
HAL Id: hal-01960321
https://hal.science/hal-01960321v1

Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Patterns With Durations from E-commerce
Dataset

Mohamad Kanaan, Hamamache Kheddouci

To cite this version:
Mohamad Kanaan, Hamamache Kheddouci. Mining Patterns With Durations from E-commerce
Dataset. Complex Network, Dec 2018, Cambridge, United Kingdom. �10.1007/978-3-030-05411-3_49�.
�hal-01960321�

https://hal.science/hal-01960321v1
https://hal.archives-ouvertes.fr

Mining Patterns With Durations from
E-commerce Dataset

Mohamad Kanaan1 and Hamamache Kheddouci2

1 Sistema Strategy, Lyon, France,
mohamad.kanaan@sistema-strategy.com,

WWW home page: http://www.sistema-strategy.com/Home
2 Université Claude Bernard Lyon 1, Laboratoire LIRIS, Lyon, France

hamamache.kheddouci@univ-lyon1.fr,
WWW home page: http://perso.univ-lyon1.fr/hamamache.kheddouci

Abstract. Given a dataset of clickstream extracted from e-commerce
logs, can we find a clear usage of the website? Are there hidden relation-
ships between the purchased products? Are there any discriminatory
behaviors leading to the purchase? To answer these questions, we pro-
pose in this paper a new Sequential Event Pattern Mining algorithm
(SEPM). The endeavor is to mine clickstream data in order to extract
and analyze useful sequential patterns of clicks. Also, in order to make
these patterns clearer, the time spent on each page is taken into ac-
count. SEPM maintains the items durations during the mining process
and extracts patterns with the average durations of these items without
multiple scans of the dataset. Our experimental results on both real and
synthetic datasets indicate that SEPM is efficient and scalable.

Keywords: Data mining, frequent pattern, customer behavior, e-commerce

1 Introduction

Over the last years, electronic (e)-commerce has revolutionized the retail by
changing the way in which the clients purchase. User’s choices are no longer
limited by the product availability in the stores of his region. Today, he can
search and buy products from any international store, anywhere and anytime,
by using e-commerce websites. However, e-merchants have some difficulties in
understanding their customers’ behaviour. They want to know how customers
purchase products, how they navigate through the products catalogs or even why
they abandon their purchase process. Such behaviors are very complex since they
are influenced by (1) supplying factors of the e-commerce website such as prices,
product availability, delivery time, rating, users’ opinion, etc., (2) and external
factors, such as international events (e.g. Black Friday), holidays, customer’s
budget, etc. These behaviors help e-merchants to understand and discover cus-
tomers’ needs. Therefore, e-merchants can recommend relevant products to their
customers, predict future purchases, and also ensure products’ availability. Their
key tasks are more focused on identifying and understanding the abandonment

2 Mohamad Kanaan et al.

and purchasing processes, starting from the first stimulus of customer until his
decision.

To achieve this goal, users’ actions could be traced. These actions are known
as clickstream. To analyze them and extract useful information, several mining
tools have been developed. They aim to analyze the user’s journey and discover
their hidden behaviors. Some well known data mining techniques are: pattern
mining, trend discovery, customers clustering and classification, collaborative
filtering in recommending systems, and purchase prediction.

In this paper, we are interested in pattern mining. This mining tools is used
to discover the hidden relationships between the products (the product network),
and to extract discriminatory behaviors. Therefore, two aspects were taken into
consideration: the order of browsed products and the time spent by customer
on the page of this product. These aspects can help e-merchant to find more
discriminatory behaviors and mine more precisely the pattern’s skeleton. In data
mining, this task is known as ”Sequential pattern mining”.

This paper is organized as follows. Section 2 presents a state of art of the
sequential pattern mining. In section 3, a new algorithm is developed to mine se-
quential event pattern. The experimental results are shown in section 4. Finally,
the conclusion is elaborated in section 5.

2 Related Work

Sequence pattern mining is a challenging task that aims to discover frequent
patterns from a sequential database. It was proposed in [7] as a problem of
mining customer’s sales transactions in order to discover frequent sequences of
purchasing constrained by a user-specified minimum support. Later, several ef-
ficient algorithms were developed [12], and can be divided into two categories:
candidate generation and pattern growth.

1. Candidate generation: GSP [6] and SPADE [1] are the two well-known algo-
rithms in this category. These algorithms are extensions of Apriori algorithm,
and they are based on two main steps: candidate generation and support
counting.

(a) GSP algorithm: it extracts the patterns level by level. At each level
k, all possible frequent patterns with k items (called k-patterns) are
mined. To start, GSP scans the database at the level k=1 to identify all
single frequent items. Then, it generates for next level k+1 all poten-
tially patterns (k+1)-candidates. The (k+1)-candidates are generated
by joining k-patterns with itself. For example, considering P1, P2 ∈ k-
patterns such as P1 and P2 have the same items except the last one:
a new (k+1)-candidate is generated by joining P1 with the last item of
P2, and another (k+1)-candidate is generated by joining P2 with the
last item of P1. When all (k+1)-candidates are generated, GSP re-scans
the database to count their supports and keeps only the most frequent
among them. This process is repeated until no more patterns are found.

Mining Patterns With Durations 3

(b) SPADE algorithm: it converts the original sequences database (in hor-
izontal format) to a vertical database. In this vertical database, each
table is called IDList and contains a frequent item with all its positions
in the original database. The vertical database is built by scanning the
original database twice. The main steps of SPADE are similar to those
of GSP but without multi-scan. In fact, IDList is used also to represent
a pattern. For example, the IDList of a pattern P contains all items’ po-
sitions in the original database where P occurs. Thereby, the support of
a pattern can be defined as the number of distinct id of the sequence list
in its IDList (discribed in details in Sect. 3). Also, by using IDList, the
joining operation between two patterns can be done without re-scanning
the database. It becomes a simple join of their IDList.

2. Pattern growth: most of algorithms in this category ([2], [3] and [10]) are in-
spired by depth-first search algorithm. One of well-known algorithms is Pre-
fixSpan [3]. It avoids the recursive exploring of its original database (which is
very expensive) by projecting it to a set of smaller databases. Then, in each
local database, patterns are grown by appending items to them to create
larger patterns. To avoid creating the same pattern twice during the pattern
growing, the items are appended according to a total order ≺ which can be
a lexicographical order or any other total order on items.

3 Sequential Event Pattern Mining Algorithm

3.1 Definitions

Definition 1. Event: An event is denoted by E = (label, duration) where E.label
and E.duration denotes the event label and duration (> 0) respectively.

Definition 2. List of sequential events: A list of sequential events SE = {E1, E2, ..., En}
is a sequence of events sorted by their starting times in ascending order (we as-
sume that events will be appended to the SE by order).

SE is identified in the original database by a unique identifier called SID, and
each of its events E has also a unique identifier called EID. The EID indicates
the position of E in SE. The length of SE is given by the number of its events
l = |SE|.

A canonical representation of SE can be obtained by merging all the labels of
its events in their orders (e.g., in Table 1, SE with SID = 3 can be represented
by < ACBD >).

At this point, it is worth noting that for two given events Ei and Ej , we
denote Ei ≺ Ej , if 1 ≤ {i, j} ≤ l, {Ei, Ej} ∈ SE and Ei occurs before Ej in SE.
As events are appended by order of their start time to SE, the total order ≺ on
events can be reduced to a simple comparison test of their EID {i, j} in SE.

The input database (list of SE) is represented in vertical format [1]. Each
distinct event in the database becomes an IDList containing the label and the
positions list < SID,EID > of the event.

4 Mohamad Kanaan et al.

Table 1. Example database of event lists and patterns detected

SID Events Event list (Labeleid)

1
E1 (A, 7), E2 (B, 15)

EL1 = A1 → B2 → D3 → C4E3 (D, 6), E4 (C, 3)

2 E1 (D, 2), E2 (C, 6) EL2 = D1 → C2

3
E1 (A, 10), E2 (C, 8)

EL3 = A1 → C2 → B3 → D4E3 (B, 5), E4 (D, 8)

4
E1 (B, 3), E2 (D, 9)

EL4 = B1 → D2 → C3E3 (C, 4)

Patterns detected

A (8.5) , B (7.67)
C (5.25) , D (6.25)
A (8.5) B (10)
A (8.5) C (5.5)
A (8.5) D (7)
B (9) C (3.5)
B (7.67) D (7.67)
D (5.67) C (4.33)
A (8.5) B (10) D(7)
B (9) D (7.5) C(3.5)

Definition 3. Subsequence: given two sequence list SE = {E1, E2, ..., Ek} and
SE′ = {E′1, E′2, ..., E′k}, SE ⊆ SE′, if and only if there exists an injective
function f : SE.events→ SE′.events such that for any {Ei, Ej} ∈ SE, if Ei ≺
Ej → f(Ei) ≺ f(Ej) and {f(Ei), f(Ej)} ∈ SE′. For example, EL4 ⊂ EL1 and
EL2 * EL3 can be deduced from Table 1.

Definition 4. Pattern: a pattern is a frequent k-subsequence where k is the
number of its items.

Patterns are also represented in vertical format. Each pattern is associated with
an IDList containing a list of labels of its items, and a list of < SID,EID >
where its items occur in the database. This vertical representation enables a very
fast compute of support of the pattern PSupp, by simply counting the number
of distinct SID in its IDList.

A valid pattern is constrained as follows: (1) frequency: PSupp ≥ minSupp,
where minSupp is a user-specified minimum support threshold, (2) event order:
∀{Itemi, Itemj} ∈ pattern, if 1 6 i < j 6 k (Itemi is discovered before Itemj)
and Itemi.SID = Itemj .SID → Itemi.EID < Itemj .EID.

3.2 Problem Reformulation

Let D be an input database of SE and minSupp a user-specified minimum
support threshold. The goal is to find all possible and valid patterns including
the average durations of their items. To achieve this goal, we choose to maintain
the durations of the items in patterns during the mining process to accelerate
the computing of the average durations at the end. For this reason, we choose
to augment the representation of IDList by introducing IDListExt.

Definition 5. IDListExt: is an extension of IDList. It contains in addition, a
list of neighbors INeighbors and a list of durations IDurations.

Definition 6. INeighbors: is the list of items that follows the last item in pattern
(or the item of event) in at leastminSupp sequence lists. For example, in Table 1,

Mining Patterns With Durations 5

for minSupp = 2, the neighbors of A are {< B, freq = 2 >,< C, freq = 2 >
,< D, freq = 2 >} and those of D are {< C, freq = 3 >}. The list of neighbors
can help pattern growing and avoid false candidates (cf. Sec. 3.4).

Definition 7. IDurations: is the list of durations of the item in each < SID,EID >
where it occurs. IDurations of a pattern is the list of durations of its last item,
collected from the original lastItem.IDList where the pattern occurs. An exem-
ple of IDListExt is shown in Table 2 for items {A,B,C,D} and pattern {AB}
extracted from database in Table 1.

Table 2. Example of IDListExt built from Table 1 with minSupp = 2

A

SID EID Duration
1 1 7
3 1 10

INeighbors: { B, C, D }

B

SID EID Duration
1 2 15
3 3 5
4 1 3

INeighbors: { C, D }

C

SID EID Duration
1 4 3
2 2 6
3 2 8
4 3 4

INeighbors: { ∅ }
D

SID EID Duration
1 3 6
2 1 2
3 4 8
4 2 9

INeighbors: { C }

AB

SID EID Duration
1 2 15
3 3 5

INeighbors: { C , D }

3.3 Algorithms

We describe here our proposed algorithms to build IDListExt and detect patterns
with SEPM.

Build IDListExt: Algorithm 1 is proposed to build the IDListExt of each
frequent event in the database. It starts by scanning the database to obtain all
single frequent events f1 (infrequent events can be removed from database to
accelerate the second scan). A second scan is performed to build the IDListExt
of each frequent event (line 5-13). The last operation (line 15) will remove all
infrequent neighbors from all INeighbor.

Extract pattern with SEPM: Algorithm 2 is proposed to extract all pat-
terns without scanning the original database. It is based on two main steps:
generating candidates, and then filtering them. It starts by generating the 1-
patterns from every item IDListExt (line 1). For each item and for all its SID,
SEPM picks the minimum EID and the duration associated with it.

Then at each level k, (k+1)-candidates are generated from the found k-
patterns. From each pattern in k-patterns, new candidates are generated by
joining the pattern with every item in its IDListExt.INeigbor (line 5-18) called
neighbor. When the support of a candidate meets the requirements (line 10), a

6 Mohamad Kanaan et al.

Algorithm 1 Build all IDListExt

Input: Event List db

1: f1 ← all single frequent events
2: for all (el ∈ db) do
3: antecedents ← ∅
4: EID ← 1
5: for all (e ∈ el.events) do
6: if f1 contains e then
7: IDListExt ← findOrCreateIDListExt(e.label)
8: IDListExt.add(el.SID,EID, e.duration)
9: add IDListExt.item to all INeighbor in antecedents

10: antecedents ← antecedents ∪ IDListExt
11: EID ← EID + 1
12: end if
13: end for
14: end for
15: remove infrequent neighbors from all INeighbors

new pattern is created from: (1) current pattern, (2) neighbor, (3) and IDListExt
resulting from the join between pattern.IDListExt and neighbor.IDListExt.

The average durations of the items in a pattern P can be obtained from the
list of durations in its IDListExt and those in all its predecessors. This operation
can be performed by recursively exploring the predecessors of P and obtaining
duration of each position <SID, EID> where SID appears in P.IDListExt. For
example, we obtain from the database in Table 1, a 1-pattern < A > that has a
neighbor B. When < A > joins its neighbor B, a new pattern < AB > is created
(see Table 3). In this new pattern < AB >, we keep only the durations of the
last item B. We can get those of item A, by referring to the pattern < A > the
predecessor of < AB >.

Table 3. Example of 2-pattern < AB > and 3-pattern < ABD > with minSupp = 2

AB

SID EID Duration

1 2 15
3 3 5

Output: A (8.5) B (7.67)

ABD

SID EID Duration

1 3 6
3 4 8

Output: A (8.5) B (10) D (7)

3.4 Pruning

Two pruning mechanisms are proposed to reduce the search space and acceler-
ate the execution time. These mechanisms eliminate false candidates and avoid
unnecessary join operations.

Mining Patterns With Durations 7

Algorithm 2 SEPM

Input: Set of IDListExt setIDListExt

1: patterns ← obtain 1-pattern from setIDListExt
2: while patterns 6= ∅ do
3: Print patterns
4: candidates← ∅
5: for all (pattern ∈ patterns) do
6: for all (neighbor ∈ pattern.IDListExt.INeighbors) do
7: if neighbor /∈ pattern.blackList and pattern.canJoin(neighbor) then
8: neighborIDListExt ← setIDListExt.find(neighbor)
9: newIDListExt ← pattern.IDListExt join neighborIDListExt

10: if newIDListExt.|SID| ≥ minSupp then
11: newPattern← createPattern(pattern, neighbor, newIDListExt)
12: candidates ← candidates ∪ newPattern
13: else
14: pattern.blacklist ← pattern.blacklist ∪ neighbor
15: end if
16: end if
17: end for
18: end for
19: patterns← candidates
20: end while

1. The first mechanism is based on the following property:

If joining a pattern P with an item I generates an infrequent pattern P ′ →
adding I to any superpattern of P will generate an infrequent pattern

To handle this property, a blacklist of items is built and if an item cannot
join a pattern, it will be added to the blacklist of this pattern. Then we can
avoid joining items with patterns when they appear in their blacklists.

2. The second mechanism is based the following property:

Let the item N be the neighbor of a pattern P . If N is not neighbor of all
items in P → joining P with N will generate an infrequent pattern

Based on this property, we can safely reject candidates resulting from joining
a pattern with an item that do not appear in all INeighbors of items in P.

Fig. 1 shows the tree of patterns mined from the database in Table 1. Red
nodes represent the candidates rejected by the pruning mechanism without any
join operation.

4 Experimental Evaluation

SEPM was applied on several real and synthetic datasets to study its perfor-
mance. The real datasets were used to demonstrate the relevance of the mined

8 Mohamad Kanaan et al.

NULL

A

AB

ABC ABD

ABDC

AC AD

ADC

C D

DC

B

BC BD

BDC

Fig. 1. Tree showing the patterns and their children. The red nodes are rejected.

patterns, and the synthetic datasets to prove the efficiency and the scalability
of the algorithm. All experiments were performed on a computer with Core i5
processor, running on Windows 10 and 16 GB of free RAM.

4.1 E-commerce Datasets

Datasets. The experiments were carried out on three real datasets presented
in Table 4. These datasets only contain clicks on the products. The minimum
support is set to 0.01% for experimental purposes. When it changes, it affects
directly the number and length of the found patterns. Since it is hard to define a
common value for all datasets, this threshold must be fixed by analysts according
to their needs and their dataset dimensions.

Table 4. Three real datasets used in experiments

Dataset Event lists Events Nb Patterns Max Length Reference

cikm 238k 2,121k 25,855 6 [14]
yoochoose 670k 3,870k 32,474 9 [15]
alibaba 1,119k 13,966k 10,923 6 [16]

Preparing data. To be able to apply SEPM, raw clickstream data must be
converted into sequential event data by following these steps: (1) every session
is converted into an event-list, (2) and every click in a session is converted into
an event attached to its corresponding event-list. The duration of an event is
defined as the time between the start time of a click and that of the next click in
the same session (we suppose that the user will not be on two pages at the same
time). All the clicks durations in a session can be obtained except the duration
of the last one as it is hard to know when the user left the website. This duration
can be replaced by the average duration of all clicks in the current session.

Mining Patterns With Durations 9

Patterns categorization. Table 5 shows some 4-patterns found. As we can see,
this temporal representation of patterns is very useful to analyze the product net-
work and discover the discriminatory behaviours. We notice that the durations
of items in the same pattern are not equal all the time. The gap between them
is sometimes small, and sometimes very important. Based on this observation,
we categorize the patterns according to two variants: the standard deviation of
the durations called sd, and the number of variations of the durations called
variation, such as:

sdp =

√∑lp
i=1(di − υ)2

lp
(1)

where lp is the length of pattern p, di is the duration of its ith item, and υ is
the mean of all durations in p,

variationp =

lp−1∑
i=1

(vi) (2)

where vi is a Boolean indicating whether there is a significant gap between the
durations of (i)th, and (i + 1)th items, such as vi = 1 if |di+1 − di| ≥ σ, and
0 otherwise (σ is a user-specified threshold, set to 1 minutes in our tests). To
distinguish the direction of variation, we denote v+i the positive variation if
di+1 ≥ di and v−i the negative variation in the other case.

Table 5. Example of 4-patterns found

Label of product (duration in minutes)

45925(0.6) → 90884(0.18) → 36425(3.97) → 10450(1.9)
8644(2.74) → 768(0.77) → 8644(10.92) → 48580(3.92)
36343(5.18) → 36343(8.78) → 31163(4.11) → 31163(0.73)
54421(0.32) → 11338(2.36) → 33890(1.23) → 4759(1.35)
11338(0.95) → 4926(1.35) → 54421(0.52) → 11338(3.12)

Based on these variants, five important categories are identified:

Category-A: includes standard patterns, with variation = 0 and sd ' 2.57.
The products found in these patterns have strong relationships with each other.
Users spend almost the same duration when they consult these products to-
gether. These patterns can be used to recommend products to users during their
navigations.

Category-B: includes patterns with variation = 1 and sd . 12.57. In this
category, two subcategories of patterns are discovered depending on the direction
of variation of their durations (positive or negative variation). The patterns with
positive variation indicate that users, before focusing on their main products,

10 Mohamad Kanaan et al.

consult some related ones (e.g. mobile phone accessories before mobile phones,
printer cartridges before printers, ...). These related products, even if they are
not bought in the same session, can influence directly the users’ opinions. These
patterns can help e-merchants to offer new products collections. In the other
case, when the patterns contain a negative variation, we notice that users are
moving away from their target products (most sessions containing these patterns
end with quick navigation without focusing on a particular product).

Category-C: includes patterns with variation = 2 and sd . 25.13. Many
patterns in this category contain noises especially when the first variation is
negative and the second one is positive. In this case, the users may consult
non-target products during their navigations.

Category-D: includes patterns with variation ≥ 3 and sd . 30.33. These
patterns reflect different types of customer’s behaviors, e.g. product comparison,
random navigation without purchase intention, etc.

Category-E: includes patterns with sd ≥ 31. Most of these patterns reflect
abnormal behaviours. This can be due to several reasons: bugs in tracing tool,
error while page loading, etc.

Based on these categories, several mining techniques can be applied to under-
stand more the customers’ behaviors. E.g. customers can be categorized based
on frequent pattern categories in their sessions, and then each customer’s profile
can be treated separately. Also, various customers’ demographics data can be
combined with the patterns categories to recommend more personalized web-
sites.

4.2 Synthetic Datasets

In this section, we apply four algorithms (SPEM, PrefixSpan, SPAM and SPADE)
on synthetic datasets. The source codes of algorithms (PrefixSpan, SPAM and
SPADE) are provided by [13].

Datasets. We have examined the effect of varying some dimensions of the
database. We used for these experiments the ”IBM data quest generator” to
generate synthetic datasets. The generation of datasets can be controlled through
several parameters:

1. ncrust (number of customers in the database) to vary the number of event
lists (i.e. D)

2. slen (average of transactions per customer) to vary the number of events per
list (i.e. L)

3. nitems (the number of different items available) to vary the type (label) of
events (i.e. T)

Mining Patterns With Durations 11

To analyze the effect of D variation, we set minSupp to 10% and we vary D
between 250k and 400k. In the case of L, minSupp is set to 10% and L is varied
between 8 and 15. Lastly, for that of T , minSupp is set to 5% and T is varied
between 3 and 10. Fig. 2 shows the results. In all cases, SEPM behaves in the
same way as the other algorithms when these parameters change. Results show
us that SEPM behaves correctly according to the different types of database.

Fig. 2. Effect of varying the dimensions of the database

250 300 350 400

5

10

15

20

Database Size (in Thousand)

R
es

p
o
n
se

T
im

e
(i

n
S
ec

o
n
d
)

Database length

SEPM

PrefixSpan

SPAM

SPADE

8 10 12 14

0

10

20

30

40

50

Average number of event per list

R
es

p
o
n
se

T
im

e
(i

n
S
ec

o
n
d
)

Number of event per list

SEPM

PrefixSpan

SPAM

SPADE

4 6 8 10

5

10

15

20

25

Number of event labels

R
es

p
o
n
se

T
im

e
(i

n
S
ec

o
n
d
)

Label of events

SEPM

PrefixSpan

SPAM

SPADE

Pruning. Finally, we investigate the effectiveness of the proposed pruning mech-
anisms. For this test, two variations of SEPM are implemented with and without
pruning. Fig. 3 shows the results when they are applied on a synthetic dataset
of 300k event list. As we can see, the pruning mechanisms are very efficient and
can decrease the execution time by avoiding the generation of false candidates.

Fig. 3. Effect of pruning mechanisms

1 1.5 2 2.5 3

20

40

60

80

100

120

minSupp (in %)

R
es

p
o
n
se

T
im

e
(i

n
S
ec

o
n
d
)

With pruning

Without pruning

5 Conclusion

The duration that takes the customer to check products in an e-commerce web-
site is crucial to understand his preference. Motivated by this reason, we have
examined in this paper the problem of mining sequential pattern from datasets
of clickstream. We augmented the existing vertical database representation with

12 Mohamad Kanaan et al.

additional duration information to detect patterns with the average durations of
its items. Then based on this new representation, we have proposed a new algo-
rithm called SEPM to detect sequential patterns including the average durations
of their items without multiple scans of the database. These patterns are very
useful for building the product network and discovering the strong and hidden
relationships between products. They are also categorized to simplify their inter-
pretations and detect the discriminatory behaviors. Experimental results on real
and synthetic datasets show the efficiency and the scalability of our proposed
algorithm.

References

1. Zaki, M.J.: SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1), 31–60 (2001).

2. J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. C. Hsu, ”FreeSpan:
frequent pattern-projected sequential pattern mining” ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 355-359, 2000.

3. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996).

4. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap
representation. In: Proc. 8th ACM SIGKDD Intern. Conf. Knowledge Discovery and
Data Mining, pp. 429–435. ACM (2002).

5. Svatošová, Veronika. (2013). Motivation of Online Buyer Behavior. Journal of Com-
petitiveness. 5. 14-30. 10.7441/joc.2013.03.02.

6. R. Srikant, and R. Agrawal, ”Mining sequential patterns: Generalizations and per-
formance improvements” The International Conference on Extending Database
Technology, pp. 1-17, 1996.

7. R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. of the 11th Int’l
Conference on Data Engineering, Taipei, Taiwan, March 1995.

8. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
VLDB’94, pp. 487-499.

9. Patel, D., Hsu, W., Lee, M.L.: Mining relationships among interval-based events for
classification. In: Proceedings of ACM SIGMOD, pp. 393–404 (2008)

10. J. Han, J. Pei, Y. Ying, and R. Mao, ”Mining frequent patterns without candi-
date generation: a frequent-pattern tree approach” Data Mining and Knowledge
Discovery, vol. 8(1), pp. 53-87, 2004.

11. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, ”H-mine: Hyper-structure
mining of frequent patterns in large databases” IEEE International Conference on
Data Mining, pp. 441–448, 2001

12. P. Fournier-Viger, J. C. W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas, ”A survey
of sequential pattern mining,” Data Sci. Pattern Recognit., vol. 1, no. 1, pp. 54–77,
2017.

13. http://www.philippe-fournier-viger.com/spmf/
14. https://competitions.codalab.org/competitions/11161
15. http://recsys.yoochoose.net/challenge.html
16. https://tianchi.aliyun.com/datalab/dataSet.html?dataId=649

	Mining Patterns With Durations from E-commerce Dataset

