
HAL Id: hal-01960090
https://hal.science/hal-01960090

Submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dispatching Strategies for Dynamic Vehicle Routing
Problems

Besma Zeddini, Mahdi Zargayouna

To cite this version:
Besma Zeddini, Mahdi Zargayouna. Dispatching Strategies for Dynamic Vehicle Routing Problems.
In: Jezic, G., Chen-Burger, YH., Howlett, R., Jain, L., Vlacic, L., Šperka, R. (eds) Agents and Multi-
agent Systems: Technologies and Applications 2018 Proceedings of the 12th International Conference
on Agents and Multi-Agent Systems: Technologies and Applications (KES-AMSTA-18), 96, pp 87-96,
2019, �10.1007/978-3-319-92031-3_9�. �hal-01960090�

https://hal.science/hal-01960090
https://hal.archives-ouvertes.fr


Dispatching Strategies for Dynamic Vehicle
Routing Problems

Besma Zeddini1, Mahdi Zargayouna2

1 Quartz, EISTI
Avenue du Parc,

95000 Cergy Pontoise, France.
2 Université Paris-Est, IFSTTAR, GRETTIA

Boulevard Newton, Champs sur Marne
F-77447 Marne la Vallée Cedex 2, France

bzi@eisti.eu hamza-mahdi.zargayouna@ifsttar.fr

Abstract. Online vehicle routing problems are highly complex problems
for which several techniques have been successfully proposed. Tradition-
ally, the solutions concern the optimization of conventional criteria (such
as the number of mobilized vehicles and the total traveled distance).
However, in online systems, the optimization of the response time to the
connected users becomes at least as important as the optimization of the
traditional criteria. Multi-agent systems and greedy insertion heuristics
are the most promising approaches to optimize this criteria. To this end,
we propose a multi-agent system and we focus on the clients dispatching
strategy. The strategy decides which agents perform the computation to
answer the clients requests. We propose three dispatching strategies: cen-
tralized, decentralized and hybrid. We compare these three approaches
based on their response time to online users. We consider two experiments
configuration, a centralized configuration and a network configuration.
The results show the superiority of the centralized approach in the first
configuration and the superiority of the hybrid approach in the second
configuration.

1 Introduction

Several real-life distribution applications, such as the good deliveries to stores,
the school buses routing, the newspapers and mail distribution, etc. are instan-
tiations of vehicle routing problems (VRP). In its original version, a VRP is a
multi-vehicle traveling salesman problem. A number of nodes have to be visited
only one time by a number of vehicles. The problem objective is generally to find
a set of routes for the vehicles that optimize the number of mobilized vehicles
and the total traveled distance. Solving these problems has high practical useful-
ness and they are challenging optimization problems with stimulating issues. The
problem variant with time (and capacity) constraints is one of the most widely
studied variants of VRP (vehicle routing problem with time windows, VRPTW
henceforth) [1]. In this variant, the requests to be handled are not simple nodes,



but clients who define a quantity to be transported, a node to be visited and
two temporal bounds between which it has to be visited by a vehicle. Vehicles
have limited capacities and the quantities associated with the clients in the same
route must not be bigger than the capacity of the concerned vehicle.

Vehicle routing problems can be divided in two categories: static problems
and dynamic problems. In the static problems, the system knows all the prob-
lem data before execution. In the dynamic problems, the problem data reveals
as the optimization is being performed. The data may concern any entity of the
problem, such as the traffic data or the available vehicles, but the dynamism
usually refers to the clients to be served. The operational problems are never
completely static and we can say that a static system cannot meet nowadays op-
erational configurations anymore. Indeed, in real-life vehicle routing problems,
and even when all the clients are known in advance (with a reservation system
for instance), there always exists some element that makes the problem actu-
ally dynamic. These elements might concern no-shows, delays, breakdowns, etc.
Online vehicle routing problems could be seen as an extreme case of dynamic
vehicle routing problems. Indeed, not only the problem data, and specifically the
clients, are not known before the optimization starts, but the clients connect in
real-time to the system and expect quasi-immediate answers to their requests.
The response time of the system in this configuration is then vital. If the system
needs, say, two more minutes to gain one or two kilometers in its routes, it is
not worth it in online problems, since the client will not wait that long to have
an answer to its request.

To meet the requirement of short response times, we rely on the multi-agent
paradigm for solving the online vehicle routing problems. An agent is an intel-
ligent entity that is situated in an environment and that applies autonomous
actions to satisfy its objectives [2, 3]. A multi-agent modeling of the online VRP
is relevant for the following reasons. On the one side, choosing a design allow-
ing for computing distribution should provide shorter response times to clients
requests. On the other side, nowadays vehicles are more and more connected,
and have onboard computers. In this context, the transport system is, de facto,
distributed and necessitates an adapted modeling to take profit of these equip-
ments. The multi-agent system (MAS) that we propose in this paper simulates
a distributed version of the so-called “insertion heuristics”. These are methods
that consist in inserting the clients following their appearance order in the routes
of the vehicles. The vehicle chosen to insert the considered client is the one that
would have the minimal additional cost to visit it (the incurred detour for in-
stance). This is the fastest known heuristic, since there is no reconsideration of
previous insertion decisions. In this context, there is still a choice to perform
with respect to the dispatching of clients requests to the vehicle agents of the
multi-agent systems. We propose three dispatching strategies and we compare
them following their ability to provide better response times to the clients. The
dispatching strategy decides which agents perform the computation to answer
the clients requests. In the centralized strategy, the planner agent performs most
of the computation. In the decentralized strategy, the vehicle agents perform



most of the computation in a collaborative way. Finally, in the hybrid strategy
the work is split between clients and vehicles.

The remainder of this paper is structured as follows. In section 2, we discuss
previous proposals for the dynamic VRP w.r.t our approach. The multi-agent
system and the three dispatching strategies architecture of the MAS are pre-
sented in section 3. We provide our experimental results in section 4 and then
conclude with a few remarks in section 5.

2 Related Work

The majority of the proposed solution methods to vehicle routing problems
are heuristic or metaheuristic methods, which provide good results in non-
exponential times, and which have presented good results with benchmark prob-
lems. Generally speaking, most of the works dealing with the dynamic VRP
are more or less direct adaptations of static methods. Among the static meth-
ods, insertion heuristics are the most widely adapted in a dynamic environment
(e.g. [4]). Insertion heuristics are, in their original version, greedy algorithms, in
the sense that the decision to insert a given client in the route of a vehicle is
definitive. The advantage of using insertion heuristics is that they are intuitive
and fast.

In their vast majority, multi-agent approaches of the literature rely, at least
partially, on insertion heuristics. In [5], Thangiah et al. propose a multi-agent
architecture to solve a VRP and a multi-depot VRP. In [6], Kohout and Erol
propose a multi-agent architecture to solve a dial-a-ride problem. The principle
of these two proposals is the same: distribute an insertion heuristic, followed by
a post-optimization step. In [5], the clients are handled sequentially. They are
broadcasted to all the vehicles, which in turn propose insertion offers and the
best proposal is retained by the client. In the second step, the vehicles exchange
clients to improve their solutions, each vehicle knowing the other agents of the
system. Since vehicles are running in parallel, the authors envision to apply
different heuristics for each vehicle, without changing the architecture.

For the reasons that we have given in the introduction, we choose a multi-
agent modeling to solve the dynamic VRP. For their fast execution times and
their adaptation to dynamic settings, we privilege a solving grounded on insertion
heuristics. Thus, from a protocol and an architecture point of view, our system
sticks with the multi-agent systems we have just described, since we propose
a distributed version of insertion heuristics. However, in these proposals, none
have focused on the response time of the system to online clients. In our previous
works (e.g. [7–9], we have addressed the optimization criteria of the VRPTW.
In this paper, we do not focus on the optimization problem for itself. Our focus
here is on the three dispatching strategies, and our result indicate which one is
the best, with respect to the chosen implementation configuration.



3 Dispatching strategies

Each solution for a given vehicle routing problem instance is a set of vehicles
with a specific route. Each vehicle’s route is composed of a sequence of clients,
together with their corresponding visit time. The three requests dispatching
strategies that we propose in this paper are defined in the framework of a multi-
agent system. Three categories of agents are defined in the system. The client
agents represent users of the system (persons or goods, depending on the prob-
lem). The vehicle agents represent vehicles and the interface agents represent the
interlocutor with the external world (GUI, simulator, etc.). When a user logs to
the system, the interface agent create a representing client agent, representing
the human user. A fourth agent type is defined for the only centralized dispatch-
ing strategy, which is the planner agent and is responsible of performing all the
routing.

In online problems, the response time of the system is key, and only very
fast approaches can compete in this configuration. The fastest approach, and
the most popular one is the greedy insertion approach, originally proposed by
Marius M. Solomon [1]. The principle is to insert clients progressively in the
vehicles routes. To do so, the insertion price of inserting a client in the route of a
vehicle is calculated, and the vehicle with the minimal price is chosen for inserting
the client. To compute this insertion price, the cost of the current itinerary (the
total traveled distance) and the cost of the new itinerary are compared. The
difference between the two quantities is the additional effort or insertion price
for the new client’s insertion. Determining the chosen vehicle consists in selecting
the vehicle with the minimal insertion price.

When the solving system is a MAS, there are several alternatives regarding
who handles the request. Each alternative is called a “dispatching strategy”. In
this section, we describe and compare three possible dispatching strategies that
we have designed, implemented and compared to model the dynamic VRP: a cen-
tralized dispatching, a decentralized dispatching and a hybrid dispatching. The
objective is to check which dispatching strategy is the most effective, in terms of
response time to clients requests. The evaluation of the different strategies does
not consider the traditional optimization criteria (number of mobilized vehicles,
total traveled distance and total waiting time). Indeed, in terms of optimization,
the three dispatching strategies follow the same algorithm, the only difference
concerns the response time, i.e. the time that the system takes to decide about
which vehicle will serve the customer.

3.1 Centralized dispatching

In the centralized approach, all the treatments are performed by a central entity,
which create vehicle plans and schedules. One of the main advantages of this
approach is that it allows for central online optimization techniques. Online
optimization (e.g. in [10]) allows to profit from optimization techniques, while
reducing response times. The principle is to discretize the processing time into
time intervals. During each interval an optimization is performed with the known



clients. The new clients are kept in a queue, waiting for the next interval. The
known clients that could not be served and the new clients are submitted for
the new optimization round. As we said in the previous section, our objective
is to compare the same solving approaches while comparing response times, our
centralized approach then mimics insertion heuristics. In our proposal (see Fig. 1
(left)), all client requests are treated by the same planner agent. The planner
agent has all the necessary information about each vehicle and each client and
their current status. With these information, it assigns the current client in the
least costly position between all the possible vehicles.

The scenario is the following. A user appears and interacts with an interface
agent who creates a client agent representing him. When created, the client sends
a request to the planner agent, who tries to insert it in the route of every vehicle
of the system, in every feasible position. To this end, it executes sequentially,
for each vehicle, a procedure computing the insertion price for the vehicle, and
chooses the vehicle and the insertion position with the minimal price. If no vehicle
can insert the client a new vehicle agent is created and the client is inserted in
the only possible position in its route. Finally, the planner informs the client and
the vehicle of the outcome of the procedure. Vehicle agents in the centralized
dispatching strategy do not perform any calculation and only acknowledge the
updates in their routes.

Fig. 1. Centralized architecture (left) and decentralized architecture (right)

The centralized dispatching poses two main problems. On the one side, it is
not possible to distribute the execution over several hosts in order to limit the
response time of the system, which is the primary concern in online systems. On
the other side, the breakdown of the planner agent would result in a complete
breakdown of the system. Nevertheless, the centralized dispatching strategy of-
fers the advantage of minimizing the communications between agents, which
are restricted to the notifications of the computing outcome to the clients and
vehicles (N(1 +V )), with N the number of clients and V the number of vehicles.



3.2 Decentralized dispatching

The decentralized dispatching is illustrated in Fig. 1(right). Following this method,
there is no bottleneck for routes calculations. Following the principle of the
greedy insertion heuristics, every vehicle agent tries to insert the new client in
its route, and proposes an insertion price, corresponding to the “cheapest” posi-
tion where it can insert the client. The chosen vehicle will be the one having the
minimal insertion price to transport the client.

In this dispatching strategy, the choice of the vehicle with the minimal price,
the computation of costs, and the choice of the vehicle, all these steps are per-
formed in a distributed way. Indeed, the scenario is the following. When a new
client shows up, it broadcasts its request to all the vehicles of the system. When
the request is received, every vehicle computes its insertion price. When it fin-
ishes its computation, the vehicle broadcasts a message to all the vehicles with
its identifier and its price. For the processing of these messages and the inference
of the winner vehicle agent, we propose the following process.

Every vehicle agent broadcasts its own computed price to the other vehicle
agents. When he receives a new message containing a price that was computed
by another agent, he sorts the received offers, including its own offer, following
their prices. When all the other vehicle agents have proposed a price, the vehicle
agent either checks if it is the best vehicle. If so, it updates its route with the
new inserted client.

This dispatching strategy offers the advantage of completely distributing the
processing and to be fault-tolerant. Indeed, breakdowns might occur for the
agents, which would block the whole system (cf. centralized dispatching). In
this approach in the contrary, for each new client request, the vehicles have
to negotiate to choose which one is the most appropriate to serve the client,
instead of a central entity that would decide for them. However, the number
of exchanged messages might increase dramatically, which is generally the price
to pay for a distribution of the processing. The number of exchanged messages
between vehicles with this dispatching strategy is equal to N ×V 2. The overall
number of messages is equal to N(1 +V (1 +V ))

3.3 Hybrid dispatching

The hybrid dispatching is a compromise between the centralized approach and
the decentralized approach. In the hybrid approach (cf. Fig. 2), the client agent
plays the role of a dispatcher. The client agent broadcasts the client request,
collects the offers of the vehicle agents and chooses the one proposing the minimal
price.

The hybrid approach follows the following protocol. A new user provides the
interface agent the information concerning his transport request. The interface
agent creates a client agent representing him. Then, the new client agent broad-
casts a message to all the vehicles. Every vehicle agent verifies if it can insert
the client in its route. The vehicle agent then sends its price to the client agent.
The client agent collects the answers of the vehicles and chooses the vehicle that



Fig. 2. Hybrid architecture

proposes the minimal price. Once it has chosen the best vehicle that can answer
the new request (if there is at least one that can insert the client), it broadcasts
a new message to the vehicles informing them about its decision and asking the
winner vehicle agent to insert it in its route and to serve it. When the vehicle
receives the message from the client informing it that it is the winner, it updates
its route and inserts the client.

Thus, the objective of the hybrid approach is to relax the planner from all
the calculation, and to limit the communications between vehicles. The overall
number of messages in the hybrid dispatching strategy is equal to 3V N.

4 Experiments

Our objective is to verify the impact of dispatching strategies on the response
time of time-constrained online vehicle routing systems. We have generated sev-
eral client files with 100, 200, 300 et 400 clients, while varying the number of
vehicles between 4 and 8. The spatial environment is a plane of 50×50 and the
depot is in the center of the plane. The customers are geographically uniformly
distributed with time windows varying between 10 minutes and one hour. The
service time is set to 5 minutes. The quantities associated with clients requests
are between 5 and 20 while vehicle capacity is set to 400. The scheduling horizon
is set to 10 hours. For each client, we have also to define its appearance time,
i.e. the moment when it becomes known by the system. We have used the Gen-
dreau [11] method for the definition of these moments. Clients appear between
30 minutes and 1 minute before the start of their time window. Provided the
high level of randomness, we have executed each type of simulation 50 times and
we report the average result values.

4.1 Centralized experiments

We have implemented the three dispatching strategies using the multi-agent plat-
form REPAST Simphony [12]. The simulation is made of 7200 discrete simulation



ticks. Each tick corresponds to 5 seconds in the real world. Clients appearance
times are transformed into “appearance ticks” and continuously feed the simu-
lation at the computed ticks. We have executed our experiments on a PC with
an Intel Xeon E7-4820 processor, and 50 GB of RAM. Since we use the same
deterministic algorithm for all dispatching strategies, which is a distributed ver-
sion of insertion heuristics, the results for the three architectures in terms of
optimization costs are the same and not reported here.

Parameters / Nb Nb Average response

Approaches vehicles clients time (ms)

4 100 33

Centralized 4 200 43

8 300 50

8 400 62

4 100 38

Hybrid 4 200 51

8 300 59

8 400 72

4 100 46

Decentralized 4 200 63

8 300 94

8 400 113

Table 1. Centralized configuration

The Table 1 provides the values in terms of average response times (in mil-
liseconds) of every dispatching strategies. The response time for a client is the
difference between the moment when the client agent is created and the moment
when a vehicle is chosen by the client. The centralized architecture provides the
best results, followed by the hybrid architecture and the decentralized architec-
ture. This is due to the fact that the centralized approach does not generate
communications between agents and does not suppose any concurrency man-
agement. The hybrid approach provides results that are close to the centralized
dispatching strategy. However, it provides results of worse quality for two rea-
sons. On the one side, it generates more messages (linear with the number of
vehicles) between the client agent and the vehicle agents. On the other side, the
management of concurrent processes of the vehicles and clients, and the fact
that their contexts have to be restored every time the scheduler executes them,
increases the exhibited response times for the clients. Finally, the distributed
approach suffers from the two drawbacks: it generates a quadratic number of
messages and it uses pseudo-parallelism which slows down the processing.

However, this round of experiments being executed on a single computer,
these results are not fair with the decentralized dispatching strategy, and to a
lesser extent with the hybrid approach. Indeed, to use the full capacity of these
strategies, we have to execute our simulations on a mini-cloud.



4.2 Network experiments

It is possible with Repast Simphony to distribute a simulation on a network. We
have deployed our three systems (one for each dispatching strategy) on a four
PC network, each with the same configuration (Intel Xeon E7-4820 processor,
and 50 GB of RAM). We report the new obtained results in Table 2.

Parameters / Nb Nb Average response

Approaches vehicles clients time (ms)

4 100 18

Hybrid 4 200 26

8 300 29

8 400 32

4 100 23

Decentralized 4 200 33

8 300 42

8 400 53

4 100 35

Centralized 4 200 45

8 300 53

8 400 64

Table 2. Networked configuration

These results are interesting since they provide a new enlightenment con-
cerning the most promising dispatching strategy in terms of response time to
online users. Indeed, in the absence of slow-down due to single PC pseudo-
parallelism, the hybrid architecture takes profit of the processing distribution,
without suffering from a too big number of exchanged messages. The distributed
architecture comes in the second position in terms of performances, taking profit
from the distribution but suffering from their too big bandwidth consumption.
The centralized architecture comes in the last position, since its gain in terms of
exchanged messages does not counterbalance its sequentialization of processing.
Anyway, this architecture provides results that are practically equivalent to a
centralized implementation. The small difference comes from the fact that vehi-
cle agents are executed in different hosts than the planner agent, which result in
a small additional cost in terms of communication.

5 Conclusion

In this paper, we have proposed a multi-agent system with three versions, fo-
cusing on clients dispatching strategies. The dispatching strategy decides which
agents perform the computation to answer the clients requests. In the centralized
strategy the planner agent performs most of the computation. In the decentral-
ized strategy, the vehicle agents perform most of the computation in a collabo-
rative way. Finally, in the hybrid strategy the work is split between clients and



vehicles. We have compared these three approaches based on their response time
to online users. We have considered two experiments configuration, a centralized
configuration and a network configuration. The results have shown the superi-
ority of the centralized approach in the first configuration and the superiority
of the hybrid approach in the second configuration. In our future works, we will
consider more dynamic problems, in which, not only clients are not known before
execution, but also traffic conditions. To this end, we will integrate our vehicle
routing system inside the multimodal traffic simulator SM4T [13].

References

1. Solomon, M.: Algorithms for the vehicle routing and scheduling with time window
constraints. Operations Research 15 (1987) 254–265

2. Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. Knowl-
edge Engineering Review 10(2) (1995) 115–152

3. Bessghaier, N., Zargayouna, M., Balbo, F.: Management of urban parking: an
agent-based approach. In: International Conference on Artificial Intelligence:
Methodology, Systems, and Applications, Springer (2012) 276–285

4. Diana, M.: The importance of information flows temporal attributes for the efficient
scheduling of dynamic demand responsive transport services. Journal of advanced
Transportation 40(1) (2006) 23–46

5. Thangiah, S.R., Shmygelska, O., Mennell, W.: An agent architecture for vehi-
cle routing problems. In: Proceedings of the 2001 ACM symposium on Applied
computing (SAC ’01), New York, NY (USA), ACM Press (2001) 517–521

6. Kohout, R., Erol, K.: In-Time agent-based vehicle routing with a stochastic im-
provement heuristic. In: Proceedings of the sixteenth national conference on Arti-
ficial intelligence and the eleventh Innovative applications of artificial intelligence
(AAAI’99/IAAI’99), Menlo Park, CA (USA), AAAI Press (1999) 864–869

7. Zeddini, B., Temani, M., Yassine, A., Ghedira, K.: An agent-oriented approach for
the dynamic vehicle routing problem. In: IWAISE’08, IEEE (2008) 70–76

8. Zargayouna, M., Balbo, F., Scemama, G.: A multi-agent approach for the dynamic
vrptw. In: ESAW 08. (2008)

9. Zargayouna, M., Zeddini, B.: Fleet organization models for online vehicle routing
problems. In: Transactions on Computational Collective Intelligence VII. Springer
(2012) 82–102

10. Grootenboers, F., de Weerdt, M., Zargayouna, M.: Impact of competition on qual-
ity of service in demand responsive transit. In Dix, J., Witteveen, C., eds.: MATES
2010. Volume 6251 of Lecture Notes in Computer Science., Springer (2010) 113–124

11. Gendreau, M., Guertin, F., Potvin, J.Y., Taillard, E.D.: Parallel tabu search for
real-time vehicle routing and dispatching. Transportation Science 33(4) (1999)
381–390

12. North, M.J., Howe, T.R., Collier, N.T., Vos, R.J.: The repast simphony runtime
system. Agent 2005 Conference on Generative Social Processes, Models, and Mech-
anisms (2005)

13. Zargayouna, M., Zeddini, B., Scemama, G., Othman, A.: Simulating the impact of
future internet on multimodal mobility. In: AICCSA’2014, IEEE Computer Society
(2014)

View publication statsView publication stats

https://www.researchgate.net/publication/325475523

