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Exploring to learn visual saliency:
The RL-IAC approach

Céline Craye, Timothée Lesort, David Filliat, and Jean-Francois Goudou

Abstract—The problem of object localization and recognition
on autonomous mobile robots is still an active topic. In this
context, we tackle the problem of learning a model of visual
saliency directly on a robot. This model, learned and improved
on-the-fly during the robot’s exploration provides an efficient
tool for localizing relevant objects within their environment. The
proposed approach includes two intertwined components. On the
one hand, we describe a method for learning and incrementally
updating a model of visual saliency from a depth-based object
detector. This model of saliency can also be exploited to produce
bounding box proposals around objects of interest. On the other
hand, we investigate an autonomous exploration technique to
efficiently learn such a saliency model. The proposed exploration,
called Reinforcement Learning-Intelligent Adaptive Curiosity (RL-
IAC) is able to drive the robot’s exploration so that samples
selected by the robot are likely to improve the current model
of saliency. We then demonstrate that such a saliency model
learned directly on a robot outperforms several state-of-the-art
saliency techniques, and that RL-IAC can drastically decrease
the required time for learning a reliable saliency model.

Index Terms—Visual saliency, bounding box proposals, intrin-
sic motivation, intelligent adaptive curiosity, autonomous mobile
robots, incremental learning, deep learning

I. INTRODUCTION

In the scope of assistive robotics, where autonomous mobile
robots assist and help humans with their everyday life tasks,
the need for robots to efficiently analyze and understand
their environment is critical. To this end, robots should have
the capacity to efficiently find and identify objects they can
interact with.

Object localization in cluttered environments is still a dif-
ficult problem. Today, deep learning-based methods provide
efficient ways to localize and identify a large set of objects
in a wide variety of complex configurations [40], but they
generally require hours or days of offline training, high GPU
resources, thousand to millions of training images, and are
not really flexible to novelty. Furthermore, domestic mobile
robots are meant to evolve essentially in indoor environments,
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Fig. 1. Overview of our saliency learning and exploration approach.

interact with a limited amount of objects, for specific tasks
and thus do not require such wide scope capacity. However,
they should be able to adapt to novelty by quickly updating
the representation of their environment. Learning to localize
objects online and directly within the environment is then a
very desirable property.

Nevertheless, online learning must come with a methodical
exploration of the environment. The displacement of the robot
makes it possible to move to favorable observation conditions
in order to improve recognition performances, but a critical
point is to monitor this performance quality, and use this
information to drive the robot accordingly.

In this article, we consider a mobile robot exploring its envi-
ronment while building a model of visual saliency enhancing
objects of interest. Based upon our previous work [19], we
present a system (Fig. 1) able to:

« produce object-oriented visual saliency maps and propose
object bounding boxes;

e learn this saliency model incrementally directly within
the robot’s environment;

« make the robot explore the environment autonomously
and efficiently, by using reinforcement learning to esti-
mate the interest of long term trajectories.

More precisely, the system is composed of two major
components. The first one is a method for learning a visual
saliency model incrementally, without any user supervision.
This model can be exploited to enhance objects of interest in
the environment, and used as a posterior to generate bounding
boxes around salient objects. The second one is an algorithm
based on the Intelligent Adaptive Curiosity that drives the robot
in its environment, so that learning is done is an efficient
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and organized manner. We call this algorithm RL-IAC, for
Reinforcement learning Intelligent adaptive curiosity. RL-IAC
encapsulates the saliency learning technique and can be seen
as a whole system for autonomous exploration and efficient
learning. We demonstrate that our method for learning saliency
online generates saliency maps that are more accurate than
most state-of-the-art techniques in the robot’s environment. In
addition, the efficiency of RL-IAC for exploration is evaluated
versus alternative environment exploration techniques.

The article is organized as follows: we present related
work in Section II, Section III describes the method used to
learn visual saliency incrementally, while Section IV explains
the exploration strategy based on RL-IAC. We propose an
experimental evaluation of our system in Section V, and finally
provide concluding remarks and perspectives in Section VII.

II. RELATED WORK

As our system is based on two independent components,
we consider separately the related work on saliency maps and
object localization, and the one on the field of exploration on
mobile robots. We last highlight our main contributions and
positions towards state-of-the-art.

A. Saliency maps and object localization

To efficiently analyze visual inputs and interact with objects
in cluttered environments, robots usually rely on a visual
attention strategy. This mechanism turns the raw visual scene
into selected and relevant information the robot should focus
on, possibly involving zooming [48], foveal vision [7] or
physical displacements [8], [39] of the robot. This concept
has been widely studied and discussed [9], [34], [24], from
biological and computer vision points of view. We restrict
visual attention in this study to the localization of objects of
interest.

Visual attention is strongly related with the concept of
visual saliency, defined as a “subjective perceptual quality
which makes some items in the world stand out from their
neighbors and immediately grab our attention” [34]. The first
computational models of visual attention were relying on
saliency maps [35], representing the saliency of an image on a
pixel-by-pixel basis. General convention is to associate a pixel
intensity proportional to the pixel saliency.

Saliency maps can be either purely bottom-up [71], [21],
[31], or refined by fop-down modulation [28], [72], [23], [25].
Bottom-up saliency highlights stimuli that are intrinsically
salient in their context, which may sometimes be sufficient for
scene exploration [74]. However, top-down modulation, which
highlights elements that are relevant for a specific task, is
more meaningful for the problem of object detection in indoor
environments. Saliency maps are either fixation-based [35],
[21] or area-based [13], [25], [71]. Fixation-based approach
is related with the probability of a human being to make a
fixation at a given pixel position, while area-based approach
consider salient elements (typically objects) as a whole area
of the image. The latter approach is then closely related to
object segmentation. In the context of a mobile robot in an

indoor environment, our technique aims to build top-down,
object-oriented models of saliency.

Saliency maps are most of the time based on RGB images
only, but a few of them also integrate the depth compo-
nent [55], [15] [61], [59], [33]. Another possible approach
is to fuse both depth and RGB components [27] processed
separately. Usually, depth is good at detecting objects and
is particularly well-suited for indoor environments. These
approaches typically use geometrical constrains such as sym-
metries [58], [20], convexity [54], or detecting elements placed
on planar surfaces (such as floors or tabletops) [12], [2].
These approaches can detect objects much more accurately
than using only the RGB component, but are limited by the
sensor quality and geometrical constraints (reflectance, size
or distance to the objects). Our approach uses the depth
component to detect objects, and learns the visual aspect of
these objects on the RGB image.

A particular kind of saliency that can also be learned from
RGB-D is the co-saliency [16], [26], [67], [70]. The co-
saliency is an unsupervised approach applicable on a set of
images that highlight salient features common to several im-
ages. Consequently, Co-saliency methods need object images
in different situation to detect them. However, our setting
does not have this variability. Most objects only appear in
one context and thus co-saliency methods would not highlight
them.

Machine learning, and especially deep learning have also
been used for the generation of saliency maps. The best per-
formance reported on saliency benchmarks is so far based on
Convolutional Neural Networks (CNN). Whether on stimuli-
based benchmarks [30], [44] or object-based one [43], those
methods have shown excellent results compared to traditional
approaches. More interestingly, it was shown that CNN acti-
vation maps can be used as powerful objects detectors even
when trained on a weakly-supervised basis [73], [50]. To
obtain saliency based on deep learning, activation maps can
be sampled from different CNN layers to produce multi-scale
saliency maps [30], [44]. Moreover, these neural networks are
also particularly efficient for image segmentation. Therefore,
a CNN segmentation model can be used as a complement to
a object detection CNN to improve the quality of the saliency
maps [43]. CNN models are generally learned by supervision
but they can also be trained for image saliency prediction
through adversarial examples [53].

In the scope of object detection, the use of agnostic bound-
ing boxes [1], [75] has become a very popular alternative to
the traditional sliding window technique. Not only this type of
bounding boxes significantly decreases the number of windows
to evaluate, but it also provides much more accurate bounding
boxes. Several CNN-based object-detection techniques, such
as faster R-CNN [62], are based on agnostic bounding box
proposals. Hosang et al. [29] have published in that regard an
extensive review on detection proposals. We investigate in this
work how our saliency model can be used as a quality measure
for these kind of proposals. Other methods take advantage of
CNN to propose objects segmentation based on multi-scale
features map [56], [57].



B. Autonomous environment exploration

In robotics, the exploration problem is the one of maxi-
mizing knowledge over a working environment by means of
a single or several robots. Autonomous exploration of the
environment is then made possible by providing rules able
to guide the robot’s actions to reach specific goals in that
regard. We here present three types of approaches that can be
potentially combined to lead the robot’s exploration.

1) Vision-based exploration:: Exploration may be guided
by visual inputs and driven by a visual attention mecha-
nism [35]. In this case a visual focus of interest is selected
in the environment (from saliency maps computation, for
example), and the actions performed by the robot aim to
provide more information about the selected target. In a mobile
robot scenario, actions are displacement in order to get a closer
or better point of view of areas of interest [47], [39], [42], [8].
Exploration is therefore based on a pre-attentive stage, where
potentially relevant targets are selected and uninformative
areas are discarded, and an attentive stage after action, where
more complex tasks (such as object recognition [60]) are
performed on the targets to obtain more information about
them.

2) Map-based exploration:: When autonomous exploration
is made by a mobile robot, a 2-D or 3-D map of the
environment is commonly used. Those maps can either be pre-
defined before exploration [39], or incrementally updated [6]
as the robot discovers new portions of the environment. The
exploration problem in mobile robotics is often related with
a problem of maximizing map under constrains. For example,
minimizing displacement time [51] while visiting a certain
number of areas by solving a traveling salesman problem,
minimizing the number of views [36] with an art-gallery
problem, or re-visiting previously observed areas based on
potential uncertainty reduction [39] or information-gain [63].
Unlike visual attention strategies, exploration based on map
coverage is often composed of a problem of displacement cost
minimization.

3) Skill-based exploration:: When the robot aims to learn
skills from its environment, actions can be oriented to the task
of learning rather than that of pure exploration. This is then
typically the case in reinforcement learning [5] (RL), where
actions are taken to learn an optimal state-action policy rather
than for gaining knowledge about the environment. Q-learning
is a typical RL algorithm for this kind of exploration [46],
[48]. In the scope of developmental robotics [69], intrinsic
motivations are also used as a drive for robot’s acquisition of
skills through experience and exploration. Intrinsic motivation,
defined as intrinsic reward (i.e. not related to an external
goal, but to the acquisition of competences or knowledge)
able to drive a behavior, is a possible approach for guiding
exploration in that regard. For example, Huang et al. [32] have
used novelty to guide visual exploration, while Chentanez et
al. [14] have used the error of prediction of salient events
to speed up a classical reinforcement learning approach. To
overcome limitations related to novelty or error in unlearnable
situations, intrinsic motivation based on progress has been
proposed [49], [4], [65]. The Intelligent Adaptive Curiosity
(or IAC) [52] is one of the most emblematic implementation

of intrinsically motivated exploration using progress. Learning
progress has also been exploited in a reinforcement-learning
context, typically with artificial curiosity [38], [64], or to make
exploration flexible to changes in the environment or wrong
assumptions [46].

C. Contributions

Our first contribution is a method that incrementally learns
RGB saliency from a low quality depth-based object segmen-
tation as the robot explores the environment. The produced
saliency maps are therefore dedicated to the environment that
was explored, but remain flexible to novelty. The model that is
learned here is a top-down type of saliency that is related to the
concept of objectness, and the model that is learned is used to
produce object-oriented saliency maps. We further show that
these saliency maps can be used to refine object box proposals.
Unlike most saliency techniques based on learning, ours is
self-supervised, so that the robot is able to learn without any
human annotation or assistance. The main mechanism consists
in a transfer learning method between a restricted depth-based
segmentation technique and the RGB frame.

Our second contribution is the RL-IAC (Reinforcement
Learning Intelligent Adaptive Curiosity) algorithm that pro-
vides an autonomous exploration strategy. RL-IAC encapsu-
lates the online saliency learning technique, and uses it as a
core component to drive the robot’s exploration. RL-IAC is
a hybrid approach: on the one hand, it uses the idea of the
IAC algorithm [52] that drives exploration towards learning
progress. On the other hand, it uses a map-based exploration
that tries to minimize the time spent in displacements. For that,
we add a reinforcement-learning module to the traditional IAC
approach. The RL module is constantly retrained during the
exploration, so that the robot is attracted by regions with high
learning progress while trying to minimize its displacements.

This paper is an extension and a synthesis of several previ-
ous publications. In [18], the approach is tested on a specific
robotic platform: A biomimetic head equipped with a foveal
vision system where saliency is learned on the peripheral field
of view, through object recognition on the fovea. Here, the
implementation is designed for mobile robots equipped with
an RGB-D sensor, using depth maps segmentation rather than
direct object recognition for learning saliency. Moreover, in
[18] the exploration of the surrounding scene is done with
an adapted implementation of the IAC algorithm rather than
RL-IAC, and the evaluation is conducted on the biomimetics
platform mainly. In a second publications [19], early work on
the RL-IAC method is presented and evaluated on a mobile
robot. We here provide more technical details and further
experimental results. Results are also updated withe CNN-
based feature extractor, and a method to automatically and
incrementally obtain a navigation graph required by the RL-
TAC algorithm.

III. SALIENCY LEARNING AND OBJECT PROPOSALS

This section describes the component that learns visual
saliency and produces object proposals. Figure 2 presents
the general block architecture along with the corresponding
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Fig. 2. General mechanism of the saliency learning component. The RGB stream is used to generate CNN-based features, while the depth stream is sent to
a segmentation algorithm. The segmentation result is used as a learning signal to train a classifier. The resulting trained model actually predicts the saliency

of a given image, without using the depth segmentation component.

section for each block. In a learning stage, the system ex-
tracts RGB features (see Section III-A) and learns the visual
(RGB) aspect of salient elements within their context using a
depth-based object segmentation as a supervision signal (see
Section III-B) that is only used in the learning phase. Learning
is performed by a classifier (Section III-C) that produces
and constantly updates a saliency model. When available, the
saliency model is exploited to generate environment specific
saliency maps using the RGB image only (Section III-D), and
these saliency maps can be used to generate boxes that isolate
objects of interest (Section III-E).

A. RGB Feature extraction

As in our previous work [18], feature extraction in the color
image is based on convolutional neural networks following the
approach of Zhou et al. [73] and is fully independent from the
classification step.

We use the publicly available trained model [73] and
perform feature extraction at the level of the class activation
mapping, or CAM layer (called CAM-CONYV in the network,
see [18] for details). Because of striding and pooling in the
network, the output feature maps have a resolution that is 16
times lower than the input image. To overcome this loss of
resolution, we present in Section III-D a method to reconstruct
saliency maps at the original scale.

B. Depth-based object segmentation

The segmentation procedure has been designed for RGB-D
cameras such as Kinect or Asus Xtion, and mainly works for
indoor environments to detect objects lying on planar surfaces
(typically tables or floor), with a diagonal size between 10
and 180 centimeters. The method is a modified version of
the depth-based object segmentation of Caron et al. [12] and
is used to produce a partial but accurate estimation of the

——— Too high
. Too big

Close to Border
Joo small

Unavailable

Undetermined —fg
Salient
Not salient

Fig. 3. Main segmentation components (corresponding to section III-B in
Figure 2). (a) Floor and wall removal. (b) Object candidates filtering based
on geometrical criteria. (c) Construction of the segmentation mask

salient objects in the scene. Processing is based on the depth-
map only. Figure 3 illustrates the main components of this
approach.

As a first step, the depth map is turned into a point cloud,
and the algorithm detects the major plane (most likely the
floor, or a tabletop) of the cloud based on a RANSAC algo-
rithm [22]. The major plane is then tracked in the following
frames and during the whole sequence to make sure that the
same surface is used during the whole experiment and to
monitor false detections.

Given this major plane, potential walls are detected and
filtered out: they are detected by finding large planar surfaces
perpendicular to the major plane. The remaining points of the
cloud are likely to be part of salient objects, but could as
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well be small portions of walls, poles, or any other artifact
that is irrelevant for a robot. Remaining points are grouped in
blobs to form object candidates. We then remove candidates
that are either too small, too large, or too far from the floor.
Last, to avoid false detection from large objects cut by the
border of the frame, only candidates having no contact with
the border of the field of view are kept and considered as
salient objects. Whether discarded or not, all of the object
candidates are associated with a bounding box to generate the
SegBoxes (see Section III-E).

To convert this segmentation procedure into a 2-D segmen-
tation mask compatible with saliency learning, we project the
whole point cloud back to the image frame and attribute a
label value to each corresponding pixel. Figure 3, row (c)
illustrates an example of such segmentation mask. In this
case, pixels having no corresponding point cloud, because of
reflectance (for example, the plastic bottle in (a)), shadows (at
the border of objects), or visible points too far from the kinect
are labeled “unavailable” (dark gray). Points of the cloud that
either belong to the major plane or to a wall are labeled “not
salient” (black). Points of the cloud belonging to a cluster
detected as a salient object is labeled “salient” (white). Last,
all remaining points are categorized as “undetermined” (light
gray), as the algorithm was not able to determine their actual
state of saliency. In particular, candidates that are too close to
a border could be either walls or objects (see portion of wall
and table of row (b) that are both close to a border of the
image).

C. Online learning

As in our previous work [18], learning uses an online
classifier that is continuously updated based on the RGB-
D observations, turned into a set of labels and features: the
segmentation mask is first resized to the same size as the
feature maps as labels and the 1024 features associated to
each pixel are collected and turned into a feature vector so that
each pixel is attributed a features-label sample (see Figure 4).
To make sure that the dataset has as few false detections as
possible, only pixels having a label “salient” or “not salient” in
the segmentation mask are selected to feed the saliency model.
The classifier used in our implementation is an incremental
version of random forest, as described in [18].
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Fig. 5. Bounding box proposals biased by our saliency map

D. Saliency estimation

Saliency maps are generated by applying the classifier to
RGB images and increasing the resolution of the result to the
resolution of the original RGB image by using a superpixel
segmentation of the image (see [18] for details). Although
less accurate than depth segmentation, saliency maps provide
an estimation of the saliency for each pixel of the image, as
opposed to the partial saliency prediction of the segmenter.
The classifier is also able to generalize saliency even when
the segmenter fails at predicting it.

E. Object bounding box proposals

The saliency map provides an indication of the interesting-
ness of a given pixel, but does not say much about objects.
In order to localize objects in an image, an additional step is
then necessary to group salient pixels into object candidates,
represented in Figure 5. To this end, we use two types of
bounding box proposals, and we select or reject each of them
based on a score related to saliency. The first bounding boxes
are obtained by the EdgeBoxes [75] algorithm: we compute
for a given RGB input the 100 most likely EdgeBoxes,
and their associated edge score (hg" in [75]). The second
type of bounding boxes are obtained with the segmentation
result (called SegBoxes here for simplicity): the segmentation
algorithm produces, on top of salient objects, some additional
object candidates.during segmentation, pixels of the depth map
are clustered in order to create object candidates (See Section
III-B). Among these candidates, some are labeled “salient”,
some should be salient but are labeled “undetermined”’, and
some are just artifacts. We then define Segboxes as the
bounding boxes around all objects candidates proposed by the
output segmentation mask. of the segmentation mask.

For both EdgeBoxes and SegBoxes, we associate each box
B with a score related to saliency (called here the saliency
consistency score, or SCscore), representing the ratio of salient
pixels in the box:

1
SC B)= — S(i,j 1
seore(B) = L S s6) )
i,jEB
where S(i,j) is the saliency of the pixel at (4, ), obtained
from the saliency map and wp and hp are the width and
height of B. The highest the score is for a given box, the most



likely it is to contain a salient object. For the EdgeBoxes, the
SCscore is multiplied by hi". This way, small boxes found
within a salient object might be rejected if the hi" score is
low enough. Last we filter out Segboxes and Edgeboxes with
a final score below a certain threshold and keep the remaining
ones. In our dataset, we found SC'score = 0.2 for SegBoxes
and SCscore x hi" = 0.01 to be good trade-off thresholds
between false alarm and false rejection rates.

IV. RL-IAC

Our exploration strategy, that we call Reinforcement
Learning-IAC (or RL-IAC) is based on the IAC (Intelligent
Adaptive Curiosity) algorithm. In IAC (such as used in [18]),
the robot focuses on areas where learning is neither trivial nor
impossible. This way, learning is faster as no time is wasted
in useless or unlearnable areas, and better as mainly relevant
samples are selected. Nevertheless, the original version of this
algorithm does not consider the case where actions (displace-
ments in our case) have a non negligible time. To make it
compatible with our application, we couple IAC with some
navigation information to find a right balance between learning
and displacement.

Further explanations about the differences and similarities
of our approach with traditional IAC applications have been
described in a previous work [17]. We focus here on describing
the mechanisms of RL-IAC as a whole.

Figure 6 presents the general architecture of RL-IAC, using
the notations and vocabulary proposed by Oudeyer et al. [52].
The module strongly depends on the saliency learning module
and takes as an input the feature maps X and the object
segmentation Y to feed a learner (called classifier in Sec-
tion III-C) that is constantly updated. Based on the available
model, the learner produces a saliency map, which is also an
estimate Y of segmentation Y. In the meanwhile, as the robot
navigates in its environment, the space is cut into regions based
on a 2-D map, and a navigation graph is updated to model the
connexity between regions (Section IV-A). By comparing Y’
and Y, the meta learner produces a local estimation of the
error in each region, and derives a local progress measure
L (Section IV-B). Last, a reinforcement learning module
(Section IV-C) uses the navigation graph as the set of states
and actions, and attributes to each state the reward L of the
corresponding region. The RL module is re-trained at each
step to provide the robot with a displacement policy. After each
displacement, a new RGB-D input is acquired and the modules
are updated. The bounding box proposal module (section I1I-E)
was left out of the diagram as it was not exploited in the RL-
IAC approach.

A. Regions and navigation graph

1) Role in RL-IAC: One of the essential component of RL-
IAC is to locally monitor how good the learner is at predicting
saliency. This local estimation is obtained by creating statistics
on samples collected within the same region. In our case, re-
gions are defined as portions of a 2-D map of the environment,
produced by a SLAM algorithm. The (x,y) position of the

mobile robot on the map then determines the region that is
currently being explored.
In addition, displacement in the environment is made pos-
sible by a navigation graph, representing the different regions,
their relative positions and connexities, and the distance be-
tween two neighbor regions centroids. This navigation graph
is also used by the reinforcement learning module to decide
the next displacement of the robot.
2) Algorithm:: We propose a method that incrementally
splits the space into regions and produces the associated
navigation graph. The method relies on an occupancy grid
(the 2-D map) of the environment and the visible field of
view of the RGB-D sensor. Figure 7 presents an example of
regions and navigation graph obtained this way. On this figure,
visible areas are colored depending on the region they belong
to. Walls and obstacles are represented by gray pixels. Lastly,
circles with region index correspond to the region centroid,
and edges represent the available displacements of the robot.
Each region has at most 4 neighbor regions.
Initially, the occupancy grid has a pre-allocated size, where
each pixel state is “unexplored”. This map is first divided in
proto-regions based on a regular grid of arbitrary size of 5
meters-length. This way, each position of the occupancy grid
is associated with a proto-region. The regions determined in
our algorithm are subdivisions of those proto-regions.
As soon as a new robot observation is available, we update
the occupancy grid based on the RGB-D field of view: we
transpose the point cloud obtained from the depth map in
the occupancy grid frame. Points belonging to the floor are
marked as “free” on the occupancy grid, and other visible
points are marked as “occupied”. Let us denote V' the list of
visible points marked as “free” on the map. Let us consider
{P;}i=1..n the N proto-regions having an overlap with V.
Each P; is then the list of all pixels contained in the square
delimiting the proto-region. For a given P;, let us define
{R;};j=1..m the pixels of the M regions contained in P;.
Regions are now updated using the following procedure for
each P; (Please refer to Figure 8 for an illustration of each
case):
e fVNP,N{R;}j=1.m =0, create a new region Rps41
constituted with all pixels of V' N P;;

o« fVNP,N{R;}j=1..m # 0 and V is overlapping a single
region 1%, update I2; with V. R; +— R; UV N P

e VNP N{R;}j=1.m # 0 and V is overlapping a set
of L > 2 regions { Ry }re1..z merge all those regions by
creating a region Ryry1 =V N P; U{Rg}ke1..n. Then,
empty all Ry.

The nodes of the navigation graph correspond to the po-
sitions of the regions centroids (if not empty). Edges are
determined based on the connexity between regions and their
neighbours. In other words, if a region has a common border
with another region, they are connected by an edge. Note
that regions within the same proto-region do not have any
connexity, otherwise they would have been merged. As a
results, edges are necessarily between a region of proto-region
P;, and a region of the upper, lower, left or right proto-region
P;. We also attribute to each edge a weight representing the
distance between the two centroids.
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Fig. 6. General achitecture of the RL-IAC module. The saliency learning module is improved by using a feedback loop considering the learning quality

(through meta learning) in order to guide the robot’s displacements.

Fig. 7. Regions and navigation graph obtained after the exploration of the
ENSTA building. Note that the bounding box proposal is independent from
the RL-IAC process, so that it is not displayed here.
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Fig. 8. Update procedure. the robot is in proto-region P> but the field of
view V' covers proto-regions P’; to P4. In P, no regions were previously
defined, so a new region is created (region 6). In Ps, region 4 already existed
but has no overlap with V: a new region is created (region 7). Region 1 in
P overlaps V, so the region is extended. Lastly, V' overlaps two regions in
P4, so that regions 2 and 3 are merged to create region 5. Last configuration,
when a wall is splitting a proto-region, two separate regions are naturally
created on each side (as they are not connected components). Thus, region 0
and 1 of Pj are separated by a wall and cannot be merged together.

B. Meta-learner

The meta learner is similar to the one used in [18] and
aims at monitoring the local error made by the learner and
derive a local estimate of the learning progress. The local
estimation is made possible by grouping samples collected
in the same regions and making statistics within each region.
Recall that the robot is in region R; at time ¢ if its current
position (z(t), y(t)) falls within R;’s boundaries.

Error estimation is done by comparing a segmentation mask
(the learning signal) with the corresponding predicted saliency
map (the estimated signal). More precisely, from an RGB-D
input, we extract features and compute a segmentation mask.
We then consider the observation set O by keeping only
salient and not salient pixels from the segmentation mask.
We estimate the saliency response for each of these pixels.
These responses (between 0 and 1) are then binarized with
a threshold of 0.5 to obtain the estimation set E. Last, we
compute the estimated learning error Err of a particular frame
based on Equation 2:

Err=1-Fi(0,F) )

where F(.,.) is the F} score .

From the history of errors in each region R;, a linear
regression is used and the slope of the resulting model is used
as the learning progress LP;(n) in this region (see [18] for

details).

C. RL-based displacement policy

In previous applications of IAC, the time required to reach
a region A when in a region B is not considered. In this
scenario, a greedy policy exploring the regions with highest

learning progress is enough. For a mobile robot moving in a

L p o= %é@#f", where tp, fp and fn are the true positives, false
positives and false negatives. We use the F| score as our error metrics, because
not salient pixels are representing more than 80% of the samples, making
accuracy inappropriate for error estimation.



large environment (e.g. a building), the displacements between
two regions can be extremely time consuming, making the
greedy policy inefficient.

We therefore represent the regions by the navigation graph
described in Section I'V-A that encodes the relative distances
between regions and the possible displacements the robot can
make to reach a region. We use this navigation graph to
model states, actions and rewards of a reinforcement learning
problem (we use Q-Learning [68]). The reward is the learning
progress in each region, and a batch of simulations is run on
this setup to determine the policy that optimizes progress while
minimizing displacements. After simulations, the robot moves
to another region by following this policy.

To describe how the module work, let us consider that the
robot is in a region RR; at time ¢. As the navigation graph
and learning progress is constantly evolving, the procedure is
repeated before each robot’s displacement.

1) States:: The states are the node of the navigation graph.
In other words, the regions centroids.

2) Actions:: Actions are represented by displacements on
the graph. Each region is connected by edges with neighbor
regions in one of the four (above, below, left and right)
adjacent proto-regions. As a result, the robot selects one
among actions “up”, “down”, “left” or “right”, depending on
the graph edges, and moves to the corresponding neighbor
region.

3) Reward:: A reward r is associated with each region ;.
We take for each region the last calculated learning progress.
Thus, at time ¢, if R; contains n;(t) observations, we define
reward as:

r(Rj) = LP;(n;(t)) 3)

LP; being the learning progress, as defined in [18].

4) Simulation setup:: We simulate a batch of 1000 episodes
where a virtual robot moves in the navigation graph. For each
episode, the initial state is R; (the actual state of the robot).
During the episode, reward is collected right after taking an
action and arriving in a given region. The episode stops when
the traveled distance exceeds N = 1km .

5) State-Action policy:: During the batch of episodes, a
state-action matrix is updated according to the following rule

Qsks ax) = r(sx) + YMaxQ(sp+1,a') )

with ~ the discount factor (0.9 in our implementation), sy
the region where the robot is after k (virtual) actions, ay, the
action to take next, A the set of all possible actions, and sx1
the region after taking action ay. During the whole simulation,
the virtual robot follows an e-greedy policy (e = 0.1) to take
the next action.

6) Robot displacement:: Once all the episodes have been
simulated, we use the Q-matrix to select the next (not virtual)
region to visit. For that, we select the next action a; that should
be taken by the robot according to Equation 5:

a; = Argmax(Q(R;,a’)) (5)
a’'€A

2This distance is obtained by cumulating the edge weights visited by the
robot during the simulation.

10% of the time, the policy is not followed and the action is
selected randomly among all available actions.

We now consider the region I2; connected to R; and ac-
cessible from action a;. A position (z;,y;) in R; is randomly
selected and constitutes the next target to reach. The robot then
moves to this position, updates the navigation graph, grabs a
new RGB-D input, updates the learner and meta-learner, and
determines by Q-learning the next position to reach.

Note that each Q-learning policy is obtained by considering
the navigation graph and the reward as constant during the
whole simulation. This assumption is not representative of the
real world, as each displacement influences both the regions
and the learning progress (that would eventually decrease
to 0 when the learner cannot be any better). However, the
assumption is accurate enough to suggest a displacement. As
the Q matrix is re-estimated before each new action, this
approximation does not introduce a significant bias. Moreover,
to force the robot to quickly get a first estimation of the
progress in each region, we force the progress in a given region
to be very high as long as less than three samples are collected
in that region. This additional constraint has the same effect
as the R-MAX [10] exploration policy.

V. EXPERIMENTAL RESULTS

We evaluate in this section the saliency learning and the RL-
IAC exploration strategy separately, on datasets constructed
slightly differently. Experiments were carried out on both
publicly available datasets and datasets recorded on a mobile
robot in our laboratory.

A. Saliency maps and object proposal

In this Section, we use three different datasets contain-
ing RGB-D images and ground truths, to evaluate both our
saliency maps and the bounding box proposals methods.

The first dataset (denoted here as the ENSTA dataset) was
collected from a pioneer 3DX robot, with a Kinect RGB-
D camera mounted at 1 meter from the ground and tilted
slightly downward. The robot was equipped with a laser range
finder, and a SLAM algorithm (Hector mapping [37]) was used
to simultaneously localize the robot in its environment and
produce the occupancy grid. To build the dataset, we manually
controlled the robot in an office building in order to visit
corridors, laboratory, hall and offices. Within this environment,
the robot was typically observing chairs, desks, or boxes. We
recorded a 15 minutes length video sequence at SHz with the
robot moving at a 0.5m/s average speed, in which a large
variety of views and lightning conditions were captured (See
Figure 9). In total, around 4000 RGB-D images were collected
this way, associated with the position in the occupancy grid
where they were taken.

The second dataset was constructed from the publicly avail-
able Washington dataset, and more specifically, from the RGB-
D scenes dataset [41]. This dataset is composed of 8 video
sequences of indoor scenes with everyday-life objects placed
on tabletops. In total, around 1500 RGB-D frames are available
in this dataset along with bounding boxes around objects.
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Fig. 9. Map of the ENSTA building recorded in the ENSTA dataset.

However, these annotations are not well-suited for object-
based saliency evaluation, as they consist in bounding boxes
around a limited list of objects (other are just considered as
distractors). For saliency, we rather need pixelwise annotations
for every object of the scene.

The third dataset is the Ciptadi dataset [15], designed
for RGB-D saliency evaluation. This dataset was recorded
on a mobile robot in a house, and contains everyday-life
objects and scenes. In total 80 RGB-D frames are available,
with a pixelwise saliency annotation. This dataset is used for
two purposes: first, to confirm that our saliency technique is
able to generalize from a dataset to another one. Second, to
validate the performance of our method with annotations are
not produced by our team, thus enhancing the reliability of
our experiments.

To evaluate the performance of our saliency technique,
we manually labeled 100 randomly chosen images from the
ENSTA dataset and RGB-D scenes. Annotations were done
to be consistent with our definition of saliency. As a recall,
we defined saliency objects as elements standing on planar
surfaces (either floor or table), that can be detected by our
segmentation technique. Note that this can be contradictory
with bottom-up saliency, e.g. red plugs on a white wall will
not be salient and white furniture in front of a white wall will
be salient. Annotations are such that we have a ground truth
masks and a list of bounding boxes around salient objects.
Those frames were removed from the dataset and used for
evaluation only.

To evaluate the saliency model, we analyze the final per-
formance reached by the classifier when all samples of the
training set are used. We denote in this section our incremental
saliency learning approach and produced saliency maps as ISL.

1) Depth segmentation vs. RGB saliency: We first demon-
strate the capacity of the saliency model to generalize what
was learned from the depth segmentation, and produce a

reliable estimation of the saliency on the whole image. This
generalization is made possible by two factors: first salient
objects often show common visual properties. The classifier
is able to find those properties and is therefore able, to a
certain extent, to find salient objects that were not detected
by the object detector. Second, the datasets are such that the
same objects are visible at different point of views. This way,
if the object detector fails at identifying an object for a given
frame, this object may be detected for other point of views.
The classifier then extrapolates those point of views and is
able to retrieve undetected salient objects.

Figure 10, second row, shows a set of segmentation results.
Recall that for a segmentation mask, black and white pixels
represent “not salient” and “salient” portions of the image.
Grey pixels of the segmentation mask represent areas where
the algorithm could not clearly determine the state of saliency.
Except cases where the segmentation fails (sample 6) because
of a bad plane estimation, the segmentation mask produces a
pretty reliable saliency segmentation. However, this segmen-
tation is only partial because of the many undetermined areas,
thus making the incremental learning of saliency (third row)
useful to recover missing data. For example, the segmentation
algorithm is such that nothing salient can be detected further
than 4 meters away (samples 4, 5), but saliency estimation is
applied on the whole image and the generalization capability
of the classifier makes it possible to detect salient objects
further than four meters. Second, reflective surfaces are often
hard to detect by the Kinect sensor (computer screen on
sample 3, black plastic on sample 2). However, the aspect
of salient reflective objects can be partially learned and fully
retrieved based on the RGB data only. Third, the segmentation
algorithm is very restrictive and is often not able to detect
salient elements if they are in contact with a border of the
image (samples 1, 2,5) or badly clustered by the segmentation
(mobile container of sample 3 mixed with the floor). Con-



versely, the saliency algorithm provides an estimate of saliency
even if the object is partially cut, occluded, or captured with
a poor image quality.

2) Saliency map accuracy: To demonstrate the accuracy
of our saliency model, we selected three publicly available
saliency algorithms and computed the ROC curves for each
method on each of the three datasets. First, SALGAN [53]
is among the most accurate RGB saliency methods according
to the MIT saliency benchmark [11]. Second, we use the the
DSS algorithm [43] that produces an object-oriented kind of
saliency and is one of the best performing method on the
object-based ECSSD benchmark [66]. Third, we compare our
method with saliency maps produced with the CAM [73]
model. This model is trained to detect objects among the 1000
classes of ILSVRC. For a fair comparison, we disabled classes
that were not present in the images of our datasets (i.e. their
output score were systematically set to 0), so that the produced
saliency maps were responsive to relevant objects only. In
addition, the maps produced by the CAM approach have the
same low resolution than our model. We therefore apply the
superpixels approach presented in Section III-D to increase the
resolution of these maps.

To evaluate our feature extractor versus the one proposed in
previous work [19], we generate saliency maps from both the
CNN-based feature extractor (denoted as ISL here), and the
former feature extractor (denoted as ISL-Make3D). Last we
evaluate the performance of the segmentation. As saliency is
not estimated on the whole image in this case, we replace
pixels labeled as “unknown” or “unavailable” by a “not
salient” label. For the Ciptadi dataset, Ciptadi et al. have
proposed a set of saliency maps for comparison on this dataset.
We then present Ciptadi’s results on this dataset only.

The results of the ROC-based evaluation are reported in
Figure 11 and suggest that ISL significantly outperforms
the evaluated bottom-up and top-down techniques on both
ENSTA and RGB-D scenes datasets. Although slightly below
ISL, our technique trained with the Make3D features is still
performing well and confirms this trend. These result were
expected on those two datasets, because our model is trained
from a learning signal that is close to the ground truth, in
a specific environment. Surprisingly, DSS is performing quite
poorly for an object-based state-of-the-art saliency. We believe
that is is because DSS tends to enhance the most saliency
element mostly. As the ECSSD mainly consist of images with
a single or few salient objects, this feature is not penalized in
this dataset. However, our datasets are more challenging and
usually contain several salient objects at the same time, thus
making DSS less efficient.

To demonstrate that the trained model is also usable in other
kinds of environments, we use the Ciptadi dataset. The Ciptadi
dataset has its own annotations on a pixelwise basis, so that
results can be objectively compared with state-of-the-art. For
this dataset, we obtain our results by training ISL on the whole
RGB-D scenes dataset, and creating saliency maps with this
model. This time again, ISL is the best performing approach,
but the Make3D version has a very poor performance. This
result is explained by the very good generalization capacity of
the CNN types of features.

We also observe that all of the evaluated techniques outper-
form the depth segmentation. This is because the ROC curve
is estimated on the whole image, while segmentation only
returns a partial saliency estimation. As missing information
is replaced by “not salient” labels, the produced ROC curve
has a low true positive rate.

In figure 12, a visual comparison between the saliency
maps is presented. Samples 1 and 2 are from the Ciptadi
dataset. For these samples, the results provided by ISL do
not look as neat as in the other datasets. This is because ISL
is used in an environment it was not trained for. Regarding
the performance of ISL for the other samples, the superpixel
reconstruction approach makes it possible to retrieve shapes
of salient objects (in spite of the low-resolution feature maps
produced by the output of the CNN). When applied to the
CAM saliency map, the superpixel reconstruction does not
provide such good results. This might be because the produced
saliency is much more diffuse (as a comparison, the CAM
algorithm is displayed samples 1 and 2 without superpixel
reconstruction). As explained earlier, we notice that DSS tends
to enhance only a few salient objects or portion of objects,
thus leading to a lot of false negatives in the evaluation.
Second, ISL is learned from a segmentation derived from a
depth map. This way, salient and not salient elements are
determined from geometrical criteria rather than from RGB
textures. As a results, ISL avoids the detection of distractors
such as windows or trees outside (sample 5), or red power
outlet (samples 4, 6), that are visually salient but irrelevant
for an indoor mobile robot. Lastly, it enhances elements that
are not naturally salient (mobile container on sample 6) but
consistent with our definition. The saliency maps produced
by the Make3D features have a better capacity for retrieving
fine details of objects than ISL (samples 2, 6), as this type of
feature extraction does not decrease the original resolution.
However, ISL based on deep features have a much better
generalization capability. Considering samples 1 and 2, where
training was done on another dataset, or the chessboard of
sample 6, where salient elements (the pawns) are of the same
color than the ground (black and white squares), ISL clearly
provides a much better saliency estimation.

3) Bounding box proposals: We now demonstrate that ISL
can be used to produce relevant bounding boxes around
objects. To this end, we run the EdgeBoxes [75] algorithm
for each frame of the ENSTA and RGB-D scenes evaluation
sets and keep the 100 best ranked bounding boxes along
with their hj" scores. These boxes are used as a reference
to evaluate our method. Then, these EdgeBoxes are re-ranked
based on the saliency map to make boxes containing salient
pixels better ranked than others. For that, we rank each of these
boxes according to the SCscore defined in Section III-E. To
demonstrate the ability of our saliency map to produce relevant
box proposals, we calculate an SCscore based on ISL saliency
maps, and another one based on BMS [71] saliency maps
(denoted as EB+ISL and EB+BMS in Figure 13). Lastly, we
generate the SegBoxes from the depth segmentation process,
as described in Section III-E. We also produce an SCscore for
each of them. We filter out Segboxes having a low SCscore
(below 0.2 in our case). Those SegBoxes, obtained from depth
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Fig. 11. ROC curves of several saliency approaches on three different datasets

segmentation are complementary to the RGB-based Edge-
Boxes and allow the detection of additional relevant boxes.
The remaining SegBoxes are reported as SegBoxes in Figure
13. In practice, a small number of SegBoxes are detected on
each frame (between 0 and 7 on average). Lastly, we combine
the re-ranked EdgeBoxes and the SegBoxes to produce a better
set of box proposals. This approach is presented in Figure 13
and Figure 14 as EB+ISL+SB.

The evaluation metric is the detection rate versus the number
of proposal, based on the intersection over union measure
(IoU=0.5 here) to count the number of detections. This mea-
sure is used by Zitnick et al. [75] to evaluate their performance
over state of the art approaches. To obtain the detection rate
for N proposals, we consider the /V best ranked box proposals
and measure the proportion of boxes in the ground truth that
have an IoU score over 0.5 with at least one of the proposals.

Numerical results are reported in Figure 13 for both ENSTA
and RGB-D scenes datasets. As expected, the use of ISL
maps to improve the EdgeBoxes ranking allows a much better
detection rate on both datasets. Moreover, using a bottom-
up saliency map such as BMS instead of ISL does not show
significant improvements on both datasets. The SegBoxes
usually propose relevant candidates, possibly not detected by

the EdgeBoxes. Because they are complementary to the Edge-
Boxes, combining the two approaches significantly improve
the detection rate on both datasets. However, the number of
proposals is low (between 0 and 7 most of the time), and they
do not cover the entire image as they are produced from the
depth segmentation.

Figure 14 shows sample results of the top 5 EdgeBoxes
(column EdgeBoxes), top 5 EbdgeBoxes re-ranked by the
SCscore with ISL (displayed in column EB+ISL+SB, blue
boxes), and Segboxes (same column, yellow boxes). The
SegBoxes almost always provide relevant boxes, but many
objects are also missed this way, either because they are too
far to be segmented (sample 3), or because segmentation failed
(sample 4). In this case, the remaining objects locations are
recovered by the EdgeBoxes. Again, the use of ISL to rank the
EdgeBoxes favors boxes that surround salient elements while
removing distractors such as windows (sample 3). Lastly, it is
possible to cope with frames that do not contain any salient
object (sample 2) by filtering boxes with an SCscore below a
certain threshold (0.01 in our case).
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Fig. 14. Sample results of bounding box proposals versus EdgeBoxes

B. RL-IAC

1) Experimental setups: A strong limitation when using
robots, especially in scenarios involving online learning, is
the reproducibility of the experiments. If a single experiment
requires the robot to explore a building for hours, the total
number of possible trials is rather limited, and the efficiency
of a method may be hard to analyze. For that reason, we rely
on semi-simulated setups to run a large number of experiments
in parallel without any particular user monitoring. The semi-
simulated setups are created from the recorded sequences of
the ENSTA and RGB-D scenes datasets. We call them semi-
simulated as saliency is learned from real images taken from
these sequences, but actions taken by the robot are simulated.

The first setup is constructed from the ENSTA dataset. From
this sequence, we build before our experiments a navigation
graph based on the technique described in Section IV-A
(although map building and saliency learning could be run
simultaneously). The navigation graph used in all our ex-
periments is the one represented in Figure 7. Proto-regions
were arbitrarily defined to be of 5 meters length. We then
considered the positions of each observation recorded during
the sequence, and we associated each of them to a region.
When selecting a position in a given region, we select one
among all associated frames, we consider the position of this
frame, and we simulate the displacement of the robot to reach
it. Once attained, we use this observation to update our model.
To get an overview of the incremental map building and
the simulated robot displacement, a video is available on the
project’s webpage?.

The two other datasets consist in artificial buildings con-
structed from the RGB-D scene dataset. Each of the eight
video sequences of the dataset is recorded in a single particular

3https://github.com/cececr/RL-IAC
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room (kitchen, office, meeting room), so that our artificial
building contains rooms (one for each sequence) divided into
5 to 6 regions, with some regions connected to other rooms (as
if there were doors and corridors between rooms). We created
two different building configurations, illustrated by Figure 15.
The first artificial building, denoted as the short corridor
building, is composed of five of the video sequences, and
contains a short corridor of three regions to switch between
rooms. The second one, denoted as the long corridor building,
is composed of the eight video sequences and contains three
long corridors. To construct the navigation graph in each room,
we cut each of the sequence into five or six sub-sequences
of equal length, and we created an arbitrary trajectory to
travel across the sequences. We also limited the number of
connections per region to four. This corresponds to the four
possible actions the robot can take, namely “up”, “down”,
“left” and “right”.

To simulate the displacements of the robot, we considered
the following sequence of steps:

1) The robot grabs an RGB-D frame, extracts features and
segmentation, and updates the meta-learner;

2) the robot determines the next region to visit given
learning progress and Q-learning training;

3) the robot determines the next position to reach in this
region;

4) the robot moves to this position;

5) while moving, the robot updates the learner based on
the previous RGB-D frame;

6) before taking the next RGB-D frame, the robot waits

for the displacement and the learner update to be both
finished.

In our experiments, this sequence was repeated 3000 times.
Each estimated error rate was timestamped with the simu-
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Processing Min time Max time
Meta-learner update 100 ms 150 ms
Q-learning training 250 ms 300 ms

Learner update 23 ms 135 s
Robot displacement 0 ms 22's
TABLET

MIN AND MAX PROCESSING TIME FOR THE MAIN STEPS OF RL-IAC

lated time starting at the beginning of the experiment. This
timestamps was then used to plot our results. To obtain the
simulated time, we measured for each iteration the time spent
by the system to compute steps 1 to 3 (not simulated), and
we added the longest step between steps 4 and 5, as they are
supposed to be run in parallel and wait for the other to be
finished. Table I provides additional measurements to get a
better overview of the execution time for each step.

To simulate the robot’s displacement, we considered an
average speed of 0.5 m/s, and we measure the time for a robot
to reach a certain point by considering the euclidean distance
to this point and a constant speed of 0.5 m/s. The maximum
displacement time is then bounded by the distance between
two adjacent regions. To get a rough idea of the simulated
time for a single experiment, the five steps of an iteration take
on average 10 seconds. Given the 3000 successive iterations,
an experiment then lasts for 8 hours.

2) Evolution of the saliency: We first look at the evolution
of the saliency quality during incremental learning. Figure
16 first shows a qualitative example of the evolution of the
saliency at a given point of view, while the sequence is used in
chronological order for training the classifier. We can observe
the generalization capability because even before the seat
was observed (in frame 400), the classifier is already able to
recognize it as a salient element, because it has already learned
a partial model of the background. For a better visualization of
this evolution, a video is also available online on the project’s

Corridor 3

short corridor and long corridor artificial buildings created from the RGB-D scene dataset

webpage.

3) Exploration efficiency: To demonstrate the benefits of
exploring the environment using RL-IAC, we now compare the
evolution of the saliency with different exploration strategies
on the three datasets. In a previous publication [19], we
demonstrated that RL-IAC was outperforming the exploration
based on IAC (described in [18]) that behave similarly to
the random exploration in this particular context. We here
investigate other types of explorations.

In mobile robotics navigation, the goal is generally to have
a good coverage of the environment to explore so as to get an
accurate mapping. Our goal is not to make a mapping of the
environment, but using an exploration based on an extensive
and efficient coverage of the environment is a good baseline
to compare with. For this reason, our first exploration strategy
consists in determining an exploration pattern covering the
whole regions of the environment, and repeating this pattern
until the end of the experiment. In Osswald et al., pre-defined
map and navigation graph is used as a prior for exploration. An
efficient exploration route is obtained by solving a traveling
salesman problem (TSP) in their map, based on the Concorde
software [3]. Similarly, we then used Concorde with our
regions configurations, to find an optimal map coverage that
is to be used in our experiments.

A few approaches rely on learning progress to guide ex-
ploration in a reinforcement learning context. In particular,
Schmidhuber [64] or Lopes et al. [46] have used Q-learning
to guide the robot’s displacements in a context where the only
reward is the learning progress. This kind of approach is very
similar to RL-IAC, but differs at a critical point: while a single
Q-learning is run during the experiment and directly decides
the next action of the robot in Schmidhuber’s approach, we
define and solve a new problem with Q-learning after each
robot’s displacements. We then use the entire problem to find
the next best displacement rather than following a policy from
a partially trained Q-matrix. Our second approach to compare
with is then following Schmidhuber’s approach: instead of
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Fig. 17. Error rate evolution for several exploration strategies on three different environments

running virtual displacement simulations to train our Q-matrix,
we run a single update of the Q-matrix after arriving in a given
region. We also use an e-greedy approach (50% random) to
decide the next action to take.

Each exploration strategy was tested 10 times on each
dataset and results are reported based on the average and
variance over those experiments. The performance of the
system was evaluated using the evolution of the overall error
rate of the system: based on the reference frames on which a
ground truth is available, we compare the estimated saliency
map for all of these frames with the available ground truth. We
then use the formula provided by Equation 2 on each frame
and take the average error. Note that the overall error rate is
an extrinsic metrics used to evaluate the performance of the
system. It then differs from the region error rate, the intrinsic
metrics (based on segmentation rather than ground truth) used
to get an estimate of the error in each region.

Figure 17 shows the evolution of the overall error rate in
time on both environments, for the 4 exploration strategies:

e RL-IAC: As described in Section IV. Selects the next
region to visit from the Q-matrix, and the next position
to reach in that region randomly.

Uniform: We drive the exploration by a uniform coverage
of the environment, from the sequence of regions deter-
mined with the TSP heuristic. This pattern is repeated
until the end of the experiment. The next region to visit
is determined from the sequence, and the next position
to reach in that region is taken randomly.

o Schmidhuber: Similar to RL-IAC, except that the Q-

matrix is updated after each observation rather than
running a batch of simulations.

Random act.: To get a worse case scenario, we select a
random action to reach a region, and random position in
that region.

On all datasets, RL-IAC is the method with the fastest
decreasing error. The uniform exploration has a reasonable
performance, even similar to RL-IAC in the short-corridor
dataset. This can be explained by the fact that this setup
only has a very small number of uninformative regions. RL-
IAC, by evaluating progress, is precisely efficient at detecting
such uninformative regions. This is even more visible in the
large corridor experiment, where almost 50% of the regions
are part of the corridors, which are typically uninformative.
Schmidhuber has a varying performance depending on the
dataset. We actually found this approach very sensitive to the
parameters of the experiment, and performing well with very
different parameters than RL-IAC. For example, to converge
rapidly enough, a large percentage of random actions were
necessary (typically 50%), while RL-IAC only works with
10% of random actions. Lastly, and as expected, the random
action is providing the worse performance, sometimes close to
Schmidhuber’s approach. As a comparison, we also plot the
error rate of the model trained offline (constant in time). The
offline version performs roughly the same as the online one
when enough samples have been acquired. However, the main
difference is that the online version is flexible to changes in
the environment, while the offline is not.
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4) Time allocation in the environment: To get a better
insight of the way exploration is done by the robot, we divide
the building in 4 main areas, namely lab, office, corridor
and hall (See Figure 9). In these areas the difficulty to learn
saliency is not the same. For example, the corridor does
not contain any salient element, whereas the hall is a very
large room with many salient items and many distractors. We
compare in Figure 18 the average percentage of time spent
in each area when using RL-IAC and when using random
(Random act.) exploration strategies. The graphs have been
constructed by using a sliding widow of 500s over the whole
experiment, and measuring for each window the number of
frames obtained in each area. For random exploration, the
time spent in each area is roughly the same all along the
sequence and proportional to each area size. 40% to 50% of
the time is spent in the corridor, whereas 10% is spent in the
office. With RL-IAC, the time spent in the corridor (the least
“interesting” area) oscillates between 30% and 20%, except at
the beginning, and almost 20% is spent in the office. Moreover,
the time spent in exploring each area is evolving in time:
the time spent in the office finally decreases to 0%, because
no progresses are made in there anymore. In the middle of
the sequence, most of the time is spent exploring the lab,
while most of the time is spent in the hall at the end of the
exploration.

VI. DISCUSSION

We took the assumption that salient elements are objects.
This is of course a restrictive case, but this assumption holds in
many indoor applications. Any definition of saliency could be
used to replace the one chosen here, as soon as an appropriate
learning signal can be used to learn this kind of saliency. For
example, in [18], we propose another kind of learning signal
and another kind of saliency, that is provided by a foveated
platform.

Whatever the saliency definition is, our approach will de-
pend on the quality of the learning signal. In the current work,
this information is of good quality at short range, but very
partial as it does not give information close to the image
borders and at long range. It would be interesting to study
what are the ideal characteristics of this learning signal, for

time (in hours)

(b)

example if a lower quality but more complete signal would
be relevant, or if improving the current segmentation quality
would lead to a noticeable final performance increase.

In this paper, the robot is only exploring its environment
and thus takes all decision in order to improve its saliency
model. Such situation would be rare in real-world scenarios,
but our approach can be easily integrated into a robot that
has other tasks to fulfill as there is no theoretical problems in
mixing intrinsic and extrinsic motivations [14]. This would
result in a robot opportunistically exploring to improve its
saliency model, for example taking a route through a less
known area while going to its charging station.

VII. CONCLUSION

In this article, we have presented a full architecture for
learning to localize objects within a robot’s exploration in
an incremental and autonomous way. On the one hand, we
described the main mechanisms for learning a model of visual
saliency from a depth-based learning signal, and how to exploit
this saliency model to general bounding boxes around salient
objects of the scene. On the other hand, we investigated
how the robot could methodically explore its environment
to learn the saliency model faster and better. We proposed
the RL-TAC approach to guide exploration in that regard, by
finding the best compromise between robot’s displacement
and learning. We have carried out several experimentation to
demonstrate the accuracy of our saliency maps as compared
with other state-of-the-art approaches, and the efficiency of
our exploration technique.

A critical aspect that should be consider in future work is
the use of an end-to-end deep learning framework that would
both produce saliency and bounding box proposals. We so far
separate feature extraction, feature combination, and bounding
boxes generation, but deep learning offers a way to integrate
all these components at the same time. This could take the
form of a fully convolutional network that would produce
both saliency and boxes. This could for example resemble
the SSD architecture [45]. Additionally, neural networks are
by essence online classifiers, which may be better suited
than the proposed method based on random forests. Although
incremental learning with deep neural network is still at an



early stage, we could simplify the problem by only fine-tuning
a small part of the network. Alternatively, various concise
CNN models such as binary CNN could be used to increase
the efficiency.

Two other possible directions would be worth investigating.
First, running the incremental map building and RL-IAC
at the same time. This way, the navigation graph would
be constructed from scratch, without any prior environment
exploration. Second, we would like to carry out experiments
in a non simulated setup to have a fully operational system.
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