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Purpose Epitomizing the advantages of ultra short echo time and no chemical shift displace-
ment error, high-resolution free induction decay magnetic resonance spectroscopic imaging (FID-
MRSI) sequences have proven to be highly effective in providing unbiased characterizations of
metabolite distributions. However, its merits are often overshadowed in high-resolution settings
by reduced signal-to-noise ratios resulting from the smaller voxel volumes procured by extensive
phase encoding and the related acquisition times.

Methods To address these limitations, we here propose an acquisition and reconstruction
scheme that offers both implicit dataset denoising and acquisition acceleration. Specifically, a slice
selective high-resolution FID-MRSI sequence was implemented. Spectroscopic datasets were pro-
cessed to remove fat contamination, and then reconstructed using a total generalized variation
(TGV) regularized low-rank model. We further measured reconstruction performance for random
undersampled data to assess feasibility of a compressed-sensing SENSE acceleration scheme. Per-
formance of the lipid suppression was assessed using an ad hoc phantom, while that of the low-rank
TGV reconstruction model was benchmarked using simulated MRSI data. To assess real-world per-
formance, 2D FID-MRSI acquisitions of the brain in healthy volunteers were reconstructed using
the proposed framework.

Results Results from the phantom and simulated data demonstrate that skull lipid contam-
ination is effectively removed and that data reconstruction quality is improved with the low-rank
TGV model. Also, we demonstrated that the presented acquisition and reconstruction methods are
compatible with a compressed-sensing SENSE acceleration scheme.

Conclusion An original reconstruction pipeline for 2D 1H-FID-MRSI datasets was presented
that places high-resolution metabolite mapping on 3T MR scanners within clinically feasible limits.

I. INTRODUCTION

Proton magnetic resonance spectroscopic imaging 1H-
MRSI is an advanced MR technique capable of measur-
ing spectral content corresponding to distinct metabo-
lites [1]. Through spectral dataset encoded in space with
phase encoding in 2 or 3 dimensions, the technique pro-
vides rich information over the composition of the tis-
sue under observation and their metabolite distribution.
However, traditional acquisition and reconstruction tech-
niques have typically been circumscribed by the limited
available signal resulting from low metabolite concentra-
tions, ultimately culminating in lengthy acquisition dura-
tions and severely constrained image resolutions. As an
added consequence, the signal content associated with
the resulting coarse voxels often reflects contributions
from several tissue types, thereby limiting accurate quan-
tification. The ability to increase image resolution with-
out adversely affecting the signal quality would therefore
represent a significant step forward.

Recent1H-FID-MRSI sequences has proven to be
particularly effective for measuring high-resolution 2D
metabolic distributions across the whole brain at ultra-
high field [2–6]. Combining the advantages of ultra short
echo time, i.e. preserving the signal of strongly J-coupled
metabolites, and the absence of chemical shift displace-
ment errors, the technique provides an unbiased charac-

terization of the metabolite distribution. Moreover, the
simple sequence design permits to reduce considerably
the acquisition time by decreasing repetition time while
using optimal Ernst’s flip angle. This novel approach in
metabolic imaging enables previously unachievable spa-
tial resolutions, revealing metabolic differences between
brain tissues [7, 8] at ultra-high field. However,at field
strengths typically utilized in clinical settings (3T), high-
resolution metabolic imaging suffers from weak signal-
to-noise ratios (SNR) due to the small voxel volume
(∼ 0.1ml), leading to noisy metabolite distribution im-
ages. Nevertheless, reconstruction methods based on
low-rank assumptions are able to efficiently denoise MRSI
dataset using partial separability [9, 10]. Also, in com-
bination with accelerated acquisitions schemes, methods
exploiting the spatio-temporal correlations permit recon-
struction of high-resolution metabolite images [11–13] in
addition to nuisance signal removal [14, 15] and fast phos-
phorus MRSI acquisition [16]. These approaches effi-
ciently denoise MRSI dataset while preserving metabo-
lite distribution features [17]. The aim of the research
presented in this study is to explore possibilities of high-
resolution MRSI accelerated with a compressed-sensing
SENSE scheme while combining and adapting existing
methods for acquisition, lipid suppression and recon-
struction. To this end, a 1H-FID-MRSI acquisition
scheme [2] was combined with the lipid suppression by
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orthogonality method [18] and low-rank total general-
ized variation (TGV) reconstruction [19, 20]. The re-
construction of accelerated parallel MRSI was designed
building on previous framework established by Kasten et
al.[19]. This model has been extended to include sepa-
rately signal from each coil element with corresponding
sensitivity profile and to perform reconstruction on un-
dersampled k-space data. We first demonstrate effective
lipid suppression on an in-house fat phantom using an
optimized with the optimized metabolite -lipid orthogo-
nality method. Performance of the low-rank TGV model
is then assessed using simulated data from an analytical
phantom. Metabolite distributions of healthy volunteers
resulting from the whole reconstruction pipeline are then
presented. In addition, SENSE acceleration along with
variable density random undersampling of the k-space -
deemed compressed-sensing SENSE (CS-SENSE) [21, 22]
was performed a posteriori prior to reconstruction, and
its effect on the reconstructed metabolite distributions
was analyzed using both simulated datasets and those
from healthy volunteers.

II. THEORY

A. Experimental framework

Considering MRSI data measured by phased array
coils, MRSI signal measured by coil element c =
1, . . . , N c at time t and at Fourier-space coordinate k
can be expressed as

sc(k, t) =

∫
Ω⊂R3

ρ(r, t)Cc(r)e−2πit∆B0(r)e−2πik·rdr , (1)

with ρ(r, t) the local transverse magnetization, Cc(r) the
coil sensitivity profile and ∆B0(r) the B0 magnetic field
inhomogeneity profile, Ω being the object spatial sup-
port. k = γ

2π

∫ τ
0

G(t)dt is the Fourier-space (k-space) co-
ordinate determined via application of a magnetic field
gradient G(t) during time τ [23]. The aim of the MRSI
data reconstruction is to retrieve ρ(r, t) from sc(k, t)
knowing Cc(r) and ∆B0(r). Practically, the observed
MR signal is sampled on a discrete spatio-temporal grid.
The acquired k-space values are then represented as a
set of vectors ki with i = 1, . . . , Nk and the acquired
time samples as tj = ( j−1

SR ), j = 1, . . . , T with SR the
sampling rate in the chemical shift domain (defined in
section III A). Cc(r), ∆B0(r) and the solution ρ(r, t)
are also evaluated at discrete spatial coordinates rl with
l = 1, . . . , Nr, the latter utilizing the same temporal grid
tj .For 2D MRSI, slice selective excitation restricts the
spatial acquisition and reconstruction domain to a two-
dimensional subspace so long as sufficiently thin slices are
achieved to justifiably discount partial voluming effects.
K-space values are generally acquired on a Cartesian grid
with ∆k = (1/FOVx, 1/FOVy) with FOVx,y the size of
the field of view along the x and y axes, respectively.
The k-space grid is filled to different extends following

specific patterns as described further (section III B). 2D
spatial coordinates of the reconstructed dataset, rl, cover
a full rectangular Cartesian grid within the selected slice
with ∆r = (FOVx/Nx, FOVy/Ny) with Nx,y the spatial
resolution along x or y axis. In contrast to [19], spatial
resolution in this work was set to the Nyquist limit with-
out superresolution reconstruction. The fully discretized
(1) then reads

sc,i,j =

Nr∑
l=1

Fi,lCc,lBl,jρl,j + εc,i,j , (2)

with Bl,j = e−2πitj∆B0l and Fi,l = e−2πiki·rl and εc,i,j ad-
ditive measurement noise assumed to be Gaussian. For
sake of brevity, (2) can be expressed in a vector and op-
erator form as

s = FCBρ+ ε , (3)

with B, applying frequency shift due to B0 inhomogene-
ity, C, applying spatial coil sensitivity profiles and F , the
Fourier transform operator.

B. Lipid suppression using orthogonality

Bilgic et al. previously demonstrated effective removal
of contaminating lipid signals by exploiting metabolite-
lipid spectral orthogonality [18, 24, 25]. As an illus-
tration, let us define two complex time series fMj , fLj
(j = 1, . . . , T ) that contain signal from brain metabolites
and skull lipids, respectively. The spectral orthogonality
property reads

Nt∑
j=1

fMj fLj = 0 , (4)

where the over-line is the complex-conjugate. This
property was verified experimentally in vivo [25].
MR time series acquired with T time samples (e.g.
(sc,i,1, sc,i,2, . . . , sc,i,T ) in (2) for any coil c and ki) are
elements of the complex vector space CT . Let SM and
SL be two orthogonal subspaces of CT that respectively
contain metabolite and lipid MR times series. We the de-
fine the lipid subspace projection P such that Pf ∈ SL
with f a general spectrum combining lipid and metabolite
signals: f = αfM + βfL, fM ∈ SM , fL ∈ SL, α, β ∈ C.
Because lipid and metabolite time series are orthogonal
(following (4)), we have PfM = 0 and the metabolite
time series can be retrieved from f by

(1−P) · f = αfM , (5)

1 being the identity operator. Let us consider now
a spatio-temporal MRSI dataset contaminated by skull
lipids and acquired in vivo as defined in (2). The signal
originating from each coil element is distinct by a phase
offset and a specific spatial sensitivity profile, intimat-
ing that lipid suppression should be performed on each
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coil element individually. With sc ∈ CNk×T the MRSI
dataset measured by coil element c, lipid-free MRSI data
sLipFree
c are then retrieved by(

1− P̃c
)

sc = sLipFree
c , (6)

with P̃c = 1CNk ⊗ Pc, the broadcasted projection onto

CNk ⊗ SL with ⊗ the tensor product. The overall sen-
sitivity and specificity of the method ultimately hinges
upon a precise determination of Pc to avoid inefficient
lipid suppression or unwanted removal of metabolite sig-
nal. One such Pc can be constructed from MRSI data
located at the skull using the singular value decomposi-
tion (SVD):

ρc′,l,j =

Nk∑
i=1

Fi,lsc′,i,j ,

VΣUH = {ρc′,l,j |c′ = c , rl ∈ ΩSkull} ,

P ci,j =

KL∑
n=1

Vi,nV
∗
n,j , i, j = 1 . . . T , (7)

with ΩSkull ⊂ R2 the skull lipids spatial support and
H the Hermitian conjugate. Σ, V and U are the sin-
gular values, the left and the right-singular vectors re-
spectively. Pc is a T -by-T matrix defined by the linear
combination of the first KL right-singular vectors of V
that form an orthogonal basis for the approximated lipid
subspace. The rank KL is determined by the brain-skull
lipid energy balance as follows. The remaining lipid en-
ergy density after lipid suppression over spatial support Ω

is EΩ = 1
VΩ

∑
rl∈Ω

∑3ppm

ωm=0ppm
|ρ̃LipFree
c,l,m |2 with ρ̃LipFree

c,l,m =∑Nk

i=1(Fi,l)
∗∑T

j=1 e−2πitjωmsLipFree
c,i,j , the spatial and tem-

poral Fourier transform of the lipid-free MRSI dataset
(6) with ωm = SR(m/T − 1/2) (m = 1 . . . , T ), the dis-
crete frequency values. The lipid suppression is consid-
ered sufficient if the remaining lipid energy density in the
skull is equivalent to that in brain regions in the result-
ing MRSI datasets. This condition translates to finding

the minimum KL such that
EΩSkull

EΩBrain
≤ 1 with ΩBrain the

spatial support of the brain tissues . In practice, the
lipid suppression is repeated while incrementing KL un-

til
EΩSkull

EΩBrain
≤ 1. The use of this criterion enables adap-

tive lipid suppression for each coil element. This metric
is based on the notion that brain metabolites are con-
taminated by skull lipids because of the discrepancies
in signal intensity. If the lipid signal at the skull was
reduced to a level equivalent to that of the metabolite

signal (i.e.
EΩSkull

EΩBrain
≤ 1), lipid contamination through

the point-spread-function in brain tissues would become
negligible.

The method presented here is based on the reg-
ularization model proposed by Bilgic et al. [18, 25]
but necessitates less computation time. Indeed, the
`2-regularization requires the computation of a ma-
trix inverse with O((T )

3
) computational complexity,

while the SVD-based method presented above requires
O(KL(T )

2
). Furthermore, in the adaptive iterative pro-

cess of lipid suppression presented above, SVD and V are
computed once per coil element. The computation time
is significantly reduced in comparison with an adaptive
iterations approach using Bilgic’s method where varying
the regularization parameter would entail a full matrix
inversion at each iteration.

The lipid suppression in eq. (6) is performed in ac-
quired ki and therefore is still valid when MRSI dataset
are undersampled in k-space (as described below in sec-
tion III B). For the computation of Pc, the discrete
Fourier transform in (7) is performed only on the ac-
quired ki what is equivalent to fill un-acquired k-space
points with zeros. Because the k-space undersampling
is random (see Fig.1), this zero-filling creates incoherent
spatial interference [26]similar to an increase of the noise.
A consequence of this random aliasing is that voxels lo-
cated at the skull contain the lipid signal plus aliased
noise or metabolite signals originating from other part of
the field of view. However, thanks to the much higher
signal intensity of lipids relative to noise and metabolite
signal, voxels in ΩSkull contain sufficient lipid spectral
quality for an accurate determination of Pc.

C. Low-Rank TGV Reconstruction

The full MRSI dataset contains highly correlated mea-
surements and is often assumed to be partially separable
with a limited number of components K [9, 15, 19, 27].
This low-rank approximation for the reconstructed MRSI
data ρ reads (following notation in (2))

ρl,j =

K∑
n=1

Ul,nVn,j ,

or ρ = UV ,

where U ∈ CN
r×K ,V ∈ CK×T . (8)

This space-time decomposition leads to factorization of
the MRSI dataset into a finite set of characteristic time
series V that are spatially distributed over the measured
volume according to U. Because the MRSI dataset is
assumed to contain a finite number of distinct metabo-
lite resonance frequencies that are independent of spatial
location, the low-rank approximation is a suitable ap-
proximation. Moreover, noise contained in the dataset
follows a random distribution in time and space and,
therefore, cannot be represented by few characteristic
spectra with specific spatial distribution. Accordingly,
fitting of a low-rank model results in efficient denoising
of MRSI datasets [9]. In addition to noise filtering effect,
the separation of the MRSI dataset into spatial and tem-
poral components (8) allows to apply specific constrains
such as total generalized variation (TGV) [28, 29]. TGV
regularization on spatial metabolite components permits
effective denoising in space while preserving edges and
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avoiding stair-casing artifacts present in traditional first-
order total variation schemes. The low-rank approxima-
tion and TGV regularization are applied through a re-
construction model proposed in [19] , which has been
extended here to account for the sensitivity profiles. U
and V are determined by the minimization problem:

arg min
U,V
‖s−FCB{UV}‖22 + λ

K∑
n=1

TGV2{Un} ,

where TGV2{Un} =

arg min
A
‖∇Un −A‖1 +

1

4
‖E(A)‖1 , (9)

with ∇ and E being first and second order derivative
operators (more details given in [28]) and A ∈ CNr×2

an auxiliary vector field. Since the TGV penalty en-
forces the spatial components to be sparse in finite ab-
solute differences and because the coil sensitivity infor-
mation is included, the model allows for CS-SENSE ac-
celeration [21, 22, 26, 30] if k-space is sparsely and ran-
domly sampled. As the temporal signal is always fully
sampled and effectively denoised by the low-rank con-
straint, no further regularization was performed on V .
Also the absence of additional constraint on time com-
ponents permit to preserve original temporal character-
istics. The reconstruction described by the optimization
problem in (9) was carried out following procedure de-
scribed fully in [19]. In short, to solve the low-rank TGV
optimization problem, a primal-dual method is used for
convergence of the spatial components in combination
with projected gradient descent for the temporal com-
ponents. Unfortunately, the full procedure for jointly
estimating the spatial and spectral components is typi-
cally non-convex and can be time-consuming. To cope
with these limitations, the initial estimates, V0 and U0,
were determined through a singular value decomposition
of the adjoint solution, which is presumed to lie close
to the true inverse in the solution space. An SVD is
then performed on the adjoint solution to compute ini-
tial conditions (FCB)Hs = U0VH

0 where U0 includes
the left-singular vectors multiplied by the singular value
matrix.

III. METHODS

A. Sequence

A slice selective high-resolution 1H-FID-MRSI [2, 3, 6–
8] including a prior WET [31] water suppression (Fig. 1)
was implemented on a 3T Prisma fit MRI scanner
(Siemens, Erlangen, Germany) using a receiver head coil
with Nc = 64 elements. The duration of phase-encoding
and refocusing gradients were shortened to achieve an
echo time (TE) of 1.1 ms. The FID signal was acquired
with T = 1024 points at a 4 kHz sampling rate fol-
lowed by spoiler gradients with a repetition time (TR) of

Excitation

50%

33%

25%

100%

W
E
T

FID(a) (b)

TE 1.1 ms

TR 370 ms

FIG. 1: (a) Diagram of the FID-MRSI sequence with radio-
frequency signal (RF ) and gradients intensities along z,y and
x directions (Gz,Gy,Gx). (b) Illustration of the elliptical k-
space sampling corresponding to acceleration factor 1, 2, 3, 4.

370 ms. Assuming that the maximum T1 value among
metabolite is 1400 ms [32], the Ernst angle for the excita-
tion pulse was computed to be 40 degrees. A smaller flip
angle permits larger excitation pulse bandwidths while
keeping within system voltage limits. A slice selective ex-
citation pulse of 0.9 ms duration and 9.5 kHz bandwidth
was optimized with a Shinnar-LeRoux algorithm [33]. To
determine the coil sensitivity profiles, two successive fast
reference water acquisitions with head coil and body coil
were added to the protocol. For this purpose, the same
FID-MRSI sequence and encoding scheme was used but
without WET and with a TR of 31 ms, 48 FID sample
points and a 5 degree flip angle.

B. A Posteriori k-space Undersampling
Acceleration

Acquisition time can be significantly reduced by CS-
SENSE acceleration. For the 2D-MRSI acquisition
scheme described above, acceleration is achieved through
random k-space undersampling in both phase encoding
directions [26]. The acceleration factor (AF) is then the
inverse of the k-space filling. Here, an CS-SENSE ac-
celeration was simulated a posteriori via variable den-
sity random removal of data points in k-space. Non-
uniform undersampling schemes have been shown to per-
form better than uniform patterns because low spatial
frequencies carry most of the signal energy [22, 26]. In
practice, acquired k-space values ki were removed ran-
domly from s in (2) until reaching the desired AF with
i = 1, . . . , Nk/AF (after re-indexing). The random un-
dersampling was constrained to result in a 1/|k| density
distribution but with a fully-sampled center for |k| ≤
1
8 max(|k|) = 8

220mm−1 for a 220 mm square Field-of-
View and 64×64 matrix size (Fig. 1). To meet real accel-
eration conditions, the random undersampling was per-
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formed on raw data prior to the data processing pipeline
(incl. water suppression, lipid suppression and recon-
struction). Lipid suppression (6) and the reconstruction
model (9) remained the same but with a reduced size for

s ∈ CNc×Nk

AF ×T and with a Fourier encoding operator

F =
∑Nk/AF
i=1 Fi,l.

C. MRSI Data Processing and Reconstruction

MRSI data acquired with full or undersampled k-space
patterns were processed with the same pipeline described
above and illustrated in the visual summary shown in
Supporting Information Fig.1. First, residual water in
MRSI data s was removed for each coil element and
k-space position separately using Hankel singular value
decomposition (HSVD) method [34]. Then, sc the sig-
nal of each coil element was decontaminated from skull
lipids using metabolite-lipid orthogonality (6). To deter-
mine the necessary ΩSkull for the computation of Pc, a
mask was created by manual delineation of skull tissues
on anatomical images (3D MPRAGE sequence). Coil
sensitivity profiles were computed using data from the
two fast water signal acquisitions. Because the signal
measured by the body coil is presumed to be spatially
homogeneous, the ratio of head coil element signal over
body coil signal provided sensitivity profiles needed for
the operator C. Operator B was estimated using the mul-
tiple signal classification algorithm (MUSIC) [35] on the
combined water signal from all the head coil elements.
The spatio-temporal magnetization, ρ, was then recon-
structed from lipid-free MRSI data sLipFree

c with the low-
rank TGV model (9) using aforementioned operators C
and B. ρ become the input for the quantification step
described below.

D. LCModel Quantification

The MRSI dataset s(r, t) resulting from the reconstruc-
tion (Eq. 8) is eventually quantified using LCModel [36]
to estimate metabolite distributions. As a reference ba-
sis for LCModel, metabolite spectra were simulated with
the GAMMA package [37], at 3 T and with an acquisi-
tion delay corresponding to the aforementioned employed
acquisition scheme. Due to the rather low SNR in each
voxel, only high signal metabolites were included in the
spectrum basis: N-acetylaspartate, N-acetyl aspartylglu-
tamate, creatine, phosphocreatine, phosphorylcholine,
glycerophosphorylcholine, myo-inositol, scyllo-inositol,
glutamate, glutamine, lactate, beta-glucose and alanine.
As an output, we obtain the spatial distributions DM

of metabolite M being: tNAA (N-acetylaspartate and
N-acetyl aspartylglutamate), tCr (Total creatine), Cho
(Choline containing compounds),Ins (Myo-inositol),Glx
(Glutamate and Glutamine). LCModel quantification es-
timates the Cramer-Rao Lower bound (CRLB) and SNR

4 23 1
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After Lipid Supp.
Original

FIG. 2: Fat Phantom FID-MRSI content before (a) and after
(b) lipid suppression by orthogonality. The 64 spectra origi-
nate from line of red voxels in the anatomical image (c). The
contamination of the metabolite spectra inside the phantom
is clearly visible in the original data (blue line) over the whole
diagonal. The spectra after lipid suppression (green line) are
magnified 3 times for ease of reading. Detailed spectra are
shown on same scale in insets (d) and (e). They correspond
to locations near the lipid layers shown by the red arrows.
Contaminating lipid peaks are removed from the spectra over
the whole phantom without affecting metabolite signal.

for each voxel [38] as spectral quality metrics. These out-
puts were then used to create CRLB and SNR maps for
each measurement.

E. Fat Phantom Experiment

To assess lipid suppression performance, an in-house
phantom was assembled to mimic a human head. To this
end, MRS Braino phantom (GE Medical Systems, Mil-
waukee, WI, USA) containing an homogeneous metabo-
lite solution (12.5 mM of N-acetyl-L-aspartic acid, 10 mM
of creatine hydrate, 3 mM of choline chloride, 7.5 mM of
myo-inositol, 12.5 mM of L-glutamic acid, 5 mM of DL-
lactic acid, sodium azide (0.1%), 50 mM of potassium
phosphate monobasic, 56 mM of sodium hydroxide and
1 mL/L of Gd-DPTA) was wrapped in a layer of hy-
podermic swine fat (Fig. 2). Prior to experimentation,
the fresh fat layer (< 24 h) was kept at 4◦C to avoid
lipid structure degradation. The phantom fat layer was
wrapped as tight as possible to prevent air presence at
the interface with Braino. MRSI data were acquired on a
10 mm slice with a 220×220 mm Field-of-View (FoV) and
64×64 elliptical in-plane encoding. A structural volume
for the delineation of the lipid layer was acquired with
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FIG. 3: The 10 compartments of the simulated MRSI analyti-
cal phantom are displayed next to their contained spectra. On
each diagram is shown the real part of the spectrum that is a
mix of N-acetylaspartate, creatine, glycerophosphorylcholine,
myo-inositol, glutamate, glutamine and lactate. All 10 spatio-
spectral components are overlayed in the resulting dataset.
The 4 top compartments are representative of a white mat-
ter, gray matter, mixed gray matter-cerebrospinal fluid (CSF)
and CSF. The 6 lower elliptic compartments mimic small local
modifications in metabolite concentrations.

a 3D T1-weighted MPRAGE sequence. After residual
water removal, lipid contamination was removed using
the method described above. Resulting lipid-free data
from all coil elements were recombined using Roemer’s
weights [39] and quantified using LCModel to estimate
concentration distributions DM following the aforemen-
tioned notations (see No Model Pipeline in Supporting
Information Figure 1). For comparison, the same pro-
cessing pipeline was applied but without lipid suppres-
sion. The No Model Pipeline was chosen to highlight the
efficacy of the lipid suppression in its own right, indepen-
dent of the reconstruction.

F. Simulated Data Experiment

To benchmark the reconstruction using the low-rank
TGV model, simulated MRSI dataset were produced
with an analytical phantom [40] containing 10 compart-
ments (8). The phantom represents an ideal and unbi-
ased framework for assessing reconstruction performance,
as it can be expressed in an analytical form in both
image space and k-space. To approximate realistic ex-
perimental conditions, a B0-induced frequency shift was

added to the simulated data. This shift was added as
a final step, as the introduction of a space dependent
frequency shift precludes analytical solutions to the for-
ward imaging equation. The 10 compartments compris-
ing the phantom were created out of ellipses and Bézier
curves (Fig. 4). Each compartment was associated with
a time series containing simulated resonances (1024 pt
at 4 kHz with GAMMA package [37]) corresponding
to N-acetylaspartate, creatine, glycerophosphorylcholine,
myo-inositol, glutamate, glutamine and lactate (Fig. 3).
The k-space MRSI data from 16 coils (positioned in a cir-
cular fashion around the analytical phantom with Biot-
Savart sensitivity profiles) was calculated for a 64×64 el-
liptical encoding matrix. MRSI data were then frequency
shifted in accordance with a random B0 field map con-
structed by filling a 8×8 with random frequencies taken
from a Gaussian distribution N (µ = 0 Hz, σ = 10 Hz)
and then spline interpolating up to the full 64×64 spatial
grid. The resulting B0 field map (Fig. 4) exemplifies the
spatial smoothness and frequency range typically found
in vivo. Eventually, random Gaussian noise was added to
the simulated MRSI dataset with varying amplitude to
obtain a desired SNR (defined by the ratio of the signal
and noise standard deviations). The Matlab (The Math-
Works, Inc., Natick, Massachusetts, US) scripts gener-
ating simulated MRSI dataset are available online [41]
A spatio-temporal magnetization dataset ρrecon was re-
constructed with the low-rank TGV model (9) and was
compared with the analytical phantom solution in image
space ρexact. The performance of the reconstruction was
assessed by a normalized root mean square error

NRMSE =

√∑
l,j |ρexact

l,j − ρrecon
l,j |2∑

l,j |ρexact
l,j |2

(10)

where l, j span the spatial and temporal dimension (no-
tation in section II A). Three batches of tests were per-
formed on the model: 1) varying the regularization pa-
rameter λ in (9) for SNR values = 1, 2, 4 for K = 20
components (8). 2) varying the number of component K
from 2 to 128 with optimal λ and SNR = 2. 3) varying λ
for AF = 2, 3, 4, 6 with SNR = 2 and K = 20 model com-
ponents. The results of the tests were assessed with the
NRMSE. To contextualize reconstruction accuracy, the
performance of the low-rank TGV model was contrasted
with that of other models proposed in the literature. As
the first alternative model, Wu et al. proposed the same
model but with fully static temporal components V [20].
In this case V is computed during reconstruction initial-
ization by SVD of the Casorati matrix representing the
B0 corrected MRSI dataset[11]. V is then kept constant
during the reconstruction procedure, in contrast with the
scheme presented here (9) where V and U converge si-
multaneously. As the second alternative model, TGV
was replaced by first-order total variation (TV) regular-
ization in (9) with TV{Uc} = ‖∇Uc‖1. As the third
and last alternative model, the low-rank approximation
was removed from the reconstruction. (9) then becomes
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FIG. 4: Top, B0 field inhomogeneity map and energy image
of the analytical phantom in real space. The phantom is the
combination of 10 overlay spectral compartments (Fig. 3).
Bottom, spectrum real parts at 3 locations spotted by the
arrows are shown with identical scale. the 3 colors correspond
to 3 levels of noise added to the simulated dataset before the
low-rank TGV model reconstruction.

arg minρ ‖s−FCB{ρ}‖22 + λ
∑T
j=1 TGV2{ρj} (with no-

tations from (2)). Reconstructions performed using each
model were assessed with NRMSE in (10) with varying
λ. Results were compared without acceleration or with
AF = 2 and AF = 4.

G. Healthy Brains Experiment

MRSI Data from healthy volunteers were acquired with
a protocol approved by the institutional ethics committee
and written informed consent was given by all subjects
before participation. Structural volume for positioning,
was first acquired with a 3D T1-weighted MPRAGE se-
quence. Two FID-MRSI 10 mm-thick slices were posi-
tioned axially at different locations. Elliptical 64×64 en-
coding over a FoV of 220×220 mm resulted in a nominal
voxel size of 3.4×3.4×10 mm. A pair of fast water se-
quences were acquired (see III A) to create a reference
signal for each slice. The total FID-MRSI data acquisi-
tion time was 21 min per slice (including water reference
acquisitions). The resulting metabolite distributionsDM

and spectral quality metric maps (CRLB and SNR) were
computed for each subject acquisition. Results were com-
pared to metabolite distributions reconstructed without
the low-rank TGV modeling step. This no model pipeline
consisted of HSVD water suppression, lipid suppression
by orthogonality, coil signal combination using Roemer’s
method [39], inverse spatial Fourier transform and quan-
tification with LCModel (sketch shown in Supporting In-

formation Fig.1). A CS-SENSE acceleration was simu-
lated a posteriori with AF = 2, 3, 4, and resulting accel-
erated DM were compared to their fully-sampled coun-
terparts.

IV. RESULTS

A. Fat Phantom Experiment

Results of the lipid suppression method on the fat
phantom are shown in Fig. 2 and Fig. 5. Spectra with-
out lipid suppression displayed in Fig. 2.(a) show that
the lipid signal originating from the fat layer contami-
nates the entire metabolite volume. Spectra from two
voxels located at the fat layer are shown in Fig. 2.(c)
and (d). After lipid suppression by orthogonality, results
from the same voxels are displayed in Fig. 2.(e) and no
noticeable lipid signal remains. The effect of the lipid
suppression on metabolite distribution maps quantified
by LCModel are displayed in Fig. 5. The presence of lipid
contamination in the MRSI dataset strongly alters the
quantification of all metabolite concentrations and their
ratios. When lipid suppression is applied beforehand,
the quantification results reveal the actual homogeneous
metabolite distributions. Metabolite distributions on the
side of the phantom appear more intense due to the fact
that coil element signals were combined with Roemer’s
method [39] without correction for their sensitivity pro-
files. The two metabolite ratios exhibit constant values
inside the phantom when lipid suppression is applied.

B. Simulated Data Experiment

Results on the analytical phantom with different noise
levels are presented in Fig. 6 top. In the low regulariza-
tion regime (λ ≤ 10−4), the error in the reconstructed
dataset is influenced by the noise level present in the
original dataset and decreases for greater λ. The min-
imal error is achieved within the optimal regularization
parameter range (5·10−4 ≤ λ ≤ 10−3) and NRMSE mini-
mum values are nearly the same for the 3 SNR levels. For
λ ≥ 10−2, the reconstruction produces over-regularized
solutions that are nearly independent of λ. The recon-
structed solution is not affected markedly by the number
of components K for K ≥ 8 (Fig. 6 inset). When K < 6,
the model lacks the number of components to fit the data.
However, for K > 32 the model absorbs measurement
noise into superfluous components, increasing NMRSE
accordingly. Qualitative observation of spectral and spa-
tial components, Vn, Un, with n > 20 reveals mainly noise
(not shown here). For comparison, NRMSE values of the
analytical phantom data reconstructed using a simple in-
verse Fourier transform are 0.378, 0.27, 0.216 for SNRs of
1, 2 and 4 respectively. Simulated data reconstruction us-
ing the TGV low-rank model allowed therefore to reduce
the error roughly tenfold using the optimal regularization
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FIG. 5: Results of the fat phantom experiment. On top,
the concentration distributions estimated by LCModel with
or without the preceding lipid suppression step. The scale
of each metabolite image with lipid suppression ranges from
0 to the 99th data percentile. The identical scale was then
applied to the same metabolite image without lipid suppres-
sion. Bottom right, metabolite ratio with or without lipid
suppression are displayed with scale from 0 to 1. Bottom
left, the MPRAGE image of the fat phantom with the MRSI
FoV (yellow square) are shown.

parameter, and fivefold in the under-regularized regime
compared to inverse Fourier transform. Sample spectra
reconstructed with the low-rank TGV model compared
to the exact solution are presented in Supporting Infor-
mation Fig.6.

Results from simulated data with acceleration are pre-
sented in Fig. 6, bottom. The minimum NRMSE is
achieved around λ = 5 · 10−4. In this optimal regulariza-
tion region, the NRMSE increases with AF as expected.
Energy maps (Fig. 6, right) exhibit the same trend with
results converging closer to the analytical solution when
the acceleration factor decreases. When λ > 5 · 10−3,
the model converges to over-regularized solutions as il-
lustrated by the corresponding energy maps. For small
regularization values (λ ≤ 10−5), spatial regularization
almost vanishes from the model reconstruction, yet ran-
dom aliasing resulting from the k-space undersampling
is still minimized by coil sensitivity profiles included in
the reconstruction model (9). This regime corresponds
to a SENSE-like acceleration with NRMSE minimized
for AF = 2. This particular result is also illustrated by
the energy maps that better coincide with the analytical
solution when AF = 2. An explanation can be found
by observing the presence of Gibbs ringing artifacts in
the fully sampled results. When k-space is undersampled
(AF > 1), the spatial distribution is smoothed, thereby
reducing the artifacts and hence the NRMSE. Gibbs ring-

ing artifacts are successfully removed by the TGV reg-
ularization for λ ≥ 10−4. Reconstruction results from
different models are presented in Fig. 7. Without accel-
eration, Wu’s reconstruction with pre-determined V of-
fers the lowest error for all λ values. The low-rank TGV
reconstruction and the low-rank TV reconstruction pro-
duce similar results with slightly higher error than Wu’s
reconstruction. The model including TGV but not the
low-rank condition shows the largest error for all λ val-
ues. For AF = 2, the low-rank TGV reconstruction and
the low-rank TV reconstruction show the lowest NMRSE
followed by Wu’s and TGV no-low-rank reconstructions.
With AF = 4, results follow the same trend but with
larger NMRSE discrepancies methods. Overall, with or
without acceleration, all methods produce minimum er-
ror in the same range 10−4 ≤ λ ≤ 10−3. Processing time
was 40 min for Wu’s method, 80 min for low-rank TV,
120 min for low-rank TGV and 180 min for the TGV no-
low-rank method, independently of acceleration. Com-
putations were performed in Matlab (Matlab2017a, The
MathWorks, Inc., Natick, Massachusetts, US) on a work-
station equipped with an Intel(R) Xeon(R) E5-2620 v3,
2.40GHz cpu and 64 Gigabytes RAM memory.

C. Healthy Brains Experiment

Metabolite distributions measured in vivo and recon-
structed with the low-rank TGV model are presented
in Fig. 8. Each metabolite shows distinct concentration
patterns that are common to the two subjects (and sim-
ilar for the two additional subjects shown in Support-
ing Information Fig.2). The gray / white matter con-
trast is particularly evident in the tCr, tNAA and Glx
maps while Cho is present in high concentration through
the frontal and cingulate white matter regions and in
low concentration in the occipital lobe. The Ins distri-
bution exhibits constant concentration throughout the
whole brain. Metabolite datasets were quantified using
an arbitrary institutional units scale that is identical for
each metabolite (see LCModel documentation [38]). The
effect of the low-rank TGV reconstruction step on the fi-
nal metabolite distributions is shown in Fig. 9. A signifi-
cant noise reduction is visible in the results with the low-
rank TGV reconstruction, particularly in the maps of low
signal metabolite: Cho, Ins and Glx. The Cramer-Rao
Lower bound (CRLB) and SNR estimated by LCModel
distinctly reflect this improvement with systematic lower
CRLB and higher SNR in results from the model re-
construction. The distributions reconstructed without
model suffer also from poor signal homogeneity as par-
ticularly visible on tNAA and tCr maps where the signal
decreases with the distance to the coil elements. This
inhomogeneity is corrected in the low-rank TGV recon-
struction by the spatial coil sensitivity profiles C (9). Ef-
fect of the coil sensitivity correction in the model is also
particularly visible in Fig. 9 on Cho which is a metabolite
mainly present in white matter at the center of the brain.
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FIG. 6: Left, normalized root mean square error (NRMSE) of the reconstructed simulated MRSI data with respect to the
analytical solution as function of the regularization parameter λ (9). Top left, three datasets with different signal-to-noise
ratio (SNR) are shown. Minimum NRMSE do not depend on SNR and is located at the same λ values for all SNR. Top left
inset shows NRMSE of the simulated MRSI dataset with SNR= 2 when reconstructed with λ = 5 · 10−4 and different model
rank K (8). Bottom left, simulated data reconstruction with SNR= 2 as function of the regularization parameter λ (9) and
with different acceleration factors. Right, energy maps in real-space at targeted resolution of the exact analytical phantom
(center) and of the model reconstruction (right) at several λ values and acceleration factors.

In Fig. 10, the effect of CS-SENSE acceleration on the
metabolite distribution maps is displayed. The patterns
specific to each metabolite are preserved through the ac-
celeration up to AF= 4 but the fine details of the maps
are blurred.

To contrast performances for in vivo MRSI, recon-
structions with the aforementioned models (presented in
section III F) were performed on a healthy brain dataset.
Results without acceleration and with AF = 2, 4 are
presented in Supporting Information Fig.3 . Result-
ing metabolite distributions DM were compared qualita-
tively and show similar tendencies as the simulated data
experiments. Without acceleration Wu’s (static V), low-
rank TGV and low-rank TV reconstructions produce sim-
ilar metabolite distributions. TGV (no low-rank) recon-
struction exhibits noisier metabolite distributions. With
acceleration factor 2 and 4, greater differences between
the methods are visible in the metabolite distributions.
Low-rank TGV reconstruction seems to perform better
than low-rank TV and Wu’s reconstructions which show
slightly greater distortions.

V. DISCUSSION

In this study, an original processing pipeline for 2D
MR spectroscopic data acquired with a 1H-FID-MRSI

sequence is presented. The resulting reconstructed
metabolic distribution maps are devoid of skull lipid con-
tamination, and reveal increased spectral SNR and spa-
tial fidelity. The reconstruction model was proven to
be compatible CS-SENSE acceleration scheme. The ef-
fect of each pipeline step was analyzed and tested in-
dividually. The reconstruction method was compared
to other alternative approaches proposed in the litera-
ture. The FID-MRSI sequence was implemented with
a particular effort to reduce the echo-delay that causes
1st order phase distortion and T2∗ signal loss. To this
end, the refocusing gradient combined with the phase
encoding gradients following the slice selective excitation
pulse were made as short as possible within hardware
limits. The metabolite signal acquired with 1.1 ms TE
are highly quantitative without significant relaxation ef-
fects. The phase distortion present in the spectra was
taken into account in the LCModel reference basis that
was simulated with a FID sequence scheme and the uti-
lized experimental TE. The fat phantom experiment was
an attempt to reproduce the challenging measurement
conditions encountered in vivo when MRSI data are ac-
quired over a whole subject head including the skull
fat layer. Without lipid suppression, metabolite signal
from the brain would be thoroughly contaminated by
the skull lipid signal as illustrated in Fig. 5 top. As
mentioned by Bilgic et al. [25], the metabolite-lipid or-
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FIG. 7: Normalized root mean square error (NRMSE) of the
simulated MRSI dataset with SNR= 2 as function of the reg-
ularization parameter λ reconstructed with different models.
Bottom, center and top curves correspond to data with no ac-
celeration and acceleration factor (AF) 2 and 4 respectively.
low-rank TGV is the model used in this study (9), low-rank
TGV (static V) is the same model but with pre-determined
time components, low-rank TV is identical but with total
variation (TV) regularization and TGV (no low-rank) is a re-
construction model including only TGV regularization with-
out low-rank approximation.

thogonality approximation is not always valid. The pos-
itive results of the fat phantom experiment confirm nev-
ertheless that this approximation is still sound for data
acquired with ultra-short TE 1H-FID-MRSI sequence.
The lipid suppression method presented here is strongly
based upon the method of Bilgic et al. [18, 25] which has
been successfully utilized in a number of recent publi-
cations [7, 8]. In [18], lipid suppression is expressed as
an optimization problem that can be translated into the
formalism of (6) with (1− P c) = (1 + βLL∗)

−1
((12)

in [18]). The advantage of the SVD-base approach is
the reduced computational cost that allows for adjust-
ment of lipid suppression strength via rank KL for each
coil element in a reasonable computing time (approx. 10
minutes). The low-rank TGV regularized model used for
reconstruction was shown to be effective in several re-

gards. In the absence of acceleration, the model-based
approach improved reconstruction accuracy over inverse
Fourier as exhibited with the simulated data experiment
(Fig. 6). For λ = 10−6, the effect of spatial regular-
ization is effectively negligent, and the reconstruction
reduces to a low-rank approximation [9]. In this case,
NRMSE is reduced fourfold in comparison to spatial in-
verse Fourier transform for all SNR values on account
of the implicit denoising. Reintroducing spatial regular-
ization into the model with λ set to optimal value of
around 5 · 10−4 achieve a tenfold reduction in NRMSE
resulting in the lowest error when compared with ground
truth data. Accordingly, reconstruction of the fully sam-
pled in vivo MRSI dataset also results in improvements
of precision as reflected by the CRLB and SNR, partic-
ularly for low signal metabolites (Fig. 9). Our analysis
confirms previous reports (e.g.[19]) demonstrating that
the low-rank TGV model significantly improves recon-
struction accuracy over traditional inverse Fourier trans-
form. CS-SENSE results of simulated MRSI datasets
(Fig. 6) show that acquisition acceleration by random
k-space undersampling is possible without adversely af-
fecting metabolite distributions when reconstructed with
an optimal regularization parameter (10−4 ≤ λ ≤ 10−3)
and with AF≤ 4. Comparison between reconstruction
methods shows that, in absence of acceleration, Wu’s re-
construction performs slightly better than the low-rank
TGV reconstruction used in this study, as illustrated by
simulated data (Fig. 7). Reconstruction performance was
also slightly better when using first-order total varia-
tion regularization. This is not an unexpected result,
as the simulated phantom consists of exactly the type
of piecewise constant geometries promoted by first-order
total variation penalties. Under real-world experimental
conditions, metabolite distributions from the acquired in
vivo MRSI datasets exhibited similar quality between all
methods without acceleration (Supporting Information
Fig.3). However,when acceleration was used, superior
reconstruction quality was achieved with the low-rank
TGV-regularized method presented for both simulated
and healthy volunteer MRSI data.

Inhomogeneities in the radio-frequency transmit field
(B+

1 ) may be a non-negligible source of error in quanti-
tative MRI techniques due to the flip angle spatial in-
homogeneity. However, with steady state magnetization
following from the use of Ernst’s flip angle, the effect of
B+

1 deviation on the signal remains small. Indeed, letting
single slice B+

1 deviation to represent a maximum 20%
variation in the flip angle [42, 43], and with T1 metabolite
values ranging from 1000 to 1400 ms [32], steady state
magnetization would be expected to change by only 5%
at maximum ( see Supporting Information Fig.7). Low
flip angle excitation enable the use of high bandwidth
excitation pulse thereby minimizing chemical shift dis-
placement error in the slice direction. For example, slice
excitation of two chemical species separated by 500 Hz
are shifted by 0.5 mm.

As proof of concept, results on healthy volunteers il-
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FIG. 8: Metabolite distributions DM from two healthy volunteers reconstructed with the low-rank TGV model with optimal
regularization parameter (λ = 10−3) and rank K = 20 without acceleration (two extra healthy volunteer results are shown
in Supporting Information Fig.2). The maximum of the scale was set to the 95th percentile (PCT) of each metabolite image
separately.

lustrate demonstrable improvement in SNR and CRLB,
particularly for lower signal metabolites: Cho, Ins and
Glx (Fig. 9). The reconstructed metabolite maps of two
distinct volunteers as presented in Fig. 8 show the same
metabolic features as previously published data at 7T
and higher field [7, 8] affirming the in vivo reconstruc-
tion results. Consistency of the distribution across all
volunteers for each metabolite demonstrates qualitative
reproducibility of the methodology. Metabolite distribu-
tions are expressed in institutional units that are identi-
cal for each metabolite, thereby allowing comparison be-
tween cross-sectional or longitudinal subject data. Abso-
lute metabolite quantification should therefore be possi-
ble using the reference water measurement if appropriate
calibrations are done, and if the water signal is corrected
for relaxation effects. However, water referencing might
bias the estimated concentrations due to proton density
variations between gray and white matter.

Results of in vivo metabolite maps accelerated with k-
space undersampling (Fig. 10) in combination with the
simulated data results (Fig. 6) indicate that the MRSI
acquisition can be safely accelerated by CS-SENSE with
AF = 2 without introducing significant quantitative and
qualitative errors into the resulting metabolite distribu-
tions. This important license to clinicians to shorten the
acquisition time of the 2D-FID-MRSI to 11 min per slice,
and thereby bringing the technique in line with clinical
requirements. The results presented in this article rep-
resent a proof of concept for the low-rank TGV recon-
struction of 2D-FID-MRSI. We showed that the method-

ology is effective in generating high-resolution metabo-
lite distributions but further reproducibility tests should
be performed in order to measure precision and robust-
ness, and to assess results on slices positioned in different
brain regions. Indeed, like for most MRSI sequences, the
quality of a FID-MRSI dataset strongly depends upon
the local B0 homogeneity. Further investigation should
be done to determine measurement feasibility in regions
located near the temporal lobes or around hippocampi.
Whole brain spectroscopic imaging is a topic gathering
significant attention in the research community due to
the original nature of the produced metabolite images
and their possible applications in neurological and neu-
roscientific clinical research [44–46]. Numerous previ-
ous studies presented methodology based either on spe-
cific acquisition sequences [47, 48] and/or reconstruction
techniques [15, 17, 25, 27, 49]. Spatial-spectral encod-
ing and echo planar schemes have been shown to be fast
and efficient for acquiring whole brain MRSI data in 3D,
but at the cost of a lower SNR and longer TE [50–54].
Recent developments in FID-MRSI acquisitions at ul-
tra high fields combined with acceleration techniques are
particularly promising due to the high SNR and resolu-
tion of the resulting metabolite maps [2, 3, 6–8, 55–57].
The method presented in this article is an adaptation
of the FID-MRSI approach for lower field strength. Al-
though SNR is reduced by half compared to 7T, MRSI
acquisition at 3T benefits from improved B1 and B0 ho-
mogeneity, which may be particularly advantageous for
FID-MRSI measurements in brain regions with less ho-
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FIG. 9: Top, effect of the low-rank TGV reconstruction on the final metabolite distributions DM . For Low-Rank TGV Recon.,
distributions were reconstructed with the model and λ = 10−3,K = 20. The metabolite distributions reconstructed without
model (No Model Recon.) result from a pipeline including only lipid suppression and LCModel quantification. The scale ranges
from 0 to the 95th percentile (PCTL) of each concentration distribution separately. Bottom, Two real parts of spectrum
samples are shown with their respective locations. The red line belongs to the reconstruction without model and the blue
line corresponds to the low-rank TGV reconstruction (Extended figure with CRLB and SNR maps in Supporting Information
Fig.4).

mogeneous B0. Also, new B0-shimming methods with,
for instance, dynamic multi-coil schemes [58] would cer-
tainly improve result quality in these conditions. To
summarize, an original methodology for acquiring high-
resolution metabolite distributions was presented. The
technique developed on a 3T clinical MR system, requir-
ing just 11 min with AF=2 for acquisition of an entire
2D slice of the brain, should be of considerable interest
for clinical research and applications.
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[4] M. Považan, G. Hangel, B. Strasser, S. Gruber,
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L. Hingerl, R. Boubela, S. Gruber, S. Trattnig, and
W. Bogner, NeuroImage 168, 199 (2018), ISSN 1053-
8119.



13

tNAA tCr Cho Ins Glx

0

Acc. 

Fact.:

2

3

1

95th

PCTL

FIG. 10: Effect of k-space undersampling acceleration on metabolite distribution maps for an in vivo dataset. Reconstruction
was performed with rank K = 20, optimal regularization parameter (λ = 10−3) and with acceleration factors = 1, 2, 3. The scale
ranges from 0 to the 95th percentile (PCTL) of each concentration distribution and acceleration factor separately (additional
in vivo dataset and AF=4 shown in Supporting Information Fig.5).

[8] S. Nassirpour, P. Chang, and A. Henning, NeuroImage
168, 211 (2018), ISSN 1053-8119.

[9] H. M. Nguyen, X. Peng, M. N. Do, and Z.-P. Liang, IEEE
Trans Biomed Eng 60, 78 (2013).

[10] Y. Liu, C. Ma, B. Clifford, F. Lam, C. Johnson, and Z.-
P. Liang, IEEE transactions on bio-medical engineering
(2015), ISSN 1558-2531.

[11] F. Lam and Z. P. Liang, Magnetic Resonance in Medicine
71, 1349 (2014), ISSN 15222594, NIHMS150003.

[12] C. Ma, F. Lam, Q. Ning, C. L. Johnson, and Z.-P. Liang,
Magnetic Resonance in Medicine 77, 467 (2017), ISSN
07403194.

[13] F. Lam, Y. Li, B. Clifford, and Z.-P. Liang, Magnetic
Resonance in Medicine 79, 2460 (2018), ISSN 07403194.

[14] C. Ma, F. Lam, C. L. Johnson, and Z.-P. Liang, Magnetic
Resonance in Medicine 75, 488 (2016), ISSN 07403194.

[15] I. Bhattacharya and M. Jacob, Magnetic Resonance in
Medicine 78, 1267 (2016).

[16] C. Ma, B. Clifford, Y. Liu, Y. Gu, F. Lam, X. Yu, and
Z.-P. Liang, Magnetic Resonance in Medicine 78, 419
(2017), ISSN 07403194.

[17] J. Kasten, A. Klauser, F. Lazeyras, and D. Van De Ville,
J Magn Reson 263, 193 (2016).

[18] B. Bilgic, I. Chatnuntawech, A. P. Fan, K. Setsom-
pop, S. F. Cauley, L. L. Wald, and E. Adalsteinsson,
J Magn Reson Imaging 40, 181 (2014), ISSN 15222586,
NIHMS150003.

[19] J. Kasten, F. Lazeyras, and D. Van De Ville, Medical
Imaging, IEEE Transactions on 32, 1853 (2013).

[20] Zheng-Hua Wu, Fan Lam, Chao Ma, and Zhi-Pei
Liang, in 2014 36th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society
(IEEE, 2014), pp. 2432–2435, ISBN 978-1-4244-7929-0,
ISSN 1557170X.

[21] D. Liang, B. Liu, J. Wang, and L. Ying, Magnetic reso-
nance in medicine 62, 1574 (2009), ISSN 1522-2594.

[22] R. Otazo, D. Kim, L. Axel, and D. K. Sodickson,
Magnetic Resonance in Medicine 64, 767 (2010), ISSN
07403194.

[23] E. M. Haacke, R. W. Brown, M. R. Thompson,
R. Venkatesan, M. A. Bernstein, K. F. King, and X. J.
Zhou, Magnetic Resonance Imaging: Physical Principles
and Sequence Design (2004), ISBN 0120928612.

[24] J. Lee and E. Adalsteinsson, in International Society for
Magnetic Resonance in Medicine 19th Scientific Meeting
(2010), p. 965.

[25] B. Bilgic, B. Gagoski, T. Kok, and E. Adalsteinsson,
Magnetic Resonance in Medicine 69, 1501 (2013).

[26] L. Michael, D. David, and P. J. M., Magnetic Resonance
in Medicine 58, 1182 (2007).

[27] F. Lam, C. Ma, B. Clifford, C. L. Johnson, and Z.-P.
Liang, Magnetic Resonance in Medicine 76, 1059 (2016),
ISSN 07403194, mrm.26019.

[28] K. Bredies, K. Kunisch, and T. Pock, SIAM Journal on
Imaging Sciences 3(3), 492 (2010), ISSN 19364954.

[29] F. Knoll, K. Bredies, T. Pock, and R. Stollberger,
Magnetic Resonance in Medicine 65, 480 (2011), ISSN
07403194.

[30] K. P. Pruessmann, M. Weiger, P. Börnert, and P. Boe-
siger, Magnetic Resonance in Medicine 46, 638 (2001),
ISSN 07403194.

[31] R. J. Ogg, P. B. Kingsley, and J. S. Taylor, Journal
of Magnetic RSesonance. Series B 104, 1 (1994), ISSN
10641866.
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Supporting Informations to Fast high-resolution brain metabolite mapping on a
clinical 3T MRI by accelerated 1H-FID-MRSI and low-rank constrained

reconstruction
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Supporting Information Figure S1.: Sketch of the pipeline used for the reconstruction of acquired MRSI mulit-coil data
sets. Pipeline to the left represents the full reconstruction including the low-rank TGV model. To the right, the pipeline

without model is presented (this pipeline is used for comparison).
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Supporting Information Figure S2.: Metabolite distributions DM from two extra healthy volunteers reconstructed with
the low-rank TGV model with the optimal regularization parameter (λ = 10−3) and rank K = 20 without acceleration. The

maximum of the scale was determined by the 95th percentile (PCTL) of each metabolite image separately.
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Supporting Information Figure S3.: Metabolite distributions DM reconstructed with different models. low-rank TGV is
the model used in this study, low-rank TGV (static V) is the same model but with pre-determined time components, low-rank
TV is identical but with total variation (TV) regularization and TGV (no low-rank) is a reconstruction model including only
TGV regularization without low-rank approximation. Reconstructions were performed with λ = 10−3 and K = 20 (except no

low-rank) and without acceleration or with AF = 2, 4.
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Supporting Information Figure S4. (Extend version of article Fig. 9): Effect of the low-rank TGV reconstruction
on the final metabolite distributions DM and spectral quality parameters CRLB and SNR computed from LCModel. For

Low-Rank TGV Recon., distributions were reconstructed with the model and λ = 10−3,K = 20. The metabolite distributions
reconstructed without model (No Model Recon.) result from a pipeline including only lipid suppression and LCModel

quantification. The scale ranges from 0 to the 95th percentile (PCTL) of each concentration distribution separately. Three
real parts of spectrum samples are shown with their respective locations on the right. The red line belongs to the

reconstruction without model and the blue line corresponds to the low-rank TGV reconstruction.
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Supporting Information Figure S5. (Extend version of article Fig. 10): Effect of k-space undersampling
acceleration on metabolite distribution maps for two in vivo dataset. Both MRSI datasets were reconstructed with rank

K = 20, optimal regularization parameter (λ = 10−3) and with acceleration factors = 1, 2, 3, 4. The scale ranges from 0 to the
95th percentile (PCTL) of each concentration distribution and acceleration factor separately.
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Supporting Information Figure S6.: Sample spectra of the exact solution without noise and the low-rank TGV
reconstruction from the simulated MRSI dataset at several locations. Data were reconstructed with λ = 5 · 10−4 and rank
K = 20 without acceleration. Left, energy image of the analytical exact solution and the low-rank TGV reconstructed

solution.
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Supporting Information Figure S7.: Steady state signal, ∝ sin(α) 1−e−TR/T1

1−cos(α)e−TR/T1
, computed for flip angle, α, ranging

from 30 to 50 degree and for T1 = 1000, 1200 and 1400 ms. The Ernst angle (40 degree) is located at a saddle point that
implies signal to be only slightly dependent on α deviation.


