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Abstract 

Modern mobile phones, featuring high performance microprocessors, rich set of sensors and 

internet connectivity are largely diffused all over the world and are ideal devices for the 

development of low-cost sensing systems, in particular for low-income developing countries and 

rural areas that lack the access to diagnostic laboratories and expensive instrumentation. 

In the design of a smartphone based sensing system different elements must be taken in 

consideration such as sensors performance, acquisition rate and privacy preserving strategies when 

personal data must be shared in the cloud. 

In this paper a sensor-centric survey on smartphone based sensing systems is presented, covering 

different fields of application. Two different development approaches will be discussed: 1) the 

exploitation of the large number of sensors embedded in modern smartphones (high-resolution 

camera, microphone, accelerometer, gyroscope, magnetometer, GPS); 2) the interfacing with 

external sensors that communicate with the smartphone by the embedded wireless or wired 

communication technology. 

  

Keywords: smartphone, measurement, sensors, embedded system, wireless communication, 

pervasive computing. 

 

1. Introduction 
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Modern smartphones embedding multitasking operating systems (OS), high performance 

microprocessors, rich set of sensors as well as wireless and wired communication technology are 

very popular and largely diffused all over the world. 

The first prototype of mobile device merging telephony and computing dates back to 1970s [1]. 

However, it was only in the early 1990s that, thanks to the introduction of the GSM based 

technology (2G) and the shift of mobile telephony communication from analog to digital, the first 

commercial smartphones reached the market. Moreover, the introduction of rechargable lithium 

ion-cell batteries in 1990s helped to reduce the weight and price of mobile phones. The first 

commercial smartphone is Nokia 1011 that was released in 1992 and featured a microphone as 

embedded sensor. Since then, ever more powerful devices have been produced with increasing 

computing power, larger mass storage memory, higher resolution screen, larger set of embedded 

sensors and faster communication. A milestone in the smartphone development is represented by 

the commercial release of the first iPhone  (iPhone 2G) by Apple in 2007: the device featured 2 

MegaPixel integrated camera, a proximity sensor, an ambient light sensor and an accelerometer. 

Different OSs have been released for smartphones. In the years 2000 – 2007 the market was 

dominated by Symbian, used the first time with the mobile phone Ericsson R380 in 2000, 

Blackberry, released by Research In Motion (RIM) in 2002, and Windows Mobile CE. In 2007 

Apple introduced the iOS operating system for its iPhone and in the same year Google released the 

Android OS. Nowadays Android is the most popular smartphone OS with a market share higher 

than 80%, followed by iOS (between 15 and 20%), while Microsoft Windows 10 Mobile has a 

market share lower than 1%. 

Smartphones are integrated with a rich set of sensors. Most devices feature a built-in high resolution 

camera, 3-axis accelerometer, magnetometer, gyroscope, GPS, proximity sensor, microphone, light 

sensor and temperature sensor. However, high-end devices also integrate other non-standard 

sensors: for example Samsung Galaxy S4 has a built-in sensor for temperature and humidity 

environmental monitoring; Google Nexus 5 integrates a pedometer for accurate step counting; 
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Samsung Galaxy 5S features a heart rate measurement sensor; Apple iPhone 8 Plus integrates a 

barometer; Sharp Pantone 5 integrates a sensor to detect harmful radiations. 

Almost all smartphone sensors were integrated to support some functions of the device. For 

example the 3-axis accelerometer is normally used to provide information about the device 

orientation and to automatically switch between landscape and portrait screen orientation; the 

magnetometer exploits its feature of detecting magnetic field in compass applications to detect the 

planet’s north pole; the temperature sensor monitors the device battery temperature to prevent over-

heating; the light sensor exploits its capability to measure the environmental light intensity to 

automatically adjust the display brightness; the proximity sensor can detect when the device is 

placed near to the user ear thus disabling some functions during the phone call. Nevertheless, a set 

of libraries, protocols and programming tools has been released to the public (Application 

Programming Interface, i.e. API) to allow the programmer to take control of the many sensors 

integrated in the mobile phone. 

Modern smartphones also integrate modules for wired and wireless communication. In the case of 

wired data communication, Android devices rely on USB data transfer protocol while iPhone 

featured a non-standard 30 pin connector (replaced by the 8 pin Lighting connector since 2012). In 

the case of wireless communication, Wi-Fi is used for long range communication while Bluetooth 

covers the short range (few tens of meters) communication applications. Near Field Communication 

(NFC) is a RFID based wireless communication system that allows very short range (10 cm) power 

and data transfer that is also ever more integrated in modern smartphones. The integration of wired 

and wireless communication protocols allows the interaction between smartphones and external 

hardware to design innovative sensing systems that merge the versatility of ad-hoc designed 

electronic boards with the pervasive computing, large mass storage memory and internet access of 

modern mobile phones. 

Sensors and sensing systems allow accurate and rapid measurements that can be easily implemented 

in automatic form. Sensor systems are used in a wide range of applications, from environmental 
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monitoring [2][3][4] to food quality assurement [5][6][7], from clinical analysis [8][9][10] to 

industrial applications [11][12][13]. Such systems are usually designed using microprocessor or 

microcontroller based systems where sensors output is acquired, converted to digital value by 

means of an Analog-to-Digital converter (ADC) and analyzed by the system processing unit. In this 

context, the use of smartphones as sensing system results in large cost reduction since the high-

performance processing unit, display, user input, wireless communication modules as well as many 

sensors are already integrated in the device. 

Smartphones diffusion is always increasing all over the world. The US smartphone users increased 

from 60.2 millions in 2010 to 106.7 millions in 2012 [14]. In 2014 Kakihara presented a survey 

showing how smartphone diffusion is increasing not only in developed countries but also in many 

developing countries [15]. Low-cost sensing systems based on smartphones have been proposed in 

different fields of application, such as for example in healthcare [16][17][18][19], point-of-care 

diagnostic [20][21][22], food analysis [23], agriculture [24], biosensors for portable biochemical 

detection [25][26], portable spectrophotometers [27], mobile microscopy [28], activity recognition 

[29] and intelligent transportation systems [30][31][32]. The availability of high processing power 

and wireless communication has also opened the road for crowdsensing applications, where the 

partecipants collect and share the measured data using their smartphones and send these data to 

central servers for processing [33][34][35]. A summary of review articles covering smartphone 

sensing for different fields of application is presented in Table 1. 

In this paper, a survey of sensor systems exploiting smartphone will be presented. In sections 2, 3 

and 4 sensing systems using the mobile phone built-in sensors (camera, microphone, accelerometer, 

magnetometer, gyroscope and GPS) are discussed. In section 5 sensing systems based on external 

sensors interfaced with ad-hoc designed hardware are presented. In section 6 prospects and 

challenges of smartphone based sensing systems are discussed. Finally, conclusions are drawn in 

section 7. 
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2. High-resolution camera 

The high-resolution camera embedded in modern mobile phones can be used in a wide range of 

applications, from simple colorimetric tests to more advanced computer vision applications. 

One application that has been deeply investigated is the possibility to use the smartphone to 

automatically read a test strip. Colorimetric test strips are used in a wide range of applications 

(measure of pH, detection of pathogens in urine, determination of the glucose level in blood) due to 

their low-cost and easiness of use: the sample under test is poured on the strip and the parameter of 

interest is estimated from its color change. Smartphone camera is then used to take a picture of the 

strip and analyze the color change. The main weakness of such application is due to the interference 

of the environmental light and non uniform characteristics of the camera among different phone 

models. To overcome such problems, many authors have placed the smartphone inside an ad-hoc 

designed chamber featuring its own illumination system, thus filtering out the environmental light 

interference, and implemented software calibration algorithms to compensate for the different 

camera characteristics. For example, Kim et al. in 2017 proposed a smartphone based system to 

read pH test strips [36]: the phone was placed inside a 3D structure with LED lighting system and 

calibration was carried out using paper printed reference colors. The system was tested with 

different solutions of known pH and an average error lower than 0.25 was achieved. A similar 

approach was used by Lee et al. for the quantification of 25-hydroxyvitamin D concentration using 

a gold nanoparticle-based immunoassay [37]: the concentration was estimated from the brightness 

difference between a detect and a reference area once the acquired image was converted to HSB 

color model, resulting in an accuracy of 15 nM, precision of 10 nM and a time response of 6 hours. 

Jung et al. proposed a system to measure the alcohol concentration in saliva in the range 0 – 0.3 % 

[38]. Yetisen et al. proposed an algorithm to compensate for the differences among different phone 

cameras  and tested it with a 3-patch urine test strip (for the determination of pH, protein and 

glucose) [39]: the calibration was carried out by capturing and processing a set of reference images 

of known concentrations under a given light condition. However, changes in the environmental 
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light results in the need to re-calibrate the system. Shen et al. in 2012 developed a calibration 

procedure to compensate for different light conditions [40]. In 2017 Kim et al. proposed a 

smartphone based sensor to measure the blood hematocrit from 10% to 65% with a level of 

detection (LOD) of 0.1% [41]: in this case a microfluidic device, placed inside an acrylic box and 

illuminated with white light, was used and the hematocrit concentration was estimated from the red, 

green and blue components of the microchannel image captured by camera. Liu et al. in 2017 

proposed a smartphone optosensor to measure streptomycin (STR) concentration in different food 

products [42]: the liquid sample under test is mixed with a colorimetric indicator (aptamer-

conjugated Au nanoparticles) and placed in a cuvette; the light source is generated by three colored 

LEDs with peak wavelengths 473, 520 and 625 nm and transmitted through the sample; the 

transmitted light is acquired by the smartphone camera and STR concentration estimated from the 

measured absorbance ratio at 625 and 520 nm (R2 = 0.996); the system was successfully tested with 

honey, milk and tap water. A low-cost colorimetric test suitable to detect the concentration of 

different types of biological macromolecules was presented by Dutta et al. in 2017 [43]: the sample 

under test, placed in a cuvette with a suitable reagent to produce a change in color, is irradiated with 

a white LED and a picture is taken with the phone camera. Image pixels are converted to HSV color 

space and the average brightness (V) of the image was found the parameter best suited to estimate 

the analyte concentration. Three different biomolecules were tested (BSA protein, catalase enzyme 

and carbohydrate) and a very good correlation with the results of a commercial spectrophotometer 

was found. 

In 2016 Bueno et al. proposed a smartphone fluorescence analyzer to detect ochratoxin A (OTA) 

concentration in beer samples [44]: the sample, placed in a plastic cuvette is irradiated with a UV 

LED (wavelength range 360 – 380 nm); the presence of OTA produces a fluorescent radiation at 

460 nm that is detected by the phone camera by analyzing the RGB components of the acquired 

image to extract the blue component; the sensor features a linear response in the OTA concentration 

range 2 – 20 µg/L with a LOD of 2 µg/L. Fluorescence analysis with smartphone has been also 



 8 

investigated by Hossain et al. in 2017 for the quality evaluation of olive oil [45]: the oil sample is 

irradiated with a UV LED (peak wavelength 370 nm), the reflected radiation collected by an optical 

fiber and the fluorescence spectrum measured with the phone camera. Tests have been carried out 

under different light and heath conditions and the results have shown that the system can detect the 

oil degradation level. Hakonen and Beves in 2018 designed a smartphone system to discriminate 

extra virgin olive oil from lower grade edible oils [46]: the olive oil sample, placed in a vial, is 

irradiated with a 405 nm UV LED and the fluorescence is detected at 90° angle by the phone 

camera. The acquired image was converted to the HSV color space and hue histograms calculated 

to discriminate the different types of oil. McCracken et al. in 2017 developed a smartphone system 

to detect bisphenol A (BPA) concentration in water samples [47]: the water sample, added with 8-

hydroxypyrene-1,3,6-trisulfonic acid, is placed in a cuvette and irradiated with a 460 nm LED. The 

fluorescence radiation at 512 nm is measured with the phone camera by analyzing the acquired 

picture in RGB color space. The results have shown that the system is capable to detect BPA with a 

detection limit of 4.4 µM and a maximum concentration of 200 µM. Different smartphone models 

were tested and the results suggested that the 460 nm LED can be replaced with the phone flash 

LED with comparable accuracy. 

Color analysis of images taken with the smartphone camera was also used to estimate the cloud 

coverage [48] and to detect the surface corrosion of iron [49][50][51]. An 

electrochemiluminescence (ECL) smartphone system was proposed by Delaney et al. in 2013 [52]: 

a paper fluidic element, in contact with a screen printed electrode, is loaded with the luminophore 

Ru(bpy)3
2+; with the phone audio channels a square wave voltage waveform (Vpeak 1.77 V, 

frequency 7.143 Hz, duty cycle 71.43%) is applied to the electrodes; in presence of the target 

compound, light is generated by the luminophore, and detected with the camera by analyzing the 

image red component; the system was tested with two different target compounds, 2-

(dibutylamino)ethanol and L-proline. Park et al. proposed a smartphone system based on Mie 

scattering that measures the concentration of Escherichia coli in water samples by using the phone 
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camera to detect the scattered light intensity from paper microfluidic sensor at different angles [53]: 

the system, featuring a response time of 90 seconds, is characterized by a LOD of 10 CFU/ml and in 

good agreement with the results from the reference technique. The same research group used the 

same principle to measure the bacterial concentration in meat samples [54]. 

Smartphone camera has been also used to make measurements of UV solar irradiation. This is a 

very important topic since prolonged exposure to UV radiations increases the risk of skin cancer 

[55][56]. On the other hand, UVA (320 – 400 nm) and UVB (280 – 320 nm) radiations affect 

differently human skin [57] and UVB exposure plays also a role in vitamin D synthesis [58][59]. 

Thus, measurement of both UVA and UVB solar radiations is important for human health 

protection. Smartphone embedded camera features a set of blocking filters to remove non-visible 

light wavelengths. Moreover, the coating of lens camera absorbs most of the UV light. 

Nevertheless, Igoe et al. in 2013 have shown how, by mounting bandpass filters in front of the 

phone camera to remove the visible light, UVA wavelengths can be detected [60]. This has been 

first validated by means of laboratory tests using an irradiation monochromator [60], then with in-

the-field solar radiation [61] and an app was also designed to measure UVA aerosol optical depth 

and direct solar irradiance at the wavelengths 340 nm and 380 nm [62]. The same research group 

has also shown the feasibility of UVB wavelengths measurement using smartphone [63]. The phone 

camera was equipped with a 305 nm bandpass filter and the red component was found the 

parameter providing the highest signal-to-noise ratio. A good correlation (R2 = 0.98) was found 

with a Microtops II sunphotometer using a quadratic model for calibration [64]. UVB measurement 

with smartphone camera was also used evaluate the atmospheric total ozone column [65]. UV 

radiation measurements using the smartphone camera were also reported by Wilkes et al. to detect 

the SO2 emission from volcanic craters [66][67]: in this case, however, the camera blocking filters 

were removed and the lens replaced with UV transmissive anti-reflection coated plano-convex 

quartz lens of 6 mm diameter and 9 mm focal length [68].  Two bandpass filters centered on 310 nm 
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and 330 nm were mounted in front of the camera providing good correlation (R2 = 0.92) if 

compared with a scientific grade UV camera. 

 Smartphone camera can also be exploited to design a low-cost and portable spectrophotometer 

[27]. A spectrophotometer is an instrument capable to measure the optical absorbance of the sample 

under test as function of the incident radiation wavelength. Different commercial instruments exist 

working in different wavelength regions (visible, near and mid infra-red, etc.). The spectrum 

measured by the instrument can be useful to detect various types of analytes, in particular when 

used in conjuction with multivariate statistical analysis such as Principal Component Analysis 

(PCA) and Partial Least Square (PLS) regression. Smartphone spectrophotometers exploiting the 

phone camera are limited to the visible wavelength range (400 to 700 nm) since the phone camera 

embeds filters to block non-visible light. A visible spectrophotometer based on smartphone was 

proposed by Dutta et al. in 2015 [69]. The working principle of the instrument is shown in Fig. 1 

(a): a broadband light source is allowed to pass through a 50 µm pinhole and then through a 

collimating lens; the collimated light is transmitted through the sample under test, placed in a 

cuvette, and the emerging light is focused by a cylindrical lens to a transmission grating attached to 

the phone camera. A picture of the developed instrument is shown in Fig. 1 (b). The grating 

translates the wavelength information present in the radiation in its constituent colors that are 

detected by the camera (Fig. 1 (c)). The pixel-to-wavelength calibration can be achieved by testing 

the system with laser sources of known wavelength. The system, featuring a spectral resolution of 

0.305 nm/pixel, has been tested to measure pH for river quality water assessment [69] and to 

measure the concentration of BSA protein and trypsin enzyme [70]. The same research group 

developed also a smartphone based evanescent wave coupled spectrophotometer that improves the 

previous version in compactness and portability [71][72]. Other smartphone based 

spectrophotometers have been proposed by Gupta et al. to measure the optical spectrum of color 

dyes and milk samples [73], by Souza de Oliveira et al. to determine Fe2+ in medicine samples and 

Na+ in saline solutions and natural water samples [74], by Long et al. to design a portable Enzyme 
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Linked Immunosorbent Assay (ELISA) that can be used for clinical assays with a LOD that is 

identical or better than a standard ELISA microplate reader [75]. Gallegos et al. in 2013 proposed a 

smartphone based spectrophotometer where the sample under test is a label-free photonic crystal 

biosensor [76]: a photonic crystal was immobilized with protein A for the detection of porcine 

immunoglobulin G (IgG); when irradiated with a white light source, the photonic crystal features a 

resonant reflection at a wavelength of 565 nm that shifts to higher wavelengths due to the binding 

of the target analyte; IgG concentrations from 4.25 nM to 3.4 µM were tested and a LOD of 4.25 

nM was achieved. Yu et al. in 2014 proposed a smartphone based fluorescence spectrophotometer 

[77]. 

The pervasive computing of modern smartphones allows the development of portable computer 

vision sensing applications. One example is represented by automatic colony counter applications. 

Standard Plate Count (SPC) is the reference technique to measure bacterial concentration [78]: 

serial dilutions of the sample under test are prepared and inoculated inside Petri dishes (cylindrical 

plastic containers filled with agarized culture medium for bacterial growth); after an incubation time 

at the target temperature (usually 24 – 72 hours at 37 °C), the number of cell colonies grown on the 

dish are counted and this value is used to estimate the initial bacterial concentration. The counting 

process is time consuming and labor intensive. Since many microbiology laboratories must process 

hundreds of plates every day and every plate can contain hundreds of cells to count, manual 

counting can lead to eye fatigue and error. Smartphone based automatic colony counters exploit the 

phone camera to acquire a picture of the Petri dish, then apply a set of vision algorithms for 

boundary removal, image smoothing, image binarization and colonies detection to count the number 

of colonies. In the process of accurate colony count a critical point is the separation of partially 

overlapping colonies. Different smartphone based automatic colony counters have been presented in 

literature, such as the ones discussed by Zhang and Chen [79], Minoi et al. [80], Austerjost et al. 

[81], Poladia et al. [82] and Kumar et al. [83]. Other computer vision applications for smartphone 

include a system for continous surveillance of fruit flies [84], a food recognition tool assisted by 
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image retrieval [85] and nutritional value estimation [86], a heart rate measurement system 

exploiting the time variation of acquired images of the user fingertip placed on the phone camera 

[87]. 

Portable microscopy based on smartphone has been also proposed in the field of point-of-care 

analysis and telemedicine, particularly in the case of developing countries and rural areas that lack 

healthcare facilities. Breslauer et al. in 2009 presented a smartphone based microscope that can 

work in brightfield and fluorescent imaging [88]. The schematic of the proposed system is 

presented in Fig. 2 (a): the eyepiece (20X) and the objective (0.85 NA 60X) are standard low-cost 

microscope parts; the filters are present only in the case of fluorescent imaging; the light source is 

an high power blue LED in fluorescent imaging, while it can be omitted or replaced with a white 

LED (in the case of scarce illumination) in brightfield imaging. A picture of the system is presented 

in Fig. 2 (b). Fig. 2 (c) and (d) show images of 6 µm fluorescent beads in the case of brightfield and 

fluorescent imaging, respectively. The system has been successfully tested with P. falciparum 

malaria-infected blood cells in brightfield imaging and with M. tubercolosis infected sputum 

samples in fluorescent imaging. A lens-free smartphone based microscope using the ambient 

illumination as light source has been proposed by Lee and Yang in 2014 [89]. The system works by 

placing the sample on the surface of the phone image sensor (thus removing the lens module is 

needed) and capturing direct shadow images under the ambient illumination. Images are acquired at 

different angles and reconstructed to achieve high resolution. The system has been tested with 

various types of green algae in freshwater.  

A summary of smartphone camera sensing applications is reported in Table 2. 

 

3. Microphone 

Mobile phone embedded microphone can be used for different sensing applications, mainly related 

to healthcare. 
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Larson et al. in 2012 proposed a smartphone sensing system (SpiroSmart) to measure the lung 

function as a quick and low-cost tool for the diagnosis of chronic lung diseases [90]. The system is 

very cost-effective if compared to a commercial clinical spirometer and works as follows: the user 

holds the mobile phone at approximately arm’s length, breathing in full lung volume and exhaling 

at the phone screen. The microphone records the exhalation sound (sampling at 32 kHz), processes 

the acquired data, extracts some feature parameters from the processed data and calculates the 

breath flow curve using a machine learning algorithm. Some key parameters such as Forced Vital 

Capacity (FVC), Forced Expiratory Volume (FEV) and Peak Expiratory Flow (PEF) can be 

calculated to estimate the user lung status. The proposed system has been tested with 52 subjects 

and the results have shown that the average error, if compared to a commercial spirometer, is 5.1% 

and can be reduced to 4.6% if the system is calibrated on the particular user. The same authors in 

2013 proposed another system (SpiroCall) that can be run on any mobile phone (and not only 

smartphones) [91]: in this case the audio data are acquired by the phone microphone and then 

transferred to a server for processing. The results have shown that the accuracy is only slightly 

worse than SpiroSmart, with an average error of 8.01% if compared to a commercial spirometer. 

The same research group in 2011 proposed a smartphone based system for cough sensing [92]: the 

user carry the phone in the shirt pocket or using a neck strap and audio data are recorded 

continously (sample rate 32 kHz). The recorded data are processed with Pricipal Component 

Analysis (PCA) algorithm and machine learning to detect and count the number of coughs 

occurring in a certain time period. The system has a privacy protection feature to allow cough sound 

(but not speech) to be reconstructed. Tests on 17 subjects (from 18 to 60 years old) have shown how 

if a number of PCA components of 15 is used, the system can detect and reconstruct cough sound 

while making speech sound unintelligible. 

A smartphone based respiratory rate sensor system was discussed in 2016 by Nam et al. [93]. The 

system records nasal and tracheal breath sounds using the phone microphone at 44.1 kHz. Acquired 

data are pre-processed and analyzed with two different methods: Welch periodogram technique and 
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autoregressive power spectral analysis. Tests on 10 subjects showed that an estimation error lower 

than 1 % can be achieved in the case of respiratory rates in the range 6 – 90 breaths/min and nasal 

breath sound analysis. 

Chen et al. in 2012 proposed a phone based system to detect nasal symptoms (such as runny nose, 

stuffy nose and sneezing) in a real environment [94]. The system, tested on 21 subjects, records the 

sounds using the phone microphone and then transfers the acquired data to a remote server for 

processing. 

A smartphone based system to quantify snoring and sleep apnea severity was discussed by Nakano 

et al. in 2014 [95]. Snoring sound was acquired in 0.1 s windows every 0.2 s (acquisition rate 11025 

Hz) and processed with Discrete Fourier Transform. The results have shown a good correlation (> 

0.9) with reference methods. 

Na et al. in 2014 presented a smartphone based system to measure a subject hearing threshold in a 

real noisy environment [96]. The system acquires the environmental noise with the phone 

microphone and fits it to one of two different models, white noise or babble noise. The user is then 

asked to listen a set of single frequency tones (500, 1000, 2000 and 4000 Hz) and the hearing 

threshold is calculated and compensated based on the environmental noise. A smartphone based 

hearing screening system was also proposed by Swanepoel et al. in 2014 [97]. Test on 162 children 

were performed generating tones at 1, 2 and 4 kHz using the phone speaker and the noise 

environment detected by microphone. A 97.8 % agreement with reference hearing screening 

methods was found. 

Wang et al. in 2017 developed a tremor detection system based on smartphone for the early 

diagnosis of Parkinson’s disease [98]: the phone, placed on a table near the user hand,  generates 

non audible sound waves in the frequency range 16.8 – 21.7 Hz using the embedded speaker and 

the reflected waves are acquired by the microphone with a sampling rate of 48 kHz. The tremor 

(magnitude and frequency) was detected by measuring the phase of the reflected wave and an app 

was developed to present the results to the user. 



 15 

The smartphone embedded microphone was also used by Siegel et al. in 2017 to detect occlusions 

in automative engine air filters [99]: the audio, recorded to an uncompressed stereo WAV file at 48 

kHz, was processed with machine learning algorithms using Discrete Fourier Transform (DTF), 

Discrete Wavelet Transform (DWT) and Mel-Frequency Cepstral Coefficients (MFCC) and a 

detection rate of 81% was achieved. 

Li et al. in 2017 proposed a smartphone system to detect approaching cars for the purpose of 

pedestrian safety and traffic monitoring [100]: audio was acquired with the phone microphone, pre-

processed with 0.5 s time windows and analyzed with DFT. The extracted feature was the maximal 

frequency component that crosses a threshold. Different car models and size as well as different 

outdoor environments were tested and a detection rate of 91 % was achieved for cars that are more 

than 4 seconds away from the user. The authors showed that, using a second microphone, also the 

car direction and the number of cars can be estimated and in this case a detection rate of 81 % was 

obtained. 

The phone microphone has been used also in applications not related to audio recording. For 

example, Petersen et al. in 2013 proposed a smartphone based pulse oximeter [101]. The device 

principle of work is sketched in Fig. 3 (a) and (b): a couple of LEDs (910 nm infra-red LED and 

660 nm red LED) irradiate the finger of the subject under test and a photodiode, on the other side, 

measures the radiation intensity transmitted through the finger. From the absorbance at the two 

wavelengths the oxygen saturation and heart rate are calculated. The two LEDs are driven by the 

phone audio port and the current through the photodiode, proportional to the incident radiation, is 

converted to a voltage by a JFET amplifier and acquired by the microphone (sampling rate 8 kHz). 

The developed system, shown in Fig. 3 (c) and (d), has been tested using a patient simulator and the 

achieved correlation was found higher than 0.99. 

Another microphone application not related to audio recording was proposed by Broeders et al. in 

2013 [102]: an impedance biosensor was built from a test strip, coated with a sensing layer, where 

the analyte under test is placed; a sine-wave input voltage is applied to the biosensor electrodes and 



 16 

the drawn current is measured, thus calculating the sensor impedance. The input stimulus is 

generated with the phone audio speaker and the current is converted to a voltage and measured with 

the microphone. The system, capable to perform impedance measurements between 100 Ω and 10 

kΩ in the frequency range 20 Hz – 20 kHz, has been used to measure histamine concentration in 

phospate buffer saline (PBS) solution. 

A summary of smartphone microphone sensing applications is reported in Table 3. 

 

4. Accelerometer, gyroscope, magnetometer and GPS 

Global Positioning System (GPS) is a radionavigation system based on the measurement of the time 

needed for the signal to cover the distance satellite-receiver. It was developed in 1973 by US 

government for military applications and more recently allowed to be used for civilian use. It is 

nowadays embedded in almost every smartphone since it can support different applications mainly 

related to geo-localization and  assisted navigation. Blanke et al. in 2014 presented an application 

for crowd dynamics monitoring using the GPS embedded in the smartphone [103] where 28000 

users were monitored during a 3 days event in Zurich. A similar application was proposed by Wirz 

et al. and tested during the Lord Major’s Show in London in 2011 [104]; Charlton et al. proposed an 

application for bicycle tracking [105]; Whipple et al. presented an application based on GPS and 

Google search to help safety driving [106], providing an alarm when the driving speed exceeds a 

legal threshold inside a school zone. 

Smartphone embedded accelerometer, gyroscope and magnetometer are used inside a wide range of 

applications, mainly related to activity recognition, structural health monitoring, as well as driving 

style recognition and road condition monitoring.  

Activity recognition applications are carried out using the following principle of work: the sensors 

output is sampled and grouped in a set of time windows, each characterized by a certain number of 

samples; the acquired data are processed and some feature parameters are extracted (such as 

average window value, peak-to-peak amplitude, interpeaks frequency, etc.); the feature parameters 
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are used inside a classification algorithm (either based on threshold comparison or machine 

learning) and the activities classified according to the results. Different examples of activity 

recognition applications with smartphone have been presented in literature. Guiry et al. used the 

phone accelerometer and an external accelerometer (tied to the subject chest and communicating 

with the phone by Bluetooth) to discriminate different activities such as walking, running, cycling, 

sitting, standing, lying [107]: in the first trial 6 subjects were tested using only the phone 3-axis 

accelerometer and achieving an accuracy of 88%, while in the second trial both accelerometers 

were used by 24 subjects with an accuracy in classification of 98%. Bieber et al. used the 

smartphone 3-axis accelerometer to discriminate between stand-up and sit-down transition [108]: 12 

subjects were tested with the phone in their trousers and the accelerometer sampled at 20 Hz, 

leading to a recognition rate of 70% (the type of weared trousers affected the classification 

accuracy). Bayat et al. exploited the phone accelerometer to test 4 subjects with the phone in their 

hand or pocket and classified six activities (slow walking, fast walking, running, stairs-up, stairs-

down, dancing) [109]. The accelerometer was sampled at 100 Hz and the achieved accuracy was 

91.15%. Kwon et al. used the 3-axis accelerometer and 3-axis gyroscope embedded in the 

smartphone (carried in the trouser pocket) to classify 5 physical activities [110]. Each activity was 

monitored for 10 minutes with a sampling rate of 50 Hz and a detection rate higher than 90% was 

obtained. Shoaib et al. used accelerometer, gyroscope, magnetometer and linear accelerometer to 

discriminate seven physical activities (walking, running, sitting, standing, jogging, biking, walking 

upstairs, walking downstairs) [111]. Ten subjects were tested with the phone in five different 

positions, data acquired at 50 Hz with 2 seconds time windows and 50% overlap. The results have 

shown how gyroscope performs better than accelerometer to discriminate walking upstairs and 

downstairs, while the magnetometer needs proper features to be selected for accurate 

discrimination. Ghosh and Riccardi used the smartphone accelerometer and gyroscope (both 

sampled at 40 Hz) and the microphone (sampled at 8 kHz) to discriminate 6 different activities 

(walking, standing, sitting, driving, travelling by bus, travelling by train) [112]. Test on 15 subjects 
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were carried out using 3 seconds time windows with 50% overlap and the results showed how the 

combination of the three sensors allows better recognition results during normal everyday usage. 

A particular case of activity recognition is represented by fall detection. Fall detection systems have 

been investigated intensively in recent years since represent a tool to reduce the risk of long laying 

periods after a fall, in particular for the elderly and people with neurodegenerative diseases. 

Smartphone based fall detection systems are even more popular since the exploited sensor (usually 

the 3-axis accelerometer) is integrated in the phone and thus is not intrusive as an external sensor 

that needs to be tied to the subject [113]. The principle of work is as follows: the user carries the 

phone in his trouser or pocket; when a fall is detected the phone alerts the user about the detection 

(vibration or sound); if the fall was correctly detected and the subject lays unconscious on the floor, 

after a period an alarm is sent (via Wi-fi) to call for assistance, otherwise the user can cancel the 

action for the misclassified fall. Tacconi et al. in 2011 proposed a system where the phone is carried 

on the user waist belt and a detection rate close to 100% was achieved based on tests on 3 subjects 

and different types of fall [114]. Zhao et al. exploited the accelerometer embedded in a Nokia N95 

smartphone to detect fall based on a machine learning algorithm [115]. Ten subjects were tested 

while performing 4 types of activities (standing, walking, running and falling). The achieved 

detection rate was 98.4% where the only fall misclassification was due aggressive running. He et al. 

used the phone accelerometer with sampling rate 40 Hz to detect fall and send a MMS alarm with 

GPS coordinates when the fall is detected [116]. Dzeng et al. in 2013 used the smartphone 

integrated accelerometer and gyroscope to detect fall portents [117]. The application is aimed to 

prevent falls in the construction industry where fall accidents can lead to seroius injuries and deaths. 

The mobile phone is tied to the subject as shown in Fig. 4 (a). The experiment environment is 

shown in Fig. 4 (b), (c), (d) and (e). Two different experiments were carried out. In the first 

experiment the fall detection was tested for six different types of falls and the detection rate was 

100%. In the second experiment the detection of fall portents (i.e. dangerous situations) was tested 
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for different status of the subjects under test (normal, sleepiness, fatigue) and the achieved detection 

rate was 88.5%. 

Inertial sensors embedded in modern mobile phones have been extensively exploited also in the 

field of civil engineering for the detection of seismic events and the structural health monitoring 

(SHM) of buildings and bridges. Dashti et al. in 2014 used the built-in smartphone accelerometer to 

monitor seismic events [118]: laboratory tests were carried out using a shaking table and the results 

compared with a commercial reference accelerometer. The smartphone accelerometer overestimates 

small seismic events but provides good accuracy in the case of moderate and intense seismic events. 

Even smartphones not rigidly connected to the shaking table provided reliable detection but better 

results were obtained with a high friction phone cover to prevent sliding. In 2013 Reilly et al. used 

accelerometer, magnetometer and GPS to estimate the phone orientation and measure the intensity 

and cardinal direction of a seismic event [119]. The application operates when the phone is not used 

(charging during the night or on the desk during workday) and a filtering algorithm is used to 

remove events due to phone falling or vibrating for a call. The use of smartphones in SHM 

applications is very interesting since classical SHM systems are expensive for installation and 

maintenance and this prevents its application in large scale to many civilian structures. Kong et al. 

in 2018 investigated the use of smartphone accelerometer to measure the mechanical oscillation 

amplitude and natural frequency of the Millikan library in Pasadena, California (USA) [120]. The 

building oscillations were induced using a Kinemetrics model VG-1 synchronized vibration 

generator mounted on the roof of the building. 25 different smartphone models (embedded 

accelerometers of different quality) were tested against a commercial 3-axis accelerometer and a 

good correlation was found. Feng et al. in 2015 investigated the use of the embedded accelerometer 

in different smartphone models for SHM applications [121]. Tests were carried out using a shaking 

table (vibrations of frequencies 0.5, 0.8, 1.2, 5, 10, 20 Hz), with a masonry column model excited 

with operational and earthquake vibrations, as well as on a concrete pedestrian bridge. In all cases a 

good correlation with a commercial accelerometer (PCB 393B04) was found. Yu et al. in 2015 
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compared accelerometer and gyroscope embedded in the iPhone with external commercial sensors 

and found that both are suitable for vibration monitoring and cable force tests [122]. 

Another smartphone application widely investigated is related to intelligent transportation systems 

[30][31][32] and, in particular, the detection of driving style and road conditions. Aggressive 

driving behavior, such as sudden braking, excessive speeding and improper lane change, is often 

associated with car accidents. At the same time, anomalies in road surface not only result in less 

comfortable driving and extra fuel consumption but also decrease driving safety and increase the 

chance of damages to the vehicle. Insurance companies employ electronic systems installed on the 

vehicle to monitor driving behavior. However, these systems are expensive and low-cost 

alternatives based on smartphone are very attractive. Li et al. in 2017 proposed a smartphone based 

system where the embedded accelerometer was used to detect driver behavior and road conditions 

[123]: a reorientation software algorithm was developed to switch from smartphone-based to 

vehicle-based coordinate system. Acceleration along the three axis was used to detect sudden 

acceleration/break, lane change and bumpy road. A threshold based detection algorithm was used as 

well as a scoring system (ISO 2631) to estimate the seriousness of driving behavior and road 

conditions. In 2016 Li et al. used the phone embedded accelerometer and gyroscope to detect 

driving behavior with a detection rate higher than 90% [124]. Yu et al. used the accelerometer, 

gyroscope and magnetometer to discriminate six different driving behaviors using Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) [125]: the training was carried out with 6 

months driving traces from 20 drivers and 16 features extracted from the raw data. The validation 

phase, carried out on 4 months driving traces with the same drivers, resulted in a detection rate of 

95.36% for SVM and 96.88% for ANN. Accelerometer, gyroscope and magnetometer were also 

used by Tecimer et al. in 2015 to discriminate four classes of driving behavior with a detection rate 

of 91% [126]. Johnson and Trivedi in 2011 exploited the rear facing camera, accelerometer, 

gyroscope and GPS of an iPhone 4 for driving style recognition [127]: accelerometer and gyroscope 

were used to discriminate 12 different driving behaviors using dynamic time warping algorithm, 
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GPS was used to measure speed and position while the camera for video recording.  Bhoraskar et al. 

used the phone embedded accelerometer, magnetometer and GPS to discriminate between smooth 

and bumpy roads and the detection of braking events [128]. A similar application was developed by 

Allouch et al. by using the machine learning classification algorithm C4.5 with accelerometer and 

gyroscope (sample rate 50 Hz) and a detection rate of 98.6% (96.7% if using only the 

accelerometer) was achieved in the discrimination between smooth and bumpy roads [129]. Seraj et 

al. proposed a system (RoADS) based on smartphone accelerometer, gyroscope and GPS to detect 

road surface anomalies [130]: collected data were filtered and features extracted from time domain, 

frequency domain and wavelet transformation domain. A SVM classifier was used and a detection 

rate of about 90% was achieved regardless of vehicle type and road location. 

A summary of smartphone sensing applications exploiting accelerometer, gyroscope, magnetometer 

and GPS is reported in Table 4. 

 

5. Interfacing with external sensors 

There are applications where the required sensors are not integrated in the mobile phone or the 

integrated sensors performance is not adequate. In this case external hardware must be designed to 

perform all the sensing tasks and communicate the results to the smartphone. This is usually 

implemented using a microcontroller based electronic board: the external sensors are interfaced to 

the microcontroller using conditioning circuits (filters, amplifiers, etc.) and analog-to-digital 

converters (ADC), eventually integrated inside the microcontroller, to convert the sensors analog 

signals to digital format. The microcontroller is also responsible for the communication with the 

smartphone. This can be achieved with either wired or wireless communication. 

5.1 Wired communication 

Wired communication methods exploit a set of electrical wires connecting the external hardware to 

the smartphone. 
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The most popular wired communication method is USB. Many recent mobile phones implement the 

USB On-the-Go (USB OTG) interface that allows the phone to act either as a host (making it 

capable to provide the power supply) or as a device [131]. USB OTG enabled smartphones can be 

interfaced with a large variety of USB devices (USB flash drive, digital camera, mouse, keyboard) 

as well as any ad-hoc designed electronic board that supports the USB interface. When acting as a 

host the smartphone can provide a power supply of 5V with a maximum current of 500 mA, thus 

allowing the external hardware to work batteryless. Many examples of sensors systems interfaced to 

smartphones by USB OTG have been presented in literature. Le et al. in 2016 presented a low-cost 

mobile electrocardiograph (ECG) using two silver coated dry electrodes [132]. Each electrode 

signal is fed to an operational amplifier in follower configuration and then to a differential 

amplifier; the resulting analog voltage is digitized by the ADC embedded inside the microcontroller 

MSP430 (10 bit, 1 kHz sampling rate) and then analyzed; the processed data are transferred to the 

smartphone by USB OTG interface. A study has been carried out on 30 subjects (between 14 and 60 

years old) and the measured heart rate has been compared with the value obtained with a 

commercial ECG meter (Omron HEM-7111). The results show a very good correlation (R2 = 0.99). 

A lab-on-a-chip to measure the concentration of the malaria biomarker PfHRP2 was discussed by 

Ghosh et al. [133]. A microfluidic chip, loaded with the sample, emits a chemiluminescent light and 

its intesity is detected by a photodiode, converted to voltage and processed. The results have shown 

a LOD of 1.2 ng/mL and a very good correlation (R2 = 0.99) between the light intensity and the 

antigen concentration. Dou et al. discussed a  3-electrodes amperometric immunosensor for 

detection of clenbuterol that features a linear response in the concentration range 0 – 100 ng/mL, a 

LOD of 0.076 ng/mL and a time response of 6 minutes [134]. The same research group used the  3-

electrodes amperometric system for gender verification in human serum and serum stains, achieving 

excellent sensitivity and specificity and a time response of 20 minutes [135]. A portable embedded 

system for contactless measurements of metals electrical conductivity and lift-off was presented by 

Rodrigues et al. in 2017 [136]. The sample conductivity and lift-off are measured by a coil probe 
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with ferrite inside that is stimulated by a sine-wave voltage signal (30 kHz). The probe impedance 

is function of the sample conductivity and lift-off due to the eddy currents generated in the metal. 

The system features an USB port to communicate with a PC or a smartphone. Aymerich et al. in 

2018 presented a smartphone based micro potentiostat that performs chronoamperometry and cyclic 

voltammetry measurements using a 3 electrodes system [137]. The system exploits USB-OTG for 

power and communication and can detect alcohol in blood samples in the concentration range 0 – 

1.25 g·L-1. 

Sometimes the smartphone USB port is used only to provide power to the sensor system while data 

acquisition is carried out exploiting some other sensors embedded in the phone. Such an example is 

presented by Doeven et al. [138]: an electrochemiluminescence sensing system to measure the 

emission properties of water soluble iridium complex is powered by the phone USB port and the 

square wave voltage to induce chemiluminescence is generated by the phone audio channel and 

LM567 IC. The emitted light is detected by the phone embedded camera by analyzing the RGB 

components of the acquired image. A USB powered electrochemiluminescence sensor was also 

proposed by Li et al. in 2018 for the detection of nitroaromatic explosives [139]. Another example 

was proposed by Hussain et al. in 2016  for a water turbidity sensing system for smartphone [140]. 

The phone USB port provide power to drive an infra-red LED (peak wavelength 870 nm) whose 

radiation is transmitted through the sample; the turbidity is estimated from the scattered light at 90° 

angle that is detected by the phone integrated proximity sensor. The same system with minor 

modifications was also used to detect other water contaminants: iron(II) in the concentration range 0 

– 5 mg·L-1 using a 510 nm peak wavelength LED and phosphate in the concentration range 0 – 3 

mg·L-1 using a 880 nm peak wavelength LED [141]. The same research group developed also other 

smartphone based optical sensing systems for the analysis of water: a system for the estimation of 

mercury level concentration, based on fluorescence emission detected by the phone camera, [142] 

and two systems, exploiting the phone flash LED to generate the radiation and the embedded light 
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sensor for detection, to measure the fluoride level in drinking water [143] and the salinity level in 

oceanic water environment [144]. 

The main drawback of using the smartphone USB port for power supply and communication is due 

to the fact that connector standards vary among producers of mobile phones: USB port is used for 

communication in Android devices but, for example, not in the Apple iPhone that used a 30 pin 

connector for communication until 2012 (now replaced by the 8 pin Lighting connector). Moreover 

only the high-end Android smartphones features the USB-OTG interface while the others can only 

operate in device mode and thus the external hardware power must be supplied by batteries. 

Connecting a USB device to a smartphone results also in reduced phone battery life since the USB 

device maintains the phone awake and because of USB device own power consumption. At this 

regard, Veen et al. in 2017 proposed a USB switch controlled by the audio port that can reduce 

power consumption by 47 % [145]. 

 To provide a more standard port for power supply and wired communication with external 

hardware, some authors have proposed an interface based on the phone audio jack [146]. The 

working principle of this technique is shown in Fig. 5. A standard 3.5 mm audio jack has four 

terminals: the left and right audio channels, the common ground and the microphone input. The 

power is harvested from one of the two audio channels (left channel in Fig. 5) that generates a small 

voltage tone (few tens of mV) in the audio range (20 hz – 20 kHz); this tone is boosted with a 

transformer, rectified and finally the power supply voltage for the external board VDD is generated 

by a voltage regulator. The communication between the smartphone and the microcontroller is 

realized with the other audio channel (from smartphone to microcontroller) and the microphone 

(from microcontroller to smartphone). Since both the audio channels and the microphone block low 

frequency signals, the communication is carried out with frequency shift keying modulated packets, 

where the information is contained in the frequency of the signal for each packet (few ms of 

duration). 
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Many smartphone based systems exploiting the audio jack for power supply and communication 

have been proposed. Sun et al. discussed an electrochemical biosensor with peak power 

consumption of 5.7 mW and cost less than 30 USD that makes cyclic voltammetry measurements 

with potassium ferro-/ferricyanide [147]. A pH sensor system to monitor pulmonary exacerbations 

in cystic fibrosis patients has been proposed by the same research group in 2017 [148]. The system 

is based on the potentiostat IC LMP91200 by Texas Instruments, interfaced with two different types 

of pH electrodes (glass pH electrode and iridium oxide screen printed electrode) and a thermistor to 

compensate measured pH value due to temperature variations. The system has been tested both with 

PBS solutions with pH in the range 5.9 – 8.08 and patient sputum samples. Other examples include 

electrochemical sensing systems for the detection of Hepatitis C core antibody with a LOD of 12.3 

pM [149], to measure nitrate concentration in NaOH [150] and to measure the glucose 

concentration in a liquid sample [151]. Nemiroski et al. in 2014 proposed a portable electrochemical 

detector capable to perform different electroanalytical techniques (chronoamperometry, cyclic 

voltammetry, differential pulse voltammetry, square wave voltammetry and potentiometry) to 

measure different types of analyte [152]. Jiang et al. in 2017 presented a smartphone based sensor 

system performing electrochemical impedance spectroscopy measurements in the frequency range 

17 Hz – 17 kHz [153]. 

The use of the 3.5 mm audio jack for power and communication is not, however, without problems. 

First of all, the maximum power that can be provided by the smartphone from the audio jack is 

much lower than USB and varies greatly among different phone models [146]. Moreover, an always 

greater number of smartphone producers remove the analog audio jack to replace it with wireless 

solutions, thus, in a couple of years, this interface will not probably be a standard as it was in the 

past. 

A summary of smartphone sensing applications exploiting wired communication interface with 

external hardware is reported in Table 5. 

5.2 Wireless communication 
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The trend in the electronic industry is to migrate from wired to wireless communication interfaces 

and, from this point of view, the smartphone interfacing to external hardware is no exception. 

Modern mobile phones feature different types of wireless communication technologies: Wi-fi for 

long communication range (over 100 m), Bluetooth for short communication range (typically in the 

order of 10 m) and, in the case of high end smartphones, Near Field Communication (NFC) for very 

short range (10 cm). 

Currently, the most used protocol to interface the smartphone with external hardware in the 

development of low-cost portable sensing systems is Bluetooth (BT). It has been used in many 

smartphone sensing systems for a wide range of applications, from healthcare to environmental 

monitoring, from home security applications to biosensor systems. In the case of BT 

communication, however, the designed electronic board must feature its own source of power, i.e. 

batteries, that need to be regularly recharged or replaced. 

An example of BT technology used in smartphone healthcare applications was proposed by Dinh 

for a heart activity monitoring device [154]: the system, embedding a PIC microcontroller by 

Microchip and powered by a rechargeable 3.7 V Li-Pol battery, features ECG electrodes as well as 

a 3-axis accelerometer (MMA7260QT by Freescale). A similar system for cardiovascular disease 

detection that features a SD card for long time continous recording was proposed by Oresko et al. 

[155]. Lin et al. discussed a blood pressure monitoring system capable to perform a variety of 

measurements (pulse rate, systolic blood pressure, diastolic blood pressure) that communicates with 

smartphone via Bluetooth Low Energy (BLE), a BT based technology that provides much reduced 

power consumption while maintaining the same communication range [156]. Keith-hynes et al. in 

2014 proposed a smartphone based system for real-time control of blood glucose [157]: the 

smartphone runs on a modified Android OS removing all unnecessary features (like phone and text 

messaging) and communicates by BT with a commercial continous glucose meter and an insulin 

pump. A variety of commercial glucose meters interfaced to smartphone by BT were presented by 

Cappon et al. in 2017 [158]. Postolache et al. proposed a wrist bracelet for telecare assessment 
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[159]: the system, based on PIC24F microcontroller features a pulse oximeter (realized with two 

LEDs and a photodiode) to measure the blood oxygen saturation and a ADXL335 3-axis 

accelerometer to monitor the patient motion activity; data are transferred to smartphone by BT 

where are processed and then sent to a web site by Wi-fi. A smartphone based system to detect fall 

events was discussed by Bianchi et al. [160]: the electronic board, based on the microcontroller 

MSP430F149 and powered by a Li-Pol rechargeable battery, hosts a 3-axis accelerometer (sampling 

rate 40 Hz) and a barometric pressure sensor (sampling rate 1.8 Hz): the classification is carried out 

with a fixed threshold algorithm and the detection sensitivity and specificity was found 97.8% and 

96.7%, respectively. 

In the field of environmental monitoring smartphone based sensing systems exploiting BT for 

communication has been also proposed. Zappi et al. proposed an air quality monitoring sensor node 

based on the microcontroller ATMEGA1284p and powered with a rechargeable 7200 mWh Li-ion 

battery [161]: the system hosts three digital sensors (temperature, humidity and barometric 

pressure) and three electrochemical gas sensors to detect CO, NO2 and O3. Once acquired by the 

smartphone, data are processed and sent to a remote server. Another air quality sensor system, 

based on the microcontroller ATMEGA168 and measuring temperature, humidity, light and CO2 

concentration, was developed by Jiang et al. [162].  

Other applications exploiting BT communication are a smartphone based home security system 

[163], a mobile system for sensing non-speech body sounds [164] and an electroanalytical platform 

capable to discriminate honey samples according to bothanical and geographic origins, based on 

voltammetric measurements with a 3 electrodes system and PCA processing [165]. An interesting 

application in the field of bacterial biosensors was proposed by Jiang et al. in 2014 [166].  The 

system, shown in Fig. 6 (a) and (b), is based on the Arduino UNO development board and the 

AD5933 IC: AD5933 is a low-cost impedance analyzer on chip, interfaced with the microcontroller 

by Inter Integrated Circuit (I2C) port, capable to perform Electrochemical Impedance Spectroscopy 

(EIS) measurements [167] without expensive external instrumentations. EIS measurements were 
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carried out with a pre-concentrating microfluidic device on samples contaminated with different 

concentrations of Escherichia coli. The measured impedance spectrum has been modeled with the 

electrical circuit of Fig. 6 (c) (Randle’s model) and the bacterial concentration was found to be 

function of the charge transfer resistance Rct (decreasing for increasing contamination). A LOD of 

10 CFU/mL was found. The same research group used the same system with minor modifications 

also for the detection of 2,4,6-trinitrotoluene (TNT) [168] and to detect proteins for point-of-care 

testing [169]. A smartphone based EIS measurements system, this time for the bioelectrical analysis 

of human body to estimate body fluids compartments, was proposed by Choi et al. in 2015 

exploiting a 4 electrodes system (2 drive electrodes and 2 sense electrodes) [170]. A novel system 

for rapid, non-destructive testing of fruit ripeness, shown in Fig. 7, was developed by Das et al. in 

2016 [171]. The system, based on Arduino pro mini development board, estimates the ripening state 

of different varieties of apples by measurement of UV fluorescence from the Chlorophyll present in 

the fruit skin. A UV LED irradiates the fruit skin and the reflected radiation optical spectrum is 

measured by the embedded C12666MA IC, a low-cost spectrophotometer on chip for the 

wavelength range 340 to 780 nm. The peak intensity of Chlorophyll emission at 680 nm was related 

to the photosynthetic activity and ripening. The same research group also developed a mobile phone 

based mini-spectrophotometer for rapid screening of skin cancer [172]. 

While BT is the most used technology for wireless communication between a smartphone and an 

external electronic board, an alternative is represented by NFC. NFC is a wireless technology based 

on Radio Frequency Identification (RFID) operating in the high frequency band at 13.56 MHz and 

supporting a maximum data rate of 424 kbit/s [173] that can read passive NFC tags when the NFC 

reader is in close proximity (10 cm or less). An increasing number of smartphones, in particular 

high-end devices, integrate a NFC reader since this technology provides many easy ways for 

business and transactions [174], such as for example in the mobile payments [175], to implement a 

mobile virtual coupon system [176][177] and in tourism applications [178]. 
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Smartphone based sensor systems that communicate with external hardware by NFC can be 

classified in two different groups: passive and semi-passive [179]. Passive NFC systems are 

batteryless and the energy to power the external hardware is provided by the NFC reader 

(smartphone) by inductive coupling power transfer. Then, in passive NFC systems the 

measurements are carried out only when the smartphone is in close proximity to the system. Semi-

passive NFC systems, on the other hand, are battery powered and this allows the system to perform 

measurements at regular time intervals. These measurements are stored on some on-board memory 

and sent to the smartphone during the NFC transfer. Examples of semi-passive NFC systems are 

those devoted to food traceability [180] where some parameters (such as temperature and humidity) 

must be measured regularly and independently on the presence of the NFC reader in close 

proximity. 

Kassal et al. in 2013 presented a semi-passive sensor system for potentiometric measurements 

[181]. The system was built around the IC SL13A (now obsolete and replaced by SL900A), an ultra 

low power RFID transponder capable to operate both in passive or semi-passive mode featuring 

internal 8 kbit EEPROM, real-time clock, an internal temperature sensor and input for an external 

sensor. The device is powered with a 3V lithium coin cell and interfaced with a pH electrode. 

Measurements were carried out at time intervals of 10 minutes on phospate buffer solutions (for 5 

days) and fresh goat milk (for 6 days). The measured data produced an accuracy of 0.01 and 

precision of 0.03 if compared with a commercial pH meter. The same system with minor 

modifications has been interfaced with commercial test strips for glucose concentration 

measurements [182] and used to design a smart bandage with screen printed electrodes for the 

measurement of uric acid concentration [183]. The same research group in 2018 also developed a 

wireless fluorimeter based on smartphone [184]: the system, powered by a 3V lithium coin cell, 

performs fluorescence measurements using a LED and a photodiode and communicate with the 

phone by NFC using a MLX90128 transponder. This highly adaptable system has been tested for 

liquid analysis (detection of fluorescin in the concentration range 10-7 to 10-5 M using a 502 nm 
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LED) and paper based sensing (detection of chloride concentration in the range 1 – 100 mM using a 

355 nm UV LED). Magno et al. in 2016 designed a wearable smart bracelet that embeds a 3-axis 

accelerometer, an analog microphone, an analog 112x112 pixels camera and a temperature sensor 

[185]. The system, powered from a 40 mAh 3.7V Li-Pol rechargeable battery, is based on the 

microcontroller MSP430FR5969 (16 Mhz) and can communicate with a smartphone by NFC. To 

avoid the need of battery recharge or replacement an energy harvesting system is present that 

scavenges power from the embedded solar panels and thermoelectric generator modules. 

A compact dosimetric system based on passive NFC tag and smartphone was proposed by Carvajal 

et al. in 2017 [186]. The system measures dose of an ionizing radiation and was tested by irradiating 

a commercial DMOS transistor ZVP3306 with photon beam of 6 MV up to 20 Gy. The developed 

system is batteryless and harvests the power source from the electromagnetic field coming from the 

smartphone NFC link. In Fig. 8 (a) the schematic of the system is shown: the transistor source 

current is provided by the IC LM334 and the transistor threshold voltage shift (function of the 

radiation dose) is measured from the source voltage level. The source voltage is conditioned to be in 

the range 300 to 600 mV and acquired by the RFID transponder SL13A. The achieved sensitivity is 

4.75 ± 0.15 mV/Gy. A picture of the sensor tag and module are shown in Fig. 8 (b) and (c) while a 

picture of the whole system is represented in Fig. 8 (d). Another passive NFC based sensor was 

proposed by Rose et al. [187]. The system is an adhesive sensor patch embedding electrodes to 

monitor sweat electrolytes: Na+ concentrations from 10 to 90 mM were tested and a correlation of 

R2 = 0.92 was found. The proposed tag is based on the IC MLX90129, a RFID transponder working 

at 13.56 MHz, that, similarly to SL13A, can work both in passive and semi-passive mode, has an 

internal temperature sensor, can be interfaced to external resistive sensors and, in addition, features 

a SPI interface that can be used to communicate with a microcontroller. A battery-less enzymatic 

amperometric glucose sensor based on NFC technology was also discussed by Matoschitz et al. 

[188]. Boada et al. in 2018 designed a passive NFC device for the measurement of soil moisture 

[189]: the system, based on the Atmel low-power microcontroller ATtiny85, is interfaced with a 
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temperature and an humidity sensor and an interdigitated capacitive sensor for the measurement of 

soil volumetric water content (VWC). The system power (1 mA at 3.3 V) is provided by the 

M24LR04E-R NFC transponder (interfaced with an ad-hoc designed antenna) that harvests the 

energy from the smartphone. Good correlation with commercial sensors was achieved once the 

system was calibrated in the VWC range 0 – 50 %. 

An unconventional NFC based sensing system was discussed by Xu et al. in 2017 [190]. The 

working principle, as shown in Fig. 9 (a), is based on the fact that commercial NFC tags are realized 

with a RLC circuit and the resistance component RiC is characterized by a threshold RTH that 

disciminates the ability to read the tag, i.e. when the smartphone is in close proximity the tag is 

readable only if RiC < RTH. Thus the authors cut a section of the conducting aluminium film and 

placed an element in series to RiC whose resistance is function on the analyte of interest. The 

modified sensor gives a binary output, i.e. it can determine if the analyte concentration is higher or 

lower than a certain threshold. The measurement resolution can be increased by creating different 

replicas of the tag, each with a different value of the threshold, by changing the value of RiC. This is 

shown in Fig. 9 (b) where five different replicas of the tag are created to measure different 

concentration of ethanol. The proposed system has been successfully tested also for gas detection 

and the measure of bacterial concentration. The same working principle was also discussed by 

Azzarelli et al. for the concentration measurement of four different analytes (NH2, cycloexane, 

H2O2, H2O) [191] and by Ma et al. in 2018 for the measurement of different biogenic amines for 

food spoilage detection [192]. 

A summary of smartphone sensing applications exploiting wireless communication interface with 

external hardware is reported in Table 6. 

 

6. Prospects and Challenges 

The strong diffusion of smart mobile phones in the last years and the introduction of application 

delivery channels, where apps can be downloaded by smartphone users, have produced a change in 
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the sensing applications. In addition to traditional personal sensing systems, i.e. applications where 

a single device is involved, innovative mobile crowdsensing applications have been introduced 

[33][34][193]. In crowdsensing applications many smartphone users acquire data  that are sent to a 

cloud server where are processed and the results released to the public in the form of aggregated 

data and statistics, for example using social networks. Data acquisition in crowdsensing application 

can be carried out either with the internal smartphone sensors or using external sensors: the second 

choice is however used only for projects with a small number of partecipants, since this results in 

increased costs per user. Crowdsensing applications can be classified as participatory or 

opportunistic [194]. In participatory applications the user is responsible for data acquisition (for 

example taking a photo or  making a measurement). In opportunistic applications, instead, the user 

is only asked to start the application while data acquisition is carried out automatically at regular 

time intervals. Both types of application have advantages and drawbacks. In the case of 

participatory sensing, the frequency of data acquisition can be the result of the user interest in 

participating the project. This problem does not affect opportunistic sensing (where sensors data are 

acquired at regular time intervals) but, in this case, data quality can be reduced if sensors are 

measured at the wrong moment (for example a microphone is acquired when the phone is in the 

user pocket or in a noisy environment). Examples of crowdsensing applications are, for example, 

SecondNose [195], where an external air pollution sensor, interfaced by BT with the smartphone, 

collects environmental and air pollution parameters, or Pazl [196], a Wi-fi based indoor monitoring 

system. Programming framework to develop crowdsensing applications on smartphone have been 

also proposed [197][198]. 

Another type of application that is gaining popularity is persuasive sensing, where collected data are 

analyzed and presented to the user not only to inform but also to persuade to change behavior by 

using on-screen animations or simple games. Examples of smartphone based persuasive sensing 

applications are: BeWell [199] that exploits the phone accelerometer and microphone to monitor 

sleep, physical activity and social interaction and presents the results in the form of an aquatic 
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ecosystem animation displayed on the phone lock-screen and wallpaper; Sensing Fork [200] that 

interfaces the phone by BT with an external accelerometer, electrodes and color sensor to detect the 

eating behavior of children and try to motivate them using an integrated game; UKKO [201] that, 

using a commercial environmental sensor interfaced by BT and the phone GPS, monitors children 

route in walking to school and promotes healthy walking using an integrated virtual pet game. 

Despite the increasing interest in smartphone based sensing systems, there are also some gaps that 

need further research. The major challenges are represented by the energy consumption and, in the 

case of crowdsensing applications, the privacy concerns. The energy consumption is a big problem 

since a quick depletion of the phone battery has a strong impact on the willingness to use the 

application. The advance in smartphone sensing system is characterized by the adoption of multi-

sensors fusion techniques [202][203] and computationally intensive deep learning algorithms 

[204][205] that contribute to increase the energy consumption problem. At this regard, power 

management [206] and optimization techniques [207] have been proposed to save energy [208]: for 

example not all sensors are characterized by the same power consumption (camera and GPS are 

more power expensive than accelerometer) and the choice of the correct sensor as well as a lower 

sampling rate can help to mitigate the problem. In the case of crowdsensing application, power 

saving can be achieved also by the implementation of the most computationally intensive 

algorithms on the cloud server and the use of low-power wireless networks. The use of energy 

harvesting techniques to scavenge power from natural energy sources such as solar [209] and 

thermal [210] can also help to extend battery life. The privacy problem is important in particular for 

crowdsensing applications, where the participating users share personal data. Most privacy concerns 

are related to data from camera, microphone and GPS. However, recent investigations have shown 

how other phone sensors can also produce privacy violations: for example Liang et al. have used the 

smartphone accelerometer and a deep-learning algorithm to detect tap position on the screen and 

thus infer apps usage habits and passwords [211]. Different techniques to protect the user privacy 

have been proposed in literature [212][213][214]. 
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7. Conclusions 

A survey of measurement and sensor systems development using modern mobile phones has been 

presented. The exploitation of smartphone as a sensing system is gaining always more interest due 

to the strong computing capability, rich set of embedded sensors and integrated wired and wireless 

communication technology. 

The recent large diffusion of smartphones even in developing countries represents an opportunity 

for the development of low-cost sensor systems, in particular in the field of healthcare, point-of-care 

diagnostic and food analysis, to provide services in places lacking the access to diagnostic 

laboratories and expensive instrumentation. In addition, the pervasive computing and large mass 

storage memories available in modern mobile phones allow the implementation of computational 

intensive machine learning algorithms in crowdsensing applications where big data are acquired 

from a large number of users. 

Two different approaches in the design of smartphone based sensing systems have been discussed. 

The first, based on the exploitation of the large number of sensors embedded in the device, is the 

most appealing since allows the system development using already available hardware, thus 

minimizing the cost of the system. Sometimes, however, the required sensors are not available in 

the phone or the sensor performance does not meet the requirements. In this case external sensors 

must be added and interfaced with ad-hoc designed external hardware (usually based on 

microcontroller) that communicates with the smartphone using the available wired or wireless 

communication technology. 

The quick advance in smartphone based sensing systems is not, however, without problems. The 

increased computing capability and number of embedded sensors produce an increase of the phone 

power consumption that, in the end, results in faster battery discharge. Moreover, in the case of 

crowdsensing applications, where users share collected data in cloud servers, privacy concerns arise 
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for possible threats to the users personal information. Thus, progress in these research lines is 

mandatory for the future of efficient and safe smartphone based sensing systems.  
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Fig. 1 Optical spectrophotometer for mobile phone. Reprinted with permission from [69]. 
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Fig. 2 Smartphone based fluorescence microscopy for point-of-care testing. Reprinted with 

permission from [88]. 
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Fig. 3 Pulse oximeter for the measurements of oxygen saturation and heart rate exploiting the 

smartphone audio port. Reprinted with permission from [101]. 
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Fig. 4 Smartphone based system to prevent fall accidents in the construction industry. Reprinted 

with permission from [117]. 
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Fig. 5 Schematic of the circuit used for power harvesting and communication using the mobile 

phone analog 3.5 mm audio jack. 
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Fig. 6 Bacterial biosensor system using Bluetooth technology to communicate with the mobile 

phone. Reprinted with permission from [166]. 
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Fig. 7 Smartphone based system for rapid non-destructive testing of fruit ripeness. It uses Bluetooth 

for communication with the mobile phone. Reprinted with permission from [171]. 
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Fig. 8 Compact dosimetric system based on passive NFC tag and smartphone. Reprinted with 

permission from [186]. The Android robot is reproduced or modified from work created and shared 

by Google and used according to terms described in the Creative Commons 3.0 Attribution License. 
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Fig. 9 Passive NFC tag sensor for biochemical sensing with smartphone. Reprinted with permission 

from [190]. 
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Application Ref. 

Healthcare [16][17][18] 

Sleep screening [19] 

Point-of-care diagnostic [20] 

Optical sensing in resource limited settings [21] 

Treatment of eating disorders [22] 

Food analysis [23] 

Sensors in agriculture [24] 

Biosensors and bioelectronics [25][26] 

Portable spectrophotometers [27] 

Mobile microscopy [28] 

Activity recognition [29] 

Intelligent transportation systems [30][31] 

Road condition monitoring [32] 

Mobile crowdsensing [33][34][35] 

 

Table 1 Review articles of smartphone based systems for different fields of application. 
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Working principle Target(s) Range of detection Ref. 

colorimetric pH test strips 0 – 14 [36] 

colorimetric 25-hydroxyvitamin D concentration 15 – 110 nM [37] 

colorimetric alcohol concentration in saliva 0 – 0.3% [38] 

colorimetric pH, protein and glucose in urine 5 – 9, 0 – 100 mg/dL, 0 – 300 mg/dL [39] 

colorimetric blood hematocrit level 10 - 65% [41] 

colorimetric streptomycin concentration in food 50 – 267 nM [42] 

colorimetric BSA, catalase enzyme and carbohydrate 0 – 1 mg/mL, 0 – 1 mg/mL, 0 – 140 µg/mL [43] 

colorimetric cloud coverage 4 – 98% [48] 

colorimetric surface corrosion of iron N/A [50] 

irradiance measurement UVA solar irradiance 0 – 10 mW/m2 [60] 

irradiance measurement UVA aerosol optical depth 0.05 – 0.20 [61] 

irradiance measurement UVB solar irradiance 1 – 9 mW/m2 [63] 

irradiance measurement atmospheric total ozone column 260 – 320 DU [65] 

irradiance measurement SO2 volcanic emission 0 – 3.5 kg/s [66] 

fluorescence ochratoxin A concentration in beer 2 – 20 µg/L [44] 

fluorescence degradation level of olive oil N/A [45] 

fluorescence discrimination of different edible oils N/A [46] 

fluorescence bisphenol A concentration in water 4.4 – 200 µM [47] 

electrochemiluminescence 2-(dibutylamino)ethanol and L-proline 0 – 5 mM, 0 – 10 mM [52] 

Mie scattering Escherichia coli in water 10 – 105 CFU/mL [53] 

Mie scattering bacterial concentration in meat 10 – 108 CFU/mL [54] 

spectrophotometric pH for river quality water 6 – 8 [69] 

spectrophotometric BSA protein and trypsin enzyme concentration 0 – 0.30 mg/mL, 0 – 0.30 mg/mL [70] 

spectrophotometric optical spectrum (color dyes and milk samples) N/A [73] 

spectrophotometric Fe2+ in medicine and Na+ in saline solutions 2.93 – 4.76 mg/L, 0.78 – 2.01 mg/L [74] 

spectrophotometric porcine immunoglobulin concentration 4.25 nM – 3.4 µM [76] 

computer vision bacterial colony counter 0 – 96 CFU [79] 

computer vision bacterial colony counter N/A [80] 

computer vision bacterial colony counter 0 – 250 CFU [81] 

computer vision bacterial colony counter N/A [82] 

computer vision bacterial colony counter 0 – 500 CFU [83] 

computer vision surveillance of fruit flies N/A [84] 

computer vision food recognition tool N/A [85] 

computer vision food recognition and nutritional value N/A [86] 

computer vision heart rate measurement N/A [87] 

mobile microscopy cell imaging (brightfield and fluorescent) N/A [88] 

mobile microscopy image analysis of green algae in freshwater N/A [89] 

 

Table 2 Applications of smartphone based systems exploiting the embedded camera. 
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Working principle Target(s) Accuracy Ref. 

sound recording and analysis chronic lung diseases average error 5.1%, detection rate 80 – 90% [90] 

sound recording and analysis chronic lung diseases average error 8.01% [91] 

sound recording and analysis number of coughs detection rate 92% [92] 

sound recording and analysis respiratory rate estimation error < 1% [93] 

sound recording and analysis nasal symptoms N/A [94] 

sound recording and analysis snoring quantification correlation > 0.9 [95] 

sound recording and analysis hearing threshold in noisy environment N/A [96] 

sound recording and analysis hearing screening with quality control detection rate 97.8% [97] 

sound recording and analysis tremor detection N/A [98] 

sound recording and analysis air filter particulate loading detection rate 80% [99] 

sound recording and analysis cars approaching pedestrians detection rate 91% [100] 

non-audio signal processing oxygen saturation and heart rate RMS accuracy 0.45 – 0.85%, R2 = 0.99 [101] 

non-audio signal processing histamine concentration in PBS accuracy 1% in impedance range 120Ω – 10kΩ [102] 

 

Table 3 Applications of smartphone based systems exploiting the embedded microphone. 
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Sensor(s) Application type Detection rate Ref. 

GPS crowd dynamics monitoring N/A [103] 

GPS crowd dynamics monitoring N/A [104] 

GPS bicycle tracking N/A [105] 

GPS driving speed monitoring N/A [106] 

accelerometer activity recognition 88% [107] 

accelerometer activity recognition 70% [108] 

accelerometer activity recognition 91% [109] 

accelerometer, gyroscope activity recognition 90% [110] 

accelerometer, gyroscope, magnetometer, linear accelerometer activity recognition N/A [111] 

accelerometer, gyroscope, microphone activity recognition 86% [112] 

accelerometer fall detection 97% [114] 

accelerometer fall detection 98.4% [115] 

accelerometer fall detection N/A [116] 

accelerometer, gyroscope fall portent detection 88.5% [117] 

accelerometer seismic events monitoring N/A [118] 

accelerometer, magnetometer, GPS seismic events monitoring N/A [119] 

accelerometer structural health monitoring N/A [120] 

accelerometer structural health monitoring N/A [121] 

accelerometer, gyroscope vibration and cable force tests N/A [122] 

accelerometer driver behavior and road conditions N/A [123] 

accelerometer, gyroscope driver behavior monitoring 90% [124] 

accelerometer, gyroscope, magnetometer driver behavior monitoring 96% [125] 

accelerometer, gyroscope, magnetometer driver behavior monitoring 91% [126] 

accelerometer, gyroscope, GPS, camera driver behavior monitoring 77 – 91% [127] 

accelerometer, magnetometer, GPS road conditions monitoring 78% [128] 

accelerometer, gyroscope road conditions monitoring 98% [129] 

accelerometer, gyroscope, GPS road conditions monitoring 90% [130] 

 
 

Table 4 Applications of smartphone based systems exploiting the embedded accelerometer, 

gyroscope, magnetometer and GPS. 
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Communication interface Target(s) External hardware Ref. 

USB OTG heart rate silver coated dry electrodes [132] 

USB OTG malaria biomarker PfHRP2 conc. microfluidic chip and photodiode [133] 

USB OTG clenbuterol concentration 3-electrodes amperometric immunosensor [134] 

USB OTG gender verification in human serum 3-electrodes amperometric immunosensor [135] 

USB OTG metals electrical conductivity and lift-off custom made impedance probe [136] 

USB OTG alcohol determination in blood samples 3-electrodes micro potentiostat [137] 

USB OTG emission properties of iridium complex electrochemiluminescence sensing system [138] 

USB OTG detection of nitroaromatic explosives electrochemiluminescence sensing system [139] 

USB OTG water turbidity IR LED powered by USB [140] 

USB OTG iron(II) and phosphate in water IR and Vis LEDs powered by USB [141] 

USB OTG Hg(II) concentration in water 532 nm laser powered by USB [142] 

audio jack cyclic voltammetry measurements custom made potentiostat [147] 

audio jack pH to monitor pulmonary exacerbations LMP91200 interfaced with two pH electrodes [148] 

audio jack Hepatitis C core antibody concentration custom made potentiostat [149] 

audio jack nitrate concentration in NaOH microfluidic amperometric sensor [150] 

audio jack glucose concentration in liquid electrochemical biosensor [151] 

audio jack electrochemical measurements electrochemical sensor and potentiostat [152] 

audio jack point-of-care diagnostics multiplexed electrochemical sensor [153] 

 
 

Table 5 Applications of smartphone based systems exploiting wired communication to interface 

with external hardware. 
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Communication interface Target(s) External hardware Ref. 

Bluetooth heart activity monitoring ECG electrodes and 3-axis accelerometer [154] 

Bluetooth cardiovascular disease detection ECG electrodes [155] 

Bluetooth pulse rate, blood pressure homemade blood pressure monitor [156] 

Bluetooth real-time control of blood glucose commercial glucose meter and insulin pump [157] 

Bluetooth real-time control of blood glucose different commercial glucose meters [158] 

Bluetooth telecare assessment pulse oximeter and 3-axis accelerometer [159] 

Bluetooth fall detection 3-axis accelerometer and barometric sensor [160] 

Bluetooth air quality monitoring sensor node temperature, humidity, pressure and gas sensors [161] 

Bluetooth air quality sensor system temperature, humidity, light, CO2 sensors [162] 

Bluetooth home security system Arduino UNO and magnetic switch [163] 

Bluetooth non-speech body sounds sensing custom made microphone [164] 

Bluetooth honey geographic origins 3-electrodes electrochemical sensor [165] 

Bluetooth Escherichia coli concentration 2-electrodes microfluidic sensor and IC AD5933 [166] 

Bluetooth 2,4,6-trinitrotoluene concentration 3-electrodes biosensor and IC AD5933 [168] 

Bluetooth BSA and thrombin concentration different impedance biosensors and IC AD5933 [169] 

Bluetooth human body fluids compartments 4-electrodes impedance sensor [170] 

Bluetooth non-destructive fruit ripening state UV LED and IC C12666MA [171] 

Bluetooth rapid skin cancer screening UV LED, white LED and IC C12666MA [172] 

semi-passive NFC potentiometric measurements temperature sensor and pH electrode [181] 

semi-passive NFC glucose concentration using test strips temperature sensor and pH electrode [182] 

semi-passive NFC uric acid concentration temperature sensor and pH electrode [183] 

semi-passive NFC fluorescin and chloride concentration LED and photodiode [184] 

semi-passive NFC low-energy multi sensor measurements accelerometer, microphone, camera, temperature [185] 

passive NFC ionizing radiation dose DMOS ZVP3306 and conditioning circuit [186] 

passive NFC sweat electrolyte concentration adhesive sensor patch embedding electrodes [187] 

passive NFC glucose concentration amperometric sensor (glucose test strips) [188] 

passive NFC soil moisture measurement interdigitated capacitive sensor [189] 

passive NFC gas detection, bacterial concentration custom modified passive NFC tag [190] 

passive NFC NH2, cyclohexane, H2O2, H2O conc. custom modified passive NFC tag [191] 

passive NFC NH3, putrescine and cadaverine conc. custom modified passive NFC tag [192] 

 
 

Table 6 Applications of smartphone based systems exploiting wireless communication to interface 

with external hardware. 


