
HAL Id: hal-01960337
https://hal.science/hal-01960337

Submitted on 8 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial data compression for large-scale physics
experiments

Pierre Aubert, Thomas Vuillaume, Gilles Maurin, Jean Jacquemier, Giovanni
Lamanna, Nahid Emad

To cite this version:
Pierre Aubert, Thomas Vuillaume, Gilles Maurin, Jean Jacquemier, Giovanni Lamanna, et al.. Poly-
nomial data compression for large-scale physics experiments. Computing and Software for Big Science,
2018, 2 (1), pp.6. �10.1007/s41781-018-0010-3�. �hal-01960337�

https://hal.science/hal-01960337
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Polynomial data compression for large-scale physics
experiments

Pierre Aubert · Thomas Vuillaume · Gilles Maurin · Jean
Jacquemier · Giovanni Lamanna · Nahid Emad

Received: date / Accepted: date

Abstract The new generation research exper-
iments will introduce huge data surge to a con-
tinuously increasing data production by current
experiments. This data surge necessitates effi-
cient compression techniques. These compres-
sion techniques must guarantee an optimum
tradeoff between compression rate and the cor-
responding compression /decompression speed
ratio without affecting the data integrity.

This work presents a lossless compression al-
gorithm to compress physics data generated by
Astronomy, Astrophysics and Particle Physics
experiments.

The developed algorithms have been tuned
and tested on a real use case : the next gener-

P. Aubert · T. Vuillaume · G. Maurin · J.
Jacquemier · G. Lamanna
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc,
CNRS, LAPP, 74000 Annecy, France
E-mail: pierre.aubert@lapp.in2p3.fr

P. Aubert · N. Emad
Laboratoire d’informatique Parallélisme Réseaux Al-
gorithmes Distribués, UFR des Sciences 45 avenue
des États-Unis 78035 Versailles

P. Aubert · N. Emad
Maison de la Simulation, Université de Versailles
Saint-Quentin-en-Yvelines, USR 3441 CEA Saclay
91191 Gif-sur-Yvette cedex

ation ground-based high-energy gamma ray ob-
servatory, Cherenkov Telescope Array (CTA),
requiring important compression performance.
Stand-alone, the proposed compression method
is very fast and reasonably efficient. Alterna-
tively, applied as pre-compression algorithm, it
can accelerate common methods like LZMA,
keeping close performance.

Keywords Big data · HPC · lossless compres-
sion · white noise

1 Introduction

Several current and next generation experimen-
tal infrastructures are concerned by increasing
volume of data that they generate and manage.
This is also the case in the Astrophysics and As-
troparticle Physics research domains where sev-
eral projects are going to produce a data del-
uge of the order of several tens of Peta-Bytes
(PB) per year [1] (as in the case of CTA) up to
some Exa-Bytes (as for the next generation as-
tronomical radio observatory SKA[2]). Such an
increasing data-rate implies considerable tech-
nical issues at all levels of the data flow, such

ar
X

iv
:1

80
5.

01
84

4v
1 

 [
cs

.N
A

] 
 3

 M
ay

 2
01

8



2 P. Aubert, T. Vuillaume, J. Jacquemier, G. Maurin, G. Lamanna & N. Emad

as data storage, processing, dissemination and
preservation.

The most efficient compression algorithms
generally used for pictures (JPEG), videos
(H264) or music (MP3) files, provide compres-
sion ratios greater than 10. These algorithms
are lossy, therefore not applicable in scientific
context where the data content is critical and
inexact approximations and/or partial data dis-
carding are not acceptable. In the context of this
work, we focus on compression methods to re-
spond to data size reduction storage, handling,
and transmitting issues while not compromising
the data content.

Following types of lossless compression
methods are applicable for aforementioned sit-
uations. LZMA [3], LZ78 [4], BZIP2 [5], GZIP
[6], Zstandard [7] or the Huffman algorithms are
often employed because they provide the best
compression ratio. The compression speeds of
these methods however impose significant con-
straints considering the data volumes at hand.

Characters lossless compression, CTW
(Context Tree Weighting) [8], LZ77 [9], LZW
[10], Burrows-Wheeler transform, or PPM [11],
cannot be used efficiently on physics data as
they do not have the same characteristics as
text data, like the occurance or repetition of
characters. Other experiments have recently
solved this data compression issue [12], [13] for
smaller data rates.

With the increasing data rate, both the com-
pression speed and ratio have to be improved.
This paper primarily addresses the data com-
pression challenges. In this paper, we propose a
polynomial approach to compress integer data
dominated by a white noise in a shorter time
than the classical methods with a reasonable
compression ratio. This paper focuses on both
the compression ratio and time because the de-
compression time is typically shorter.

The paper is organized as follows. Section
2 explains some motivations. Section 3 de-
scribes our three polynomial compression meth-

ods. Section 4 reports the improvement ob-
tained from our best polynomial compression
method on given distributions and CTA data
[14]. Section 5 gives further details about com-
pression quality. In section 6, some concluding
remarks and future plans will be given.

2 Motivation

As the data volumes generated by current
and upcoming experiments rapidly increase,
the transfer and storage of data becomes an
economical and technical issue. As an exam-
ple, CTA, the next generation ground-based
gamma-ray observatory, will generate hundreds
PB of data by 2030. The CTA facility is based
on two observing sites, one per hemisphere and
will be composed of more than one hundred tele-
scopes in total. Each of them is equipped with
photo-sensors equipping the telescopes’ cameras
and generating about two hundred PB/year of
uncompressed raw data that are then reduced
on sites after data selection conditions to the or-
der of the PB/year off-site data yield. The CTA
pipeline thus implies a need for both lossy and
lossless compression, and the amount of lossy
compression should be minimized while also en-
suring good data reading and writing speed.
The writing speed needs to be close to real-time,
since there is limited capacity on site to buffer
such large data volumes. Furthermore, decom-
pression speed is also an issue; the whole cumu-
lated data are expected to be reprocessed yearly,
which means that the amount of data needed
to be read from disk (, decompressed) and pro-
cessed will grow each year (e.g. 4 PB, 8 PB, 12
PB, ...).

In CTA, as in many other experiments,
the data acquired by digitization can be de-
scribed by two components: a Poissonian dis-
tribution representing the signal, dominated by
a Gaussian-like distribution representing the
noise, which is most commonly white noise. As



Polynomial data compression for large-scale physics experiments 3

Fig. 1 Example of analog signal digitization in most
physics experiments. In many cases the white noise
(a Gaussian distribution) dominates the signal (gen-
erally a Poissonian distribution). So, the biggest part
of the data we want to compress follows a Gaussian
distribution.

shown in figure 1, the noise generally signifi-
cantly dominates the searched signal.

In this paper, we propose a compression
algorithm optimised on experimental situation
with such characteristics, Gaussian distribution
added to a Poissonian one.

Furthermore, in order to respond to time re-
quirement and allow for almost real-time execu-
tion the proposed solution can be also combined
with the most powerful known compression al-
gorithms such as LZMA to increase tremen-
dously its speed.

3 The polynomial compression

An unsigned int range,
q
0, 232

q
defines a math-

ematical set Z/dZ, called ring, where d = 232.
The digitized data also define a ring, in this
case, the minimum is vmin and the maximum
is vmax so the corresponding ring is defined as
Z/bZ with b = vmax − vmin + 1. In many cases
b < d, so, it is possible to store several pieces of
data in the same unsigned int (see in figure 2).
This compression can be made by using a poly-
nomial approach. The power of a base is given
by the values range. This allows to add different

values in the same integer and compute them
back.

Fig. 2 Illustration of the reduction principle. The
upper line represents the data (different colours for
different values). In the second line, the orange blocks
represent the changes between the different values to
compress. The last line shows the compressed data
(as they are stored). First, the minimum value of the
data, next, the base b = max − min + 1, which de-
fines the data variations set, Z/bZ, finally the data
variations. Several data can be stored in the same
unsigned int and only the changes between the data
are stored. The common parameters like the range
of the data (minimum and maximum or compression
base) are stored only once.

3.1 Basic compression method

Considering a n elements data vector, v ∈ NN ,
its minimum, vmin and its maximum vmax de-
fine its associated ring. If the data ring is smaller
than the unsigned int ring, it is possible to store
several values in one unsigned int. The smaller
is the base, the higher is the compression ra-
tio. As the data are in Jvmin, vmaxK, the range
between 0 and vmin is useless. Therefore, the
data can be compressed by subtracting the min-
imum value, forming a smaller base. The mini-
mum can be stored once before the compressed
data. The compression base B is defined by :
B = vmax − vmin + 1. With this base we are able
to store (vmax − vmin) different values. The com-
pression ratio, p, is given by the number of bases
B that can be stored in one unsigned int (in



4 P. Aubert, T. Vuillaume, J. Jacquemier, G. Maurin, G. Lamanna & N. Emad

Fig. 3 Illustration of the advanced reduction. The
upper line represents the data (different colours for
different values). In the second line, the orange blocks
represent the changes between the different values to
compress. The last line shows the compressed data
(as they are stored). First, the minimum value of the
data, next, the base b = max −min+1, which defines
the data variations set, Z/bZ, and finally the data
variations. The storage space is optimized by avoid-
ing useless gaps between data. With this method
there is no useless space to store the compressed data.

q
0, 232

q
) :

p =
⌊
ln

(
232 − 1

)
ln B

⌋
(1)

The compressed elements, sj , are given by :

sj =
p∑

i=1

vi+p×(j−1) × Bi−1 for 1 ≤ j <
n
p

(2)

A polynomial division can be used to un-
compress the data.

3.2 Advanced compression method

The inconvenience of the basic compression
method is the unused space at the end of each
packed unsigned int (see in figure 2). The ideal
case is the one that has no unused space when
storing the compressed data illustrated in fig-
ure 3 which avoid unused space. The advanced
polynomial compression tends to become ideal
case. However, minimizing the time for read and
write provides a faster compression and decom-
pression speed.

Compression ratio can be improved by split-
ting the last base (see figure 2 and figure 3),

Fig. 4 This figure shows how the data of the vec-
tor v are stored in the packed vector. The first line
gives the base used to store the values, the second
line shows the variables used to store the values with
respect to their base. To increase the compression ra-
tio we need to split the last base B in to base R and
R′ in order to use the storage capacity of an unsigned
int as much as we can. The values on the left of an
unsigned int are stored with a low power of the base
B. The values on the right of an unsigned int are
stored with a high power of the base B.

used to pack less data in the same unsigned int,
into two other bases, R and R′ in order to have
B ≤ R × R′. In this case, the base R is stored
in the current packed unsigned int and the base
R′ is stored in the next one (see in figure 4).
This configuration ensures a more efficient data
order for CPU data pre-fetching at the decom-
pression time, in order to ensure decompression
faster than compression.

The data are accumulated from the high-
est exponent of the base B to the lowest. This
ensures the decompression will produce uncom-
pressed contiguous data.

This splitting stores a value to be com-
pressed, v, in two bases, R and R′ with two
variables r and r ′. The variables r and r ′ are
stored in two consecutive packed element (un-
signed int).

The calculation of the bases R and R′ is pos-
sible when the number of bases B that can be
stored in an unsigned int is known. The number
of bases B that can be stored in the first packed
unsigned int, p1, is given by the following equa-
tion :

p1 =
⌊
ln

(
232 − 1

)
ln B

⌋
(3)

The split base R1 is given by :



Polynomial data compression for large-scale physics experiments 5

R1 =

⌊
232 − 1

Bp1

⌋
(4)

The R1 base must be completed, to store an
element e ∈ J0, BJ, by :

R′1 =
⌊

B
R1

⌋
+ (1 if B mod R0 , 0) (5)

So R1 × R′1 ≥ B. Each base Ri and R′i are as-
sociated to a stored value ri and r ′i respectively.
The first packed element s1 can be written as
follow :

s1 = r1 + R1 ×
©­«

p1∑
k=1,k,p1

vkBp1−kª®¬ (6)

Where :

r ′1 =
⌊
vp1
R1

⌋
(7)

r1 = vp1 − r ′1 × R1 (8)

The value r1 is associated to the base R and
the value r ′1 is associated to the base R′.

The number of bases B that can be stored
in the second packed element, p2, is given by :

p2 =

⌊
ln

(
232 − 1

)
− lnR′1

ln B

⌋
(9)

The rest split base R2 can be written as :

R2 =

⌊
232 − 1
R′1Bp2

⌋
(10)

The base R2 the second packed element can
be calculated :

s2 = r2

+R2 ×
©­«

p1∑
k=1,k,p1

vp0+kBp1−k + r ′1Bp1ª®¬ (11)

The equation 5 can be used to calculate R′2.

The compression of a whole vector can be
done by using a mathematical series to calculate
the split base for each packed element. Assum-
ing the base R′0 = 1 for the first step, the math-
ematical series used to compress an entire vec-
tor of unsigned int can be written as follow (for
0 < i ≤ np, where np is the number of packed
elements) :



6 P. Aubert, T. Vuillaume, J. Jacquemier, G. Maurin, G. Lamanna & N. Emad

pi =

⌊
ln

(
232 − 1

)
− lnR′i−1

ln B

⌋
Ri =

⌊
232 − 1
R′i−1Bpi

⌋
R′i =

⌈
B
Ri

⌉
qi = i − 1 +

i∑
k=1,k,i

pk or 0 if i = 0

r ′i =
⌊
vqi+pi

Ri

⌋
ri = vqi+pi − r ′i × Ri

si = ri + Ri ×
©­«

pi∑
k=1,k,pi

vqi+k+1Bpi−k + r ′i−1Bpi ª®¬
Where pi is the number of bases B that can

be stored in the ith packed element, Ri and R′i
are the split base, ri and r ′ their corresponding
values, qi is used to know how many elements
have been packed until the ith packed element,
finally si is the value of the ith packed element.

3.3 Blocked compression method

We observed that smaller the signal range, more
efficient is the compression. The advanced com-
pression method presented above is particularly
efficient to compress white noise with small
spread. Conversely, if the gaussian noise or the
poissonian signal is spread out, the efficiency de-
creases. However, the efficiency can be improved
by dividing the vector into less items to dimin-
ish the impact by the higher values on the global
compression ratio.

The block efficiency, and their size determi-
nation will be discussed in the section 4.2.

4 Experiments and analysis

In order to test and evaluate the performance
of the previously described polynomial compres-

Fig. 5 This figure illustrates the typical signal dis-
tribution obtained in several of the cameras used in
CTA [14].

sion method, in the following Monte Carlo simu-
lated distributions will be used. These distribu-
tions are in agreement with the measured data
from Cherenkov cameras (see figure 5).

4.1 Simulation of the distribution

The data can be described by a random gaus-
sian distribution with a given standard devia-
tion (the white noise in the cameras’ signals)
and by adding a uniform distribution in the
given camera’s signal range (the physics signal).
Consider the set of the camera pixels distribu-
tion values, A :

A (µ, σ, x, y, a, N) = N (µ, σ)N−a ∪U (x, y)a (12)

Where :

– µ : gaussian noise mean
– σ : gaussian noise standard deviation
– (x, y) : range of uniform signal value
– a : number of values in the uniform distri-

bution (signal)
– N : total number of values in the vector

(N is the normal distribution, the simulated
noise, and the U describes an uniform distri-
bution, the simulated signal.)



Polynomial data compression for large-scale physics experiments 7

An example of simulation is presented on fig-
ure 6.

Fig. 6 Typical simulated distribution used
to improve the data reduction in the set
A (3 000, 500, 2 000, 45 000, 9, 1855). In this case,
the gaussian distribution represents 99% of the pix-
els’ values and the uniform distribution represents
1% of this distribution.

In this paper we have tested the distribu-
tion A with µ = 3000, σ ∈ [100, 10 000], x =
2 000, y ∈ J20 000, 100 000K, a ∈ J1, 1 000K and
N ∈ J1855, 10 000K.

4.2 Polynomial reduction on given distributions

The implementation of blocked polynomial re-
duction has been tested on given distributions.
This test determines the influence of the distri-
bution parameters on the compression ratio.

As the polynomial compression uses statis-
tical properties to compress data, the test can
only be done with a set of distributions. The fig-
ure 7 shows the compression ratio for 1000 vec-
tors with A (3000, 500, 2000, 45 000, 4, 1855) to
compute the variations (red curve). The gaus-
sian σ variation has a high influence on the fi-
nal compression ratio, of the order of 25% from
σ = 1000 to σ = 500 in the best block size
case. The signal range influence is lighter, 5%
or 10% depending on the block size, and 5% for
the best block size. The block size choice is im-
portant too. The compression ratio is weaker if

the blocks are too long, 25% of lower compres-
sion for σ = 500 and 30% for σ = 1000. In this
case using blocks of 154 elements allows a com-
pression ratio of 2.47054 which is larger than
17% to the basic compression (2.10361).

Fig. 7 Top panel : illustration of the com-
pression ratio versus the number of element in
the blocks used to compressed a vector of data.
The red points (+) give the compression ratio
for a distribution with σ = 500 and range =
45 000, in A (3 000, 500, 2 000, 45 000, 4, 10 000). The
blue points (∗) give the compression ratio for a
distribution with σ = 500 and range = 100 000,
in A (3 000, 500, 2 000, 100 000, 4, 10 000). The green
points (×) give the compression ratio for a dis-
tribution with σ = 1 000 and range = 45 000,
in A (3 000, 1 000, 2 000, 45 000, 4, 10 000). The tails of
the plots give the compression ratio of the advanced
polynomial reduction method. Bottom panel : the
same plot zoomed.

Figure 8 shows that the signal/noise ratio
has high influence on the compression ratio if
the spread is not too high. On the contrary, if
the noise spread is important (green curve), the



8 P. Aubert, T. Vuillaume, J. Jacquemier, G. Maurin, G. Lamanna & N. Emad

Fig. 8 Illustration of the signal/noise ratio influence
on the final compression ratio for a vector of 10 000
values. The red points (+) give the compression ratio
for a distribution with σ = 500 and range = 45 000.
The blue points (∗) give the compression ratio for
a distribution with σ = 500 and range = 100 000.
The green points (×) give the compression ratio for a
distribution with σ = 1 000 and range = 45 000. The
compression ratio is constant from 10%.

signal/noise ratio has less influence on the final
compression ratio.

4.3 Polynomial reduction on CTA data

In the previous section 4.2 we have described the
compression ratios obtained with the blocked
polynomial reduction applied on modelled/sim-
ulated data distributions. Such an improvement
cannot reflect properly the compression ratio
with physics data, since they result typically in
a superposition of several distributions coming
from several photo-sensors (e.g. pixels) read si-
multaneously.

We have therefore tested our compression
method on Monte Carlo simulated CTA-like
data (i.e. Cherenkov light emitted by atmo-
spheric electromagnetic showers and captured
by cameras on telescopes). Only shower pic-
tures registered in stereoscopy by more than
one telescope are recorded. Each telescope’s
camera produces individually a file containing
its own picture (called also an “event”) result-
ing from the different signals registered by all

pixels/photo-sensors of the camera itself. An
event data-file is then composed of a header,
used to describe properties like its timestamp,
plus the recorded camera data, e.g. either the
integrated signal from all pixels and/or the dy-
namical evolution of the signal in time (wave-
form). The event data file can have a size of
typically several tens of thousands bytes. A se-
lection on the pixels to be saved will likely be
applied in the acquisition pipeline in order to
reduce the final data rate.

Among the various specifications that have
to be fulfilled by the CTA data format, each
data file has to be readable by part to enable
the access to its header without requiring a full
decompression step. Therefore, a blocked com-
pression is allowed.

Our test was performed on CTA Monte-
Carlo Prod 3 [15] files, which simulate telescopes
observing the Cherenkov light emitted by par-
ticles’ showers in the atmosphere and used to
characterize the scientific output of CTA in ex-
perimental conditions, thus they are reasonably
realistic. The CTA Monte Carlo data are con-
verted into a specific high performance data for-
mat, which stores pixels’ values in 16 bits to en-
able fast computation. The test files contain 624

telescopes, 22 000 images, 7.6GB data in wave-
form mode and 474MB of integrated signal.
Each image is composed of the lighted pixels
concerned by both the noise as well as by the
genuine signal and having an almost elliptical
shape (see figure 9).

In the following we present the way to adapt
the polynomial compression method to the CTA
prerequisites. All tests are executed on an Intel
core i5 clocked at 2.67 GHz with SSE4 instruc-
tions without SSD disk.

4.3.1 Test on waveform CTA data

The waveform-data of CTA record the electro-
magnetic showers’ expansion. Thus, each pixel
has values in time. The number of values de-
pends on the camera type. Each value is digi-



Polynomial data compression for large-scale physics experiments 9

Table 1 The polynomial compression ratio, time and compressed file size compare the LZMA (best com-
pression existing). The tested file is the full waveform simulation of the PROD_3 (run 3998) of the CTA
experiment. The used CPU was a Intel core i7 M 560 with 19 GB of RAM installed with a Fedora .

Compression Compression File size (GB) Decompression Compression Decompression
ratio Elapsed Time Elapsed Time Elapsed Time RAM Elapsed Time RAM

No compression 1 0 7.6 0 0 0

Advanced Polynomial 2.71 5min36.025s 2.8 2min35 s 2min56 s 2min30 s
Reduction
BZIP2 2.62 19min 18.247 s 2.9 2min23.676 s - -

LZMA (-mx=9 -mfb=64 -md=200m) 6.52 2h14min44 s 1.166 1min49.689 s 2h03min44 s 2min03 s
LZMA (-mx=1 -mfb=64 -md=32m) 5.88 14min00 s 1.293 2min10 s 15min42 s 2min09 s

Poly + LZMA (9 16 32) 5.02 10m49 s 1.513 2min13 s 4min57 s 2min15 s

tized in 12 or 16 bits and is stored in 16 bits for
computing reasons.

Fig. 9 Illustration of the ellipse shape of a parti-
cles shower recorded by a camera in the CTA Monte-
Carlo. The color scale represents the number of pho-
tons detected in a pixel.

To improve waveform compression and en-
able High Performance Computing (CPU data
pre-fetching and vectorization) we choose to
store them into matrices. The matrix element
Mi, j corresponds to the ith time of the jth pixel
of the current camera. The row alignment en-
ables a better compression because it increases
the number of sequences of similar values. This
configuration enables the optimisation of wave-
forms’ pictures computing.

Our polynomial compression reduces the
test file of 7.6GB in a file of 2.8GB (compres-
sion ratio of 2.71) in 5min 36 s. The table 1 com-
pares our results with classical methods. We test

BZIP2 and LZMA algorithms over the whole
file.

Our method is 3.5 times faster than the
BZIP2 algorithm and offers a better compres-
sion.

For the LZMA algorithm, the program 7z is
used on two tests.

Fig. 10 Comparison of the compression ratio for dif-
ferent compression block sizes on the CTA PROD_3
Monte-Carlo.

First we investigate to reach the best com-
pression ratio with the commande line 7z a -t7z -
m0=lzma -mx=9 -mfb=64 -md=200m -ms=on.
Thus, the test file is compressed with a com-
pression ratio of 6.52 in 2h14min 44 s. We also
investigate the fast compression mode of LZMA
(7z a -t7z -m0=lzma -mx=1 -mfb=64 -md=32m
-ms=on) and we obtain a compression ratio of
5.88 in 14m 00 s. Finally we combine the poly-
nomial compression with LZMA and obtain a
compression ratio of 5.02 in only 10m 49 s. The
decompression times of the different algorithms
are similar. However, compression/decompres-



10 P. Aubert, T. Vuillaume, J. Jacquemier, G. Maurin, G. Lamanna & N. Emad

Table 2 The polynomial compression ratio, time and compressed file size compare the LZMA (best com-
pression existing). The tested file is the simulation the PROD_3 (run 497) of the CTA experiment. The
combination of our advanced polynomial compression and LZMA allows a compression as good as a pure
LZMA compression but 19 times faster. The used CPU was a Intel core i5 M 560 with 8 GB of RAM installed
with an Ubuntu 16.4.

Compression Elapsed File size (MB) Compression Decompression
ratio Time Elapsed Time RAM Elapsed Time RAM

No compression 1 0 474 0 0

Advanced Polynomial 3.74 3.7 s 127 0.9 s 0.9 s
Reduction
BZIP2 4.69 1min 48 s 101 1min0 s 6.23 s

LZMA (7z) 4.84 7min 48.636 s 98 1min 18 s 9.28 s
Advanced Polynomial 4.84 24.646 s 98 1min 20 s 11 s
Reduction + LZMA

sion over a whole file are not in agreement with
the data requirement (events or blocks have
to be compressed separatelly). A solution is to
compress several events packed in blocks with a
higher granularity level. With LZMA (native),
this method archieves a compression ratio of 6
by compressing 300 events per block which rep-
resents less than 0.02 second of signal for the
LST-CAM. In this case, each block contains ap-
proximately 100MB of data (depending on the
camera).

4.3.2 Test on integrated CTA data

The integrated data are obtained by the reduc-
tion of the waveform signal. This reduction can
be performed on all the pixels’ waveforms or
on several pixels’ waveforms. In our case, we
reduced matrices of section 4.3.1 in vectors to
enable High Performance Computing. The pro-
duced vector can be described by 24 or 32 bits
data depending on the cameras.

The polynomial compression archieves a
compression ratio of 3.74 in 3.7 s on a 474MB
test file.

The figure 10 shows the compression ratios
obtained with different compression block size.
The plot variations denote the different com-
pression ratios from the different cameras in the
file. Statistically, the camera data have not the
same compression ratio. This is why there are
fluctuations.

The difference with the simulated distribu-
tion comes from the 7 types of cameras. Each
camera has a typical ellipse size. If one block
contains the full ellipse signal, it is less com-
pressed compared to others. The result is a bet-
ter global compression.

Table 2 compares polynomial compression
with LZMA and BZIP2 algorithms.

The BZIP2 algorithm provides a better com-
pression ratio (4.69) but in 1min48 s (29 times
slower than our compression). The best com-
pression ratio is obtained with the LZMA algo-
rithm (4.84) but in 7min48 s (126 times slower
than our compression).

By combining our advanced polynomial re-
duction with the LZMA compression we obtain
the same compression ratio as pure LZMA, but
19 times faster. Moreover, the use of the poly-
nomial reduction allows the LZMA to keep its
flat profile because it packs small values in high
values. So the values average increases and the
bytes profile becomes more flat.

The polynomial reduction allows also a bet-
ter compression ratio than a classical bit-shifted
compression because the left space in an un-
signed int is used.

Extrapolating to CTA yearly data rate of
4PB [16], the usage of the LZMA algorithm in
this case would require more than 1750 core.year
only for the compression.



Polynomial data compression for large-scale physics experiments 11

5 Bytes occurrences

For further test purpose one can compare the
distributions of the byte-values as in the initial
file and in the compressed one with the purpose
of verifying that the compression algorithm has
not altered the physical distributions. At this
point the file cannot be further compressed with
a lossless compression [3].

Figure 11 shows the different byte-value dis-
tributions in the initial file and in the file com-
pressed with a polynomial reduction, LZMA
and BZIP2 for integrated test files.

This figure shows the polynomial compres-
sion smoothens the profile. The best compres-
sion is obtained with the LZMA compression
on a file compressed with a polynomial reduc-
tion because its profile is flat. The combination
of the polynomial compression and the BZ2 al-
gorithm does not provide a better compression
ratio or a faster compression speed.

6 Conclusion

In this article, we introduced a new lossless com-
pression algorithm to compress integers from
digitized signals and dominated by a white
noise.

This method is very fast, helps CPU data
pre-fetching and eases vectorization. It can be
integrated in each data format that deals with
tables or matrices of integers. This method com-
presses preferentially integers but an adaptation
of this algorithm can enable floating-point data
compression with fixed precision that returns in-
tegers. It compresses matrices and tables sepa-
rately in order to keep a similar data structure
between compressed and uncompressed data.
The decompression is roughly twice faster than
the compression. This method can also be vec-
torized to improve its speed.

Tests on CTA Monte-Carlo data show that
the polynomial compression is less efficient than

Fig. 11 Comparison of the different values of bytes
in a binary file. In red, the profile of the uncom-
pressed file (CTA PROD_3 Monte-Carlo) In green,
the profile of the only polynomial reduced file. In
blue, the profile of the corresponding compressed file
with the polynomial reduction and LZMA compres-
sion. In purple, the profile of the corresponding com-
pressed file with the polynomial reduction and GZIP
compression. In cyan, the profile of the corresponding
compressed file with the advanced polynomial reduc-
tion and LZMA compression.

LZMA but more efficient than BZIP2 on wave-
forms data.

The integrated data compression is very ef-
ficient and fast. Used as a pre-compression for
LZMA, we obtain the same compression ratio
as pure LZMA but in a compression duration
19 times shorter.

The method’s simplicity offers easy devel-
opment in many languages and the possiblity
to be used on simple embedded systems, or to
reduce the data volume produced by high sen-
sitive captors on FPGA. It can be also used
as pre-compression of stronger methods (like
LZMA) and accelerate it.

Acknowledgements This work is realised under
the Astronomy ESFRI and Research Infrastructure
Cluster (ASTERICS project) supported by the Eu-
ropean Commission Framework Programme Horizon



12 P. Aubert, T. Vuillaume, J. Jacquemier, G. Maurin, G. Lamanna & N. Emad

2020 Research and Innovation action under grant
agreement n. 653477.

References

1. T. Berghofer et al. Towards a Model for Com-
puting in European Astroparticle Physics. 2015.

2. P. J. Hall (ed). An ska engineering overview.
SKA Memorandum 91, 2007.

3. Abraham Lempel and Jacob Ziv. Lem-
pel–Ziv–Markov chain algorithm. 1996.

4. Jacob Ziv. A constrained-dictionary version
of LZ78 asymptotically achieves the finite-
state compressibility for any individual sequence.
CoRR, abs/1409.1323, 2014.

5. Julian Seward. Burrows–wheeler algorithm with
huffman compression. 1996.

6. Jean-loup Gailly and Mark Adler. Gnu zip. 1992.
7. Zstandard. 2015.
8. Y.M. Shtarkov F.M.J. Willems and T.J.

Tjalkens. The context-tree weighting method:
basic properties. IEEE Transactions on Infor-
mation Theory, 41, 2002.

9. Abraham Lempel and Jacob Ziv. Lempel–Ziv
lossless data compression algorithms. 1977.

10. Jan Platos and Jiri Dvorský. Word-based text
compression. CoRR, abs/0804.3680, 2008.

11. I. Clear and I. Witten. Data compression us-
ing adaptive coding and partial string match-
ing. IEEE Transactions on Information Theory,
COM-32, 1984.

12. M. L. Ahnen et al. Data compression for the first
g-apd cherenkov telescope. 2015.

13. William Pence, Rob Seaman, Richard L. White.
A tiled-table convention for compressing fits bi-
nary tables. 2010.

14. CTA Consortium. Introducing the CTA concept.
Astroparticle Physics, 43:3 – 18, 2013.

15. T. Hassan, L. Arrabito, K. Bernlör, J. Bregeon,
J. Hinton, T. Jogler, G. Maier, A. Moralejo, F. Di
Pierro, M. Wood, and f. t. CTA Consortium.
Second large-scale Monte Carlo study for the
Cherenkov Telescope Array. ArXiv e-prints, Au-
gust 2015.

16. CTA Consortium. CTA data management tech-
nical design report version 2.0. 2016.

The source code of the polynomial compres-
sion method discussed in this work is avaliable
under https://gitlab.in2p3.fr/CTA-LAPP/PLIBS_
8.

https://gitlab.in2p3.fr/CTA-LAPP/PLIBS_8
https://gitlab.in2p3.fr/CTA-LAPP/PLIBS_8

	1 Introduction
	2 Motivation
	3 The polynomial compression
	4 Experiments and analysis
	5 Bytes occurrences
	6 Conclusion

