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Abstract: In this paper, we explain how, under the one-sided Lipschitz (OSL) hypothesis,
one can find an error bound for a variant of the Euler-Maruyama approximation method for
stochastic switched systems. We then explain how this bound can be used to control stochastic
switched switched system in order to stabilize them in a given region. The method is illustrated
on several examples of the literature.
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1. INTRODUCTION

Symbolic methods for the verification and control synthe-
sis of hybrid systems (and, particularly, “switched sys-
tems”) have received significant attention in the past few
years.

One distinguishes two main classes of symbolic methods
for hybrid systems: indirect methods and direct methods
Asarin et al. (2000).

Indirect methods proceed by constructing a finite abstrac-
tion of the original system by discretization of the dense
state space Rn (where n is the dimension of the state
space). Among the indirect methods, one of the most suc-
cessful proceeds by approximate bisimulation Girard et al.
(2010). This method originally designed for deterministic
switched systems has been recently extended for stochastic
switched systems Zamani et al. (2015, 2014, 2017). This
approach relies on the hypothesis of incremental stability
of the stochastic switched system (or existence of a com-
mon/multiple Lyapunov function).

A direct method proceeds by working directly at the level
of the dense state system Rn; it computes “trajectory
tubes”, which are over-approximations of the set of all
the controlled trajectories starting at a given subregion
of Rn. In previous work, We have followed such a direct
approach (eg, Fribourg et al. (2014)). The idea is to
start with two given hyperrectangles R and S of Rn,
(with R Ď S): one covers R with a finite number of
subregions (of the form of balls or sub-rectangles), and
finds by exhaustive search, for each subregion, a “control
pattern” (i.e., a finite control sequence) such that the

trajectories starting from the subregion and controlled
by the pattern goes back to R while never leaving S.
Such a direct method ensures the so-called property of
“pR,Sq-stability”. We have recently applied such a direct
method in the deterministic framework, using the Euler
approximation scheme for calculating over-approximations
of tubes of trajectories Le Coënt et al. (2017). We show
here how to extend this direct method in order to treat
stochastic switched systems. The method is a simple
extension of the deterministic method, but replaces the
classical Euler approximation scheme, by a variant of the
stochastic Euler-Maruyama scheme Hutzenthaler et al.
(2012). The correctness of these Euler-based methods does
not rely on the hypothesis of incremental stability as in
Zamani et al. (2015, 2017), but on the hypothesis of ‘one-
sided Lipschitz (OSL)’ condition with constant λ P Rd
(also called ‘monotonicity’/‘dissipativity’, see von Renesse
and Scheutzow (2010)). It can be seen that if a stochastic
switched system satisfies an OSL condition with λ ă 0,
then the function V px, x1q “ }x ´ x1}2 is a common
incremental Lyapunov function in the sense of Zamani
et al. (2014), from which it follows that the switched
system is incrementally stable, and can be treated by
approximate bisimulation. However, Euler-based methods
also apply when the system is not incrementally stable, in
which case the constant λ is necessarily positive. We thus
consider a class of systems different from that of Zamani
et al. (2014).

The plan of the paper is as follows: In Section 2, we give
an explicit upper bound on the mean square error of the
tamed Euler method for SDEs under OSL condition. We
apply the result in order to ensure properties of stochastic



switched systems, such as “pR,Sq-stability” (Section 3).
We conclude in Section 4.

2. BOUNDING THE ERROR OF THE TAMED
EULER METHOD

2.1 Assumptions

The symbol } ¨ } denotes the Euclidean norm on Rd.The
symbol x¨, ¨y denotes the scalar product of two vectors of
Rd. Given a point x P Rd and a positive real r ą 0, the ball
Bpx, rq of centre x and radius r is the set ty P Rd | }x ´
y} ď ru.

Let τ P p0,8q be a fixed real number, let pΩ,F ,Pq be
a probability space with normal filtration pFtqtPr0,τs, let

d,m P N :“ t1, 2, . . . u let W “ pW p1q, . . . ,W pmqq :
r0, RsˆΩ Ñ Rm be anm-dimensional standard pWtqtPr0,τs-

Brownian motion and let x0 : Ω Ñ Rd be an F0{BpRdq-
measurable mapping with Er}x0}ps ă 8 for all p P

r1,8q. Moreover, let f : Rd Ñ Rd be a continuously
differentiable and globally one-sided Lipschitz continuous
function whose derivative grows at most polynomially and
let g “ pgi,jqiPt1,...,du,jPt1,...,mu : Rd Ñ Rdˆm be a globally
Lipschitz continuous function.

Then consider the Stochastic Differential Equations (SDE):

dXt “ fpXtqdt` gpXtqdWt, X0 “ x0 (1)

for t P r0, τ s. The drift coefficient f is the infinitesimal
mean of the process X and the diffusion coefficient g
is the infinitesimal standard deviation of the process X.
Under the above assumptions, the SDE (1) is known to
have a unique strong solution. More formally, there exists
an adapted stochastic process X : r0, τ s ˆ Ω Ñ Rd with
continuous sample paths fulfilling

Xt,x0
“ x0 `

ż t

0

fpXsqds`

ż t

0

gpXsqdWs

for all t P r0, τ s P-a.s. (see, e.g., Oksendal (2002)).

We denote by Xt,x0
the solution of Equation (1) at time t

from initial condition X0,x0
“ x0 P-a.s., in which x0 is a

random variable that is measurable in F0.

We suppose that f behaves polynomially and g is Lip-
schitz, i.e.: there exist constants D P Rě0, q P N and
Lg P Rě0 such that, for all x, y P Rd

}fpxq ´ fpyq}2 ď D}x´ y}2p1` }x}q ` }y}qq (H1)

}gpxq ´ gpyq} ď Lg}x´ y} (H2)

We also assume that the SDE (1) satisfies the following
one-sided Lipschitz (OSL) condition with constant λ P R:

Dλ P R @x, y P Rd : xfpyq´fpxq, y´xy ď λ }y´x}2 (H3)

Remark 1. Constants λ, Lg and D can be computed using
(constrained) optimization algorithms (see Le Coënt et al.
(2017)).

2.2 Tamed Euler approximation

The standard way to extend the classical Euler method
for ordinary differential equations to the SDE (1) is the
Euler-Maruyama scheme Maruyama (1955). More pre-
cisely, given z : Ω Ñ Rd an F0{BpRdq-measurable mapping

with Er}z}ps ă 8 for all p P r1,8q, the explicit Euler-
Maruyama (EM) method for the SDE (1) is given by the
mappings Y Nn,z : Ω Ñ Rd, n P t0, 1, . . . , Nu, which satisfy

Y N0,z “ z and

Y Nn`1,z “ Y Nn,z`
τ

N
¨fpY Nn,zq`gpY

N
n,zqpWpn`1qτ{N ´Wnτ{N q

for all n P t0, 1, . . . , N ´ 1u and all N P N. See Maruyama
(1955). Unfortunately, the convergence results for the EM
scheme does not hold when the drift function f of the SDE
(1) behaves polynomially (and not linearly). For the sake of
generality, we will now adopt a refined scheme, which has
been proposed recently in order to overcome this difficulty
Hutzenthaler et al. (2012). Let XN

n,z : Ω Ñ Rd,

XN
n`1,z “ XN

n,z `

τ
N ¨ fpX

N
n,zq

1` τ
N ¨ }fpX

N
n,zq}

`gpXN
n,zqpW pn`1qτ

N

´Wnτ
N
q

(2)

for all n P t0, 1, . . . , N ´ 1u and all N P N. We refer
to the numerical method (2) as a tamed Euler scheme
Hutzenthaler et al. (2012). In this method the drift term
τ
n ¨ fpX

N
n,zq is “tamed” by the factor 1{p1` τ

N ¨ }fpX
N
n,zq}q

for n P t0, 1, . . . , N ´ 1u and N P N in (2).

A time continuous interpolation of the time discrete nu-
merical approximations (2) is also introduced in Hutzen-

thaler et al. (2012) as follows. Let X̃N
z : r0, τ s ˆ Ω Ñ Rd,

N P N, be a sequence of stochastic processes given by

X̃N
t,z “ X̃N

n,z `
pt´ nτ{Nq ¨ fpX̃N

n,zq

1` τ{N ¨ }fpX̃N
n,zq}

` gpX̃N
n,zqpWt´Wnτ

N
q

for all t P rnτN ,
pn`1qτ
N s, n P t0, 1 . . . , N ´ 1u and all N P N.

Note that X̃N
t,z : r0, τ s ˆ Ω Ñ Rd is an adapted stochastic

process with continuous sample paths for every N P N.

Let us define XN
t,z by

XN
t,z :“ XN

n,z for t P r
nτ

N
,
pn` 1qτ

N
q.

Note that X̃N
t,z “ XN

t,z “ XN
n,z at time t “ nτ

N for
n P t0, 1, . . . , Nu.

The following theorem is proven in Hutzenthaler et al.
(2012):

Theorem 1. (Hutzenthaler et al. (2012)). Let us suppose
(H1) (H2) and (H3). Let the setting in this section be
fulfilled, and z : Ω Ñ Rd be an F0{BpRdq-measurable
mapping with Er}z}ps ă 8 for all p P r1,8q. Then, for
all p P r1,8q

sup
NPN

sup
nPt0,1,...,Nu

Er}XN
n,z}

ps ă 8

For the sake of simplicity, the number N of subsampling
steps is now left implicit. From Theorem 1, it follows (cf.
Lemma 4.3, Higham et al. (2002)):

Lemma 1. Let us suppose (H1) (H2) and (H3). Let the
setting in this section be fulfilled, and z : Ω Ñ Rd be an
F0{BpRdq-measurable mapping with Er}z}ps ă 8 for all
p P r1,8q. Then, for any even integer r ě 2, there exist
two constants Er,z and Fr,z such that

sup
0ďtďτ

E}Xt,z ´ X̃t,z}
r ď p∆tq

r
2 pEr,zp∆tq

r
2 ` Fr,zdq.



with ∆t “ τ{N and:

Er,z “ 2rp}fp0q}r `D2
r`1
2

p1` E sup0ďtďτ }Xt,z}
qrq

1
2 pE sup0ďtďτ }Xt,z}

2rq
1
2 q,

Fr,z “ 2rp}gp0q}2r ` LrgE sup0ďtďτ }Xt,z}
r
2 q.

Proof. see Appendix.

Remark 2. Constants Er,z and Fr,z are computed using
the constants λ and Lg (see Remark 1), and the expected
values of Xt,z at each time t “ 0,∆t, 2∆t, . . . , N∆t. These
expected values are computed using a Monte Carlo method
(by averaging here the value of 104 samplings).

2.3 Mean square error bounding

The following Theorem holds for SDE (1). This corre-
sponds to a stochastic version of Theorem 1 of Le Coënt
et al. (2017), showing that a similar result holds on aver-
age, using the tamed Euler method of Hutzenthaler et al.
(2012). It is an adaptation of Theorem 4.4 in Higham et al.
(2002).

Theorem 2. Given the SDE system (1) satisfying (H1)-
(H2)-(H3). Let δ0 P Rě0. Suppose that z is a random
variable on Rd such that

Er}x0 ´ z}2s ď δ20 .

Then, we have, for all τ ě 0:

Er sup
0ďtďτ

}Xt,x0
´ X̃t,z}

2s ď δ2τ,δ0 ,

with δ2τ,δ0 :“ βpτqeγτ , where:

γ “ 2p
?

∆t ` 2λ` L2
g ` 128L4

gq, and

βpτq “ 2δ20 ` 2τ∆tL
2
gp1` 128L2

gqpF2,zd` E2,z∆tq

` 4τ
a

∆tDpF4,zd` E4,z∆
2
t q

1
2

p1` 4E sup
0ďtďτ

}Xt,z}
2q ` 4E sup

0ďtďτ
}X̃t,z}

2qq
1
2 .

(3)

with ∆t “ τ{N .

Proof. The proof closely follows the proof of Theorem 4.4
in Higham et al. (2002). Let et “ Xt,x0

´ X̃t,z. We have,
for all 0 ď t ď τ :

det “ pfpXt,x0
q ´ fpzqqdt` pgpXt,x0

q ´ gpzqqdWt. (4)

Then, by using Equation (4) and the integral version of
Itô formula applied to function x ÞÑ }x}2 we obtain

}et}
2 “

}e0}
2 `

ż t

0

2xes, fpXs,x0
q ´ fpXs,zqyds

`

ż t

0

}gpXs,x0
q ´ gpXs,zq}

2ds`Mptq,

(5)

where e0 “ x0 ´ z, and

Mptq “

ż t

0

2xes, gpXs,x0q ´ gpXs,zqydWs.

So we have using (H2):

}et}
2 ď

}e0}
2 `

ż t

0

2xes, fpXs,x0q ´ fpX̃s,zqyds

` L2
g

ż t

0

}Xs,x0 ´Xs,z}
2ds

`

ż t

0

2xes, fpX̃s,zq ´ fpXs,zqyds`Mptq.

(6)

So we have using (H3) and Young’s inequality:

}et}
2 ď

}e0}
2 `

ż t

0

p2λ}es}
2 ` L2

g}es}
2qds

` L2
g

ż t

0

}Xs,z ´ X̃s,z}
2ds

`

ż t

0

p
1
?

∆t

}fpX̃s,zq ´ fpXs,zq}
2 `

a

∆t}es}
2qds

`Mptq.

(7)

So we have using (H1), for all 0 ď t ď τ :

}et}
2 ď

}e0}
2 ` p

a

∆t ` 2λ` L2
gq

ż t

0

}es}
2ds

` L2
g

ż t

0

}Xs,z ´ X̃s,z}
2ds

`
D
?

∆t

ż t

0

p1` }Xs,z}
q ` }X̃s,z}

qq}Xs,z ´ X̃s,z}
2ds

`Mptq.

(8)

It follows using Lemma 1 for r “ 2, and Cauchy-Schwarz
inequality:

Er sup
0ďsďt

}es}
2s ď

E}e0}2 ` p
a

∆t ` 2λ` L2
gq

ż t

0

E}es}2ds

` L2
gτ∆tpE2,z∆t ` F2,zdq

`
D
?

∆t
ż t

0

pEp1` }Xs,z}
q ` }X̃s,z}

qq2q
1
2 pE}Xs,z ´ X̃s,z}

4q
1
2 ds

`mptq,
(9)

where
mptq “ Er sup

0ďsďt
}Mpsq}s.

Hence, using using Lemma 1 for r “ 4, and inequality
pa` bqr ď 2rpar ` brq:

Er sup
0ďsďt

}es}
2s ď

E}e0}2 ` p
a

∆t ` 2λ` L2
gqq

ż t

0

E}es}2ds

` L2
gτ∆tpE2,z∆t ` F2,zdq

` 2Dτ
a

∆tpE4,z∆
2
t ` F4,zdq

1
2

p1` 4E sup
0ďtďτ

}Xt,z}
2q ` 4E sup

0ďtďτ
}X̃t,z}

2qq
1
2

`mptq.

(10)



On the other hand, from the Burkholder-Davis-Gundy
inequality, we get:

mptq ď 16Er
ż t

0

}es}
2}gpXs,x0

q ´ gpXs,zq}
2dss

1
2

Hence, using (H2):

mptq ď 16L2
gEr sup

0ďsďt
}es}

2

ż t

0

}Xs,x0
´Xs,z}

2dss
1
2

Then, using Young’s inequality (for any α ą 0):

mptq ď 8L2
gpαEr sup

0ďsďt
}es}

2s `
1

α
Er

ż t

0

}Xs,x0 ´Xs,z}
2dssq.

Hence, by using Lemma 1 for r “ 2:

mptq ď 8αL2
gEr sup

0ďsďt
}es}

2s

`
8L2

g

α

ż t

0

Er sup
0ďrďs

}er}
2sds

`
8L2

g

α
τ∆tpE2,z∆t ` F2,zdq.

(11)

Hence, letting α “ 1
16L2

g
, we have by replacing in (10):

1

2
Er sup

0ďsďt
}es}

2s ď

δ20 ` p
a

∆t ` 2λ` L2
g ` 128L4

gq

ż t

0

Er sup
0ďrďs

}er}
2sds

` τpL2
g ` 128L4

gq∆tpE2,z∆t ` F2,zdq

` τ2D
a

∆tpE4,z∆
2
t ` F4,zdq

1
2

p1` 4E sup
0ďtďτ

}Xt,z}
2q ` 4E sup

0ďtďτ
}X̃t,z}

2qq
1
2 .

(12)

It results from Gronwall’s inequality:

Er sup
0ďtďτ

}et}
2s “ βpτqeγτ ,

with

γ “ 2p
?

∆t ` 2λ` L2
g ` 128L4

gq, and

βpτq “ 2δ20
` 2τp∆tL

2
gp1` 128L2

gqpF2,zd` E2,z∆tq

` 4τ
a

∆tDpF4,zd` E4,z∆
2
t q

1
2

p1` 4E sup
0ďtďτ

}Xt,z}
2q ` 4E sup

0ďtďτ
}X̃t,z}

2qq
1
2 .

(13)

It follows from Theorem 2 and Jensen’s inequality:

Proposition 1. Consider two points x0 and z of Rd,and
a positive real number δ0. Suppose that x0 P Bpz, δ0q

(i.e. }x0 ´ z} ď δ0). Then EXt,x0
P BpX̃t,z, δt,δ0q for all

t P r0, τ s.

It also follows from Theorem 2:

Proposition 2. In the setting of Theorem 2, the expression
δτ,δ0 tends to

δ0
?

2e2λτ`L
2
g`128L4

g

when ∆t tends to 0 (i.e., when N tends to 8).

2.4 Implementation

This method has been implemented in the interpreted
language Octave, and the experiments performed on a

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2
-6

-4

-2

0

2

4

X1

X
2

Fig. 1. Example 1 with mode u “ 1, τ “ 1, ∆t “ 10´4,
initial ball Bpz, δ0q with z “ p´4, 3.8q and δ0 “ 0.5,
final ball Bpz1, δτ,δ0q with z1 “ p´3.6, 2.56q and
δτ,δ0 “ 1.17

2.80 GHz Intel Core i7-4810MQ CPU with 8 GB of
memory. The implementation is an adaptation of the
program described in Le Coënt et al. (2017) for controlling
deterministic switched systems, but makes use of the
tamed Euler scheme for SDEs (with the error function δ
given in Theorem 2) instead of the classical Euler scheme.

Example 1. Consider the following system, corresponding
to the example in Section 6.2 of Zamani et al. (2015) (cf.
Zamani et al. (2014)) for mode u “ 1:

dx1 “ p´0.25x1 ` x2 ` 0.25qdt` 0.05x1dW
1
t

dx2 “ p´2x1 ´ 0.25x2 ´ 2qdt` 0.05x2dW
2
t

The program gives (for τ “ 1, ∆t “ τ{104): q “ 0,
D “ 1.36, Lg “ 0.05, λ “ 0.25; and for z “ p´4,´3.8q:
E2,z “ 893.3, E4,z “ 2.14 ¨ 105, F2,z “ 0.002, F4,z “ 4.9 ¨
10´6.

Consider now the system corresponding to the example
of Zamani et al. (2015) for mode u “ 2:

dx1 “ p´0.25x1 ` 2x2 ´ 0.25qdt` 0.05x1dW
1
t

dx2 “ p´x1 ´ 0.25x2 ` 1qdt` 0.05x2dW
2
t

The program gives (for τ “ 1, ∆t “ τ{104): q “ 0, D “

1.36, Lg “ 0.05, λ “ 0.25, and, for z “ p0, 3q: E2,z “ 543.2,
E4,z “ 7.94 ¨ 104, F2,z “ 0.0442, F4,z “ 0.00178.

Both computations take less than 10 s. of CPU time.
Simulations of the two systems are given in Figure 1 for
mode u “ 1 and starting point z “ p´4, 3.8q, and in Figure
2 for mode u “ 2 and starting point z “ p0, 3q. On each
figure, the initial ball (t “ 0) is depicted in black, the final
ball (t “ τ) in red, and 200 random sampling trajectories
in blue for t P r0, τ s. 1

1 Note that, in the figures, all the end points (at t “ τ) of the
sampling trajectories lie in the final ball, but this is not true in
general; we only know by Proposition 1 that, for any starting point
x0 in the initial ball, the expected value of the end point lies in the
final ball.
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Fig. 2. Example 1 with mode u “ 2, τ “ 1, ∆t “ 10´4,
initial ball Bpz, δ0q with z “ p0, 3q and δ0 “ 0.5,
final ball Bpz1, δτ,δ0q with z1 “ p0.79,´0.63q and
δτ,δ0 “ 1.17

3. SAMPLED STOCHASTIC SWITCHED SYSTEMS

3.1 Stochastic switched system as a finite collection of
SDEs

We now consider a finite number of SDEs. Each SDE is
referred to as a mode j, and the set of modes is referred to
as U “ t1, . . . ,Mu. We will denote by Xj

t,x0
the solution

at time t of the system:

dxptq “ fjpxptqq ` gjpxptqqdW
j
t ,

xp0q “ x0.
(14)

where x0 is a random variable that is measurable in
F0. Hypotheses (H1-H2-H3), as defined in Section 2, are
naturally extended to every mode j of U . Accordingly,
constants Lg, λ, F associated to SDE (1) in Section 2,
now become Lgj , λj , Fj respectively, for each j P U .

Likewise, for each j P U , the nonnegative real pδt,δ0q
2

becomes pδjt,δ0q
2 for each mode j; the approximate

continuous-time solution of (14) starting from z, is denoted

by X̃j
t,z, and the approximate staircase solution by Xj

t,z.

3.2 Control patterns

The control laws that we now consider are “piecewise
constant of duration τ” in the sense that, every τ seconds,
they select a given mode (see Zamani et al. (2015)). We call
“(control) pattern of length k” a sequence of k modes (i.e.,
an element of Uk). Each pattern π of the form j1j2 ¨ ¨ ¨ jk
corresponds to the selection of mode j1 for time t P r0, τq,
then mode j2 for t P rτ, 2τq, and so on, until t “ kτ . We
assume that the solution of the system is continuous at
sampling instants t “ τ, 2τ, . . . (which means that there is
no “reset” of the system at sampling instants).

Given a stochastic switched system, a pattern π of length
k and an initial random variable z, one constructs the “ap-
proximate solution controlled by π” by composing together

the approximations obtained by successive application of
the modes of π. Formally, the “continuous” approximate
solution X̃π

t,z is defined at time t P r0, kτ s as follows:

‚ X̃π
t,z “ X̃j

t,z if π “ j P U , k “ 1 and t P r0, τ s, and

‚ X̃π
pk´1qτ`t1,z “ X̃j

t,z1 with z1 “ X̃π1

pk´1qτ,z if k ě 2,

t1 P r0, τ s, π “ π1 ˚ j for some j P U and π1 P Uk´1.

The “staircase” approximate solution Xπ
t,z is defined anal-

ogously. Likewise, given an initial error radius δ0 ą 0 and
a pattern π of length k ě 1, one defines the error radius
δπt,δ0 as follows: 2

‚ δπt,δ0 “ δjt,δ0 if π “ j P U , k “ 1 and t P r0, τ s, and

‚ δπ
pk´1qτ`t1,δ0

“ δjt1,δ1 with δ1 “ δπ
1

pk´1qτ,δ0
, if k ě 2,

t1 P r0, τ s, π “ π1 ˚ j for some j P U and π1 P Uk´1.

3.3 Controlled pR,Sq-stability

Given a rectangle R Ă Rd and a rectangle S Ă Rd such
that R Ď S, we now extend the problem of “controlled
pR,Sq-stability”, as defined in Le Coënt et al. (2017) for
deterministic switched systems, to SDEs, as follows:

For any starting point x0 P R, find a pattern π of length
k such that

‚ EXπ
t,x0

P R for t “ kτ
‚ EXπ

t,x0
P S for all t “ τ, 2τ, 3τ, . . . .

It is easy to see that, in order to solve this problem, it
suffices to exhibit a finite set of points z1, . . . , zp of S, and
a positive real δ0 ą 0 such that:

(1) all the balls Bpzi, δ0q, i “ 1, . . . , p, cover R, and are
included into S (i.e. R Ď

Ťp
i“1Bpzi, δ0q Ď S);

(2) for each i “ 1, . . . , p, there is a pattern π of length k
such that:
‚ Bi,π,t Ď S for t “ τ, 2τ, . . . , pk ´ 1qτ , and
‚ Bi,π,t Ď R for t “ kτ .

where Bi,π,t :“ BpEX̃π
t,zi , δ

π
t,δ0
q.

The program mentioned in Section 2.4, has been extended
in order to find, by exhaustive enumeration 3 , patterns
that make the balls covering R return to R, and such that
the intermediate balls (at t “ τ, 2τ, . . . ) belong to S. Please
refer to Appendix B for illustrations and to Le Coënt et al.
(2016) for more information on the algorithm.

We now give an application of this program.

Example 2. Consider the system (see Zamani et al. (2014,
2015)):

dx1 “ p´0.25x1 ` ux2 ` p´1qu0.25qdt` 0.01x1dW
1
t

dx2 “ ppu´ 3qx1´ 0.25x2` p´1qup3´ uqqdt` 0.01x2dW
2
t

where u “ 1, 2.
For τ “ 0.5, ∆t “ 10´4, one finds (for all modes u “ 1, 2):

2 For the sake of notation conciseness, we suppose that the number
of steps of subsampling N is the same whatever the mode j of the
pattern π is, hence the stepsize of the subsampling is always equal
to ∆t “ τ{N ; in full generality, we should write Nj instead of N to
express the dependence.
3 The enumeration can be accelerated using different branch-and-
bound heuristics (see Le Coënt et al. (2017)).



q “ 0, D “ 1.36, Lg “ 0.01, λ “ 0.25; for z “ p´4,´3.8q:
E2,z “ 893.31, E4,z “ 2.14 ¨ 105, F2,z “ 0.002, F4,z “ 4.9 ¨
10´6; and for z “ p0, 3q: E2,z “ 543.22, E4,z “ 7.94 ¨ 104,
F2,z “ 0.0442, F4,z “ 0.00178.
Our program shows pR,Sq-stability of the system for R “
r´5, 5sˆr´4.4s and S “ r´8, 8sˆr´7, 7s: given a covering
of R with balls of radius δ0 “ 0.1, the program finds, by
exhaustive search, patterns of length ď 5 that make the
balls return to R. It takes 6 hours of CPU time. Figures
3, 4, 5 and 6 depict in black the initial balls (at t “ 0)
centered at the corners of R; and for each initial ball, the
pattern that sends the ball back to R (at time t “ kτ); the
intermediate balls (at t “ τ, 2τ, . . . , pk ´ 1qτ) are depicted
in red, and 200 sampling trajectories drawn in blue.

Fig. 3. initial ball Bpz, δ0q with z “ p´5, 4q and δ0 “ 0.1;
pattern “ p1 ¨ 1 ¨ 1q; τ “ 0.5

Fig. 4. initial ball Bpz, δ0q with z “ p5, 4q and δ0 “ 0.1;
pattern “ p2 ¨ 2 ¨ 2q; τ “ 0.5

3.4 Other applications

Our Euler-based method can also be used to control
systems in order to achieve reachability properties. We
sketched out this point in the following example.

Example 3. (the slit problem)

Fig. 5. initial ball Bpz, δ0q with z “ p5,´4q and δ0 “ 0.1;
pattern “ p2 ¨ 2q; τ “ 0.5

Fig. 6. initial ball Bpz, δ0q with z “ p´5,´4q and δ0 “ 0.1;
pattern “ p1 ¨ 1 ¨ 1 ¨ 1 ¨ 1q; τ “ 0.5

The problem is adapted from Morzfeld (2015). The con-
trolled dynamics is:

dX “ udt` dW, X0 “ 1

with mode u P t´6,´5,´4,´3,´2, 1, 0, 1, 2, 3, 4, 5, 6u. We
have (at t “ 0.5) a slit at x P r´1,´4s. The objective is
thus to control the system so that xptq P S “ r´1,´4s at
t “ 0.5.

One has, for all modes: q “ 0, D “ 0, Lg “ 0, λ “ 0. For
δ0 “ 0.5, an initial point z “ 1 and a sampling time τ “ 0.5
with subsampling ∆t “ 10´3, one has for mode u “ ´6:
E2,z “ 144, E4,z “ 20736, F2,z “ 4, F4,z “ 16; and for
mode u “ 0: E2,z “ 0, E4,z “ 0, F2,z “ 4, F4,z “ 16.

Suppose that all the trajectories start at x0 with x0 P
Bpz, δ0q (i.e., |x0 ´ z| ď 0.5), with z “ 1 and δ0 “ 0.5.
When there is no control (u “ 0), at time t “ 0.5, the
expected value of Xt,x0 is in Bpz1, δt,δ0q with z1 “ 1 and
δt,δ0 “ 2. From Markov’s inequality, it follows that the
trajectories pass by S “ r´1,´4s at t “ 0.5 with low
probability: see Figure 7. On the other hand, with control
u “ ´6, at time t “ τ “ 0.5, the expected value of Xt,x0

is now in Bpz1, δt,δ0q with z1 “ ´2 and δτ,δ0 “ 2. This
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Fig. 7. Example 3 without control (u “ 0) for t P r0, τ s;
initial ball Bpz, δ0q with z “ 1 and δ0 “ 0.5; final ball
Bpz1, δ1q (at t “ τ “ 0.5) with z1 “ 1, δ1 “ 2
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Fig. 8. Example 3 with control pattern p´6 ¨0q; initial ball
Bpz, δ0q with z “ 1 and δ0 “ 0.5; intermediate ball
Bpz1, δ1q (at t “ τ “ 0.5 ) with z1 “ ´2, δ1 “ 2; final
ball Bpz2, δ2q (at t “ 2τ) with z2 “ ´2, δ2 “ 3.6

explains why the trajectories now pass by S “ r´1,´4s at
t “ 0.5 with high probability: see Figure 8.

4. FINAL REMARKS AND FUTURE WORK

We have explained how to use an Euler-based method
in order to control stochastic switched systems. We have
focused our work on the property of pR,Sq-stability, but
it can also be used for achieving reachability properties.
In the future, we plan to experiment the method with
examples where the drift functions behave polynomially.
We would like also to find bounds not only for the expected
values of the solutions, but for their variance.
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Le Coënt, A., Alexandre dit Sandretto, J., Chapoutot, A.,
and Fribourg, L. (2016). An improved algorithm for the
control synthesis of nonlinear sampled switched systems.
Formal Methods in System Design. doi:10.1007/s10703-
017-0305-8.

Le Coënt, A., De Vuyst, F., Chamoin, L., and Fribourg, L.
(2017). Control synthesis of nonlinear sampled switched
systems using Euler’s method. In Proceedings of 3rd
Intl Workshop on Symbolic and Numerical Methods for
Reachability Analysis (SNR 2017).

Maruyama, G. (1955). Continuous Markov processes and
stochastic equations. Rend. Circ. Mat. Palermo, 2(4),
48–90.

Morzfeld, M. (2015). Implicit sampling for path integral
control, Monte Carlo localization, and SLAM. Jour-
nal of Dynamic Systems, Measurement, and Control,
137(5).

Oksendal, B. (2002). Stochastic Differential Equations: An
Introduction with Applications. Springer.

von Renesse, M.K. and Scheutzow, M. (2010). Existence
and uniqueness of solutions of stochastic functional
differential equations. Random Operators and Stochastic
Equations, 18(3). doi:10.1515/rose.2010.015.

Zamani, M., Abate, A., and Girard, A. (2015). Symbolic
models for stochastic switched systems: A discretization
and a discretization-free approach. Automatica, 55, 183–
196. doi:10.1016/j.automatica.2015.03.004.

Zamani, M., Esfahani, P.M., Majumdar, R., Abate, A.,
and Lygeros, J. (2014). Symbolic control of stochastic
systems via approximately bisimilar finite abstractions.
IEEE Trans. Automat. Contr., 59(12), 3135–3150. doi:
10.1109/TAC.2014.2351652.

Zamani, M., Tkachev, I., and Abate, A. (2017). Towards
scalable synthesis of stochastic control systems. Dis-
crete Event Dynamic Systems, 27(2), 341–369. doi:
10.1007/s10626-016-0233-6.



Appendix A. APPENDIX: PROOF OF LEMMA 1

Proof. Let t P rk∆t, pk` 1q∆tq. Then (using the inequal-
ity pa` bqr ď 2rpar ` brq):

}Xt ´ X̃t}
r

“ }pt´ tkqfpXkq ` gpXkqpWt ´Wtkq}
r

ď 2rpp∆tq
r}fpXkq}

r

` }gpXkq}
r}Wt ´Wtk}

rq }Xt ´ X̃t}
r

ď 2rpp∆tq
rp}fpXkq ´ fp0q}

r ` }fp0q}rq

` p}gpXkq ´ gp0q}
r ` }gp0q}rq}Wt ´Wtk}

rq

ď 2rpp∆tq
rpDpp1` }Xk}

qq}Xk}
2q

r
2 ` }fp0q}rq

` pLrg}Xk}
r ` }gp0q}rq}Wt ´Wtk}

rq

ď 2rpp∆tq
rpDpp1` }Xk}

qq
r
2 }Xk}

rq ` }fp0q}rq

` pLrg}Xk}
r ` }gp0q}rq}Wt ´Wtk}

rq

ď 2rpp∆tq
rpD2

r
2 pp1` }Xk}

qr
2 q}Xk}

rq ` }fp0q}rq

` pLrg}Xk}
r ` }gp0q}rq}Wt ´Wtk}

rq.
(A.1)

E}Xt ´ X̃t}
r

ď 2rpp∆tq
rp}fp0q}r `D2

r
2

pErp1` }Xk}
qr
2 q2sq

1
2 pEr}Xk}

2rsq
1
2

` p}gp0q}2r ` LrgE}Xk}
r
2 q

pEr}Wt ´Wtk}
2rsq

1
2 qq

ď 2rpp∆tq
rp}fp0q}r `D2

r`1
2

p1` Er}Xk}
qrsq

1
2 pEr}Xk}

2rsq
1
2

` p}gp0q}2r ` LrgE}Xk}
r
2 q

pEr}Wt ´Wtk}
2rsq

1
2 qq

ď 2rpp∆tq
rp}fp0q}r `D2

r`1
2

p1` Er}Xk}
qrsq

1
2 pEr}Xk}

2rsq
1
2

` p}gp0q}2r ` LrgE}Xk}
r
2 qdpt´ tkq

r
2 qq

ď 2rpp∆tq
rp}fp0q}r `D2

r`1
2

p1` sup
0ďtďτ

E}Xt}
qrq

1
2 pE sup

0ďtďτ
}Xt}

2rq
1
2 q

` p}gp0q}2r ` LrgE sup
0ďtďτ

}Xt}
r
2 qdp∆tq

r
2 q

ď 2rp∆tq
r
2 pp∆tq

r
2 p}fp0q}r `D2

r`1
2

p1` E sup
0ďtďτ

}Xt}
qrq

1
2 pE sup

0ďtďτ
}Xt}

2rq
1
2 q

` dp}gp0q}2r ` LrgE sup
0ďtďτ

}Xt}
r
2 qq.

(A.2)

Hence:

sup
0ďtďτ

E}Xt ´ X̃t}
r ď p∆tq

r
2 pEr,zp∆tq

r
2 ` Fr,zdq

with Er,z “ 2rp}fp0q}r `D2
r`1
2 p1` E sup0ďtďτ }Xt}

qrq
1
2

pE sup0ďtďτ }Xt}
2rq

1
2 q,

Fr,z “ 2rp}gp0q}2r ` LrgE sup0ďtďτ }Xt}
r
2 q.

Appendix B. CONTROL SYNTHESIS ALGORITHM
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Fig. B.1. Scheme of a set covering of R.
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Fig. B.2. Control of one of the covering sets.


