv) = NΦ∨(v) ∪ {v−1.α∨

s }. Let τ ∈ TF be such that be such that ζα∨ ∈ F(Y )τ for all
α∨ ∈ NΦ∨(w). One has Fw = (Bs + ζs) ∗ Fv. As Fv ∈ BLH(TF)τ and BLH(TF)τ is a left
HW v,F -submodule of BLH(TF ), Bs ∗Fv ∈ BLH(TF)τ . One has ζs ∗Fv = Fv ∗ ζv−1

s ∈ BLH(TF)τ
and hence Fw ∈ BLH(TF)τ .
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Let τ ∈ TF be such that ζα∨ ∈ F(Y )τ for all α∨ ∈ NΦ∨(w). Let θ ∈ F [Y ]. Then

(θ ∗ Fw)(τ) = (Fw ∗ θw−1

)(τ) = τ(θw
−1

)τ(Fw(τ)),

which finishes the proof of (4).
Let τ ∈ T reg

F and α∨ ∈ Φ∨. Write α∨ = w.α∨
s for w ∈ W v and s ∈ S . Then s.w−1.τ 6=

w−1.τ and by Remark 4.1, w−1.τ(ζdens ) 6= 0 or equivalently τ(ζdenα∨ ) 6= 0. By (4) we deduce
that Fw ∈ BLH(TF)τ for all τ ∈ T reg

F , which proves (5).
Let us prove (2). Let v ∈ W v be such that h := Fv −Tv ∈ BLH(TF)

<v and s ∈ S be such
that sv > v. Then

Fsv = (Ts − σ2
s + ζs) ∗ (Tv + h) = Tsv + (−σ2

s + ζs) ∗ Tv + (−σ2
s + ζs) ∗ h+ Ts ∗ h.

By Lemma 2.8,
(−σ2

s + ζs) ∗ Tv, (−σ2
s + ζs) ∗ h ∈ BLH(TF )

≤v.

By [Kum02, Corollary 1.3.19], s.[1, v) ⊂ [1, sv) and thus Ts∗h ∈ BLH(TF)
<sw thus Fsv−Tsv ∈

BLH(TF)
<sv. By induction we deduce (2).

Let w = s1 . . . sr = s′1 . . . s
′
r be reduced expressions of w. Let Fw be associated to s1 . . . sr

and F ′
w be associated to s′1 . . . s

′
r. Let F ′ be a uncountable field containing F . Then by

Proposition 3.4 (2), for all τ ∈ T reg
F ′ there exists θ(τ) ∈ F ′∗ such that Fw(τ) = θ(τ)F ′

w(τ).

Let v ∈ W v be such that πv(F ′
w) 6= 0 and θv = πH

v (Fw)
πH
v (F ′

w)
∈ F(Y ). Then θv(τ) = θ(τ) for all

τ ∈ T reg
F ′ . But by (2), θ(τ) = 1 for all τ ∈ T reg

F ′ . Thus by Lemma 4.13, θ = 1 = θv and
F ′
w = Fw.

Remark 4.15. 1. When σs = σ′
s for all s ∈ S , the condition (4) is equivalent to τ(β∨) 6=

1 for all β∨ ∈ NΦ∨(w).

4.5 One implication of Kato’s criterion

Recall the definition of W(τ) from Subsection 4.3.
In this subsection, we prove that if Iτ is irreducible, then Wτ =W(τ).

Lemma 4.16. Let τ ∈ TC be such that Wτ 6= W(τ). Let w ∈ Wτ \W(τ) be of minimal length.
Then Fw ∈ BLH(TF )τ .

Proof. Write w = sk . . . s1, where k = ℓ(w) and s1, . . . , sk ∈ S . Let j ∈ J0, k − 1K. Set
wj = sj . . . s1. Suppose that wj.ζ

den
sj+1

(τ) = 0. Then rwj .α∨
sj+1

= s1 . . . sjsj+1sj . . . s1 ∈ W(τ).

Moreover as W(τ) ⊂Wτ , we have sj+1 . . . s1.τ = sj . . . s1.τ . Therefore

τ = w.τ = sk . . . sj . . . s1.τ = sk . . . ŝj+1 . . . s1.τ,

and w′ = sk . . . ŝj+1 . . . s1 ∈ Wτ . By definition of w, w′ ∈ W(τ). Consequently

w = sk . . . ŝj+1 . . . s1.s1 . . . sj.sj+1.sj . . . s1 = w′rwj .α∨
sj+1

∈ W(τ) :

a contradiction. Therefore wj .ζ
den
sj+1

(τ) 6= 0 and by Lemma 2.4 and Lemma 4.14, Fw ∈
BLH(TF)τ .

Proposition 4.17. Let τ ∈ TC be such that Wτ 6=W(τ). Then Iτ is reducible.

Proof. Let w ∈ Wτ \ W(τ) be of minimal length. Then by Lemma 4.16 and Lemma 4.14,
Fw(τ) ⊗τ 1 ∈ Iτ (τ). Moreover, πT

w

(
Fw(τ) ⊗τ 1

)
= 1 and thus Fw(τ) ⊗τ 1 /∈ C1 ⊗τ 1. We

conclude with Theorem 4.8.

22



4.6 Link with the works of Matsumoto and Kato

Assume that W v is finite. Then HC = BLHC. Let τ ∈ TC. Then by Subsection 2.4,
dimC Iτ = |W v|. One has Zλ.1⊗τ 1 = τ(λ)1⊗τ 1 for all λ ∈ Y and HC.1⊗τ 1 = Iτ . Thus by
[Mat77, Théorème 4.1.10] the definition we used is equivalent to Matsumoto’s one.

Assume that HC is associated with a split reductive group over a field with residue cardinal
q. Then by (BL2), one has:

∀ s ∈ S , ∀ w ∈ W v, Ts ∗ Tw =

{
Tsw if ℓ(sw) = ℓ(w) + 1

(q − 1)Tw + qTsw if ℓ(sw) = ℓ(w)− 1.

Set 1′τ =
∑

w∈W v Tw ⊗τ 1. Then if s ∈ S , Ts.1
′
τ = q1′τ . Then by [Kat81, (1.19)], 1′τ

is proportional to the vector 1τ defined in [Kat81]. Kato proves Theorem 1 by studying
whether the following property is satisfied: “for all w ∈ W v, HC.1

′
w.τ = Iw.τ ” (see [Kat81,

Lemma 2.3]). When W v is infinite, we do not know how to define an analogue of 1′τ and thus
we do not know how to adapt Kato’s proof.

5 Description of generalized weight spaces

In this section, we describe Iτ (τ, gen), when τ ∈ TC is such that W(τ)= Wτ . We then deduce
Kato’s criterion for size 2 matrices.

Let us sketch our proof of this criterion. By Theorem 4.8 and Proposition 4.17, it suffices
to study Iτ (τ) when τ ∈ UC is such that Wτ = W(τ). For this, we begin by describing
Iτ (τ, gen). Let τ ∈ TC satisfying the above condition. By Dyer’s theorem, (W(τ),Sτ ) is a
Coxeter system, for some Sτ ⊂ W(τ). Let r ∈ Sτ . We study the singularity of Fr at τ ,
that is, we determine an (explicit) element θ ∈ C(Y ) such that Fr − θ is defined at τ (see
Lemma 5.19). Using this, we then describe Iτ (τ, gen). We then deduce that when Wτ = W(τ)

is the infinite dihedral group then Iτ (τ) is irreducible. After classifying the subgroups of the
infinite dihedral group (see Lemma 5.34), we deduce Kato’s criterion for size 2 matrices.

In Subsection 5.1, we study the torus TC.
In Subsection 5.2, we introduce a new basis of HW v,C which enables us to have information

on the poles of the coefficients of the Fw.
In Subsection 5.3, we give a recursive formula which enables us to have information on

the poles of the coefficients of the Fw.
In Subsection 5.4, we study the singularity of Fr at τ , for r ∈ Sτ .
In Subsection 5.5, we give a description of Iτ (τ, gen), when Wτ =W(τ).
In Subsection 5.6, we prove that when Wτ = W(τ) is the infinite dihedral group and τ ∈ UC,

then Iτ is irreducible.
In Subsection 5.7, we prove Kato’s criterion for size 2 Kac-Moody matrices.

This section is strongly inspired by [Ree97].

In certain proofs, when F = C, we will make additional assumptions on the σs and σ′
s,

s ∈ S . To avoid these assumptions, we can assume that σs, σ
′
s ∈ C and |σs| > 1, |σ′

s| > 1 for
all s ∈ S .

5.1 The complex torus TC

We assume that |σs| ∈ R>1 for all s ∈ S . Let (yj)j∈J be a Z-basis of Y . The map TC → (C∗)J

mapping each τ ∈ TC on (τ(yj))j∈J is a bijection. We identify TC and (C∗)J . We equip TC
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with the usual topology on (C∗)J . This does not depend on the choice of a basis (yj)j∈J .

Lemma 5.1. The set {τ ∈ TC|∀(w, λ) ∈ W v \ {1} × (Cv
f ∩ Y ), w.τ(λ) 6= τ(λ)} is dense in

TC. In particular, T reg
C is dense in TC.

Proof. Let λ ∈ Cv
f ∩ Y . By [Bou81, V.Chap 4 §6 Proposition 5], for all w ∈ W v \ {1},

w.λ 6= λ. Let (γj)j∈J ∈ (C∗)J be algebraically independent over Q and τγ ∈ TC be defined
by τγ(yj) = γj for all j ∈ J . Then w.τγ(λ) 6= τγ(λ) for all w ∈ W v \ {1}. Let τ ∈ TC. Let

(γ(n)) ∈
(
(C∗)J

)Z≥0 be such that γ(n) is algebraically independent over Q for all n ∈ Z≥0 and

such that γ(n) → (τ(yj))j∈J . Then τγ(n) → τ and we get the lemma.

Let A ⊂ R be a ring. We set Q∨
A =

⊕
s∈S

Aα∨
s ⊂ A.

Lemma 5.2. Let (γs) ∈ (C∗)S . Then there exists τ ∈ TC such that τ(α∨
s ) = γs for all s ∈ S .

Proof. Let us prove that there exists n ∈ Z≥1 such that 1
n
Q∨

Z ⊃ Y ∩Q∨
Q. The module Y ∩Q∨

Q
is a Z-submodule of the free module Y . Thus it is a free module and its rank is lower or
equal to the rank of Y . Let (yj)j∈J be a Z-basis of Y ∩Q∨

Q. As α∨
s ∈ Y ∩Q∨

Q for all s ∈ S ,
we have we have vectQ(Y ∩Q∨

Q) = Q∨
Q. Therefore for all j ∈ J , there exists (mj,s) ∈ QS such

that yj =
∑

j∈J mj,sα
∨
s and thus there exists n ∈ Z≥1 such that 1

n
Q∨

Z ⊃ Y ∩Q∨
Q.

Let S be a complement of Y ∩ Q∨
Q in Y ⊗ Q. For s ∈ S , choose γ

1
n
s ∈ C∗ such that

(γ
1
n
s )n = γs. Let τ̃ : 1

n
Q∨

Z ⊕ S → C∗ be defined by τ̃(
∑

s∈S

as
n
α∨
s + x) =

∏
s∈S

(γ
1
n
s )as for all

(as) ∈ ZS and x ∈ S. Let τ = τ̃|Y . Then τ ∈ TC and τ(α∨
s ) = γs for all s ∈ S .

5.2 A new basis of HW v,C

In [KL79], Kazhdan and Lusztig defined the Kazhdan-Lusztig basis (Cw)w∈W v of HW v,C in
the case where σs = σ for all s ∈ S . This basis is defined by its properties with respect
to some involution of HW v,C and by the fact that Cw − Tw ∈ ⊕

v<w CTv , for w ∈ W v (see
[KL79, Theorem 1.1] for a precise statement). This basis was then defined in the general
case (where the σs, s ∈ S need not be all equal) see [Lus83, 6] for example. We now define
a basis (Bw)w∈W v of HW v,C from the Kazhdan-Lusztig basis (Cw)w∈W v and then compute
the coefficient in front of B1 of the expansion of Fw in the basis (Bv)v∈W v , for w ∈ W v (see
Lemma 5.4). This will enable us to have information on the coefficient πH

1 (Fw) ∈ C(Y ), for
w ∈ W v (see Lemma 5.4 and Lemma 5.19). Our computation relies on certain multiplicative
properties of (Bw) (see Lemma 5.3) and we will not need the precise definition of the Kazhdan-
Lusztig basis.

Let (Cw)w∈W v be the basis introduced in [Lus83, 6]. For w ∈ W v, we set Bw =
(−1)ℓ(w)σwCw, where σw is defined in Remark 2.7 (6). Then for s ∈ S , one has Bs = Ts−σ2

s

and thus this notation is coherent with the notation Bs introduced in Subsection 4.1.

Lemma 5.3. The basis (Bw)w∈W v satisfies:

1. Bs = Ts − σ2
s for all s ∈ S ,

2. Bw − Tw ∈ H<w
W v,C for all w ∈ W v,

3. For all w ∈ W v and s ∈ S we have:

BwBs =





− (1 + σ2
s )Bw if ws < w

Bws +
∑

vs<v<w

b(v, w)Bv if ws > w,

for some b(v, w) ∈ C.
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Proof. (2) is a consequence of [Lus83, 2. Proposition].
(3) Let w ∈ W v and s ∈ S be such that ws < w. By [Lus83, 6.4], Cw(Hs + σ−1

s ) = 0,
thus (−1)ℓ(w)σwCw(Ts + 1) = 0 and hence Bw(Ts + 1− σ2

s − 1) = BwBs = −(σ2
s + 1)Bw.

Let w ∈ W v and s ∈ S be such that ws > w. Then by [Lus83, 6.3], one has Cw(−Cs) ∈
Cws +

⊕
vs<v<w CCv and thus

(−1)ℓ(w)σwCw(−σsCs) = BwBs ∈ (−1)ℓ(w)+1σwsCws +
⊕

vs<v<w

CBv = Bws +
⊕

vs<v<w

CBv,

which proves the lemma.

As (Bw)w∈W v is a C-basis of HW v,C, (Bw)w∈W v is a C(Y )-basis of the right module
BLH(TC).

Let w ∈ W v. Write Fw =
∑

v∈W v Bvpv,w, where (pv,w) ∈ C(Y )(W v). By an induction on
ℓ(w) using Lemma 5.3 (2) we have

⊕
v≤wHvC(Y ) =

⊕
v≤w BvC(Y ) for all w ∈ W v. Thus

for all v ∈ W v such that v � w, one has pv,w = 0. In [Ree97, 5.3], Reeder gives recursive
formulae for the pv,w. The following lemma is a particular case of them.

For v ∈ W v, define πB
v : BLH(TC) → C(Y ) by πB

v (
∑

u∈W v Bufu) = fv for all (fu) ∈
C(Y )(W v).

Lemma 5.4. Let w ∈ W v. Then p1,w = ζw :=
∏

β∨∈NΦ∨ (w) ζβ∨.

Proof. We prove it by induction on ℓ(w).
Let v ∈ W v and assume that p1,v = ζv. Let s ∈ S be such that vs > v. By Lemma 4.2

one has
Fvs =Fv ∗ Fs

=(
∑

u∈W v

Bupu,v) ∗ Fs

=
∑

u∈W v

Bu ∗ Fsp
s
u,v =

∑

u∈W v

Bu ∗Bsp
s
u,v +

∑

u∈W v

Bup
s
u,vζs.

By Lemma 5.3, we have πB
1 (

∑
u∈W v Bu ∗ Bsp

s
u,v) = 0 and πB

1 (
∑

u∈W v Bup
s
u,vζs) = ps1,vζs. By

Lemma 2.4, NΦ∨(vs) = s.NΦ∨(v)⊔{α∨
s } and thus πB

1 (Fvs) = p1,vs = ps1,vζs = ζvs which proves
the lemma.

Remark 5.5. In the proof of Lemma 5.4, we only used the properties of (Bw)w∈W v described
in Lemma 5.3 and not its precise definition. In [Ree97, Lemma 5.2], Reeder gives an ele-
mentary proof of the existence of a basis (Bw)w∈W v satisfying Lemma 5.3. Its proof can be
adapted to our framework to construct a basis (Bw) without using Kazhdan-Lusztig basis.

5.3 An expression for the coefficients of the Fw in the basis (Tv)

In this subsection, we give a recursive formula for the coefficients of the Fw in the basis
(Tv)v∈W v (see formula (2) below and Lemma 5.7). We will deduce information concerning the
elements v ∈ W v such that πT

v (Fw) is well-defined at τ , for a given τ ∈ TC (see Lemma 5.8).

Let λ ∈ Y and w ∈ W v. By (BL4), Remark 2.7 (2) and an induction on ℓ(w), there
exists (Pv,w,λ(Z))v∈W v ∈ C[Y ](W

v) such that Zλ ∗ Tw =
∑

v∈W v Tv ∗ Pv,w,λ(Z). Moreover

Pw,w,λ = Zw−1.λ and for all v ∈ W v \ [1, w], Pv,w,λ = 0.
Let λ ∈ Cv

f ∩ Y . Then by [Bou81, V.Chap 4 §6 Proposition 5], for all v, w ∈ W v such
that v 6= w, one has v.λ 6= w.λ. Let w ∈ W v. Let w = s1 . . . sk be a reduced expression. Set
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Qw,w,λ(Z) = 1 ∈ C(Y ). For v ∈ W v \ [1, w], set Qv,w,λ(Z) = 0. Define (Qv,w,λ(Z))v∈[1,w] by
decreasing induction by setting:

Qv,w,λ(Z) =
1

Zw−1.λ − Zv−1.λ

∑

w≥u>v

Qu,w,λPv,u,λ ∈ C(Y ). (2)

Lemma 5.6. Let λ ∈ Cv
f ∩ Y , w ∈ W v and τ ∈ T reg

C be such that v.τ(λ) 6= τ(λ) for all
v ∈ W v \ {1}. Let x ∈ Iτ be such that Zλ.x = w.τ(λ).x. Then x ∈ Iτ (w.τ).

Proof. By Proposition 3.4 (2), we can write x =
∑

v∈W v xv where xv ∈ Iτ (v.τ) for all v ∈ W v.
One has Zλ.x−w.τ(λ).x = 0 =

∑
v∈W v(v.τ(λ)−w.τ(λ))xv. As v.τ(λ) 6= w.τ(λ) for all v 6= w,

we deduce that x = xw.

Lemma 5.7. Let v, w ∈ W v. Then πT
v (Fw) = Qv,w,λ, for any λ ∈ Cv

f ∩ Y . In particular,
Qv,w,λ does not depend on the choice of λ.

Proof. Let λ ∈ Cv
f and h =

∑
v∈W v TvQv,w,λ ∈ BLH(TC). One has:

Zλ ∗ h = Zλ ∗
∑

v∈W v

TvQv,w,λ

=
∑

u,v∈W v

TuPu,v,λQv,w,λ

=
∑

u∈W v

Tu
∑

v∈W v

Pu,v,λQv,w,λ.

Let u ∈ W v. Then:
∑

v∈W v

Pu,v,λQv,w,λ = Pu,u,λQu,w,λ +
∑

v>u

Pu,v,λQv,w,λ

= Zu−1.λ + (Zw−1.λ − Zu−1.λ)Qu,w,λ

= Zw−1.λQu,w,λ,

and therefore Zλ.h = h.Zw−1.λ.
Let λ ∈ Cv

f ∩ Y and τ ∈ T reg
C be such that u.τ(λ) 6= τ(λ) for all u ∈ W v \ {1}. Then

evτ (Z
λ ∗ h) = evτ (h ∗ Zv−1.λ) = w.τ(λ).h(τ). By Lemma 5.6 we deduce that h(τ) ∈ Iτ (w.τ).

By Proposition 3.4 (2) and Lemma 4.14 we deduce that h(τ) = Fw(τ). By Lemma 5.1, we
deduce that h = Fw, which proves the lemma.

Lemma 5.8. Let w ∈ W v, τ ∈ TC and v ∈ [1, w]. Assume that for all u ∈ [v, w), u.τ 6= w.τ .
Then for all u ∈ [v, w], πT

u (Fw) ∈ C(Y )τ .

Proof. We do it by decreasing induction on v. Suppose that for all u ∈ (v, w), πT
u (Fw) ∈

C(Y )τ . Let λ ∈ Cv
f ∩Y be such that v.τ(λ) 6= w.τ(λ), which exists because Cv

f ∩Y generates
Y . By Lemma 5.7 we have

πT
v (Fw) = Qv,w,λ =

1

Zw−1.λ − Zv−1.λ

∑

w≥u>v

Qu,w,λPv,u,λ.

We deduce that πT
v (Fw) ∈ C(Y )τ because by assumption Qu,w,λ ∈ C(Y )τ for all u ∈ (v, w].

Lemma follows.
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5.4 τ -simple reflections and intertwining operators

Let τ ∈ TC. Following [Ree97, 14], we introduce τ -simple reflections (see Definition 5.9).
If Sτ is the set of τ -simple reflections, then (W(τ),Sτ ) is a Coxeter system. We study, for
such a reflection r, the singularity of Fr at τ : we prove that Fr − ζr is in BLH(TC)τ (see
Lemma 5.19). This enables us to define Kr(τ) = (Fr − ζr)(τ) ∈ HW v,C. This will be useful
to describe Iτ (τ, gen).

We now define τ -simple reflections. Our definition slightly differs from [Ree97, Definition
14.2]. These definitions are equivalent (see Lemma 5.13).

Definition 5.9. Let τ ∈ TC. A coroot β∨ ∈ Φ∨
τ and its corresponding reflection rβ∨ are said

to be τ-simple if NR(rβ∨) ∩W(τ)= {rβ∨}. We denote by Sτ the set of τ -simple reflections.

Recall that Φ∨
(τ) = {α∨ ∈ Φ∨

+|ζdenα∨ (τ) = 0} and R(τ) = {rα∨ |α∨ ∈ Φ∨
(τ)}.

5.4.1 Coxeter structure of W(τ) and comparison of the definitions of τ-simplicity

We use the same notation as in 2.2.3. Then Sτ = S (W(τ)) and thus (W(τ),Sτ ) is a Coxeter
system.

Let ≤τ and ℓτ be the Bruhat order and the length on (W(τ),Sτ ).

Lemma 5.10. Let x, y ∈ W(τ) be such that x ≤τ y. Then x ≤ y.

Proof. By definition, if x, y ∈ W(τ), then x ≤τ y (resp. x ≤ y) if there exist n ∈ Z≥0 and
x0 = x, x1, . . . , xn = y ∈ W(τ) (resp . W v) such that (xi, xi+1) is an arrow of the graph of
[Dye91, Definition 1.1] for all i ∈ J0, n− 1K. We conclude with [Dye91, Theorem 1.4]

Remark 5.11. The orders ≤ and ≤τ can be different on W(τ): there can exist v, w ∈ W(τ)

such that v and w are not comparable for ≤τ and v < w. For example if W v = {s1, s2} is the
infinite dihedral group, r1 = s1 and r2 = s2s1s2 (see Lemma B.2), then r1 < r2 but r1 and r2
are not comparable for <τ .

Set Φ∨
(τ),+ = Φ∨

(τ)∩Φ∨
+ and Φ∨

(τ),− = Φ∨
(τ)∩Φ∨

−. For w ∈ W(τ), set NΦ∨
(τ)
(w) = NΦ∨(w)∩Φ∨

(τ).

Lemma 5.12. Let w ∈ W(τ). Then w.Φ∨
(τ) = Φ∨

(τ) and w.R(τ).w
−1 = R(τ).

Proof. Let α∨ ∈ Φ∨
(τ). One has ζdenw.α∨ = (ζdenα∨ )w and hence

ζdenα∨ (τ) = (ζdenα∨ )w(τ) = (ζdenα∨ )(w−1.τ) = 0

because w ∈ W(τ) ⊂ Wτ . Thus w.α∨ ∈ Φ∨
(τ) and rv.α∨ = vrα∨v−1 ∈ R(τ), which proves the

lemma.

We now prove that our definition of τ -simplicity is equivalent to the definition of [Ree97,
14.2]. This equivalence will be useful in our study of the weight spaces of Iτ and thus in the
study of the irreducibility of Iτ . Indeed, our definition of τ -simplicity is well adapted to the
study of the Coxeter structure of W(τ) whereas Reeder’s one is well adapted to the study of
the singularity Fr at τ .

Lemma 5.13. 1. One has Sτ ⊂ R ∩W(τ)= R(τ).

2. Let r = r∨β ∈ R. Then r ∈ Sτ if and only if NΦ∨(rβ∨) ∩ Φ∨
(τ) = {β∨}.
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3. Let w ∈ W(τ). Let w = r1 . . . rk be a reduced writing of W(τ), with k = ℓτ (w) and
r1, . . . , rk ∈ Sτ . Then |NΦ∨

(τ)
(w)| = {α∨

rk
, rk.α

∨
rk−1

, . . . , rk . . . r2.α
∨
r1
} and |NΦ∨(w) ∩

Φ∨
(τ)| = k = ℓτ (w).

Proof. We begin by proving a part of (3). By Lemma 5.10 and [Kum02, Lemma 1.3.13], for
v ∈ W(τ) and r ∈ Sτ , one has ℓτ (vr) > ℓτ (v) if and only if vr >τ v if and only if vr > v if
and only if v.α∨

r ∈ Φ∨
+ if and only if v.α∨

r ∈ Φ∨
(τ),+.

One has NΦ∨
(τ)
(w) = {α∨ ∈ Φ∨

(τ),+|w.α∨ ∈ Φ∨
(τ),−}. Then using the same proof as in

[Kum02, Lemma 1.3.14], one has NΦ∨
(τ)
(w) ⊃ {α∨

rk
, rk.α

∨
rk−1

, . . . , rk . . . r2.α
∨
r1} and

|{α∨
rk
, rk.α

∨
rk−1

, . . . , rk . . . r2.α
∨
r1
}| = k = ℓτ (w).

We now prove (1) and (2). Let f : Φ∨
+ → R be the map defined by f(α∨) = rα∨

for α∨ ∈ Φ∨
+. Then by Subsection 2.2, f is a bijection. Let r = rβ∨ ∈ Sτ . One has

f
(
NΦ∨(r) ∩ Φ∨

(τ)

)
= NR(r) ∩ R(τ). Moreover, R(τ) ⊂W(τ)∩ R. Thus

f−1
(
NR(r) ∩W(τ)

)
= {β∨} ⊃ f−1

(
NR(r) ∩ R(τ)

)
= NΦ∨(r) ∩ Φ∨

(τ).

Moreover, |NΦ∨(r)∩Φ∨
(τ)| ≥ 1 and thus |NΦ∨(r)∩Φ∨

(τ)| = {β∨}. In particular, β∨ ∈ Φ∨
(τ) and

r ∈ R(τ). Thus Sτ ⊂ R(τ).
By [Dye90, Theorem 3.3 (i)], R ∩ W(τ) =

⋃
w∈W(τ)

wSτw
−1 and thus by Lemma 5.12,

R ∩W(τ) ⊂
⋃

w∈W(τ)
w.R(τ).w

−1 = R(τ). As by definition, R(τ) ⊂ W(τ)∩ R, we deduce that

R(τ) =W(τ)∩ R, which proves (1).
Let r = r∨β ∈ R. Suppose that NΦ∨(rβ∨) ∩ Φ∨

(τ) = {β∨}. Then

f
(
NΦ∨(rβ∨) ∩ Φ∨

(τ)

)
= {rβ∨} = NR(rβ∨) ∩ R(τ) = NR(rβ∨) ∩W(τ),

which proves (2).
Let α∨ ∈ NΦ∨

(τ)
(w). Then there exists j ∈ J2, kK such that rj . . . rk.α

∨ ∈ Φ∨
(τ),+ and

rj−1 . . . rk.α
∨ ∈ Φ∨

(τ),−. Thus rj−1 . . . rk.α
∨ ∈ NΦ∨

(τ)
(rj) = {α∨

rj
} and hence α∨ = rk . . . rj−1.α

∨
rj

,

which concludes the proof of the lemma.

5.4.2 Singularity of Fr at τ for a τ-simple reflection

Lemma 5.14. Let τ ∈ TC and rβ∨ ∈ Sτ . Then there exists h′ ∈ BLH(TC)τ such that
Frβ∨ = h′.ζdenβ∨ .

Proof. Using [BB05, 1. Exercise 10], we write rβ∨ = wsw−1 with w ∈ W v, s ∈ S and
ℓ(wsw−1) = 2ℓ(w) + 1. One has β∨ = w.α∨

s . Let rβ∨ = sm . . . s1 be a reduced expression
of rβ∨ , with m ∈ Z≥0 and s1, . . . , sm ∈ S . Let k ∈ J0, m − 1K and v = sk . . . s1. Suppose
that Fv = h′k.(ζ

den
β∨ )η(k) where h′k ∈ BLH(TC)τ and η(k) ∈ Z≥0. Then Fsk+1v = Fsk+1

∗ Fv =

(Bsk+1
+ ζsk+1

) ∗ Fv. One has ζsk+1
∗ Fv = Fv.ζ

v−1

sk+1
by Lemma 4.14.

By Lemma 5.13 if ζv
−1

sk+1
is not defined in τ then k = ℓ(w). As Bsk+1

∈ HW v,C and BLH(TC)τ
is a left HW v,C-module, we can write Fsk+1v = h′k+1.(ζ

den
β∨ )η(k+1) where h′k+1 ∈ BLH(TC)τ and

η(k+1) ≤ η(k) if k 6= ℓ(w) and η(k+1) ≤ η(k)+1 if k = ℓ(w), which proves the lemma.

Lemma 5.15. Let h ∈ BLH(TC) and τ ∈ TC. Then

max{u ∈ W v|πH
u (h) /∈ C(Y )τ} = max{u ∈ W v|πB

u (h) /∈ C(Y )τ}.
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Proof. Let v ∈ max{u ∈ W v|πH
u (h) /∈ C(Y )τ}. By 5.3 (2),

πB
v (h) =

∑

u≥v

πB
v (Hu)π

H
u (h) = πB

v (Hv)π
H
v (h) +

∑

u>v

πB
v (Hu)π

H
u (h).

Moreover, by Lemma 5.3 (1) πB
v (Hv) ∈ C∗. Thus πB

v (h) /∈ C(Y )τ . Similarly if v′ ∈ max{u ∈
W v, u ≥ v|πB

u (h) /∈ C(Y )τ}, then πH
v′ (h) /∈ C(Y )τ . Hence v ∈ max{u ∈ W v|πB

u (h) /∈ C(Y )τ}
and consequently max{u ∈ W v|πH

u (h) /∈ C(Y )τ} ⊂ max{u ∈ W v|πB
u (h) /∈ C(Y )τ}. By a

similar reasoning we get the other inclusion.

Lemma 5.16. Let w ∈ W v. Suppose that for some s ∈ S , we have w.λ− λ ∈ Rα∨
s for all

λ ∈ Y . Then w ∈ {Id, s}.

Proof. Let β∨ ∈ NΦ∨(w). Write β∨ =
∑

t∈S
ntα

∨
t , with nt ∈ Z≥0 for all t ∈ S . Then

w.β∨ ∈ Φ∨
− and by assumption, nt = 0 for all t ∈ S \{s}. Therefore β∨ ∈ Z≥0α

∨
s ∩Φ∨ = {α∨

s }.
We conclude with Lemma 2.4.

Lemma 5.17. Let χ ∈ TC. Assume that there exists β∨ ∈ Φ∨
+ such that rβ∨ ∈ Wχ. Then

there exists (χn) ∈ (TC)
Z≥0 such that:

• χn → χ,

• Wχn
= 〈rβ∨〉 for all n ∈ Z≥0,

• χn(β
∨) = χ(β∨) for all ∈ Z≥0.

Proof. We first assume that β∨ = α∨
s , for some s ∈ S . Let (yj)j∈J be a Z-basis of Y . For all

j ∈ J , choose zj ∈ C such that χ(yj) = exp(zj). Let g : A → C be the linear map such that

g(yj) = zj for all j ∈ J . Let V be a complement of Q∨
R in A. Let n ∈ Z≥1. Let b

(n)
s = g(α∨

s )

and (b
(n)
t ) ∈ CS \{s} be such that |b(n)t −g(α∨

t )| < 1
n

and such that the exp(b
(n)
t ), t ∈ S \{s} are

algebraically independent over Q. Let gn : A → C be the linear map such that gn(α
∨
t ) = b

(n)
t

for all t ∈ S and gn(v) = g(v) for all v ∈ V . For n ∈ Z≥0 set χn = (exp ◦gn)|Y ∈ TC. For all
x ∈ A, gn(x) → g(x) and thus χn → χ.

Let n ∈ Z≥1. Then χ(α∨
s ) = χn(α

∨
s ) and thus s ∈ Wχn

. Let w ∈ Wχn
. Then w−1.λ− λ ∈

Zα∨
s for all λ ∈ Y . By Lemma 5.16 we deduce that w ∈ {Id, s}. Therefore Wχn

= {Id, s}.
We no more assume that β∨ = α∨

s for some s ∈ S . Write β∨ = w.α∨
s for some w ∈ W v

and s ∈ S . Let χ̃ = w−1.χ. Then s ∈ Wχ̃. Thus there exists (χ̃n) ∈ (TC)
Z≥0 such that

χ̃n → χ̃ and Wχ̃n
= {Id, s} for all n ∈ Z≥0. Let (χn) = (w.χ̃n). Then χn → χ and

Wχn
= {1, rβ∨} for all n ∈ Z≥0.

Moreover, χ(β∨) ∈ {−1, 1} and χn(β
∨) ∈ {−1, 1} for all n ∈ Z≥0. Maybe considering a

subsequence of (χn), we may assume that there exists ǫ ∈ {−1, 1} such that χn(β
∨) = ǫ for

all n ∈ Z≥0. As χn → χ, χn(β
∨) = ǫ→ χ(β∨), which proves the lemma.

Let C[Q∨
Z] =

⊕
λ∈Q∨

Z

CZλ ⊂ C[Y ]. This is the group algebra of Q∨
Z. Let C(Q∨

Z) ⊂ C(Y ) be

the field of fractions of C[Q∨
Z] and H(Q∨

Z) =
⊕

w∈W v HwC(Q∨
Z) ⊂ BLH(TC). This is a (HW v,C−

C(Q∨
Z))-bimodule of BLH(TC) and a left C(Q∨

Z)-submodule of BLH(TC). Consequently Fw ∈
H(Q∨

Z) for all w ∈ W v.
Let A = C[Zα∨

s |s ∈ S ] ⊂ C[Q∨
Z]. This is a unique factorization domain and C(Q∨

Z) is the
field of fractions of A.

Lemma 5.18. Let β∨ ∈ Φ∨. Then Zβ∨ − 1 and Zβ∨

+ 1 are irreducible in A.
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Proof. Write β∨ = w.α∨
s , where w ∈ W v and s ∈ S . Then Zβ∨

= (Zα∨
s )w.

Lemma 5.19. (see [Ree97, Proposition 14.3]) Let τ ∈ TC and r = rβ∨ ∈ Sτ . Then Fr∨
β
−

ζβ∨ ∈ BLH(TC)τ .

Proof. One has Fr∨
β
− ζβ∨ ∈ H(Q∨

Z). Write Fr∨
β
− ζβ∨ =

∑
u∈W v Hu

fu
gu

, with fu, gu ∈ A and

fu ∧ gu = 1 for all u ∈ W v. Let u ∈ (1, rβ∨). Let us prove that ζdenβ∨ ∧ gu = 1. Suppose that

ζdenβ∨ ∧ gu 6= 1. Then there exists η ∈ {−1, 1} such that Zβ∨

+ η divides gu.

Let χ ∈ TC be such that χ(β∨) = −η. By Remark 4.1, rβ∨ ∈ Wχ. Let (χn) ∈ (TC)
Z≥0 be

such that χn → χ and Wχn
= {1, rβ∨} for all n ∈ Z≥0, and χn(β

∨) = −η for all n ∈ Z≥0.
whose existence is provided by Lemma 5.17. One has gu(χn) = 0 for all n ∈ Z≥0. Moreover
by Lemma 5.8, πH

u (Fr∨
β
) = fu

gu
∈ C(Y )χn

for all n ∈ Z≥0. Therefore, fu(χn) = 0 for all n ∈ Z≥0

and thus fu(χ) = 0.
By the Nullstellensatz (see [Lan02, IX, Theorem 1.5] for example), there exists n ∈ Z≥0

such that Zβ∨

+ η divides fn
u in A. By Lemma 5.18, Zβ∨

+ η is irreducible in A and thus
Zβ∨

+ η divides fu: a contradiction. Therefore ζdenβ∨ ∧ gu = 1. By Lemma 5.14, gu(τ) 6= 0.

Therefore {u ∈ W v|πH
u (Frβ∨ − ζrβ∨) /∈ C(Y )τ} ⊂ {1}. By Lemma 5.15 we deduce

that {u ∈ W v|πB
u (Frβ∨ − ζrβ∨) /∈ C(Y )τ} ⊂ {1}. Using Lemma 5.4 we deduce that {u ∈

W v|πB
u (Frβ∨ −ζrβ∨ ) /∈ C(Y )τ} = ∅. By Lemma 5.15, {u ∈ W v|πH

u (Frβ∨ −ζrβ∨ ) /∈ C(Y )τ} = ∅,
which proves the lemma.

5.5 Description of generalized weight spaces

In this subsection, we describe Iτ (τ, gen) for τ ∈ UC when W(τ)=Wτ , using the Kr1 . . .Krk(τ),
for r1, . . . , rk ∈ Sτ (see Theorem 5.27).

For r ∈ R, one sets Kr = Fr − ζα∨
r
∈ BLH(TC). By Lemma 4.14 we have:

θ ∗Kr = Kr ∗ θr + (θr − θ)ζr for all θ ∈ C(Y ). (3)

Lemma 5.20. Let w1, w2 ∈ W v. Then there exists P ∈ C(Y )× such that Fw1 ∗ Fw2 =
Fw1w2 ∗ P . If moreover τ ∈ UC, then one can write P = f

g
with f, g ∈ C[Y ]× and f(w.τ) 6= 0

for all w ∈ W v.

Proof. Let u, v ∈ W v. Let us prove that if χ ∈ T reg
C , then Fu ∗ Fv ∈ BLH(TC)χ. Write

Fu =
∑

u′≤uHu′θu′ , where θu′ ∈ C(Y ) for all u′ ≤ u. Then by Lemma 4.14,

Fu ∗ Fv =
∑

u′≤u

Hu′θu′ ∗ Fv =
∑

u′≤u

Hu′ ∗ Fv ∗ (θu′)v
−1

.

By Lemma 4.14, θu′ ∈ BLH(TC)χ for all χ ∈ T reg
C and thus (θu′)v

−1 ∈ BLH(TC)χ for all
χ ∈ T reg

C . Let χ ∈ T reg
C . As BLH(TC)χ is an HW v,C − C(Y )χ bimodule, we deduce that

Fu ∗ Fv ∈ BLH(TC)χ.
Let u, v ∈ W v. Let us prove that there exists Q ∈ C(Y ) such that Fu ∗Fv = Fuv ∗Q. Let

λ ∈ Y . Then by Lemma 4.14, one has ZλFu∗Fv = Fu∗Fv∗Z(uv)−1.λ. Therefore for all χ ∈ T reg
C ,

there exists a(χ) ∈ C such that Fu ∗ Fv(χ) = a(χ)Fuv(χ). Write Fu ∗ Fv =
∑

w∈W v Hw ∗ θw
and Fuv =

∑
w∈W v Hw ∗ θ̃w, where (θw), (θ̃w) ∈ C(Y )(W

v). Let Q = θuv
θ̃uv

= θuv. Let w ∈ W v be

such that θ̃w = 0. Then for all χ ∈ T reg
C , θw(χ) = 0 and by Lemma 5.1, θw = 0 = Qθ̃w. Let

w ∈ W v be such that θw 6= 0. Then U := {χ ∈ TC|θw ∈ BLH(TC)χ and θw(χ) 6= 0} is open
and dense in TC. By Remark 4.11, T reg

C has full measure in TC and thus U ∩ T reg
C is dense
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in TC. Moreover θw(χ) = Q(χ)θ̃(χ) for all χ ∈ U ∩ T reg
C and thus θ̃w = Qθw. Consequently,

there exists Q ∈ C(Y ) such that Fu ∗ Fv = Fuv ∗Q.
Let τ ∈ UC. Let w1 ∈ W v. Let u ∈ W v be such that there exists θ = f

g
∈ C(Y )× such

that Fw1 ∗ Fu = Fw1u ∗ θ, with f(w.τ) 6= 0 for all w ∈ W v. Let s ∈ S be such that us > u.
Then by Lemma 4.3,

Fw1 ∗ Fus = Fw1u ∗ θ ∗ Fs = Fw1u ∗ Fs ∗ θs.

Suppose w1us > w1u. Then Fw1u∗Fs = Fw1us and thus Fw1 ∗Fus = Fw1us∗θs and f s(w.τ) 6= 0
for all w ∈ W v. Suppose w1us < w1u. Then Fw1u∗Fs = Fw1us∗(Fs)

2 and thus by Lemma 4.3,

Fw1 ∗ Fus = Fw1us ∗ (θsζsζ
s
s ). By definition of UC, one can write Fw1 ∗ Fus = Fw1us ∗ f̃

g̃
with

f̃ , g̃ ∈ C[Y ]× such that f̃(w.τ) 6= 0 for all w ∈ W v and the lemma follows.

Remark 5.21. In [Ree97, Lemma 4.3 (2)], Reeder gives an explicit expression of Fu ∗ Fv,
for u, v ∈ W v.

Let r ∈ R. Let Ωr : C(Y ) → C(Y ) be defined by Ωr(θ) = ζr(θ
r − θ) for all θ ∈ C(Y ).

Lemma 5.22. Let r ∈ Sτ . Then Ωr(C(Y )τ ) ⊂ C(Y )τ .

Proof. Write r = rβ∨ , where β∨ ∈ Φ∨. Then one has r(λ) = λ − β(λ)β∨ for all λ ∈ Y . Let
λ ∈ Y . Then with the same computation as in Remark 2.7 (2), we have that Ωr(Z

λ) ∈ C(Y )τ .
Thus Ωr(θ) ∈ C(Y )τ for all θ ∈ C[Y ].

Let θ ∈ C(Y )τ . Write θ = f
g
, where f, g ∈ C[Y ] and g(τ) 6= 0. Then ζr(θ

r − θ) =

ζr(
frg−(frg)r

ggr
). Moreover, gr(τ) = g(r.τ) = g(τ) 6= 0 and as f rg ∈ C[Y ], we have that

ζr(θ
r − θ) ∈ C(Y )τ .

We now assume that τ ∈ UC.
For each w ∈ W(τ) we fix a reduced writing w = r1 . . . rk, with k = ℓ(w) and r1, . . . , rk ∈ Sτ

and we set w = (r1, . . . , rk). Let Kw = Kr1 . . .Krk ∈ BLH(TC).

Lemma 5.23. Let r ∈ Sτ . Then BLH(TC)τ ∗Kr ⊂ BLH(TC)τ . In particular, Kw ∈ BLH(TC)τ
for all w ∈ W(τ).

Proof. Let w ∈ W v and θ ∈ C(Y )τ . Then Hwθ ∗ Kr = HwKrθ
r + Hw ∗ Ωr(θ). Using

Lemma 5.19, Lemma 5.22 and the fact that BLH(TC)τ is a HW v,C − C(Y )τ -bimodule, we
deduce that Hwθ ∗Kr ∈ BLH(TC)τ . Hence BLH(TC)τ ∗Kr ⊂ BLH(TC)τ .

Lemma 5.24. Let w ∈ W(τ). Then max supp
(
Kw(τ)

)
= {w}, where max is defined with

respect to the order ≤ on W v.

Proof. Write w = (r1, . . . , rk) with r1, . . . , rk ∈ Sτ . Then

Kw = (Fri1
− ζri1 ) . . . (Frik

− ζrik ) = Fri1
∗ Fri2

∗ . . . ∗ Frik
+

∑

v<τw

FvPv,

for some Pv ∈ C(Y ). By Lemma 5.20, there exist f, g ∈ C[Y ]× such that Fri1
∗Fri2

∗. . .∗Frik
=

Fw∗ f
g

and f(τ) 6= 0. One has πT
w(Fw) = 1 and by Lemma 5.10, πT

v (Fv) = 0 for all v ∈ [1, w)≤τ
.

Thus using Lemma 5.23, one can moreover assume g(τ) 6= 0. Therefore πT
w(Kw) =

f
g
∈ C(Y )τ

and f(τ) 6= 0, which proves the lemma.
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Let K(W(τ)) =
⊕

w∈W(τ)
FwC(Y ). By Lemma 5.20 and Lemma 4.14, K(W(τ)) is a sub-

algebra of BLH(TC). Let Kτ = K(W(τ)) ∩ BLH(TC)τ . For w ∈ W(τ), set K(W(τ))
<τw =⊕

v∈W(τ),v<τw
FwC(Y ) and K<τw

τ =
⊕

v<τw
KvC(Y )τ .

Lemma 5.25. Let θ ∈ C(Y )τ and w ∈ W(τ). Then there exists kw(θ) ∈ K<τw
τ such that

θ ∗Kw = Kw ∗ θw−1
+ kw(θ).

Proof. If w = 1, this is clear. Suppose w >τ 1. Write w = vr with v ∈ W(τ) and r ∈ Sτ such

that v <τ w. Suppose that θ ∗Kv = Kv ∗ θv−1
+ kv(θ) with kv(θ) ∈ K<τv

τ . One has

θ ∗Kw = θ ∗Kv ∗Kr =
(
Kvθ

v−1

+ kv(θ)
)
∗Kr = Kw ∗ θw−1

+Kv ∗ Ωr(θ
v−1

) + kv(θ) ∗Kr.

The sets K(W(τ))
≤τv =

⊕
v′≤τv

Fv′C(Y ) and BLH(TC)τ are right C(Y )τ -submodules of
BLH(TC) and thus by Lemma 5.23 and Lemma 5.22, Kv ∗ Ωr(θ

v−1
) ∈ K≤τv

τ ⊂ K<τw
τ .

By Lemma 5.23, kv(θ) ∗Kr ∈ BLH(TC)τ . By Lemma 4.14 and [Kum02, Corollary 1.3.19],

kvFr ∈ K(W(τ))
<τmax(vr,v) = K(W(τ))

<τw. Consequently kv ∗ Kr ∈ K<τw
τ and KvΩr(θ

v−1
) +

kv(θ)Kr ∈ K<τw
τ , which proves the lemma.

Lemma 5.26. One has Kτ =
⊕

w∈W(τ)
KwC(Y )τ .

Proof. By Lemma 5.23, Kτ ⊃ ⊕
w∈W(τ)

KwC(Y )τ .
For w ∈ W(τ), set K(W(τ))

≤τw =
⊕

v≤τw
FvC(Y ) ⊂ K(W(τ)). Let w ∈ W(τ). Suppose that

for all v ∈ [1, w)≤τ
, one has K≤τv

τ =
⊕

v′∈[1,v]≤τ
Kv′C(Y )τ . By Lemma 5.24, one can write

πT
w(Kw) =

f
g
, with f, g ∈ C[Y ] such that f(τ)g(τ) 6= 0. Let x ∈ K≤τw

τ and θ = πT
w(x) ∈ C(Y )τ .

By Lemma 5.23, θ g
f
Kw ∈ BLH(TC)τ . Moreover, x − θ g

f
Kw ∈ ∑

v∈[1,w)≤τ
K≤τv

τ . Therefore,

x ∈ ⊕
v∈[1,w]≤τ

KvC(Y )τ and the lemma follows.

Theorem 5.27. Let τ ∈ UC be such that W(τ) =Wτ . Then Iτ (τ, gen) = evτ (Kτ )⊗τ 1.

Proof. Let w ∈ W(τ) and θ ∈ C(Y )τ . As w ∈ Wτ , θ
w−1 ∈ C(Y )w.τ = C(Y )τ and τ(θw

−1
) =

τ(θ). Then by Lemma 5.25, (θ − τ(θ))Kw(τ) ⊗τ 1 ∈ K<τw(τ) ⊗τ 1. By an induction using
Lemma 5.26 we deduce that Kτ (τ)⊗τ 1 ⊂ Iτ (τ, gen).

Let w ∈ W v and Ew =
(
evτ (Kτ ) ⊗τ 1

)
∩ I≤w

τ . By Lemma 5.24, dimEw = |W(τ)∩ {v ∈
W v|v ≤ w}|. By Proposition 3.4, dim Iτ (τ, gen)≤w = |{v ∈ Wτ |v ≤ w}| = dimEw. As
(W v,≤) is a directed poset, Iτ =

⋃
w∈W v I≤w

τ , which proves the theorem.

5.6 Irreducibility of Iτ when Wτ = W(τ) is the infinite dihedral group

In this subsection, we prove that if τ ∈ UC is such that Wτ = W(τ) and W(τ) is isomorphic to
the infinite dihedral group, then Iτ is irreducible (see Lemma 5.33). Let us sketch the proof of
this lemma. We prove that Iτ (τ) = C1⊗τ 1. For w ∈ W(τ), let πK

w : Iτ (τ, gen) → C be defined
as πK

w

(∑
v∈W v Kv(τ)xv

)
= xw, for all (xv) ∈ C(W(τ)), which is well-defined by Lemma 5.24

and Theorem 5.27. We suppose that Iτ (τ) \ C1 ⊗τ 1 is nonempty and we consider one of
its elements x. We reach a contradiction by computing πK

w (x), where w ∈ W(τ) is such that
ℓτ (w) = max{ℓτ (v)|v ∈ supp(x) ∩W(τ)} − 1.

Let τ ∈ UC. Assume that (W(τ),Sτ ) is isomorphic to the infinite dihedral group (in
particular, |Sτ | = 2 and every element of W(τ) admits a unique reduced writing).

The following lemma is easy to prove.

32



Lemma 5.28. Let w ∈ W(τ) and r ∈ Sτ be such that ℓτ (wr) = ℓτ (w) + 1. Let u ∈ [1, w)≤τ .
Then ur 6= w.

Lemma 5.29. Let τ ∈ UC. Let r = rβ∨ ∈ Sτ , where β∨ ∈ Φ∨. Then there exists a ∈ C∗

such that for all λ ∈ Y ,
τ
(
(Zr.λ − Zλ)ζr

)
= aτ(λ)β(λ).

Proof. One has

ζr =
1

ζdenβ∨

.
∏

α∨∈NΦ∨ (r)

ζnumα∨ .
∏

α∨∈NΦ∨ (r)\{β∨}

1

ζdenα∨

.

By Lemma 5.13 and by definition of UC,

τ(
∏

α∨∈NΦ∨ (r)\{β∨}

ζdenα∨ ) 6= 0 and τ(
∏

α∨∈NΦ∨ (r)

ζnumα∨ ) 6= 0.

If σβ∨ = σ′
β∨ , one has Zr.λ−Zλ

ζden
β∨

= Zr.λ−Zλ

1−Zβ∨ = Zλ Z−β(λ)β∨
−1

1−Zβ∨ . By Lemma 5.13, r ∈ R(τ) and

thus τ(β∨) = 1. Thus by the same computation as in Remark 2.7, τ(Z
r.λ−Zλ

1−Zβ∨ ) = β(λ)τ(λ).

Using a similar computation when σβ∨ 6= σ′
β∨ , we deduce the lemma.

Lemma 5.30. Let w ∈ W(τ) and r ∈ Sτ be such that ℓτ (wr) = ℓτ (w) + 1. Then there exists
a ∈ C∗ such that for all λ ∈ Y , one has:

πK
w

(
Zλ ∗Kwr(τ)⊗τ 1

)
= aτ(λ)αr(w

−1.λ).

Proof. Let λ ∈ Y . Write Zλ ∗Kw = Kw ∗ Zw−1.λ + k, where k ∈ K<τw
τ , which is possible by

Lemma 5.25. One has

Zλ ∗Kwr = (Kw ∗ Zw−1.λ + k) ∗Kr = Kwr ∗ Zrw−1.λ +Kw

(
(Zrw−1.λ − Zw−1.λ)ζr

)
+ k ∗Kr.

Therefore, using Lemma 5.28 and Lemma 5.29 we deduce

πK
w

(
ZλKwr(τ)⊗τ 1

)
= τ

(
(Zrw−1.λ − Zw−1.λ)ζr

)
= aτ(λ)β(w−1.λ),

for some a ∈ C∗.

Lemma 5.31. Let w ∈ W(τ) and r ∈ Sτ be such that ℓτ (rw) = ℓτ (w) + 1.
One has πK

w (Kr ∗ K(W(τ))
≤τw) = {0}.

Proof. Let u ∈ W(τ) and r ∈ Sτ be such that ru >τ u. Then by Lemma 5.20 and
[Kum02, Corollary 1.3.19], Fr ∗ K(W(τ))

≤τu ⊂ K(W(τ))
≤τmax(u,ru) and thus Kr ∗ K(W(τ))

≤τu ⊂
K(W(τ))

≤τmax(u,ru).
Let v ∈ [1, w)≤τ

. If rv >τ v, then by Lemma 5.20, there exists Q ∈ C(Y ) such that
Fr ∗ Fv = Frv ∗ Q and thus Kr ∗ Fv ∈ Frv ∗ Q + FvC(Y ). By Lemma 5.28, rv 6= w. Using
Lemma 5.24 and the fact w and rv have the same length, we deduce that πK

w (Kr ∗ Fv) = 0.
If rv <τ v, then Kr ∗ Fv ∈ K(W(τ))

≤τv and thus πK
w (Kr ∗ Fv) = 0 which finishes the proof

of the lemma.

Lemma 5.32. Let w ∈ Wτ , r ∈ Sτ be such that ℓτ (rw) = ℓτ (w) + 1. Then there exists
b ∈ C∗ such that for all λ ∈ Y :

πK
w (Zλ.Krw(τ)⊗τ 1) = bτ(λ)αr(λ).
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Proof. One has

ZλKrw = (Zλ ∗Kr) ∗Kw =
(
Kr.Z

r.λ + (Zr.λ − Zλ)ζr
)
∗Kw(τ).

One has Zr.λ ∗Kw ∈ K(W(τ))
≤τw. Thus by Lemma 5.31, πK

w (Kr.Z
r.λ ∗Kw) = 0. Moreover,

by Lemma 5.29, there exists b ∈ C∗ such that

πK
w

(
(Zr.λ − Zλ)ζrKw(τ)⊗τ 1

)
= w.τ

(
(Zr.λ − Zλ)ζr

)
= bτ(λ)αr(λ),

which proves the lemma.

Lemma 5.33. Let τ ∈ UC be such that Wτ = W(τ) and such that there exists r1, r2 ∈ Sτ such
that (W(τ), {r1, r2}) is isomorphic to the infinite dihedral group. Then Iτ is irreducible.

Proof. Let us prove that Iτ (τ) = C.1⊗τ 1. Let x ∈ Iτ \C.1⊗τ 1 and assume that x ∈ Iτ (τ).
Let n = max{ℓτ(w)|w ∈ supp(x)}. Let w ∈ W(τ) be such that ℓτ (w) = n − 1. Then
there exist r, r′ ∈ Sτ such that {v ∈ W(τ)|ℓτ (v) = n} = {rw, wr′}. By Theorem 5.27,
x ∈ ∑

v∈W(τ)
CKv(τ)⊗τ 1. Let γ = πK

rw(x) and γ′ = πK
wr′(x).

Set γw = πK
w (x). Then by Lemma 5.30 and Lemma 5.32, there exist a, a′ ∈ C∗ such that

for all λ ∈ Y ,

πK
w (Zλ.x) = τ(λ)

(
aγαr(λ) + a′γ′w.αr′(λ) + γw

)
= τ(λ)γw.

Therefore {αr, w.αr′} is linearly dependent and hence w.αr′ ∈ {±αr} = {αr, r.αr}. By
Lemma 2.3 we deduce rw = wr′: a contradiction because |{rw, wr′}| = |{v ∈ W(τ)|ℓτ(v) =
n}| = 2.

Therefore Iτ = C1⊗τ 1 and by Theorem 4.8, Iτ is irreducible.

5.7 Kato’s criterion when the Kac-Moody matrix has size 2

In this subsection, we prove Kato’s irreducibility criterion when |S | = 2 (see Theorem 5.35).
As the case where W v is finite is a particular case of Kato’s theorem [Kat81, Theorem 2.2]
we assume that W v is infinite.

This is equivalent to assuming that the Kac-Moody matrix of the root generating system

S is of the form

(
2 a
b 2

)
, with a, b ∈ Z<0 and ab ≥ 4 ([Kum02, Proposition 1.3.21]). The

system (W v,S ) is then the infinite dihedral group. Write S = {s1, s2}. Then every element
of W v admits a unique reduced writing involving s1 and s2.

Let G be a group and a, b ∈ G. For k ∈ Z≥0, we define Pk(a, b) = aba . . . where the
products has k terms.

Lemma 5.34. The subgroups of W v are exactly the ones of the following list:

1. {1}

2. 〈r〉 = {1, r}, for some r ∈ R

3. Zk = 〈P2k(s1, s2)〉 = 〈P2k(s2, s1)〉 ≃ Z for k ∈ Z≥1

4. Rk,m = 〈P2k+1(s1, s2), P2m+1(s2, s1)〉 ≃W v for k,m ∈ Z≥0.
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Proof. Let {1} 6= H ⊂ W v be a subgroup. Let n = min{ℓ(w)|w ∈ H \ {1}}.
First assume that n is even and set k = n

2
. Then P (s1, s2, n) = P (s2, s1, n)

−1 and as these
are the only elements having length n in W v, H ⊃ Zk. Let w = Pn(s1, s2). Let h ∈ H \ {1}.
Write ℓ(h) = an+ r with a ∈ Z≥1 and r ∈ J0, r− 1K. Then there exists ǫ ∈ {−1, 1} such that
h = wǫa.h′, with ℓ(h′) = r. Moreover, h′ ∈ H and thus h′ = 1. Therefore H = Zk.

We now assume that n is odd. Maybe considering vHv−1 for some v ∈ W v and exchanging
the roles of s1 and s2, we may assume that s1 ∈ H . Assume H 6= 〈s1〉. Let n′ = min{ℓ(w)|w ∈
H \〈s1〉}. Let w ∈ H \〈s1〉 be such that ℓ(w) = n′. Then the reduced writing of w begins and
ends with s2. Thus n′ = 2n′′ + 1 for some n′′ ∈ Z≥0. Then it is easy to see that H = R1,n′′,
which finishes the proof.

We prove in Appendix B that there exists size 2 Kac-Moody matrices such that for each
subgroup of W v, there exists τ ∈ TC such that W(τ) is isomorphic to this subgroup.

Theorem 5.35. Assume that the matrix of the root generating system S is of size 2. Let
τ ∈ TC. Then Iτ is irreducible if and only if τ ∈ UC and Wτ = W(τ).

Proof. If W v is finite, this is a particular case of Kato’s theorem ([Kat81, Theorem 2.2]).
Suppose that W v is infinite. By Lemma 4.5 and Proposition 4.17, if Iτ is irreducible, then
τ ∈ UC and Wτ = W(τ). Reciprocally, suppose τ ∈ UC and Wτ = W(τ). Then by Lemma 5.34,
either W(τ) = {1}, or W(τ) = 〈r〉 for some r ∈ R or W(τ) = 〈r1, r2〉 for some r1, r2 ∈ R

and (W(τ), {r1, r2}) is isomorphic to the infinite dihedral group. In the first two cases, Iτ
is irreducible by Corollary 4.10 or Corollary 4.12. Suppose W(τ) = 〈r1, r2〉. Then by Re-
mark 2.5 (1), (W(τ),Sτ ) is isomorphic to the infinite dihedral group and Iτ is irreducible by
Lemma 5.33.

Comments on the proofs of Kato’s criterion There are several proofs of Kato’s cri-
terion in the literature. In [Ree92], Reeder proves this criterion (see Corollary 8.7). In his
proof, he uses the R-group Rτ = {w ∈ Wτ |w(Φ∨

(τ)∩Φ∨
+) = Φ∨

(τ) ∩Φ∨
+}. This group is reduced

to {1} when Wτ =W(τ). His proof uses Harish-Chandra completeness theorem, which - under
certain hypothesis on τ - majorizes the dimension of the space of intertwining operators of
Iτ . Unfortunately, it seems that there exists up to now no equivalent of Harish-Chandra
completeness theorem available in the Kac-Moody framework.

In [Rog85], Rogawski gives a proof of a particular case of Kato’s criterion (see Corollary
3.2). However, it seems that its proof uses the fact that every element x of Iτ (τ) can be
written as a sum x =

∑
j∈J xj where J is a finite set and for all j ∈ J , |max supp(xj)| = 1

and xj ∈ Iτ (τ). I do not know how to prove such a property.
In [Ree97], Reeder gives two proofs of Kato’s criterion or of weak versions of it (see

Corollary 4.6 and Theorem 14.7). Our proof of Theorem 5.35 is strongly inspired by the
proof of [Ree97, Theorem 14.7].

6 Towards principal series representations of G

Suppose that HC is associated with a reductive group G. Then for every open compact
subgroup K ′ of G and every smooth representation V , V K ′

is naturally equipped with the
structure of an HK ′,C module, where HK ′,C is the Hecke algebra associated with K ′ with
coefficients in C. Moreover, the assignment V 7→ V K ′

induces a bijection between the
following sets:

• equivalence classes of irreducible smooth representations V of G such that V K ′ 6= {0},
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• isomorphism classes of simple HK ′,C-modules (see [BH06, 4.3] for example).

In the Kac-Moody case, we do not know how to define “smooth” for a representation of
G. We know that for any topological group structure on G, KI is not compact open (see
[AH19, Theorem 3.1]). The hope is that there should be a link between representations of G
satisfying some regularity conditions and representations of HC or BLHC.

Let ǫ ∈ {+, ∅}. In this section, we associate to every τ ∈ T ǫ
F a representation Î(τ ǫ)ǫ of

Gǫ. The principal series representation associated with τ should correspond to the space of

elements of Î(τ ǫ)ǫ which satisfy some regularity condition. We define an action of HF on some

subspace Iτǫ,Gǫ of
(
Î(τ ǫ)ǫ

)KI . We then prove that Iτǫ,Gǫ is isomorphic (as an HF -module) to

the representation I+τǫ|G+ introduced in section 2. We then study the extendability of Î(τ ǫ)ǫ

and Iτǫ,Gǫ to representations of G and BLHF .
For simplicity, we only introduce split Kac-Moody groups, although our results also apply

to almost-split Kac-Moody groups over local fields, see [Rou17].

In subsection 6.1, we introduce split Kac-Moody groups over local fields, masures, their
Iwahori-Hecke algebras and principal series representations.

In subsection 6.2 we prove that the actions of HF on Iτ,G+ and Iτ,G are well-defined and
prove that Iτ,G+ is isomorphic to Iτ .

In subsection 6.3 we study under which condition Iτ,G+ and I+τ extend to representations
of G and of BLHF , for τ ∈ T+

F . We give examples of τ ∈ TF (for particular choices of G)
such that Iτ,G+ and I+τ do not extend to representations of G and of BLHF .

6.1 Kac-Moody groups over local fields and masures

6.1.1 Split Kac-Moody groups over local fields and masure

Let GS be the group functor associated in [Tit87] with the generating root datum S, see
also [Rém02, 8]. Let (K, ω) be a non-Archimedean local field where ω : K ։ Z ∪ {+∞} is a
valuation. Let G = GS(K) be the split Kac-Moody group over K associated with S.
The group G is generated by the following subgroups:

• the fundamental torus T = T(K), where T = Spec(Z[X ]),

• the root subgroups Uα = Uα(K), each isomorphic to (K,+) by an isomorphism xα.

In [GR08] and [Rou16] (see also [Rou17]) the authors associate a masure I on which the
group G acts. We recall briefly the construction of this masure. Let N be the normalizer
of T in G. Then they define an action of N on A, see [GR08, 3.1]. For n ∈ N denote by
ν(n) : A → A the affine automorphism of A induced by the action of N on A. Then ν(t) is a
translation, for every t ∈ T and ν(N) =W v ⋉Y . For every w ∈ W v ⋉Y , we choose nw ∈ N
such that ν(nw) = w.

The masure I is defined to be the set G × A/ ∼, for some equivalence relation ∼ (see
[GR08, Definition 3.15]). Then G acts on I by g.[h, x] = [gh, x] for g, h ∈ G and x ∈ A, where
[h, x] denotes the class of (h, x) for ∼. The map x 7→ [1, x] is an embedding of A in I and we
identify A with its image. Then N is the stabilizer of A in G and it acts on A by ν. If α ∈ Φ
and a ∈ K, then xα(a) ∈ Uα fixes the half-apartment Dα,ω(a) = {y ∈ A| α(y) + ω(a) ≥ 0}
and for all y ∈ A \Dα,ω(a), xα(a).y /∈ A.

An apartment is a set of the form g.A, for g ∈ G. We have I =
⋃

g∈G g.A. Then
I satisfies axioms (MA i), (MA ii) and (MA iii) of [Héb18, Appendix A] or [Héb20].These
axioms describe the following properties.
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(MA i) Let A be an apartment of I. Then A = g.A, for some g ∈ G. We can then transport
every notion which is preserved by ν(N) = W v ⋉ Y to A (in particular, we can define
a segment, a hyperplane, ... in A).

(MA ii) This axiom asserts that if A and A′ are two apartments such that A ∩ A′ is “large
enough”, then A ∩ A′ is a finite intersection of half-apartments (i.e of sets of the form
h.Dα,k, for α ∈ Φ, k ∈ Z, if A = h.A) and there exists g ∈ G such that A′ = g.A and
g fixes A ∩ A′. When G is an affine Kac-Moody group, this is true for every pair of
apartments A,A′, without any assumption on A ∩A′.

(MA iii) This axiom asserts that for some pairs of filters on I, there exists an apartment con-
taining them. This axiom is the building theoretic translation of some decompositions
of G (e.g Iwasawa decomposition).

A filter on a set E is a nonempty set V of nonempty subsets of E such that, for all
subsets S, S ′ of E, if S, S ′ ∈ V then S ∩ S ′ ∈ V and, if S ′ ⊂ S, with S ′ ∈ V then S ∈ V.

Let E,E ′ be sets, E ′ ⊂ E and V be a filter on E ′. One says that a set Ω ⊂ E contains V
if there exists Ω′ ∈ V such that Ω′ ⊂ Ω (or equivalently if Ω ∈ V if E = E ′). Let f : E → E.
One says that f fixes V if there exists Ω′ ∈ V such that f fixes Ω′.

6.1.2 Cartan decomposition, Tits preorder on I and sub-semi-group G+

Let K = GS(O), where O is the ring of integers of K. Then K is the fixator of 0 ∈ A ⊂ I
in G. For λ ∈ Y , choose nλ ∈ T such that nλ induces the translation on A by the vector λ.
Unless G is reductive, the Cartan decomposition of G does not hold:

⊔
λ∈Y ++ KnλK ( G,

where Y ++ = Cv
f ∩ Y . For x, y ∈ A, one writes x ≤ y if y − x ∈ T (where T is the

Tits cone). If x, y ∈ I, one writes x ≤ y if there exists g ∈ G such that g.x, g.y ∈ A and
g.x ≤ g.y. This defines a G-invariant preorder on I by [Rou11, Théorème 5.9]. We call it
the Tits preorder on I. Let G+ = {g ∈ G|g.0 ≥ 0} (see [BKP16, 1.2.2] for a more explicit
description of G+, when G is affine). Then G+ is a sub-semi-group of G (as ≤ is transitive)
and we have G+ =

⊔
λ∈Y ++ KnλK: the Cartan decomposition holds on G+. Note that when

G is reductive, G = G+ since T = A. A type 0 vertex is a point of the form g.0 for some
g ∈ G. We set I0 = G.0. Then the map g 7→ g.0 induces a bijection between G/K and I0.

Let x, y ∈ I be such that x ≤ y. Let A1, A2 be apartments containing x and y. Let
[x, y]A1 (resp. [x, y]A2) be the segment in A1 (resp. A2) joining x to y. Then by [Rou11,
Proposition 5.4], [x, y]A1 = [x, y]A2 and there exists g ∈ G such that g.A1 = A2 and g fixes
[x, y]A1. We thus simply write [x, y]. Let h ∈ G be such that h.A1 = A. Then as ≤ is
G-invariant, h.x ≤ h.y and thus h.y − h.x ∈ T . Replacing h by nh for some n ∈ N , we may
assume that h.y−h.x ∈ Cv

f . One sets dY
++

(x, y) = h.y−h.x ∈ Cv
f . We thus get a G-invariant

vectorial distance dY
++

: I ×≤ I → Cv
f , where I ×≤ I is the set of pairs x, y ∈ I such that

x ≤ y. It is denoted dv in [GR14]. When moreover x, y ∈ I0, then dY
++

(x, y) ∈ Y ++. This
distance parametrizes the K double cosets: if g ∈ G+ and λ ∈ Y +, then g ∈ KnλK if and
only if dY

++
(0, g.0) = λ.

6.1.3 Local faces and chambers

Recall the definition of vectorial faces from subsection 2.1. A local face of A (we omit the
adjective “local” in the sequel) is a filter on A associated with a point x and with a vectorial
face F v. The point x is the vertex of F and F v is its direction. More precisely the chamber
F = Fx,F v associated to x and F v is the filter on A consisting of the sets Ω∩ (x+F v), where
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Ω is a neighborhood of x in A. We call F positive (resp. negative) if F v is. When F v is
a vectorial chamber (resp. a vectorial panel, that is when F v is a codimension one face of a
vectorial chamber), we call F a chamber (resp. panel). As the sets of local faces, of positive
faces, of local chambers, ... are stable under the action of W v ⋉ Y , we extend these notions
to I: a local face F (resp. positive, negative) is a filter on I generated by g.F for some local
face (resp. positive, negative) F0 and some g ∈ G. Its vertex is vert(F ) = g.λ, where λ is
the vertex of F0. This does not depend on the choices of g and F0 such that F = g.F0.

We denote by C+
0 the local positive chamber associated with 0 and Cv

f . A type 0 positive
local chamber is a filter of the form g.C+

0 for some g ∈ G. Equivalently, this is a positive
chamber based at a type 0 vertex. We denote by C

+
0 the set of positive type 0 chambers of

I.
We say that a chamber C of A dominates a panel P of A if C and P are based at the

same vertex and if P v ⊂ Cv, where Cv and P v are the vectorial faces defining C and P .
We say that a chamber C of I dominates a panel P of I if there exists g ∈ G such that

g.C, g.P ⊂ A and such that g.C dominates g.P . Then every type 0 local panel is dominated
by exactly q+1 chambers, where q is the cardinal of the residue cardinal of K. In particular,
I has finite thickness: every panel is dominated by finitely many chambers. This property
is crucial in order to apply the finiteness results of [GR14] and [BPGR16].

Let W+ = W v ⋉ Y +. Then W+ is a sub-semi-group of W v ⋉ Y .If C,C ′ ∈ C
+
0 , we

write C ≤ C ′ if vert(C) ≤ vert(C ′). Let C
+
0 ×≤ C

+
0 = {(C,C ′) ∈ C

+
0 |C ≤ C ′}. Let

(C,C ′) ∈ C
+
0 ×≤ C

+
0 . Then by [Rou11, Proposition 5.5] or [Héb20, Proposition 5.17], there

exists an apartment A = g.A containing C and C ′. Then g.C ⊂ A and thus there exists
w ∈ W v ⋉ Y such that g.C = w.C+

0 . Maybe replacing g by n−1
w
g, we may assume that

g.C = C+
0 . Then g.C ′ ≥ C and thus there exists v ∈ W+ such that g.C ′ = v.C+

0 . One sets
dW

+
(C,C ′) = v. By [Rou11, Proposition 5.5] or [Héb18, Theorem 4.4.17], v does not depend

on the choice of A. This defines a G-invariant “W -distance” dW
+
: C

+
0 ×≤ C

+
0 →W+.

Let C,C ′ be two chambers of the same sign and based at the same vertex. We say that
C and C ′ are adjacent if they dominate a common panel. A gallery Γ between C and C ′

is a finite sequence Γ = (C1, . . . , Cn) such that n ∈ Z≥0, C1 = C, Cn = C ′ and Ci, Ci+1 are
adjacent for every i ∈ J1, n−1K. The gallery Γ is called minimal if n is the minimum length
among all the lengths of the galleries joining C to C ′. If the vertex of C and C ′ is in I0, then
the length of a minimal gallery between C and C ′ is ℓ(w), where w = dW

+
(C,C ′) ∈ W v.

6.1.4 Iwahori subgroup and Iwahori-Hecke algebras associated with G

Let KI be the fixator of C+
0 in G. This is the Iwahori subgroup of G (see also [BKP16,

(3.8)] for a more explicit description in the affine case). The map g 7→ g.C+
0 induces a

bijection between G/KI and C
+
0 . For w ∈ W v ⋉Y , we choose nw ∈ N such that nw induces

w on A. Then we have the Bruhat decomposition (see [BPGR16, 1.11]):

G+ =
⊔

w∈W+

KInwKI .

In terms of masures, this decomposition has the following interpretation: for every C,C ′ ∈
C

+
0 such that vert(C) ≤ vert(C ′), there exists an apartment containing C and C ′. Note

that dW
+

parametrizes the KI double cosets: if g ∈ G+, then g ∈ KInwKI if and only if
w = dW

+
(C+

0 , g.C
+
0 ).

Let R be a ring. For w ∈ W+, we denote by Tw the indicator function of KInwKI .
Then the Iwahori-Hecke algebra of G with coefficients in R is the free R-module HG,R

with basis (Tw)w∈W+ equipped with the product ∗ such that Tv ∗ Tw =
∑

u∈W+ auv,w, with
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au
v,w = |(KInvKI ∩ nuKIn

−1
w
KI)/KI | for u,v,w ∈ W+. The fact that such an algebra is

well-defined is [BPGR16, Theorem 2.4] (the definition of the Tw in [BPGR16, 2] is slightly
different but we obtain the same algebra).

Let F be a field as in Definition 2.6. Let q be the residue cardinal of K. As in [BPGR16,
5.7], we assume that there exists δ1/2 ∈ TF such that δ1/2(α∨

s ) =
√
q for every s ∈ S . If

F = C, such a map exists by Lemma 5.2. For w ∈ W v ⊂ W+, set Hw = q−
1
2
ℓ(w)Tw ∈ HG,F .

For λ ∈ Y ++, set Zλ = δ−
1
2 (λ)Tλ ∈ HG,F . By [BPGR16, 5], we have the following proposition.

Proposition 6.1. Let ι : {Zλ|λ ∈ Y ++} ∪ {Tw|w ∈ W v} ⊂ HG,F → BLHF be defined by
ι(Zλ) = Zλ and ι(Tw) = Tw for λ ∈ Y ++ and w ∈ W v. Then ι extends uniquely to an algebra
morphism ι : HG,F → BLHF . Moreover, ι(HG,F ) = HF and ι is injective.

6.1.5 Iwasawa decomposition and retractions centered at ǫ∞
Let ǫ ∈ {−,+} and Uǫ = 〈Uα| α ∈ Φǫ〉. We denote by ǫ∞ the germ of ǫCv

f at infinity: this
is the filter on I composed with the sets containing a translate of ǫCv

f . Then Uǫ fixes ǫ∞,
which means that for every u ∈ Uǫ, there exists x ∈ A such that u fixes x+ ǫCv

f .
Let C be a chamber of I. Then there exists an apartment containing C and ǫ∞. This

means that there exists Ω ∈ C, y ∈ A and an apartment containing Ω∪y+ǫCv
f . In particular

for every x ∈ I, there exists an apartment containing x and ǫ∞. When C ∈ C
+
0 and x ∈ I0,

these results correspond to the following decompositions:

G =
⊔

w∈W v⋉Y

UǫnwKI and G =
⊔

λ∈Y

UǫnλK.

Let x ∈ I. Let A be an apartment containing x and ǫ∞. Then by (MA ii), there exists
h ∈ G such that h.A = A and h fixes A ∩ A. We set ρǫ∞(x) = h.x. This is well-defined,
independently of the choices of A and h. Then ρǫ∞(x) is the unique element of Uǫ.x ∩ A.
Then ρǫ∞ : I → A is a retraction called the retraction onto A centered at ǫ∞.

6.1.6 Towards principal series representations of G+ and G

Let B = TU+ be the positive standard Borel subgroup of G. In term of masures, B is
stabilizer of +∞ in G (by [Héb18, Lemma 3.4.1]), which means that B is the set of g ∈ G
such that there exists a, a′ ∈ A such that g.(a + Cv

f ) = (a′ + Cv
f ) and such that there exists

a translation f of A such that g.x = f(x) for every x ∈ a + Cv
f . Let B+ = G+ ∩ B and

T+ = T ∩G+.

Lemma 6.2. We have T+ ⊂ B+ ⊂ T+U+.

Proof. Let g ∈ B+. Write g = tu with t ∈ T and u ∈ U+. Then as t normalizes U+ (by
[Rém02, 8.3.3]), there exists u′ ∈ U+ such that g = u′t. Then ρ+∞(g.0) = t.0. Moreover by
[Rou11, Corollaire 2.8], ρ+∞(g.0) ≥ 0 and thus t.0 ≥ 0, which proves the lemma.

Remark 6.3. Unless G is reductive, T+U+ ) B+. Indeed, let us prove that U+ is not
contained in G+. Let s ∈ S . Take a ∈ K such that ω(a) = −2. Set u = xαs

(a) ∈ U+. Let
A′ = u.A. Then A′∩A is the half-apartment Dαs,−2 = {x ∈ A|αs(x)−2 ≥ 0}. Let DA′ be the
half-apartment of A′ opposite to Dαs,−2. By [Rou11, Proposition 2.9 2)], Ã := D−αs,2 ∪DA′

is an apartment of I. As 0 /∈ Dαs,−2, u.0 ∈ DA′. Then Ã ∋ 0, u.0. Let g ∈ G be such that
g.Ã = A and such that g fixes D−αs,2. Let r : A → A be defined by r(x) = s.x + 2α∨

s for
x ∈ A. Then by [Héb16, Lemma 3.4], g.u.0 = r.0 = 2α∨

s . By the lemma below, g.u.0 and
0 = g.0 are not comparable for ≤. We deduce that u.0 and 0 are not comparable for ≤, which
proves that u /∈ G+.
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Recall the definition of indecomposable Kac-Moody matrices from [Kac94, §1.1].

Lemma 6.4. Assume that G is associated with an indecomposable Kac-Moody matrix A
which is not a Cartan matrix. Then for all s ∈ S , α∨

s ∈ A \ (T ∪ −T ).

Proof. We first assume that A is of affine type (see [Kac94, Theorem 4.3] for the definition).
Then there exists δ ∈ ⊕

s∈S
R+αs such that T = δ−1(R∗

+) ⊔
⋂

s∈S
α−1
s ({0}) (see [Héb18,

Corollary 2.3.8]). By [Kac94, Proposition 5.2 a) and Theorem 5.6b)], w.δ = δ for every
w ∈ W v. Let x ∈ A be such that δ(x) = 0 and x ≥ 0. Then there exists w ∈ W v such that
w.x ∈ Cv

f . Then δ(x) = δ(w.x) = 0. Thus w.x ∈ ⋂
s′∈S

α−1
s′ ({0}). As αs(α

∨
s ) = 2, α∨

s /∈ T .
As s.α∨

s = −α∨
s we have α∨

s ∈ A \ (T ∪ −T ).
We now assume that A is of indefinite type. Then by [Kac94, Proposition 5.8 c)] and

[GR14, 2.9 Lemma], α∨
s ∈ A \ T . As s.α∨

s = −α∨
s we deduce that α∨

s ∈ A \ (T ∪ −T ).

Let T+
F = HomMon(Y,F∗). Let τ ∈ TF (resp. τ ∈ T+

F ). We regard τ as a homomo-
morphism T → F∗ (resp. as a monoid morphism T+ → F) by setting τ(t) = τ(t.0) for
every t ∈ T (resp. t ∈ T+). We extend τ to a homomorphism B → F∗ (resp. to a monoid
morphism B+ → F) by setting τ(tu) = τ(t), for every t ∈ T and u ∈ U+ (resp τ(tu) = τ(t)
for every t ∈ T+ and u ∈ U+ such that tu ∈ B+). By [Rou06, Proposition 1.5 (DR5)] (note
that there is a misprint in this proposition, Z is in fact T ), T ∩U+ = {1}. This implies that
τ : B → F∗ is well-defined. The fact that τ is a homomorphism follows from the fact that t
normalizes U for every t ∈ T (by [Rém02, 8.3.3]).

Lemma 6.5. 1. Let g ∈ G and v ∈ W v. Then g ∈ BnvKI if and only if ρ+∞(g.C+
0 ) ∈

v.C+
0 + Y . In particular G =

⊔
v∈W v BnvKI .

2. We have G+ =
⊔

v∈W v B+nvKI.

Proof. There exists v ∈ W v and λ ∈ Y such that ρ+∞(g.C+
0 ) = v.C+

0 + λ. Thus there
exists t ∈ T and v ∈ W v such that ρ+∞(g.C+

0 ) = tnv.C
+
0 . Hence g.C+

0 = utnv.C
+
0 and g ∈

utnvKI ⊂ BnvKI , for some u ∈ U+. Conversely if g ∈ BnvKI , then ρ+∞(g.C+
0 ) ∈ v.C+

0 + Y ,
which proves (1).

As G+ is a sub-semi-group of G,
⊔

v∈W v B+nvKI ⊂ G+. Let g ∈ G+. By (1), we can
write g = bnvk, with b ∈ B, v ∈ W v and k ∈ KI . Then b.0 = g.0 ≥ 0 and hence b ∈ B+,
which proves (2).

6.2 Action of HF on Iτ,G+ and Iτ,G

6.2.1 Well-definedness of the action

Let ǫ ∈ {+, ∅}. For τ ∈ T ǫ
F , we define Î(τ)ǫ to be the set of functions f from Gǫ to F such

that for all b ∈ Bǫ and g ∈ Gǫ, one has f(bg) = (δ1/2τ)(b)f(g). The group G (resp. semi-

group G+) acts on Î(τ) (resp. Î(τ)+) by right translation. When G is reductive, the principal

series representation associated with τ is the subset I(τ) of functions of Î(τ) which are locally
constant. Then Iτ = I(τ)KI . When G is not reductive, we do not know which condition could
replace “locally constant”. The hope is that the principal series representation of G associated

with τ should be the set of functions of Î(τ) satisfying some “regularity condition”.

Let τ ∈ T ǫ
F . Let Î(τ)ǫfin be the set of f ∈ Î(τ)ǫ such that there exists a finite set F ⊂W v

such that supp(f) ⊂ ⋃
v∈F BnvKI . Let Iτ,Gǫ = (Î(τ)ǫfin)

KI be the set of elements of Î(τ)ǫfin
which are invariant under the action of KI . For v, w ∈ W v, define fw ∈ Iτ,Gǫ by fw(nv) = 1
if and only v = w. Then by Lemma 6.5, (fw)w∈W v is a basis of Iτ,Gǫ.
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Fix τ ∈ T ǫ
F . Following [BH06, 4.2.2], we would like to define an action of HF on Iτ,Gǫ by

φ.f =
∑

g∈G+/KI

φ(g)g.f, ∀(φ, f) ∈ HF × Iτ,Gǫ.

However, we need to prove that such an action is well-defined. The main difficulties are to
prove that if φ ∈ HF , f ∈ Iτ,Gǫ and h ∈ G, then:

∑

g∈G+/KI

φ(g)f(hg)

only involves finitely many terms and that φ.f also has finite support. The aim of this
section is to prove these results. For this, we use the masure I, finiteness results of [GR08]
and [GR14] and the theory of Hecke paths introduced by Kapovich and Millson in [KM08].
In [GR08] and [GR14], the authors mainly use ρ−∞. As we use ρ+∞, we adapt their results
to our framework.

Let λ ∈ Y ++. A λ-path of A is a continuous piecewise linear map π : [0, 1] → A such
that for every t ∈]0, 1[, π′

−(t), π
′
+(t) ∈ W v.λ (where π′

−(t) and π′
+(t) denote the left-hand and

right-hand derivatives of π at t) and π′
+(0), π

′
−(1) ∈ W v.λ. A Hecke path of A of shape λ

with respect to Cv
f is a λ-path satisfying [GR14, 1.8 Definition], with βi satisfying βi(C

v
f ) < 0.

Hecke paths are the images by retractions of preordered segments in I. More precisely:

Theorem 6.6. (see [GR08, Theorem 6.2])
Let x, y ∈ I be such that x ≤ y and λ = dY

++
(x, y) ∈ Cv

f . Let γ : [0, 1] → A be an affine
parametrization of the segment x, y. Then ρ+∞ ◦ γ is a Hecke path of shape λ with respect to
Cv

f from ρ+∞(x) to ρ+∞(y).

By definition of Hecke paths and by [Kum02, Lemma 1.3.13], we have the following lemma.

Lemma 6.7. Let λ ∈ Cv
f and π : [0, 1] → A be a Hecke path of shape λ with respect to

Cv
f . For t ∈ [0, 1] where it makes sense, we write π′

+(t) = w′
+(t).λ and π′

−(t) = w′
−(t).λ,

where w′
−(t), w

′
+(t) ∈ W v have minimal lengths for these properties. Then for all t, t′ ∈ [0, 1]

such that 0 ≤ t < t′ ≤ 1, we have w′
−(t) ≤ w′

+(t) ≤ w′
−(t

′) ≤ w′
+(t

′), where we delete the
derivatives that do not make sense (for t = 0 or t′ = 1).

Theorem 6.8. (see [GR14, 5.2]) Let x ∈ I0, λ ∈ Y ++ and µ ∈ Y . Then

{y ∈ I0| y ≥ x, dY
++

(x, y) = λ and ρ+∞(y) = µ}
is finite.

Lemma 6.9. Let y ∈ I0 and C be a type 0 positive local chamber of A. Then

{C ′ ∈ C
+
0 |vert(C ′) = y and ρ+∞(C ′) = C}

is finite.

Proof. Let A be an apartment containing y and +∞. Then by (MA ii), there exists g ∈ G
such that g.A = A and g fixes A∩A. Maybe working with ρ+∞,A = g−1.ρ+∞ instead of ρ+∞,
we can thus assume that y is in A. Let C ′ ∈ C

+
0 be such that vert(C ′) = y and ρ+∞(C ′) = C.

Let A′ be an apartment containing C ′ and +∞. Then A′ contains y and by (MA ii), A′

contains y+C+
0 . Let h ∈ G be such that h fixes A′∩A and h.A′ = A. Then ρ+∞(C ′) = h.C ′.

Therefore

dW
+

(C ′, y + C+
0 ) = dW

+(
h.C ′, h.(y + C+

0 )
)
= dW

+

(C, y + C+
0 ) ∈ W v. (4)

Using [AH19, Lemma 5.5] we deduce that {C ′ ∈ C
+
0 |vert(C ′) = y and ρ+∞(C ′) = C} is

finite.
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Let x ∈ I0 and C ∈ C
+
0 be such that C ≥ x (i.e vert(C) ≥ x). By [Héb20, Proposition

5.17], there exists an apartment A containing x and C. Then there exists g ∈ G such that
g.A = A, g.x = 0 and g.C+

0 ∈ Y + C+
0 . Then g.vert(C) ≥ g.0 and thus g.vert(C) ∈ Y +.

One sets dY
+
(0, C) = g.vert(C). This does not depend on the choices we made by [Héb18,

Theorem 4.4.17]. This defines a G-invariant “distance” dY
+
: I0 ×≤ C

+
0 → Y +.

Lemma 6.10. Let v ∈ W v, λ ∈ Y +. Then

E := {C ∈ C
+
0 |C ≥ 0, ρ+∞(C) ∈ v.C+

0 + Y and dY
+

(0, C) = λ}

is finite.
Suppose moreover that λ ∈ Y ++ and that v = 1. Then E = {λ+ C+

0 }.
Proof. In order to prove that E is finite, we begin by proving that vert(E) := {vert(C)|C ∈
E} is finite. To that end, our idea is to study, for each C ∈ E, the path π̃ = ρ+∞◦ γ̃ : [0, 1] →
A, where γ̃ is the segment joining 0 to vert(C). We want to prove that π̃′

−(1) lies in a finite
set depending only on v and λ. In order to use the assumption that ρ+∞(C) ∈ Y + v.C+

0 ,
it is convenient to extend slightly the segment γ̃ and this is why we consider a segment
γ : [0, 1] → I such that γ(0) = 0 and γ(1

2
) = vert(C).

Let C ∈ E. Let A be an apartment containing 0 and C. Let g ∈ G be such that g.A = A,
g.0 = 0 and g.(λ+C+

0 ) = C. Let γ : [0, 1] → A be defined by γ(t) = g.2tλ. Then π = ρ+∞ ◦γ
is a Hecke path with respect to +∞ of shape 2λ. Let wλ ∈ W v be such that (wλ)

−1.λ ∈ Y ++

and such that wλ has minimum length for this property. Set Cλ = g.(λ+ wλ.C
+
0 ). Then:

dW
+

(C,Cλ) = dW
+(
g.(λ+ C+

0

)
, g.(λ+ wλ.C

+
0 )

)
= dW

+

(λ+ C+
0 , λ+ wλ.C

+
0 ) = wλ.

Take a minimal gallery Γ from C to Cλ. Then Γ has length ℓ(wλ) and ρ+∞(Γ) is a gallery
from ρ+∞(C) to ρ+∞(Cλ). Therefore

w := dW
+

(ρ+∞(C), ρ+∞(Cλ)
)
∈ W v and ℓ(w) ≤ ℓ(wλ).

Moreover, by definition of E, ρ+∞(C) = ν+v.C+
0 , for some ν ∈ Y . Consequently, ρ+∞(Cλ) =

ν + vw.C+
0 . Therefore for ǫ ∈]0, 1

2
] small enough, π

(
[1
2
, 1
2
+ ǫ]

)
⊂ ν + vw.Cv

f and thus

π′
+(

1
2
) = 2vw.λ. By Lemma 6.7, π′

−(
1
2
) = u.λ for some u ∈ W v such that ℓ(u) ≤ ℓ(v)+ ℓ(wλ).

Let now γ̃ : [0, 1] → A be defined by γ̃(t) = g.tλ for t ∈ [0, 1] and π̃ = ρ+∞ ◦ γ̃. Then by
what we proved above, π̃′

−(0) = u.λ. By [BPGR16, Lemma 1.8] we have

u.λ = π̃−(1) ≤Q∨ π̃(1)− π̃(0) = ρ+∞

(
vert(C)

)
≤Q∨ λ++, ℓ(u) ≤ ℓ(v) + ℓ(wλ),

where λ++ is the unique element of Y ++ ∩W v.λ. We deduce that

F := ρ+∞

(
vert(E)

)
= {ρ+∞

(
vert(C)

)
|C ∈ E}

is finite.
Let ν ∈ F . Let Eν = {C ∈ E|ρ+∞(C) = ν + v.C+

0 }. If C ∈ Eν , then dY
++(

0, vert(C)
)
=

λ++ and ρ+∞(vert(C)) = ν. Using Theorem 6.8 we deduce that {vert(C)|C ∈ Eν} is finite.
By Lemma 6.9, Eν is finite and thus E =

⋃
ν∈F Eν is finite.

Suppose now that v = 1 and that λ ∈ Y ++. Take C ∈ E. We use the same notation as
in the beginning of the proof. Then we have π′

−(
1
2
) = λ = 1.λ and by Lemma 6.7 we deduce

that there exists ǫ > 0 such that π(t) = 2tλ for every t ∈ [0, 1
2
+ ǫ]. Moreover γ(0) ∈ A

and thus by [Héb17, Lemma 3.4] we deduce that γ([0, 1
2
+ ǫ]) ⊂ A. Therefore C ⊂ A. Thus

ρ+∞(C) = C = ν + C+
0 for some ν ∈ Y . Moreover dY

+
(0, C) = λ + C+

0 and thus ν = λ,
which proves that E = {λ+ C+

0 } and completes the proof of the lemma.
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In the next lemma, we use the projection of a chamber on a vertex introduced in [BPGR16,
1.9]. Let x ∈ A and C be a positive chamber of A such that y := vert(C) ≥ x. Let Cv be
the positive vectorial chamber of A such that C = Fy,Cv . Take ξ ∈ Cv. Then there exists
a positive vectorial chamber C̃v ⊂ A such that x + C̃v ⊃ conv(x, ]y, y + ǫξ]), for ǫ > 0
small enough, where conv denotes the convex hull. Then the chamber prx(C) = Fx,C̃v is the
projection of C on x. Let now x ∈ I and C be a positive chamber of I such that vert(C) ≥ x.
Then there exists g ∈ G such that g.x, g.C ⊂ A. We set prx(C) = g−1.

(
prg.x(g.C)

)
. This is

the projection of C on x. Then by [Héb18, Theorem 4.4.17], prx(C) does not depend on
the choice of g, every apartment containing x and C contains prx(C) and every h ∈ G fixing
x and C fixes prx(C).

Lemma 6.11. Let w ∈ W+ and v ∈ W v. Then:

1.
⋃

u∈W v(nuKInwKI ∩ BnvKI)/KI is finite,

2. {u ∈ W v|nuKInwKI ∩ BnvKI 6= ∅} is finite.

Proof. Set F =
⋃

u∈W v(nuKInwKI ∩ BnvKI)/KI . Let u ∈ W v and g ∈ nuKInwKI . Set

C = g.C+
0 . Then dW

+
(u.C+

0 , C) = w. Thus there exists h ∈ G such that h−1.A contains
u.C+

0 , C and such that h.u.C+
0 = C+

0 , h.C = w.C+
0 . Write w = λw (i.e w.x = λ + w.x

for every x ∈ A). Set h′ = nw−1h. Then h′−1.A = h−1.A contains 0, C, h′.0 = 0 and
h′.C = w−1.λ+ C+

0 . Thus dY
+
(0, C) = w−1.λ. Therefore

F.C+
0 ⊂ {C ∈ C

+
0 |C ≥ 0, ρ+∞(C) ∈ v.C+

0 + Y and dY
+

(0, C) = w−1.λ}.

By Lemma 6.10, F.C+
0 is finite, which proves that F is finite.

Let u ∈ W v be such that there exists g ∈ nuKInwKI ∩ BnvKI . Let P = {pr0(C ′)|C ′ ∈
F.C+

0 }. Let C = g.C+
0 . Then as dW

+
(u.C+

0 , C) = w, there exists h ∈ G such that h−1.A
contains u.C+

0 , C, h.u.C+
0 = C+

0 and h.C = w.C. Then h.pr0(C) = pr0(w.C
+
0 ). Therefore

w′ := dW
+(
h.u.C+

0 , h.pr0(C)
)
= dW

+(
u.C+

0 , pr0(C)
)
= dW

+(
C+

0 , pr0(w.C
+
0 )

)
∈ W v.

Consequently there exists C ′ ∈ P such that dW
+
(u.C+

0 , C
′) = w′. Consequently,

ℓ(u) = ℓ
(
dW

+

(u.C+
0 , C

+
0 )

)
≤ ℓ(w′) + max

C′∈P
ℓ
(
dW

+

(C ′, C+
0 )

)
.

This proves (2).

Definition/Proposition 6.12. Let ǫ ∈ {+, ∅} and τ ∈ T ǫ
F . Let φ ∈ HF and f ∈ Iτ,Gǫ.

Define φ.f ∈ Iτ,G by

φ.f =
∑

g∈G+/KI

φ(g)g.f.

Then . is well-defined and induces an action of HF on Iτ,Gǫ.

Proof. To prove that φ.f is a well-defined element of Iτ,Gǫ, it suffices to prove it for φ = Tw
and f = fv, for v ∈ W v and w ∈ W+. Let g ∈ G+ and h ∈ Gǫ. Suppose that Tw(g)fv(hg) 6=
0. Then g ∈ KInwKI ∩ h−1BnvKI . Write h = bnuk, with b ∈ Bǫ and k ∈ KI . Then
KInwKI ∩ k−1n−1

u BnvKI 6= ∅. Therefore

g ∈ KInwKI ∩ k−1n−1
u BnvKI = k−1(KInwKI ∩ k−1n−1

u BnvKI). (5)
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By Lemma 6.11,

∑

g∈G+/KI

Tw(g)fv(hg) =
∑

g∈KInwKI∩k−1n−1
u BnvKI/KI

Tw(g)fv(hg)

is well-defined. Thus Tw.fv is a well-defined map Gǫ → F . The fact that it is right KI-
invariant and that Tw.f(bh) = δ1/2τ(b)Tw.f(h), for B ∈ Bǫ are clear.

Let u ∈ W v. Suppose that Tw.fv(nu) 6= 0. Then by (5), KInwKI ∩ n−1
u BnvKI 6= ∅. By

Lemma 6.11 we deduce that {u ∈ W v| Tw.fv(nu) 6= 0} is finite, which proves that Tw.fv is
an element of Iτ,Gǫ.

The fact that (φ ∗ φ′).f = φ.(φ′.f) for every f ∈ Iτ,Gǫ, φ, φ′ ∈ HF is an easy consequence
of the fact that φ ∗ φ′(h) =

∑
g∈G+/KI

φ(g)φ′(g−1h) for every h ∈ G+/KI .

6.2.2 Isomorphism between Iǫτ and Iτ,Gǫ

Let τ : Y + → F be a monoid morphism. Then τ induces an algebra morphism τ : F [Y +] → F
and thus this defines a representation I+τ = IndHF

F [Y +](τ) = HF ⊗F [Y +] F . Let ǫ ∈ {+, ∅}.
The aim of this section is to prove that if τ ∈ (TF )

ǫ then the map Iǫτ → Iτ,Gǫ defined by
h.1 ⊗τ 1 7→ h.f1, for h ∈ HF is well-defined and is an isomorphism of HF -modules (see
Proposition 6.17). To that end, we prove that Zλ.f1 = τ(λ)f1 for λ ∈ Y +. For this we begin
by proving that if λ ∈ Y ++, then Zλ.f1 = τ(λ)f1. In the reductive case, this is sufficient to
deduce the result for any λ ∈ Y = Y +, since Zλ is invertible for λ ∈ Y ++. In the Kac-Moody
case however, Zλ is not necessarily invertible for λ ∈ Y ++. We thus prove that if f ∈ Iτ,Gǫ is
such that Zλ.f = 0 for λ ∈ Y ++ sufficiently dominant, then f = 0.

Lemma 6.13. Let w ∈ W v. Then Tw.f1 = fw−1.

Proof. Let v ∈ W v.Then Tw.f1(nv) =
∑

g∈G+/KI
Tw(g)f1(nvg). Suppose that Tw.f1(nv) 6= 0.

Then there exists g ∈ KInwKI ∩ n−1
v BKI and thus nvKInwKI ∩ BKI 6= ∅.

Let h ∈ nvKInwKI ∩ BKI and C = h.C+
0 . Then dW

+
(v.C+

0 , C) = w and ρ+∞(C) ∈
Y + C+

0 . Therefore vert(C) = 0 and hence ρ+∞(C) = C+
0 . By formula (4) of the proof of

Lemma 6.9, we have C = C+
0 . Consequently C = C+

0 , v = w−1, supp(Tw.f1) ⊂ Bnw−1KI

and Tw.f(nw−1) = 1. Therefore Tw.f1 = fw−1.

Lemma 6.14. Let w ∈ W v and λ ∈ Y ∩ Cv
f . Then:

1. supp(Tλ.fw) ⊂
⋃

v≤w BnvKI .

2. Tλ.fw(nw) 6= 0.

Proof. Let v ∈ W v. Suppose that Tλ.fw(nv) 6= 0. Then X := nvKInλKI ∩ BnwKI is non-
empty. Let g ∈ X. Let γ : [0, 1] → I be defined by γ(t) = g.t.λ for t ∈ [0, 1]. Let π = ρ+∞◦γ.
Then π is a Hecke path of shape λ from 0 to ρ+∞

(
vert(C)

)
. For t ∈ [0, 1] where it makes

sense, write π′
−(t) = w−(t).λ, π′

+(t) = w′
+(t).λ, where w′

−(t) and w′
+(t) have minimum lengths

for these properties. By the proof of Lemma 6.10, w′
−(1) ≤ w (we have wλ = 1 in this case).

Using Lemma 6.7 we deduce that w′
+(0) ≤ w. Let Cπ(0+) (resp. Cγ(0+)) be the local chamber

based at 0 and containing π(t) (resp. γ(t)) for t ∈ [0, 1] near 0. Then

dW
+

(C+
0 , Cγ(0+)) = dW

+(
ρ+∞(C+

0 ), ρ+∞(Cγ(0+))
)
= dW

+

(C+
0 , Cπ(0+)) = w′

+(0).
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Let us prove that Cγ(0+) = v.C+
0 . Let A be an apartment containing v.C+

0 and C. Let
h ∈ G be such that h.A = A and such that h fixes v.C+

0 . Then

dW
+

(C+
0 , λ+ C+

0 ) = dW
+(
h−1.C+

0 , h
−1.(λ+ C+

0 )
)

= λ

= dW
+

(v.C+
0 , h

−1.(λ+ C+
0 )

)

= dW
+

(v.C+
0 , C).

As A contains v.C+
0 , C and h−1.(λ + C+

0 ), we deduce that h−1.(λ+ C+
0 ) = C. In particular,

h−1.λ = g.λ and thus by [Rou11, Proposition 5.4], γ(t) = h−1.t.λ for all t ∈ [0, 1]. Let Ω′

be a neighborhood of 0 in A such that h pointwise fixes Ω = Ω′ ∩ v.Cv
f . Then for t ∈ [0, 1]

small enough, γ(t) ∈ Ω and thus Cγ(0+) = v.C+
0 . Consequently, γ(t) ∈ A for t ∈ [0, 1] small

enough, thus Cγ(0+) ⊂ A, thus Cγ(0+) = Cπ(0+) = v.C+
0 and hence v = w′

+(0) ≤ w. Therefore:

supp(Tλ.fw) ⊂
⋃

v≤w

BnvKI .

Suppose now that v = w. Then with the same notation as above, one has w′
+(0) = w.

Therefore w ≤ w′
−(t) ≤ w and w ≤ w′

+(t) ≤ w for every t ∈ [0, 1] and hence π is the line
segment from 0 to w.λ. Therefore if g ∈ nwKInλKI∩BnwKI , then ρ+∞(g.C+

0 ) = w.(λ+C+
0 ).

Consequently
nwKInλKI ∩ BnwKI ⊂ U+nw.λnwKI ,

and nw.λ ∈ T . Thus

Tλ.fw(nw) =
∑

g∈KInλKI∩n
−1
w BnwKI/KI

fw(nwg)

= |nwKInλKI ∩BnwKI/KI |τδ1/2(w.λ).

Moreover nwnλ ∈ nwKInλKI ∩ BnwKI , which proves that Tλ.fw(nw) 6= 0.

Lemma 6.15. Let f ∈ Iτ,Gǫ. Suppose that for some µ ∈ Y ∩ Cv
f , Tµ.f = 0. Then f = 0.

Proof. Write f =
∑

w∈W v awfw, where (aw) ∈ FW v

has finite support. Suppose that f 6= 0.
Let w ∈ supp

(
(av)

)
be maximal for the Bruhat order. Then by Lemma 6.14, Tµ.f(nw) =

awTµ.fw(nw) 6= 0. We reach a contradiction and thus f = 0.

Lemma 6.16. Let λ ∈ Y +. Then Zλ.f1 = τ(λ).f1.

Proof. First assume that λ ∈ Y ++. Then Zλ = δ−1/2(λ)Tλ, by [BPGR16, 5.7 and Theorem
5.5]. By Lemma 6.14, supp(Tλ.f1) = BKI and thus Tλ.f1 ∈ Ff1.

We have nλKI ∈ KInλKI ∩ BKI . Let g ∈ KInλKI ∩ BKI . Let C = g.C+
0 . Then

ρ+∞(C) ∈ Y + C+
0 and dY

+
(0, C) = λ. Thus by Lemma 6.10, C = λ+ C+

0 . Hence g ∈ nλKI

and KInλKI ∩ BKI = nλKI . Therefore Tλ.f1(1) = f1(λ) = δ1/2τ(λ). Hence Tλ.f1 =
δ1/2τ(λ)f1 and Zλ.f1 = τ(λ)f1.

Let now λ ∈ Y +. Then by [BPGR16, Theorem 5.5] and the fact that Zλ = δ−1/2(λ)Xλ,
one has Tµ.Z

λ.f1 = δ−1/2(λ)Tλ+µ.f1 = τ(λ + µ)δ1/2(µ)f1 = Tµ.(τ(λ).f1) for µ ∈ Y ++ suffi-
ciently dominant. Thus by Lemma 6.15, Zλ.f1 = τ(λ).f1, which proves the lemma.

Proposition 6.17. Let ǫ ∈ {+, ∅}. Let τ ∈ T ǫ
F . Then the map φ : Iǫτ → Iτ,Gǫ defined by

φ(h.1⊗τ 1) 7→ h.f1 for h ∈ HF is well-defined and is an isomorphism of HF -modules.
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Proof. By Lemma 3.5 and Lemma 6.16, φ is well-defined. Let x ∈ Iǫτ be such that φ(x) = 0.
Write x =

∑
v∈W v avTv ⊗τ 1, with (av) ∈ FW v

. Then φ(x) =
∑

v∈W v avTv.f1. Suppose that
x 6= 0. Let w ∈ W v be such that aw 6= 0 and such that w is maximal for this property (for
the Bruhat order). Then by Lemma 6.14 and Lemma 6.13, φ(x)(nw−1) = awTw.f1(nw−1) 6= 0:
a contradiction. Therefore x = 0 and φ is injective. By Lemma 6.13 and Lemma 6.5,
(Tw.f1)w∈W v is a basis of Iτ,Gǫ. Consequently φ is surjective, which proves the proposition.

6.3 Extendability of representations of G+ and HF

In this subsection, we study the extendability of Iτ+,G+ (resp. I+τ+) to a representation of G
(resp. BLHF), for τ ∈ T+

F . We obtain a criterion depending on the extendability of τ+ to an
element of TF (see Proposition 6.28).

6.3.1 Extendability of elements of T+
F

Recall that if τ : Y + → F is a monoid morphism I+τ = IndHF

F [Y +](τ) = HF ⊗F [Y +] F is a

representation of HF . If I+τ is not the restriction of a representation of BLHF we call I+τ a
non-extendable principal series representation of HF . In this section we study the
existence of non-extendable principal series representations of HF . We prove that in some
cases - for example when HF is associated with an affine root generating system or to a size
2 Kac-Moody matrix - every principal series representations of HF can be extended to a
representation of BLHF (see Lemma 6.20). We prove that there exist Kac-Moody matrices
such that HF admits non-extendable principal series representations (see Lemma 6.24).

Let resY + : HomMon(Y,F) → HomMon(Y
+,F) be defined by resY +(τ) = τ|Y + for all

τ ∈ HomMon(Y,F).

Lemma 6.18. The map resY + : HomGr(Y,F∗) = HomMon(Y,F∗) → HomMon(Y
+,F∗) is a

bijection.

Proof. Let τ ∈ HomMon(Y,F∗). Let ν ∈ Cv
f . Let λ ∈ Y and n ∈ Z≥0 be such that λ+nν ∈ T .

Then τ(λ) = τ(λ+nν)
τ(nν)

and thus res|Y + is injective.

Let τ+ ∈ HomMon(Y
+,F∗). Let λ ∈ Y . Write λ = λ+ − λ−, with λ+, λ− ∈ Y +. Set

τ(λ) = τ+(λ+)
τ+(λ−)

, which does not depend on the choices of λ− and λ+. Then τ ∈ HomMon(Y,F∗)

is well-defined and res|Y +(τ) = τ+, which finishes the proof.

Lemma 6.19. Let τ ∈ HomMon(Y
+,F) and χ ∈ TF .

1. Suppose HomHF−mod(I
+
τ , Iχ) 6= {0}. Then there exists w ∈ W v such that τ = w.χ|Y +.

2. Suppose HomHF−mod(Iχ, I
+
τ ) 6= {0}. Then there exists w ∈ W v such that τ = w.χ|Y +.

Proof. ( 1) Let φ ∈ HomHF−mod(I
+
τ , Iχ) \ {0}. Let x = φ(1 ⊗τ+ 1). Then Zλ.x = τ(λ).x for

all λ ∈ Y +. By Lemma 2.8, Zλ.x 6= 0 for all λ ∈ Y +. Thus τ(λ) 6= 0 for all λ ∈ Y +.

Let µ ∈ Y . Let ν ∈ Cv
f ∩ Y be such that µ + ν ∈ Y +. Then Zµ.x = τ(µ+ν)

τ(ν)
.x. Therefore

there exists χ′ ∈ TF such that x ∈ Iχ(χ
′). By Lemma 3.2, χ′ ∈ W v.χ. Moreover, χ′

|Y + = τ ,

which proves (1).
(2) Let φ ∈ HomHF−mod(Iχ, I

+
τ ) \ {0}. Let x = φ(1 ⊗χ 1). Then Zλ.x = χ(λ).x for all

λ ∈ Y +. By a lemma similar to Lemma 3.2 we deduce that χ|Y + ∈ W v.τ , which proves the
lemma.
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One has HomMon

(
Y, (F , .)

)
= HomGr(Y,F∗) ∪ {0}. Set Ain =

⋂
s∈S

ker(αs). Let T̊ be
the interior of the Tits cone.

Lemma 6.20. Let τ+ ∈ HomMon

(
Y, (F , .)

)
. Assume that there exists λ ∈ Y + such that

τ+(λ) = 0. Then τ+(T̊ ∩Y ) = {0}. In particular, if T = T̊ ∪Ain, then HomMon

(
Y +, (F , .)

)
=

HomMon(Y,F∗) ∪ {0}.

Proof. Let µ ∈ T̊ ∩ Y . Then for n ≫ 0, nµ ∈ λ + T . Indeed, nµ − λ = n(µ − λ
n
) ∈ T for

n≫ 0. Hence τ+(nµ) = (τ+(µ))n = 0.

A face F v ⊂ T is called spherical if its fixator in W v is finite.

Remark 6.21. 1. If A is associated to an affine Kac-Moody matrix, then T = T̊ ∪ Ain

(see [Héb18, Corollary 2.3.8] for example).

2. If A is associated to a size 2 indefinite Kac-Moody matrix, then T = T̊ ∪Ain. Indeed, by
[Rém02, Théorème 5.2.3 ], T̊ is the union of the spherical vectorial faces. By [Rou11,
1.3], if J ⊂ S and w ∈ W v, the fixator of w.F v is w.W v(J).w−1. Therefore the only
non-spherical face of T is Ain and hence T = T̊ ∪ Ain.

3. Let A = (ai,j)i,j∈J1,3K be a Kac-Moody matrix such that for all i 6= j, ai,jaj,i ≥ 4. Then by
[Kum02, Proposition 1.3.21], W v is the free group with 3 generators s1, s2, s3 of order
2. Thus for all J ⊂ S such that |J | = 2, F v(J) is non-spherical. Hence T ) T̊ ∪Ain.

6.3.2 Construction of an element of HomMon(Y
+,F) \ HomMon(Y,F)

We now prove that there exist Kac-Moody matrices for which

HomMon(Y
+,F) 6= HomMon(Y,F).

Assume that A is associated to an invertible indefinite size 3 Kac-Moody matrix (see [Kac94,
Theorem 4.3] for the definition of indefinite). Then one has A = A′ ⊕ Ain, where A′ =⊕

i∈I Rα
∨
i . Maybe considering A/Ain, we may assume that Ain = {0}.

Recall that T is the disjoint union of the positive vectorial faces of A.

Lemma 6.22. Assume that there exists a non-spherical vectorial face F v 6= {0}. Let x ∈ T
and y ∈ T \ F v. Then [x, y] ∩ F v ⊂ {x}.

Proof. Assume that y ∈ T̊ . Then (x, y] ⊂ T̊ and thus [x, y] ∩ F v ⊂ {x}.
Assume that y /∈ T̊ . For a ∈ T , we denote by F v

a the vectorial face of T containing a. If
F v
x = F v

y , then [x, y] ⊂ F v
x . As F v

y 6= F v, we deduce that [x, y] ∩ F v = ∅. We now assume
that F v

x 6= F v
y . As W v is countable, the number of positive vectorial faces is countable and

thus there exist u 6= u′ ∈ [x, y] such that F v
u = F v

u′ . Then the dimension of the vector space
spanned by F v

u is at least 2. Thus there exists w ∈ W v such that F v
u = w.F v(J), for some

J ⊂ S such that |J | ≤ 1. Then the fixator of F v
u is w.WJ .w

−1, where WJ = 〈J〉. Then WJ

is finite and thus F v
u is spherical. Consequently, (x, y) = (x, u] ∪ [u, y) ⊂ T̊ and the lemma

follows.

Lemma 6.23. Assume that there exists a non-spherical vectorial face F v 6= {0}. Then T \F v

and T \ {0} are convex.
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Proof. Let x, y ∈ T \ F v. Suppose that [x, y] ∩ F v 6= ∅. By Lemma 6.22, y ∈ F v = F v ∪ {0}
and hence y = 0. Let F v

x be the vectorial face containing x. Then [x, y) ⊂ F v
x and hence

[x, y) ∩ F v = ∅: a contradiction. Thus T \ F v is convex.
By [GR14, 2.9 Lemma], there exists a basis (δs)s∈S of

⊕
s∈S

Rα∨
s such that δs(T ) ≥ 0

for all s ∈ S . Thus T \ {0} is convex and hence T \ F v = T \ F v ∩ T \ {0} is convex.

Lemma 6.24. Assume that A is associated with an indefinite Kac-Moody matrix of size 3
such that there exists a non-spherical face different from Ain. Assume moreover that (α∨

s )s∈S

is a basis of A. Then HomMon

(
Y +, (F , .)

)
) HomMon

(
Y +,F∗

)
∪ {0}.

Proof. Let τ+ = 1F v : T → F . Let us prove that τ+ ∈ HomMon

(
T , (F , .)

)
.

Let x, y ∈ T . If x, y ∈ T \F v, then x+ y = 2.1
2
(x+ y) ∈ T \F v by Lemma 6.23 and thus

τ+(x+ y) = 0 = τ+(x)τ+(y).
Suppose x ∈ F v and y ∈ T \F v, then x+ y = 2.1

2
(x+ y) ∈ T \F v by Lemma 6.22. Thus

τ+(x+ y) = 0 = τ+(x)τ+(y).
Suppose x = {0} and y ∈ T \ F v. Let F v

y be the vectorial face containing y. Then
(x, y] ⊂ F v

y and hence x + y ∈ F v
y : τ+(x + y) = 0 = τ+(x)τ+(y). Consequently, τ+ ∈

HomMon

(
T , (F , .)

)
.

Maybe considering w.F v, for some w ∈ W v, we can assume F v ⊂ Cv
f . Then there exist

s1, s2, s3 ∈ S such that S = {s1, s2, s3} and F v = α−1
s1
({0}) ∩ α−1

s2
({0}) ∩ α−1

s3
(R∗

+). Let
λ ∈ A be such that αs1(λ) = αs2(λ) = 0 and αs3(λ) = 1. There exists n ∈ Z≥1 such that
λ ∈ 1

n
Y . Thus τ+|Y + ∈ HomMon

(
Y +, (F , .)

)
\ (HomMon

(
Y +,F∗

)
∪ {0}).

6.3.3 Extension of the representations from G+ to G

We now study under which condition the representation Iτ,G+ of G+ extends to a represen-
tation of G, for τ ∈ T+

F .

Lemma 6.25. Let g ∈ G. Then for t ∈ T such that t.0 is sufficiently dominant, tg ∈ G+.

Proof. Let g ∈ G and x = g.0. There exists an apartment containing −∞ and x, i.e there
exists g ∈ G such that g.A ∩ A contains a − Cv

f , for some a ∈ A. For q ∈ Cv
f sufficiently

dominant, a − q ≤ x. In particular, there exists y ∈ A such that y ≤ x. For λ ∈ Y ++

sufficiently dominant, y + λ ≥ 0. Then nλ.y = y + λ ≥ 0. As ≤ is G-invariant, nλ.y ≤ nλ.x
and thus 0 ≤ nλ.x = nλg.0. Therefore nλg ∈ G+.

Let x, y ∈ I. We write x<̊y (resp. x≤̊y) if there exists g ∈ G such that gx, g.y ∈ A and
y − x ∈ T̊ (resp. y − x ∈ T̊ ∪ {0}). This does not depend on the choice of g.

If G is reductive, then x ≤ y for every x, y ∈ I. We now assume that G is not reductive.
Then for every x ∈ A, for every y ∈ x+ Cv

f , one has x<̊y and y 6≤ x.

Lemma 6.26. Let x, y, z ∈ I. Suppose that x ≤ y, y<̊z and z 6≤ y. Then x<̊z.

Proof. Let A be an apartment containing y and z. Let Fy be a positive face of A based at
y and containing [y, y′] for y′ ∈ [y, z] near y. Then by [Héb18, Theorem 4.4.17], there exists
an apartment A′ containing Fy and x. Then A′ contains [y, y′] for some y′ ∈ [y, z] near y. In

the apartment A′, one has y<̊y′ and x ≤ y. Consequently x<̊y′ (because T̊ + T ⊂ T̊ ). We
thus have x≤̊y′ and y′≤̊z. Using [Rou11, Théorème 5.9] we deduce that x≤̊z. As x ≤ y and
z 6≤ y, we have x 6= z, which proves the result.

Lemma 6.27. 1. Let τ ∈ T+
F be such that τ is the restriction of some element of TF (still

denoted τ). Then every element of Î(τ)+ uniquely extends to an element of Î(τ).
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2. Let τ ∈ T+
F be such that τ is not the restriction of some element of TF . Then for every

f : G → F such that for all g ∈ G+ and b ∈ B+, f(bg) = (δ1/2τ)(b)f(g), one has
f = 0.

3. Let τ ∈ T+
F be such that τ is not the restriction of some element of TF . Then there

exists t ∈ T such that for every f ∈ Iτ,G+, t.f = 0.

Proof. (1) Let f ∈ Î(τ)+. Suppose that there exists f̃ ∈ Î(τ) extending f . Let g ∈ G.
Let t ∈ T be such that tg ∈ G+. Then f̃(tg) = (δ1/2τ)(t)f̃(g) = f(tg) and thus f̃(g) =
(δ1/2τ(t))−1f(tg). Thus f̃ is unique if it exists.

We now set f ′(g) = (δ1/2τ(t))−1f(tg), for t ∈ T such that t.0 is dominant and such that
tg ∈ G+, which exists by Lemma 6.25. Let us prove that f ′ is well-defined. Let t, t′ ∈ T be
such that tg, t′g ∈ G+ and such that t.0, t′.0 ∈ Y ++. Then

f(tt′g) = (τδ1/2)(t′)f(tg) = (τδ1/2)(t)f(t′g)

so that f(t′g)
(
τδ1/2(t′)

)−1
= f(tg)

(
τδ1/2(t)

)−1
. This prove that f ′ is well-defined. In partic-

ular, f ′ extends f .
Let now t ∈ T and g ∈ G. Let us prove that f ′(tg) = τδ1/2(t)f ′(g). Let t′ ∈ T be such

that t′g, t′tg ∈ G+. Then

f ′(g) = f(tt′g)
(
δ1/2τ(tt′)

)−1
= τδ1/2(t′)f ′(tg)

(
τδ1/2(tt′)

)−1
= f ′(tg)

(
τδ1/2(t)

)−1
,

which proves that f ′(tg) = τδ1/2(t)f ′(g).
Let now g ∈ G+ and u ∈ U+. Let t ∈ T be such that tg, tu ∈ G+. Then f ′(tug) =

τδ1/2(t)f ′(ug) and f ′(tug) = τδ1/2(tu)f ′(g) = τδ1/2(t)f(g). Thus

τδ1/2(t)f ′(g) = τδ1/2(t)f ′(ug)

and hence f ′(ug) = f ′(g) for every u ∈ U+ and g ∈ G+.
Let now g ∈ G and u ∈ U+. Let t ∈ T be such that tug, tg ∈ G+. As t normalizes U+,

we can write tu = u′t for some u′ ∈ U+. Then

f ′(ug) = f ′(tug)
(
τδ1/2(t)

)−1
= f ′(u′tg)

(
τδ1/2(t)

)−1
= f ′(tg)

(
τδ1/2(t)

)−1
= f ′(g).

Let b ∈ B and g ∈ G. Write b = tu, with t ∈ T and u ∈ U+. Then we have

f ′(bg) = f ′(tug) = τδ1/2(t)f ′(ug) = τδ1/2(t)f ′(g) = τδ1/2(b)f ′(g)

and thus f ′ ∈ Î(τ) and f ′ extends f . This proves (1).
(2) Let τ ∈ T+

F be such that τ is not the restriction of some element of TF . Then by
Lemma 6.18, there exists t ∈ T such that τ(t) = 0. Let f : G→ F be such that for all g ∈ G+

and b ∈ B+, f(bg) = (δ1/2τ)(b)f(g). Let g ∈ G. Then f(g) = f(tt−1g) = τδ1/2(t)f(t−1g) = 0,
which proves (2).

(3) By Lemma 6.20, one has τ(t′) = 0 for every t′ ∈ T such that t′.0 ∈ T̊ . Let t ∈ T be
such that t.0 ∈ Cv

f . Let g ∈ G+ and f ∈ Iτ,G+ . Then t.0>̊0 and t.0 6≤ 0. Therefore gt.0>̊g.0
and gt.0 6≤ g.0. Moreover g.0 ≥ 0 and thus by Lemma 6.26 we have gt.0>̊0. Using Lemma 6.5
we write gt = bnvk, with b ∈ B+, v ∈ W v and k ∈ KI . Then gt.0 = b.0, which proves that
b.0>̊0. Write b = u′t′, with u′ ∈ U+ and t′ ∈ T . Then by Theorem 6.6, ρ+∞(b.0) = t′.0>̊0
and thus τ(t′) = 0. Therefore f(gt) = t.f(g) = τδ1/2(t′)f(nvk) = 0, which proves (3).

Proposition 6.28. Let τ+ ∈ T+
F .
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1. Suppose that τ+ is not the restriction to Y + of an element of TF .

For every f ∈ Î(τ+) \ {0}, for every G-module M , the restriction of M to G+ is not
isomorphic to G+.f .

For every x ∈ I+τ+ \ {0}, for every BLHF -module M , the restriction of M to HF is not
isomorphic to HF .x.

2. Suppose that τ+ is the restriction to Y + of a (necessarily unique) element τ of TF .

Every element f+ of Î(τ+)+ can be extended uniquely to an element f of Î(τ). Then
f+ 7→ f is an isomorphism of G+-modules.

The action of HF on I+τ+ extends uniquely to an action of BLHF on I+τ+. Then I+τ+ is
naturally isomorphic to Iτ as a BLHF -module.

Proof. (1) By Lemma 6.18, there exists λ ∈ Y + such that τ+(λ) = 0. Then if x ∈ I+τ+ \ {0},
Zλ.x = 0. If M is a BLHF -module, one has Z−λ.Zλ.y = y 6= 0 for every y ∈ M \ {0}. The
similar statement for G+ is a consequence of Lemma 6.27(3).

(2) The statement for Î(τ+)+ follows from Lemma 6.27(1). The statement for Iτ follows
from Proposition 2.12. By Proposition 6.17, the actions of HF on Iτ,G+ and Iτ,G extend to
actions of BLHF on Iτ,G+ and Iτ,G.

A Existence of one dimensional representations of BLHC

In this section, we prove the existence of one dimensional representations of BLHC, when
σs = σ′

s = σ, for all s ∈ S .

Lemma A.1. Assume that F = C and that there exists σ ∈ C such that σs = σ′
s = σ for all

s ∈ S and such that |σ| 6= 1. Let ǫ ∈ {−1, 1} and τ ∈ TC be such that τ(α∨
s ) = σ2ǫ for all

s ∈ S . Then Iτ admits a unique maximal proper submodule M . Moreover, Iτ =M⊕C1⊗τ 1
and if x ∈ Iτ/M , then Zλ.x = τ(λ).x and Hw.x = (ǫσǫ)ℓ(w).x for all (w, λ) ∈ W v × Y .

Proof. By Lemma 5.2, such a τ exists. Let q = σ2. Let ht : Y → Q be a Z-linear map such
that ht(α∨

s ) = 1 for all s ∈ S . Then one has τ(α∨) = qǫht(α
∨) for all α∨ ∈ Φ∨.

Let s ∈ S . With the same notation as in Lemma 4.4, let φs = φ(s.τ, τ) : Is.τ → Iτ . Then
by Lemma 4.4 Ms := Im(φs) is a proper submodule of Iτ . Moreover, Hs− ǫσǫ⊗τ 1 ∈Ms. Let
M =

∑
s∈S

Ms. Let w ∈ W v \ {1} and w = s1 . . . sk be a reduced expression. Let v = wsk.
Then Hv.(Hsk − ǫσǫ) = Hw − ǫσǫHv ∈ Msk . Therefore, for all w ∈ W v \ {1}, there exists
xw ∈ M such that πH

w (xw) = 1 and xw ∈ M ∩ I≤w
τ . By induction on ℓ(w) we deduce that

M + C1⊗τ 1 = Iτ .
By [GR14, Lemma 2.4 a)], τ ∈ T reg

C . Moreover, by Proposition 3.4 (2),

Iτ =
⊕

w∈W v

Iτ (w.τ)

and if we choose ξv ∈ Iτ (v.τ)\{0} for all v ∈ W v, then (ξv)v∈W v is a basis of Iτ . For w ∈ W v,
let πξ

w : Iτ → C be the linear map defined by πξ
w(ξv) = δv,w for all v ∈ W v. As ξ1 ∈ C1⊗τ 1,

one has πξ
1(Ms) = {0} for all s ∈ S . Thus Iτ = M ⊕ C1 ⊗τ 1. Moreover, M ⊂ (πξ

1)
−1({0})

and by dimension M = πξ
1({0}). We deduce that M is the unique maximal proper submodule

of Iτ and the lemma follows.
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Remark A.2. Actually, the representations constructed in Lemma A.1 generalize the well
known trivial representation (when ǫ = 1) and Steinberg representation (when ǫ = −1).
For simplicity, we assumed all the σs, σ

′
s to be equal, but this is not necessary. We can

also construct these representations directly by setting triv(Hs) = σs, triv(Zα∨
s ) = σsσ

′
s,

St(Hs) = −σ−1
s , St(Zα∨

s ) = σ−1
s σ′−1

s . Using the fact that the relations (BL1) to (BL4) are
preserved by triv and St, we can extend them to representations of BLHC over C.

B Examples of possibilities for Wτ for size 2 Kac-Moody

matrices

In this section, we prove that there exist size 2 Kac-Moody matrices such that for each
subgroup H of W v, there exist τ ∈ TC such that Wτ is isomorphic to H . We assume that
αs(Y ) = Z for all s ∈ S and thus W(τ) = Wτ . We already proved the existence of regular
elements in Lemma 5.1. If τ ∈ TC is such that τ(α∨

s1
) = 1 and τ(α∨

s2
) is not a root of 1, then

Wτ = {1, s1}.

Lemma B.1. Let A = (ai,j)(i,j)∈J1,2K2 be a Kac-Moody matrix. Assume that a1,2 and a2,1 are
even and such that a1,2a2,1 is greater than 6. Let γ2 be a primitive 1

2
(a1,2a2,1−4)-th root of 1.

Let γ1 = γ
1
2
a1,2

2 . Let τ : Y = Zα∨
1 ⊕ Zα∨

2 → C∗ be the group morphism defined by τ(α∨
i ) = γi

for both i ∈ {1, 2}. Then Wτ = 〈s1s2〉 ≃ Z.

Proof. Let τ ′ ∈ TC and γ′i = τ ′(α∨
i ) for both i ∈ {1, 2}. For λ ∈ Y , one has (s2 − s1).λ =

α1(λ)α
∨
1 − α2(λ)α

∨
2 . Thus

s1.τ
′ = s2.τ

′ ⇐⇒ ∀λ ∈ Y, τ ′(α1(λ)α
∨
1 − α2(λ)α

∨
2 ) = 1

⇐⇒ ∀λ ∈ Y, γ
′α1(λ)
1 = γ

′α2(λ)
2

⇐⇒ (γ′1)
2 = (γ′2)

a1,2 and (γ′2)
2 = (γ′1)

a2,1 .

Thus s1.s2.τ = τ . Moreover s2.τ 6= τ and hence Wτ = 〈s1s2〉.

If τ = 1 : Y → {1}, then Wτ = 1. The following lemma proves that Wτ can be a proper
subgroup of W v isomorphic to the infinite dihedral group.

Lemma B.2. Let A = (ai,j)(i,j)∈J1,2K2 be an irreducible Kac-Moody matrix which is not a
Cartan matrix. One has a1,2a2,1 ≥ 4 and maybe considering tA, one may assume a1,2 ≤ −2.
Write W v = 〈s1, s2〉. Let γ2 be an a1,2-th primitive root of 1 and τ ∈ TC be defined by
τ(α∨

s1
) = 1 and τ(α∨

s2
) = γ2. Then Wτ = 〈s1, s2s1s2〉.

Proof. Let τ̃ = s2.τ . Let us prove that s1.τ̃ = τ̃ , i.e that τ̃(α∨
s1) = 1. One has τ̃ (α∨

s1) =
τ(s2.α

∨
s1
) = τ(α∨

s1
− αs2(α

∨
s1
)α∨

s2
) = τ(α∨

s2
)−a1,2 = 1. Thus Wτ ∋ {s1, s2s1s2}. Therefore

W v/Wτ = {Wτ , t.Wτ}. Moreover t /∈ Wτ , thus [W v : Wτ ] = 2 and hence Wτ = 〈s1, s2s1s2〉.
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