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A fully three-dimensional linear stability analysis is carried out to investigate the
unstable bifurcations of a compressible viscous fluid past a sphere. A time-stepper
technique is used to compute both equilibrium states and leading eigenmodes. In
agreement with previous studies, the numerical results reveal a regular bifurcation
under the action of a steady mode and a supercritical Hopf bifurcation that
causes the onset of unsteadiness but also illustrate the limitations of previous
linear approaches, based on parallel and axisymmetric base flow assumptions, or
weakly nonlinear theories. The evolution of the unstable bifurcations is investigated
up to low-supersonic speeds. For increasing Mach numbers, the thresholds move
towards higher Reynolds numbers. The unsteady fluctuations are weakened and
an axisymmetrization of the base flow occurs. For a sufficiently high Reynolds
number, the regular bifurcation disappears and the flow directly passes from an
unsteady planar-symmetric solution to a stationary axisymmetric stable one when
the Mach number is increased. A stability map is drawn by tracking the bifurcation
boundaries for different Reynolds and Mach numbers. When supersonic conditions
are reached, the flow becomes globally stable and switches to a noise-amplifier
system. A continuous Gaussian white noise forcing is applied in front of the shock
to examine the convective nature of the flow. A Fourier analysis and a dynamic
mode decomposition show a modal response that recalls that of the incompressible
unsteady cases. Although transition in the wake does not occur for the chosen
Reynolds number and forcing amplitude, this suggests a link between subsonic and
supersonic dynamics.
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1. Introduction
The onset of large-scale unsteadiness for viscous fluids past axisymmetric bodies

represents one of the major subject of study for several modern engineering
applications, especially in the field of launcher afterbodies. The complex three-
dimensional (3-D) wake dynamics associated with a wide range of axisymmetric
bodies (such as disks, spheres or spheroids) shares many similarities and fundamentally
differs with respect to its two-dimensional (2-D) counterparts (i.e. in a cylinder wake).
In this respect, the wake behind a sphere may be considered as a representative
simplified case for axisymmetric bodies. Both numerical simulations and experiments
carried out on spheres at low Reynolds numbers reveal the existence of a toroidal
recirculation behind the solid body (see Taneda (1956) for the first experimental
evidence). Several authors (Magarvey & Bishop 1961; Natarajan & Acrivos 1993;
Tomboulides, Orszag & Karniadakis 1993; Wu & Faeth 1993) also show that a first
bifurcation occurs when a critical Reynolds number, based on free-stream quantities
and the sphere diameter, is reached (Re(1)c ) and yields to the loss of axial symmetry
of the steady base flow. The wake is shifted along the normal direction and exhibits
a pair of steady streamwise vortices that extend on a very long distance downstream
of the body. Although the flow is no longer axisymmetric, a reflectional symmetry of
a plane in the streamwise direction still exists. When the Reynolds number is further
increased beyond a second critical value (Re(2)c ) the flow undergoes a supercritical
Hopf bifurcation and is dominated by a low-frequency shedding of hairpin-like
vortices in a Strouhal number range of St ≈ 0.1–0.2 (see Tomboulides et al. (1993),
Johnson & Patel (1999), Ormières & Provansal (1999), Schouveiler & Provansal
(2002) and Gumowski et al. (2008) for experimental results and direct numerical
simulations).

The direct numerical simulations (DNS) of Tomboulides & Orszag (2000), carried
out by using a mixed spectral element/Fourier method, show that a primary bifurcation
occurs at Re(1)c ≈ 210 and that the flow remains steady until Re(2)c ≈ 270. Extensive
steady-state axisymmetric numerical simulations and linear stability analyses of flow
past a sphere were reported by Ghidersa & Dusek (2000), Tezuka & Suzuki (2006)
and Morzyński (2009). Within a linear analysis framework, the axisymmetry breaking
can be understood by reducing the system into subspaces, each of them being
associated with a different azimuthal wavenumber (referenced by m in what follows).
As reported by previous authors, the primary bifurcation is seen to arise from a
temporally amplified steady mode for the subspace corresponding to m = 1. The
bifurcation is then regular. Ghidersa & Dusek (2000) and Meliga, Sipp & Chomaz
(2007) also pointed out that the superposition of the steady mode modulated by an
arbitrary amplitude onto the base flow induces a loss of symmetry and causes the
appearance of a double-threaded wake, observed both experimentally and numerically.
The axisymmetric base flow assumption of the linear stability theory can therefore
yield inaccurate descriptions of the flow around the second (Hopf) bifurcation, with
repercussions for the identification of critical Reynolds number and characteristic
frequency.

As underlined by Meliga et al. (2007) and Fabre, Auguste & Magnaudet (2008),
the relevance of a stability analysis based on axisymmetric equilibrium states that no
longer exist at these Reynolds numbers, is questionable. To fill the gap between
the theory and numerical/experimental predictions, Pier (2008) investigates the
absolute/convective properties of the planar symmetric basic state under the parallel
flow assumption along the streamwise direction. While the existence of an absolutely
unstable pocket has been clearly established by the author, the prediction of both
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the critical Reynolds number and the Strouhal number is very rough due to strong
non-parallel effects. Trying to overcome the effect of the steady mode on the base
flow, Meliga et al. (2007) and Fabre et al. (2008) reinterpreted the Hopf bifurcation as
a weakly nonlinear interaction between the stationary mode and the unsteady mode
associated with an axisymmetric base flow. While the resulting dynamical system
of coupled amplitude equations appropriately depicts the bifurcation diagram, the
assumption of simultaneous nearly neutral modes (i.e. for the steady and oscillatory
modes) represents an inconsistency since the primary and secondary bifurcations
occur at different values of the Reynolds number.

These findings motivate the investigation of the Hopf bifurcation by means of a
linear stability analysis that allows a 3-D equilibrium state. Citro et al. (2017) recently
carried out a fully 3-D global linear stability analysis without any assumption on the
base flow (see Theofilis (2011) for a review) by using a time-stepper approach (see
Edwards et al. (1994) and Bagheri, Åkervik & Henningson (2009)). Citro et al. (2017)
used an in-house stabilization algorithm called BoostConv (Citro et al. 2015) to obtain
the planar-symmetric steady base flow that is unstable above the Hopf bifurcation and
found a close match between the leading mode and the onset of the unsteadiness.

While the space–time dynamics of large-scale motions for the flow around a
sphere is now well predicted by linear stability analysis, little is known about the
effect of compressibility on the coherent structures in the wake region. Assuming
an axisymmetric base flow configuration independently of the Reynolds number,
Meliga, Sipp & Chomaz (2010) examined the effect of compressibility on the linear
stability of wake flows, such as an afterbody at zero angle of attack and a sphere.
By following the stable and unstable regions in a M–Re plane, they showed that for
the supercritical Hopf bifurcation there exists a stabilizing (destabilizing) effect of the
Mach number for the afterbody (sphere) flow. As well as not considering the 3-D
effects for the base flows around the Hopf bifurcation, their analysis did not account
for the presence of shock waves and it was limited up to M ≈ 0.7. A compressible
perfect gas with constant specific thermal conductivity and dynamic viscosity related
by a unit Prandtl number was considered, limiting some coupling effects between
the temperature and momentum equations. Nagata et al. (2016) investigated the
evolution of both the mean flow topology and the unsteadiness of the wake behind a
sphere at high Mach and low Reynolds numbers conditions by performing nonlinear
fully 3-D DNS calculations. The authors showed that an increasing Mach number
has a stabilizing effect that causes an axisymmetrization of the flow and/or the
disappearance of the unsteady self-sustained periodic behaviour. In a second study at
higher Reynolds numbers, Nagata et al. (2018) showed that for a supersonic case at
M = 1.2 the wake is axisymmetric and steady up to Re= 750 and that the unsteady
hairpin shedding only starts at Re = 1000. However, the origins of such phenomena
were not discussed in the light of global linear stability theory.

Global stability analysis has been recently shown to be successful for compressible
applications of supersonic jets (Ray & Lele 2007; Nichols, Lele & Moin 2009;
Beneddine, Mettot & Sipp 2015), parabolic and bluff bodies (Mack, Schmid &
Sesterhenn 2008; Meliga et al. 2010), open cavities (Brès & Colonius 2008) and
shock-wave/boundary-layer interactions (Crouch, Garbaruk & Magidov 2007; Robinet
2007; Sartor et al. 2015; Guiho, Alizard & Robinet 2016). Although the presence of
shock waves was considered in some of these studies, fully 3-D configurations with
shock waves are almost non-existent in the literature.

At high Mach and low Reynolds number conditions, as in Nagata et al. (2016,
2018), the sphere diameters under consideration would be in the range D =
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10−5–10−4 m. Despite the absence of any practical application, a better understanding
of the compressibility effects on the unstable bifurcations of axisymmetric bodies
serves to extend the state-of-the-art knowledge but may also provide a first step
towards the physical modelling of large scale motion arising in more realistic
configurations. In this context, the objective of this work is not only to understand
the evolution of the sphere unstable bifurcations with Mach numbers up to supersonic
speeds but also to show the capability of global stability analysis in capturing and
explaining complex 3-D phenomena in the presence of shock waves and separated
regions.

The paper is organized as follows. The numerical methods for DNS and linear
global stability are described in §§ 2 and 3. In § 4, the quality of the DNS and
time-stepping approach are assessed for the low Mach number regime through
detailed comparison with the incompressible case; the regular and Hopf bifurcations
are described both in terms of direct numerical simulations and global modes. The
supersonic regime is investigated in § 5 to analyse the effect of the Mach number on
the flow dynamics. Concluding remarks and prospects are given in § 6.

2. Problem formulation
2.1. Governing equations

The 3-D Navier–Stokes (N–S) equations for a compressible perfect gas are considered.
These equations govern the evolution of the system state q = [ρ, ρu, ρE]T in the
conservative form, where ρ, u and E are the fluid density, the velocity vector
and the total energy, respectively. The governing equations can be written in the
non-dimensional form as:

∂q
∂t
=R(q), (2.1)

where R is the differential nonlinear N–S operator. The explicit form of (2.1) is given
in Guiho et al. (2016).

2.2. Stability problem
Linear stability analysis assumes the existence of an equilibrium solution, qb, for the
system (2.1) referred to as the base flow and defined by R(qb)= 0. In the following,
the base flow qb(x) is assumed to be 3-D, with x = [x, y, z]T representing the array
of the streamwise, vertical and transverse directions, respectively. Using the standard
small perturbation technique, the instantaneous flow is decomposed into base flow and
small disturbances q(x, t) = qb(x) + εq′(x, t), where ε � 1. The resulting equations
are further simplified by considering that the perturbation is infinitesimal, allowing
the nonlinear fluctuating terms to be neglected. Thus, the compressible N–S equations
become a system of linear partial differential equations defined by

∂q′

∂t
=J q′, (2.2)

where the vector q′ = [ρ ′, ρ ′ub + ρbu′, ρ ′Eb + ρbE′]T represents the conservative
perturbation variables and J = ∂R/∂q|qb

is the Jacobian operator obtained by
linearizing the N–S operator R around the base flow qb (see Guiho et al. 2016).
Assuming a normal mode decomposition, the asymptotic behaviour of a small
perturbation is driven by q′(x, t) = q̂(x) exp(λt) + c.c., where (q̂(x), λ) satisfies
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the eigenproblem J q̂ = λq̂. By splitting the eigenvalue into its real and imaginary
part λ= σ + iω, the equilibrium state qb is allowed to bifurcate into another solution
if the temporal amplification rate, σ , of the least damped mode becomes positive (in
a linear framework).

3. Numerical strategy
3.1. Phoenix code

All numerical simulations in this paper were run with an in-house solver named
PHOENIX (Goncalves & Houdeville 2009), to compute both the linearized and the
full N–S equations. The code solves the compressible N–S equations on multi-block
structured grids with a finite-volume approach. Roe’s flux difference splitting scheme
(Roe 1981) is employed to obtain advective fluxes at the cell interface for all
equations. The monotonic upwind scheme for conservation laws (MUSCL) approach
extends the spatial accuracy to third order and, with reference to the supersonic cases,
no flux limiters are used. All viscous terms are differentiated by a second-order
centred scheme. For unsteady computations, the dual time-stepping method proposed
by Jameson (1991) is used. The derivatives with respect to the physical time are
discretized using a second-order extrapolation. The boundary conditions used for
the steady or unsteady nonlinear calculations (to compute both incompressible and
compressible base flow solutions and unsteady cases above the Hopf bifurcation)
are: no-slip velocity, adiabatic temperature and pressure extrapolation on the sphere;
imposed uniform velocity U∞ at the inflow of the numerical domain; characteristic
boundary conditions at the domain lateral boundaries and outflow to minimize wave
reflections.

3.2. Eigenvalue resolution
The same discretization schemes used for the nonlinear N–S equations (2.1) are
applied to the set of linearized equations (2.2). However, the spatial schemes as well
as boundary conditions need to be adapted to comply to the linearization procedure.
As suggested by Crouch et al. (2007), the Roe scheme is based on the Jacobian matrix
of the new flux function associated with the linearized equations. Similarly, the same
boundary conditions presented in § 3.1 for the base flow calculations are linearized
and used for the stability analysis. While zero-velocity perturbations are enforced on
the sphere wall and domain inlet, the characteristic boundary conditions are evaluated
on the base flow solution. To solve this eigenproblem a matrix-free method is used
(Edwards et al. 1994; Bagheri et al. 2009). A linear operator P = exp(J1T) that
maps q′(tn+1) = Pq′(tn) is introduced, with tn+1

= tn
+ 1T and J the discrete form

of J . In this framework, the action of the operator P can be approximated by a
time-marching integration of the linearized N–S equations. The dominant eigenmodes
of P are thus extracted by means of an Arnoldi algorithm (Arnoldi 1951; Lehoucq
1997; Barkley, Blackburn & Sherwin 2008) coupled to the linear solver (see Loiseau
et al. (2014) and Guiho et al. (2016)). While P and J have the same eigenfunctions,
the eigenvalues of J are recovered through λ = log Λ/1T , where Λ denotes an
eigenvalue of P. The number of iterations for the Arnoldi technique (Ns) and 1T are
chosen to ensure (i) convergence of the algorithm and (ii) that Nyquist criterion is
satisfied. Depending on the case and with the objective to obtain a minimal eigenvalue
convergence lower than 10−6, the time step between two consecutive snapshots varies
in the range 1T = (10–130)1t, with 1t = 0.01 × U∞/Ds, Ds the diameter of the
sphere and U∞ the free-stream velocity, with the dimension of the Krylov subspace
in the range Ns = (80–240).
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FIGURE 1. Schematic representation of the computational domain.

Parameters Sphere flow

Free-stream Mach number M = 0.1
Free-stream stagnation temperature Ti,∞ = 287 K
Free-stream stagnation pressure Pi,∞ = 1.013× 105 Pa
Reynolds number Re ∈ [200; 320]

TABLE 1. Free-stream parameters for the nearly incompressible sphere flow calculations.

4. Regular and Hopf bifurcations of a nearly incompressible flow past a sphere
The numerical investigations first focus on the onset of the unstable bifurcations

for a nearly incompressible flow, i.e. at M = 0.1. Several Reynolds numbers around
the regular and Hopf bifurcations are considered to describe the breaking of the
axisymmetry and onset of unsteadiness, respectively. As well as validating the code
against experimental and numerical work present in the literature, especially against
Citro et al. (2017) for the Hopf bifurcation since a fully 3-D analysis is performed
without any assumptions for the base flow, this section aims at providing a complete
picture of the bifurcations in the incompressible regime and introducing the extension
to the compressible one presented in the following section.

4.1. Simulation details
The numerical set-up is displayed in figure 1 where the domain configuration and
main characteristic scales are presented. The computational domain is composed of 7
blocks and the grid resolution is selected to be (nx, ny, nz)= (112, 112, 112) for each
block. The size of the numerical domain is selected to be (Lx, Ly, Lz)= (20, 10, 10).
A sensitivity study on grid resolution and domain size is presented in appendix A.
To avoid any downstream spurious reflection, the grid of the last block is stretched
in the streamwise direction downstream of the body. The selected Reynolds numbers
are Re = 200, 210, 220 for the characterization of the regular bifurcation and Re =
250, 260, 270, 280, 290, 300, 320 for the Hopf one. The flow conditions are given
in table 1. The time and length scales are made dimensionless using U∞/Ds and Ds,
respectively. The dimensionless frequency is defined as St=ω/2π.

4.2. Base flow
The N–S equations are discretized by an implicit scheme and solved by a pseudo-
unsteady approach (Jameson 1991). For all the computed base flows the Courant–
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FIGURE 2. (a) The separation length Lsep is plotted as a function of the Reynolds
number up to Re= 200 and compared against both numerical simulations and experiments.
(b) Separation lengths around the two unstable bifurcations for steady axisymmetric
(full circles), steady planar-symmetric (empty circles) and time-averaged planar-symmetric
(empty diamonds) solutions.

Friedrichs–Lewy (CFL) number is equal to 10 and the steady solutions are converged
until the residuals of the state variables in the L2-norm are lower than 10−8.

Before investigating the base flow characteristics around the two bifurcations, the
evolution of the separation bubble length is compared against the results reported
in Taneda (1956), Tomboulides et al. (1993), Magnaudet, Rivero & Fabre (1995),
Johnson & Patel (1999) and Bouchet, Mebarek & Duŝek (2006) for Reynolds
numbers up to Re= 200 (figure 2a). Good agreement is shown between the present
and aforementioned results and only (globally stable) steady axisymmetric solutions
exist.

Similarly to Bouchet et al. (2006), the calculated separation lengths associated with
the Reynolds numbers around the two bifurcations are plotted in figure 2(b).

Above Re= 210, an implicit method is used (Lomax & Steger 1975) where steady
axisymmetric flows (full circles fitted by a solid line) are obtained by starting from
a very well converged axisymmetric solution (with the residuals of the state variables
in the L2-norm below 10−8) and progressively increasing the Reynolds number. Thus,
the solution quickly converges to an axisymmetric one with a longer separation region.
However, this strategy does not allow us to calculate well converged solutions far from
the threshold of the regular bifurcation and axisymmetric flows could only be obtained
up to Re= 260 with this method. These solutions constitute unstable fix points that,
through a regular bifurcation, cause the steady wake behind the sphere to become
planar-symmetric and are selected to study the evolution of the regular bifurcation
with the Reynolds number in § 4.3.

Different methods, such as the Newton–Krylov (Edwards et al. 1994) or selective
frequency damping method (Åkervik et al. 2006), can be used to obtain the
equilibrium solution of the system in (2.1) when unsteady solutions exist above
the secondary Hopf bifurcation. However, the implicit scheme combined to a
pseudo-unsteady approach at high CFL number used in the present study allows
us to filter the unsteadiness and obtain converged steady fixed points. Above the
regular bifurcation, the steady wake behind the sphere becomes planar-symmetric
and the corresponding length, averaged in the azimuthal direction, is represented by
empty circles and fitted by a dashed line. These flows represent nonlinearly saturated
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FIGURE 3. Three-dimensional streamlines projected onto (a,b) x–y and (c,d) x–z planes
for the (a,c) Re= 210 and (b,d) Re= 280 cases. The separated region is indicated by the
solid black line.

solutions with respect to the regular bifurcation and for Re> 270 constitute unstable
fix points that become unsteady through a supercritical Hopf bifurcation. Differently
from previous studies that relied on the assumption of axisymmetric base flow for
the linear stability analysis, these 3-D planar-symmetric base flows are selected to
study the evolution of the secondary Hopf bifurcation in § 4.4, as done by Citro
et al. (2017). The breaking of the axisymmetry of the base flow solution can be
better appreciated in figure 3, where the projections of the 3-D streamlines in the x–y
(figure 3a,b) and x–z (figure 3c,d) planes are shown for the Re= 210 (figure 3a,c) and
Re= 280 (figure 3b,d) cases. The solid black lines indicate the separation region by
plotting the contours of the zero-streamwise velocity. While the flow is axisymmetric
at Re = 210, planar symmetry can be observed for the Re = 280 case. Around the
secondary Hopf bifurcation, the flow remains symmetric in the x–y plane but the
streamlines in the x–z plane spiral asymmetrically downstream of the body and the
corresponding wake results slightly bent. These observations are in full agreement
with the DNS results provided by Johnson & Patel (1999) for subcritical Reynolds
numbers.

Unsteady nonlinear calculations are performed for Re = 280, 300 and 320. Above
the supercritical Hopf bifurcation, the flow becomes unsteady and self-sustained
hairpin vortices are shed behind the sphere. This solution is time averaged (32
samples in one period at saturation) and a mean flow field is obtained. Although
not a fixed point of the system under consideration and mathematically not sound,
this solution is used as a base flow in § 4.5 to address the issue concerning the
correctness of the global stability performed on a fixed point solution in predicting
the shedding frequency (Barkley 2006). The size of the recirculation region of the
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FIGURE 4. Regular bifurcation: (a) temporal amplification rate versus the Reynolds
number for the least temporally damped/most temporally amplified non-oscillatory global
mode; (b) flow case at Re= 210; eigenspectrum in the St–σ plane.

mean flow solution is calculated by further averaging in the azimuthal direction and
is represented in figure 2(b) with empty diamonds fitted by a dash-dotted line.

4.3. Regular bifurcation
To study the regular bifurcation, several stability analyses are carried out at
Re = 200, 210 and 220. The resulting temporal amplification rate distribution as
a function of the Reynolds number in figure 4(a) shows that the axisymmetric base
flow is unstable for Reynolds number Re = 210. Small differences of within 5 %
are found with respect to the work of Tomboulides & Orszag (2000), Fabre et al.
(2008) and Meliga, Sipp & Chomaz (2009) who found the critical value to vary
between 210 and 212 (see appendix A). The eigenvalue spectrum for the case at
Re= 210 is shown in figure 4(b), where the positive growth rate at St = 0 indicates
that the corresponding base flow has become unstable and a non-oscillatory mode is
temporally amplified.

To better appreciate the azimuthal character of the eigenfunctions and to directly
compare with Natarajan & Acrivos (1993), Tomboulides & Orszag (2000) and
Tezuka & Suzuki (2006), a transformation of coordinates – from Cartesian (x, y, z)
to cylindrical (x, r, θ) – has been applied to transform the streamwise, vertical and
transversal (u′, v′, w′) perturbation velocities into streamwise, radial and azimuthal
(v′x, v

′

r, v
′

θ) ones. Figure 5 shows the iso-surfaces (figure 5a–c) and the projected
contours onto 2-D x–z planes (figure 5d–f ) of the components of the perturbation
velocity field (normalized by the maximum of the streamwise velocity component) in
the streamwise, radial and azimuthal coordinates associated with this mode. Although
in our analysis the hypothesis of axisymmetric base flow is not assumed, the figure
shows good agreement with the least stable (m= 1) mode shape reported by Natarajan
& Acrivos (1993), Tomboulides & Orszag (2000), Tezuka & Suzuki (2006) and many
other authors who adopted a Fourier mode decomposition as q=

∑M−1
m=0 qm(x, r, t)eimθ ,

with x, r and θ the streamwise, radial and azimuthal components. The stationary
mode is seen to be dominated by the streamwise velocity disturbances that are
located downstream of the sphere and extend up to ≈20Ds. Since the selection of
the plane where the symmetry breaks is equiprobable, the anti-symmetry plane of the
eigenmode structures has been rotated to match the x–y plane.
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FIGURE 5. Flow case at Re = 210 for the unstable axisymmetric base flow. Three-
dimensional view of the mode at (σ , St)= (0.683× 10−4, 0.0). The iso-surfaces of the (a)
streamwise, (b) radial and (c) azimuthal perturbation velocities are plotted for the levels
v′x=±0.01, v′r=±0.01 and v′θ =±0.005, respectively. The contours of the (d) streamwise,
(e) radial and ( f ) azimuthal perturbation velocities are plotted on the x–z plane for the
levels v′x =±0.01, v′r =±0.01 and v′θ =±0.005, respectively. Light and dark grey colours
for positive and negative perturbation velocities, respectively. The sphere is represented in
black.

4.4. Supercritical Hopf bifurcation
The characterization of the supercritical Hopf bifurcation is done by carrying out
several linear stability analyses around Re = 280. It is important to recall that the
base flows selected for this analysis are 3-D planar-symmetric solutions and represent
unstable fixed points above the secondary Hopf bifurcation. Figure 6(a) reports the
evolution of the temporal amplification rate as a function of the Reynolds number
and shows that the transition to a time-dependent flow occurs between Re = 270
and 280, consistently with what found experimentally by Ormières & Provansal
(1999) and Schouveiler & Provansal (2002) (Re(2)c ≈ 280) and via DNS by Johnson
& Patel (1999), Tomboulides & Orszag (2000), Pier (2008) (Re(2)c ≈ 270–272). The
eigenspectrum at Re= 280 is presented in figure 6(b) and shows that, while the steady
mode is temporally damped, a pair of complex conjugate oscillating eigenmodes of
dimensionless frequency St= 0.132 is seen to cross the upper unstable half-plane. The
frequency of the latter modes agrees with the Strouhal number St ≈ 0.13 obtained
via DNS by Tomboulides & Orszag (2000) and experimentally by Schouveiler &
Provansal (2002).

The global mode at (σ , St) = (0.0105, 0.1317) associated with the unstable
planar-symmetric base flow at Re = 280 is visualized by plotting the corresponding
iso-surfaces of the streamwise, vertical and transverse perturbation velocities in
figure 7. The unstable eigenmode exhibits a symmetric pattern with respect to the
x–z centre plane. This is seen to be associated with a vortical motion with a more
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FIGURE 7. Flow case at Re = 280 for the unstable planar-symmetric base flow. Three-
dimensional view of the mode at (σ , St) = (0.0105, 0.1317). The iso-surfaces of the (a)
streamwise, (b) vertical and (c) transverse perturbation velocities are plotted for the levels
u′ = ±0.25, v′ = ±0.15 and w′ = ±0.25, respectively. Light and dark grey iso-surfaces
for positive and negative perturbation velocities, respectively. The sphere is represented in
black.

compact shape than that of the steady mode observed for the regular bifurcation,
where its perturbation velocities are almost of the same order.

This symmetry property is further identified through the cross-sections in the x–z
and y–z planes reporting the contours of the velocity components (figure 8). In
particular, the symmetric solutions of the eigenvalue problem are found to verify:
u(x, −y, z) = u(x, y, z), v(x, −y, z) = −v(x, y, z), w(x, −y, z) = w(x, y, z), similar to
a varicose instability with respect to symmetry plane associated with the base flow.
Figure 8 also shows that the characteristic wavelength of the mode in the streamwise
direction varies from λx ≈ 2Ds inside the bubble to λx ≈ 7Ds in the wake region,
indicating that λx is of the same order as the recirculation length and its phase
velocity increases as it propagates downstream. This gives some further concerns
on the inherent difficulty of local stability analysis to provide accurate results for
determining critical parameters associated with the Hopf bifurcation (see Pier 2008).
Consistently with the shedding of hairpin structures observed in the DNS carried
out by Tomboulides & Orszag (2000) and similarly to the stability analysis of Citro
et al. (2017), the eigenmode exhibits a wave shape that moves away from the sphere
with the same inclination of the recirculation region and more specifically leaving
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FIGURE 8. Flow case at Re = 280 for the unstable planar-symmetric base flow.
Cross-sections of the mode at (σ , St)= (0.0105, 0.1317). The contours of the streamwise
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The contours of the (b) vertical and (d) transverse perturbation velocities are plotted for
the levels v′ = ±0.15 and w′ = ±0.25, respectively. Light and dark grey iso-lines for
positive and negative perturbation velocities, respectively. The sphere is represented in
black.

the region of the maximum shear associated with the transverse direction. This gives
further support to the idea that the unstable mode is linked to the linear onset of
periodic shedding of hairpin vortices observed both experimentally and numerically
by Johnson & Patel (1999) and Szaltys et al. (2012).

The conjugate complex pair of unstable eigenvalues is very isolated but it can be
interesting to look at the stable sub-dominant mode at (σ , St) = (−0.06882, 0.1184)
found in figure 6(b). Fabre et al. (2008) argues the existence of an anti-symmetric
sub-dominant mode that might become temporally amplified for increasing Reynolds
numbers. The global sub-dominant mode is visualized by plotting the corresponding
streamwise perturbation velocity in figure 9. The eigenmode structure is still planar-
symmetric but rotated by 90◦ with respect to the dominant unstable eigenmode and
very little differences exist in terms of the streamwise wavelength. This sub-dominant
mode moves towards the unstable region for increasing Reynolds number but, for
the Reynolds number range considered, the mode remains temporally damped and its
evolution is not shown.

4.5. Fixed point versus mean flow stability analysis
To further elucidate the connection between the shedding of hairpin structures and
the temporally amplified eigenmode, unsteady nonlinear calculations are carried out
for the cases at Re = 280, 300 and 320. The nonlinear calculations are initialized
with the steady planar-symmetric base flow solution and allowed to evolve in time
until saturation. The time history of a probe located in the sphere wake at Re= 300
is reported in figure 10(a). A 3-D view of the unsteady dynamics is shown in
figure 10(b), where the instantaneous iso-surfaces of the Q-criterion at a level
of Q = 0.5 show the legs of the shed hairpin vortices at a Strouhal number of
St = 0.1345. The observed coherent motion presents strong similarities with both
the DNS by Johnson & Patel (1999) and the dye pattern in water experimentally
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dimensional view of the iso-surfaces of the streamwise perturbation velocity associated
with the mode at (σ , St) = (−0.08682, 0.1184) plotted for the levels u′ = ±0.25. The
contours of the streamwise perturbation velocity are plotted on the (b) x–y and (c) x–z
planes for the levels u′ = ±0.25. Light and dark grey colours for positive and negative
perturbation velocities, respectively. The sphere is represented in black.

-0.018

-0.021

-0.024

-0.027
4000 4050 4100

t

u

(a) (b)

x

x

xy

y

z z
4150

FIGURE 10. Unsteady nonlinear calculations at Re = 300: (a) streamwise velocity time
history of the probe located in the sphere wake; (b) three-dimensional view of the
unsteady nonlinear calculations. Iso-surfaces of the Q-criterion at a level of Q= 0.5. The
zero-streamwise velocity iso-surface in dark grey shows the planar-symmetric separation
region behind the sphere (represented in black).

reported by Schouveiler & Provansal (2002) and indicates the temporally amplified
mode is responsible for the bifurcation from the double-threaded steady wake with
very long streamwise extent to the time-dependent flow characterized by a succession
of interconnected vortices behind the sphere.

The important issue concerning the capability of the global linear stability analysis
performed on a fixed point solution in correctly predicting the Strouhal number of
the shedding frequency is here addressed. For a 2-D cylinder flow, Barkley (2006)
shows that while linear stability on the mean flow correctly captures the shedding
frequency, when the stability is performed on the fixed point solution the predicted
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Re LFP
sep LMF

sep (σ , St)FP (σ , St)MF StNL

280 1.43 1.42 (0.0105, 0.1317) (≈0.000, 0.1323) 0.1325
300 1.48 1.36 (0.0704, 0.1324) (≈0.000, 0.1347) 0.1345
320 1.51 1.32 (0.0955, 0.1442) (≈0.000, 0.1482) 0.1483

TABLE 2. Comparisons between global linear stability analysis carried out on the fixed
point (FP) and mean flow (MF). The Strouhal number of the nonlinear DNS calculations
(StNL) is also reported.

Parameters Sphere flow

Free-stream Mach number M ∈ [0.3; 1.2]
Free-stream stagnation temperature Ti,∞ = 287 K
Free-stream stagnation pressure Pi,∞ = 1.013× 105 Pa
Reynolds number Re ∈ [210; 370]

TABLE 3. Free-stream parameters for the bifurcation Mach evolution analysis.

frequency rapidly diverges with the Reynolds number once past the bifurcation.
The same analysis can be done by performing the stability analysis on the mean
flows calculated over 32 snapshots taken during one period at saturation for the
aforementioned cases. Table 2 reports the separation length and eigenvalues calculated
by performing global linear stability on the fixed point (FP) and mean flow (MF)
solutions. The Strouhal number associated with the nonlinear DNS calculations (StNL)
is also reported. Since the mean flow is viewed as a marginally stable solution when
considered as a steady solution, the growth rate predicted by the linear stability is
about zero and no further information can be extracted. As seen for the 2-D cylinder
case, the global stability analysis performed around the mean flow better predicts the
shedding frequency of the nonlinear DNS calculations. However, it is interesting to
see that the shedding frequencies predicted by the stability analysis on fixed point and
mean flow do not diverge as quickly. For the same 1Re= 40 above the supercritical
bifurcation Reynolds value, this difference is approximately 25 % for the 2-D cylinder
and approximately 3 % for the sphere.

5. Mach evolution of the regular and Hopf bifurcations
Extending the work of Meliga et al. (2010) with the objective of explaining the

study of Nagata et al. (2016, 2018), the evolution of the regular and Hopf bifurcations
with Mach and Reynolds number is tracked. A fully 3-D global stability analysis
is performed for each case investigated to follow the bifurcations and explain the
appearance, or better the disappearance, of temporally amplified global modes. Low
Reynolds number and low-supersonic cases are selected (see table 3) and the same
analysis carried out for the nearly incompressible study is repeated.

5.1. Simulation details
While for all the subsonic cases up to M = 0.75 the numerical set-up used for the
nearly incompressible analysis is unchanged, for the M = 0.9 and supersonic cases a
different domain configuration is selected and reported in figure 11. The computational
domain is composed of 6 blocks in an ellipsoidal configuration to better follow the
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FIGURE 11. Three-dimensional (a) and lateral (b) views of the numerical domain for the
M = 0.9 and supersonic flow cases.

bow shock that forms in front of the sphere. Although adapted to the new domain
configuration, the same boundary conditions for the nearly incompressible case
are used for both fixed point and linear stability calculations (see §§ 3.1 and 3.2,
respectively). To confirm the grid capability to reproduce the correct physics, the
nearly incompressible case at Re= 280 is repeated on the new domain configuration
and good agreement with the previous numerical set-up is obtained. Furthermore, the
base flow at Re = 300 and M = 1.2 is also compared with the numerical results by
Nagata et al. (2016) and good match in terms of shock shape and shock stand-off
distance is achieved. The chosen grid resolution is (nx, ny, nz) = (224 × 112 × 112)
for each block.

5.2. Base flow Mach evolution
As shown by Nagata et al. (2016, 2018) in their nonlinear unsteady calculations,
the large-scale effect of the increasing Mach number on the base flow is to cause
the axisymmetrization of the separated region behind the sphere. Table 4 reports
separation lengths and information on the base flow symmetry characteristics, whether
it is axisymmetric (AS) or planar-symmetric (PS), for each case investigated. The
symbol ‘×’ is used to indicate the cases that have not been analysed. For the case
at Re= 280, the base flow Mach evolution is shown in figure 12 by the projections
of the 3-D streamlines on the x–z plane for the cases at (a) M = 0.1, (b) M = 0.3,
(c) M = 0.6, (d) M = 0.75, (e) M = 0.9 and ( f ) M = 1.2. The solid black lines
indicate the separation region by plotting the contours of the zero-streamwise velocity.
The presence of the bow shock in front of the sphere is highlighted by the dashed
black line, upstream of which the flow is undisturbed and the streamlines are parallel
to the x-axis. In the subsonic regime, when the same configuration of azimuthal
symmetry is kept the effect of the Mach number on the base flow is the same as
that of the Reynolds number and the size of the separation region increases with the
Mach number (figure 12a–c). When a change from planar to axisymmetry occurs
for increasing Mach number and fixed Reynolds number (figure 12c,d) the separated
region ‘bursts’ into a much larger one. It is important to specify that for all these
cases the flow is everywhere subsonic and no shocks are formed either in front or on
the sphere. On the contrary, particular attention needs to be given to the base flow of
the supersonic cases, for which a bow shock is formed. When passing from subsonic
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FIGURE 13. Schlieren-like visualization of the base flow at Re = 280 and M = 1.2.
Contours of the density gradient on (a) the two perpendicular x–y and x–z planes and
(b) a 2-D view on the x–y plane.

to supersonic flow conditions, either if the azimuthal symmetry changes or not,
the separated region behind the sphere becomes significantly shorter (figure 12e, f ).
However, also for the supersonic case at M= 1.2, the effect of the Reynolds number
on the separation length is the same as in the subsonic case and the separated region
increases in size with the Reynolds number (see the column at M= 1.2 in the table 4).
Figure 13 shows the contours of the density gradients in a 3-D view in (a) the two
perpendicular x–y and x–z planes and (b) in a 2-D view of the x–y plane. The bow
shock that forms in front of the sphere forces the axisymmetry of the separated
region behind the sphere. The Schlieren-like contours also show the expansion fans
that generate on the sphere and diverge while moving downstream. These obtained
base flows are used to perform global stability analysis and investigate the evolution
of the regular and Hopf unstable bifurcations.
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Re M = 0.1 M = 0.3 M = 0.6 M = 0.75 M = 0.9 M = 1.2

200 1.36 (AS) × × × × ×

210 1.39 (AS) 1.54 (AS) 1.96 (AS) × × ×

220 1.42 (AS) 1.58 (AS) 2.00 (AS) × 3.11 (AS) ×

250 1.49 (AS) 1.67 (AS) 2.15 (AS) × 3.32 (AS) 1.64 (AS)
260 1.51 (AS) × × × × ×

270 1.39 (PS) × × × × ×

280 1.43 (PS) 1.63 (PS) 2.09 (PS) 2.79 (AS) 3.50 (AS) 1.81 (AS)
290 1.46 (PS) × × × × ×

300 1.48 (PS) 1.68 (PS) 2.16 (PS) × 3.62 (AS) 1.91 (AS)
320 1.51 (PS) 1.72 (PS) 2.22 (PS) × 3.60 (PS) 2.00 (AS)
345 × × × × 3.69 (PS) 2.11 (AS)
370 × × × × 3.79 (PS) 2.21 (AS)

TABLE 4. Reynolds and Mach number base flow separation lengths and symmetry
characteristics (AS = axisymmetric, PS = planar-symmetric) evolution.

5.3. Bifurcation Mach evolution
The Hopf bifurcation is first analysed for Re= 280. The Mach evolution of the most
temporally amplified global mode is reported in figure 14 in terms of (a) growth rate
and (b) Strouhal number. Despite some differences with the findings of Meliga et al.
(2010) that may be well due to either their base flow axisymmetry hypothesis or the
constant molecular viscosity and thermal conductivity assumption, the present results
confirm that the Mach number initially shows a destabilizing effect on the sphere wake
and the growth rate of the global mode increases for M = 0.3. However, when the
Mach number is further increased the global mode is damped and its growth rate that
still has a positive sign at M = 0.6 becomes negative at M = 0.75, individuating the
threshold of the Hopf bifurcation. Similarly to what found by Nagata et al. (2016,
2018), accordingly with the increasing size of the separation, the frequency of the
most temporally amplified mode decreases with the Mach number. It is interesting to
see that at M=0.75 the axisymmetric base flow is unstable and a temporally amplified
non-oscillatory mode appears, as shown in figure 15(a).
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FIGURE 16. Flow case at Re = 280 and M = 0.75 for the unstable axisymmetric base
flow. Three-dimensional view of the iso-surfaces of the (a) streamwise, (b) radial and
(c) azimuthal perturbation velocities associated with the mode at (σ , St)= (0.04799, 0.0)
plotted for the levels v′x =±0.10, v′r =±0.03 and v′θ =±0.03, respectively.

Similarly to what done for the incompressible modes around the first bifurcation,
a transformation of coordinates (from Cartesian to cylindrical) has been applied to
transform the streamwise, vertical and transversal (u′, v′, w′) perturbation velocities
into streamwise, radial and azimuthal (v′x, v

′

r, v
′

θ) ones. The iso-surfaces of the
perturbation velocities associated with the mode at (σ , St) = (0.04799, 0.0) reported
in figure 16 show the resemblance to the temporally amplified non-oscillatory mode
found in the nearly incompressible analysis, i.e. at Re = 210 (see figure 5), that
similarly causes the loss of axisymmetry due to an azimuthal mode with wavenumber
m= 1. When the Mach number is further increased up to M= 1.2, the axisymmetric
base flow solution becomes stable, identifying the threshold of the regular bifurcation.
Figure 15(b) shows the eigenspectrum for the globally stable axisymmetric base
flow at M = 1.2 and the corresponding iso-surfaces of the perturbation velocities
(streamwise, radial and azimuthal) associated with the non-oscillatory mode at
(σ , St) = (−0.0101, 0.0) are reported in figure 17. The presence of the bow shock
and the consequent expansion fans on the sphere cause the appearance of a structure
attached to the sphere. Although the base flow solution is stable and this mode is not
temporally amplified, the azimuthal character of the eigenfunction is still associated
with an azimuthal wavenumber m = 1. The same analysis is repeated for all the
considered Reynolds and Mach numbers and the most temporally amplified/least
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FIGURE 17. Flow case at Re = 280 and M = 1.2 for the stable axisymmetric base
flow. Three-dimensional view of the iso-surfaces of the (a) streamwise, (b) radial and
(c) azimuthal perturbation velocities associated with the unstable mode at (σ , St) =
(−0.0101, 0.0) plotted for the levels v′x = ±0.02, v′r = ±0.005 and v′θ = ±0.005,
respectively.

temporally damped modes are presented in table 5. Thus, it is possible to draw a
stability map and follow the boundaries of the two bifurcations, as shown in figure 18.
Stable axisymmetric base flows (dark grey region) are indicated by full circle symbols.
Unstable axisymmetric base flows (light grey region) characterized by a temporally
amplified non-oscillatory planar-symmetric mode are represented as empty circles. The
empty triangle symbols correspond to unstable planar-symmetric base flows (white
region) characterized by a temporally amplified oscillatory planar-symmetric mode.
Two unexplored regions are indicated and framed by dash-dotted lines: a first one at
low-Mach/high-Reynolds numbers, where an unsteady periodic base flow exists and a
Floquet’s analysis would be necessary, and a second one in the transonic region where
the shock would be attached to the sphere. Although the physics might significantly
change in the latter, due to the low Reynolds number range under consideration this
second unexplored region is expected to be very narrow (Nagata et al. 2016).

For increasing values of the Mach number, the regular and Hopf bifurcations seem
to move towards higher values of Reynolds numbers. However, for a sufficiently
high Reynolds number (i.e. for approximately Re> 345) and if the narrow transonic
region not examined is ignored, only a supercritical Hopf bifurcation exists and for
increasing Mach number the base flow solution directly passes from an unstable
planar-symmetric configuration characterized by temporally amplified oscillatory
modes to a stable axisymmetric one, as seen by Nagata et al. (2016).

5.4. Convective instabilities
Figure 18 shows that, for the examined range of Reynolds numbers, the supersonic
flow configurations are globally stable. The system is no longer a self-sustained
oscillator and switches to a noise-amplifier type. To characterize the convective nature
of the system, the case at (Re,M)= (370, 1.2) is selected, being the expected most
convectively unstable one. The corresponding eigenspectrum is shown in figure 19(a),
for positive Strouhal values only. As visible from figure 15(b) for the case at
(Re, M) = (280, 1.2), the continuous branch does not change and the two modes
at (σ , St) = (−0.405, 0.135) and (σ , St) = (−0.393, 0.167) move away and reach
(σ , St)= (−0.3106, 0.1268) and (σ , St)= (−0.378, 0.166). The inset in figure 19(a)
shows the evolution of these two modes in the Reynolds number range investigated
at M= 1.2. In qualitative agreement with Nagata et al. (2018), if a linear trend with
the Reynolds number is assumed these two modes would become globally unstable
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FIGURE 18. Evolution of the regular and supercritical Hopf bifurcations with the Mach
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Re M= 0.1 M = 0.3 M = 0.6 M = 0.75 M = 0.9 M = 1.2

200 (−1.432× 10−3, 0.0) × × × × ×

210 (0.683× 10−3, 0.0) (−0.008, 0.0) (−0.027, 0.0) × × ×

220 (2.615× 10−3, 0.0) (0.152, 0.0) (0.031, 0.0) × (−0.034, 0.0) ×

250 (0.008, 0.0) (0.815, 0.0) (0.418, 0.0) × (0.005, 0.0) (−0.094, 0.0)
260 (0.009, 0.0) × × × × ×

270 (−0.212, 1.318) × × × × ×

280 (0.105, 1.317) (0.236, 1.251) (0.106, 1.129) (0.480, 0.0) (0.006, 0.0) (−0.102, 0.0)
290 (0.412, 1.321) × × × × ×

300 (0.704, 1.324) (0.871, 1.257) (0.642, 1.148) × (0.007, 0.0) (−0.107, 0.0)
320 (0.955, 1.442) (1.806, 1.228) (1.122, 1.151) × (−0.009, 0.0) (−0.113, 0.0)
345 × × × × (0.226, 0.868) (−0.119, 0.0)
370 × × × × (0.570, 0.862) (−0.126, 0.0)

TABLE 5. Growth rate (σ ) and Strouhal number (St), Reynolds and Mach number
evolution of the most temporally amplified/least temporally damped eigenvalue. Both
growth rate and Strouhal numbers have been multiplied by 10.

for a Reynolds number range of Re = 1000 ± 300. These two modes have a very
similar spatial distribution and, only for the mode at (σ , St) = (−0.378, 0.166), the
contours of the streamwise, normal and transversal perturbation velocities are plotted
in figures 19(b), 19(c) and 19(d), respectively.

To study the convectively unstable character of the flow case at (Re,M)= (370,1.2),
an unsteady nonlinear simulation has been carried out by restarting the calculation
from the axisymmetric base flow solution presented in § 5.2 (figure 12f ) and applying
a Gaussian random white noise forcing. The white noise forcing is introduced
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For the mode at (σ , St)= (−0.378, 0.166), the contours of the (b) streamwise, (c) vertical
and (d) transversal perturbation velocities are plotted for the levels u′=±0.03, v′=±0.01
and w′ =±0.01, respectively.

upstream of the bow shock that forms in front of the sphere according to

u(x, y, z, t)= Ao exp

[
−
(x− xf )

2

2σ 2
x

−
(y− yf )

2

2σ 2
y

−
(z− zf )

2

2σ 2
z

]
W(x, y, z, t). (5.1)

The forcing is applied continuously and localized spatially by a Gaussian function
centred in (xf , yf , zf )= (−5, 0, 0). The variances associated with the spatial Gaussian
distributions in the three spatial directions (σx, σy, σz) are adjusted to have a 3-D
ellipsoid that approximately extends (2, 3, 3) × Ds in the streamwise, vertical and
transversal directions, respectively. The applied perturbation amplitude Ao corresponds
to a turbulent intensity, measured as the ratio between the root-mean-square (r.m.s.)
value of the streamwise perturbation velocity and its mean value at the centre of
the forcing region, of Tu ≈ 0.1 %. The numerical white noise W(x, y, z, t) varies in
the range [−0.5, 0.5] around the zero mean and it varies for each spatial point and
each time iteration. The forcing is ramped up to full strength after about an eighth of
a flow-through time. Numerical artefacts, such as grid resolution and time-step size,
limit the frequency band of the dynamic response above St= 1. Therefore, the plots
have been cut at this value above which the response for the present analysis is not
relevant.

The time response of the system is monitored by six probes located on the
streamwise axis at different x-locations and four ones located on the circular
separation line in the downstream half of the sphere and azimuthally separated
every 90◦. Since the results show an azimuthally independent behaviour, only the
probes along the streamwise axis are here presented. Figure 20 shows the location
of the six probes considered, the bow shock location and the spatial distribution of
the applied random forcing. After an initial transient, the time histories are recorded
for approximately 16 flow-through times and a Fourier analysis is performed. The
power spectral density (PSD) distribution as a function of the Strouhal number is
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FIGURE 20. Spatial distribution of the probes used to monitor the time response of the
system. Probe 1: (x, y, z)= (−2.0, 0.0, 0.0); probe 2: (x, y, z)= (−0.7, 0.0, 0.0); probe 3:
(x, y, z)= (1.0,0.0,0.0); probe 4: (x, y, z)= (2.0,0.0,0.0); probe 5: (x, y, z)= (4.0,0.0,0.0);
probe 6: (x, y, z)= (8.0, 0.0, 0.0).
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FIGURE 21. Fourier analysis performed on the time histories recorded on the monitoring
probes (probe 1 – a; probe 2 – b; probe 3 – c; probe 4 – d; probe 5 – e; probe 6 – f ).
Power spectral density as a function of the Strouhal number.

plotted in figure 21 for the monitored probes. The perturbation reaches the shock and
maintains its white noise features (probe 1, figure 21a). The bow shock acts like a
low-pass filter, cutting all the frequencies above St≈ 0.5 and reducing the energy of
approximately one order of magnitude (probe 2, figure 21b). The sphere then selects a
frequency at a Strouhal number of St≈ 0.15 and a peak appears (probe 2, figure 21c).
The energy associated with this peak increases in the downstream probes (probe 4
to 6, figure 21e–f ) and eventually saturates. However, the energy associated with
the perturbations downstream of the sphere is low, the complete flow field conserves
its axisymmetric characteristics and no evidence of transition in the wake exists. A
dynamic mode decomposition (DMD) (Schmid 2010) is performed by taking 256
nonlinear snapshots during the same time interval used to record the probe time
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histories for the Fourier analysis. The ‘amplitude’ (αDMD) associated with each DMD
mode is computed by projecting each mode on the first snapshot (Jovanovic, Schmid
& Nichols 2014). To avoid to compromise the DMD mode amplitude calculations, the
analysis is performed only on a subspace of the numerical domain that excludes the
region where the white noise forcing is applied. The DMD growth rate (σDMD) and
amplitudes are reported in figure 22 as a function of the Strouhal number. Since the
snapshots are taken in the limit cycle, the associated DMD growth rates are nearly
zero (figure 22a). However, the distribution of DMD amplitudes in figure 22(b)
shows that not all modes contribute in the same way as the system dynamics. If the
contribution of the mean flow (that obviously is the highest one) is not taken into
account, the DMD amplitude distribution not only resembles the PSD distributions in
the sphere wake but it also shows that the highest contribution is given by the mode
at a Strouhal number of St = 0.145 that closely matches the peak Strouhal number
found in figure 21(c–f ). It can be interesting to compare the perturbation velocity
fields, from which the mean flow is subtracted, with the DMD mode velocities.
Figure 23 reports the contours of the streamwise (a,b), vertical (c,d) and transversal
(e, f ) velocities on a longitudinal slice in the x–y plane for the perturbation field (a,c,e)
and DMD mode at St= 0.145 (b,d, f ). While the near-wake region in the perturbation
field is affected by the white noise forcing and no appropriate comparison can be
made, for x> 5 it is possible to appreciate that perturbation velocity field and DMD
eigenmode velocities have a similar structure. This confirms that the DMD mode at
St = 0.145 is well capturing the perturbations dynamics. It is also interesting to see
that the shape of the DMD mode strongly relates to what seen for the globally stable
mode shown in figure 19(b–d) at a similar Strouhal number, suggesting a response of
the system that is still very modal. Some similarities can be found between this mode
and that found at (Re,M)= (280, 0.1), especially in terms of shape and wavelength
of the streamwise and transversal perturbation velocities (compare figures 8c,d with
figures 23b, f ). This might indicate that the response of the system to a sufficiently
strong forcing or at higher Reynolds number could lead to the shedding of hairpin
vortices from the sphere wake, like in the incompressible counterpart. To support this
idea, the work by Nagata et al. (2018) shows that unsteady hairpin shedding happens
at (Re, M) = (1000, 1.2). To verify the convective nature of the flow and its global
stability, the white noise forcing is switched off and the total energy fluctuations
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time histories recorded by the probes in the sphere wake are reported in a t–x plot in
figure 24. The time at which the forcing is switched off is indicated by a grey dashed
line. It is possible to see that a packet of perturbations is convected downstream and
damped in time. The total energy fluctuations go to zero and the base flow solution,
from which the nonlinear calculation was restarted, is recovered.

6. Conclusions

The effect of compressibility on the global stability of a sphere flow has been
investigated. The work by Meliga et al. (2010) is extended up to a low-supersonic
regime taking into account of the three-dimensionality of the steady fixed point
solutions around the supercritical Hopf bifurcation and the presence of shocks.

The linear dynamics is first analysed at nearly incompressible conditions and the
regular and supercritical Hopf bifurcations are described. The three-dimensionality
of the fixed point solutions used to study the Hopf bifurcation is found to not
have a significant impact on the identification of the instability threshold or on
the Strouhal number of the leading mode. However, the spatial structure of the
eigenmode perturbations is deflected accordingly to the planar-symmetric sphere
wake, consistently with the investigations by Citro et al. (2017) in the incompressible
regime. This indicates the importance of removing the axisymmetric flow assumptions
adopted in most of the previous studies and the need to consider fully 3-D fixed
point solutions. The question concerning the correctness of the predicted shedding
frequency by linear stability performed on a fixed point solution is also addressed.
When the linear stability analysis is performed on the mean flow for some cases
above the supercritical Hopf bifurcation, the predicted shedding frequency closely
matches the nonlinear one. Although the shedding frequencies predicted by the
global stability analysis on fixed point and mean flow solutions do not diverge
for increasing Reynolds number above the bifurcation threshold as fast as seen for
the two-dimensional cylinder case (Barkley 2006), it is important to consider this
aspect depending on the type of analysis intended. When the identification of the
bifurcation threshold (or in general the stability of the flow) is not needed, a global

https://doi.org/10.1017/jfm.2018.664
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


8

6

6

5

4
3

2

1
Shock

4

2

0

-2

6.91 6.92
(÷104)t

x

FIGURE 24. Total energy fluctuations time histories in a t–x plot. The time at which the
forcing is switched off is indicated by the vertical grey dashed line. The sphere, shock
and probe locations are sketched on the right-hand side.

stability analysis performed on the mean flow solution as a base flow might be more
appropriate for establishing the frequencies associated with the nonlinear dynamics.

To explain the observations of the nonlinear DNS calculations of Nagata et al.
(2016, 2018), the bifurcation boundaries are followed in a Re–M space. In agreement
with the work of Meliga et al. (2010), an initial destabilizing effect of the Mach
number is found around the supercritical Hopf bifurcation. However, when the Mach
number is further increased to supersonic speeds, it is possible to conclude that
the Mach number has a stabilizing effect on the global behaviour of the flow and
the thresholds of the two bifurcations move towards higher Reynolds numbers. For
sufficiently high Reynolds numbers, when the Mach number is increased the solution
directly passes from an unsteady planar-symmetric solution to a steady axisymmetric
one for supersonic speeds.

At supersonic conditions, the flow becomes globally stable and the system switches
from an oscillator to a noise amplifier. A forced nonlinear calculation is carried
out to characterize the convective nature of the flow and the performed Fourier
and DMD analyses indicate that a link with the incompressible dynamics above
the incompressible Hopf bifurcation might exist. This is partially supported by the
nonlinear DNS calculations by Nagata et al. (2018), who show that the transition to
an unsteady wake at supersonic speeds happens via hairpin vortices shedding when
the Reynolds number is significantly increased. A definite confirmation would come
by global stability calculations at higher Reynolds numbers and a continuation of
this work shall be therefore focused on the study of cases in this regime. Another
continuation of this work could interest cases at higher Mach numbers, where the
flow dynamics might change due to a bow shock that gets closer to the sphere.

Although limited to laminar flow cases, the present work represents a necessary
preliminary step towards the study of the turbulent regime, for which large-scale
coherent motions persist. In the nearly incompressible limit, Taneda (1978) shows
that the turbulent wake of a sphere exhibits a wave-like motion similar to the
one observed in the laminar case. By adding an artificial viscosity to account for
the turbulent small scales, a linear stability analysis carried out on the mean flow
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Regular bifurcation Hopf bifurcation
Case M1 M2 M3 M1 M2 M3

Rec 207.1 207.5 207.9 276.3 277.9 277.1
Lsep 1.38 1.45 1.43 1.43 1.49 1.47
St 0 0 0 0.130 0.127 0.124

TABLE 6. Grid and domain sensitivity analysis on the critical Reynolds number, base flow
separation length and leading mode Strouhal number for the nearly incompressible cases at
the two bifurcations. Case M1: (nx, ny, nz)= (112, 112, 112) and (Lx, Ly, Lz)= (20, 10, 10);
case M2: (nx, ny, nz)= (150, 150, 150) and (Lx,Ly,Lz)= (20, 10, 10); case M3: (nx, ny, nz)=
(160, 112, 112) and (Lx, Ly, Lz)= (40, 20, 20).

(Beneddine et al. 2016) could also represent an interesting extension of the present
results to turbulent regimes.
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Appendix

The sensitivity of the global stability analysis to grid resolution and domain size is
here examined. To study the effect of the mesh resolution, the numerical grid used for
all calculations in the paper (case M1) has been refined by ≈30 % in all directions on
the same domain presented in § 4.1 (case M2). Separately, the effect of the domain
size has been analysed by increasing the domain in all direction and the selected
dimensions are (Lx,Ly,Lz)= (40,20,20). The numerical grid resolution for the domain
size sensitivity study is (nx, ny, nz)= (160× 112× 112) for each of the seven blocks
and named M3 (note that the cell distribution in the two transverse direction has
been differently stretched in order to keep similar resolution of the grid in the near-
wake region). Critical Reynolds numbers, base flow separation lengths and Strouhal
numbers of the leading mode at the regular and Hopf bifurcations are compared for
the three numerical set-ups in table 6. Note that the base flow separation length at the
Hopf bifurcation is averaged in the azimuthal direction. The differences between the
sensitivity analyses are within 5 % and the selected grid resolution and domain size
are therefore considered suitable for the physical significance of the study presented
in this paper.
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BOUCHET, G., MEBAREK, M. & DUŜEK, J. 2006 Hydrodynamic forces acting on a rigid fixed sphere

in early transitional regimes. Eur. J. Mech. (B/Fluids) 25, 321–336.
BRÈS, G. A. & COLONIUS, T. 2008 Three-dimensional instabilities in compressible flow over open

cavities. J. Fluid Mech. 599, 309–339.
CITRO, V., GIANNETTI, F., LUCHINI, P. & AUTERI, F. 2015 Global stability and sensitivity analysis

of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27 (8), 084110.
CITRO, V., SICONOLFI, L., FABRE, D., GIANNETTI, F. & LUCHINI, P. 2017 Stability and sensitivity

analysis of the secondary instability in the sphere wake. AIAA J. 55 (11), 3661–3668.
CROUCH, J. D., GARBARUK, A. & MAGIDOV, D. 2007 Predicting the onset of flow unsteadiness

based on global instability. J. Comput. Phys. 224 (2), 924–940.
EDWARDS, W. S., TUCKERMAN, L. S., FRIESNER, R. A. & SORENSEN, D. 1994 Krylov methods

for the incompressible Navier–Stokes equations. J. Comput. Phys. 110, 82–101.
FABRE, D., AUGUSTE, F. & MAGNAUDET, J. 2008 Bifurcations and symmetry breaking in the wake

of axisymmetric bodies. Phys. Fluids 20, 1–4.
GHIDERSA, B. & DUSEK, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake

of a sphere. J. Fluid Mech. 423, 33–69.
GONCALVES, E. & HOUDEVILLE 2009 Numerical simulations of a transport-aircraft configuration.

J. Comput. Fluid Dyn. 23 (6), 449–459.
GUIHO, F., ALIZARD, F. & ROBINET, J.-C. 2016 Instabilities in oblique shock wave/laminar boundary-

layer interactions. J. Fluid Mech. 789, 1–35.
GUMOWSKI, K., MIEDZIK, J., GOUJON-DURAND, S., JENFFER, P. & WESFREID, J. E. 2008

Transition to a time-dependent state of fluid flow in the wake of a sphere. Phys. Rev. Lett.
77, 055308(R).

JAMESON, A. 1991 Time-dependent calculations using multigrid with applications to unsteady flows
past airfoils and wings. AIAA Paper, 10th Computational Fluid Dynamics Conference, Honolulu,
HI, USA. AIAA.

JOHNSON, T. A. & PATEL, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid
Mech. 378, 19–70.

JOVANOVIC, M. R., SCHMID, P. J. & NICHOLS, J. W. 2014 Sparsity-promoting dynamic mode
decomposition. Phys. Fluids 26, 024103.

LEHOUCQ, R. B., SORENSEN, D. C. & YANG, C. 1997 Arpack user’s guide: Solution of large scale
eigenvalue problems with implicitly restarted Arnoldi methods. Tech. Note.

LOISEAU, J.-C., ROBINET, J.-C., CHERUBINI, S. & LERICHE, E. 2014 Investigation of the roughness-
induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech.
760, 175–211.

LOMAX, H. & STEGER, J. L. 1975 Relaxation methods in fluid mechanics. Annu. Rev. Fluid Mech.
7, 63–88.

MACK, C. J., SCHMID, P. J. & SESTERHENN, J. L. 2008 Global stability of swept flow around a
parabolic body: connecting attachment-line and crossflow modes. J. Fluid Mech. 611, 205–214.

MAGARVEY, R. H. & BISHOP, R. L. 1961 Transition ranges for three-dimensional wakes. Can. J.
Phys. 39, 1418–1422.

MAGNAUDET, J., RIVERO, M. & FABRE, J. 1995 Accelerated flows past a rigid sphere or a spherical
bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97–135.

https://doi.org/10.1017/jfm.2018.664
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


MELIGA, P., SIPP, D. & CHOMAZ, J.-M. 2007 Unsteadiness in the wake of the sphere: receptivity
and weakly nonlinear global stability analysis. In Proc. 5th Conference on Bluff Body Wakes
and Vortex-Induced Vibrations (Bahia, Brazil). BBVIV.

MELIGA, P., SIPP, D. & CHOMAZ, J.-M. 2009 Unsteadiness in the wake of disks and spheres:
instability, receptivity and control using direct and adjoint global stability analyses. J. Fluids
Struct. 25, 601–616.

MELIGA, P., SIPP, D. & CHOMAZ, J.-M. 2010 Effect of compressibility on the global stability of
axisymmetric wake flows. J. Fluid Mech. 660, 499–526.
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