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ON WEAK OBSERVABILITY FOR EVOLUTION SYSTEMS WITH SKEW-ADJOINT

GENERATORS

KATS AMMARIt AND FAOUZI TRIKI}

ABSTRACT. In the paper we consider the linear inverse problem that consists in recovering the initial state in
a first order evolution equation generated by a skew-adjoint operator. We studied the well-posedness of the
inversion in terms of the observation operator and the spectra of the skew-adjoint generator. The stability
estimate of the inversion can also be seen as a weak observability inequality. The proof of the main results
is based on a new resolvent inequality and Fourier transform techniques which are of interest themselves.
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1. INTRODUCTION

Let X be a complex Hilbert space with norm and inner product denoted respectively by || - | x and {-, )x.
Let A: X — X be a linear unbounded self-adjoint, strictly positive operator with a compact resolvent.
Denote by D(A%) the domain of A%, and introduce for 3 € R the scale of Hilbert spaces Xg, as follows: for
every 8 =0, Xg = D(Ag), with the norm |z|g = ||A§z||X (note that 0 ¢ o(A) where o(A) is the spectrum
of A). The space X_g is defined by duality with respect to the pivot space X as follows: X_g = X g‘ for
8> 0.

The operator A can be extended (or restricted) to each X3, such that it becomes a bounded operator

(1) A:Xﬁ—>X/3_2 V,BER

The operator iA generates a strongly continuous group of isometries in X denoted (e®4),cr [28].

Further, let Y be a complex Hilbert space (which will be identified to its dual space) with norm and
inner product respectively denoted by ||.||y and {-,-)y, and let C € L(X>,Y"), the space of linear bounded
operators from Xs into Y.

This paper is concerned with the following abstract infinite-dimensional dual observation system with an
output y € Y described by the equations

2(t) —iAz(t) =0, t > 0,
(2) 2(0) = 29 € X,
y(t) = Cz(t), t > 0.

In inverse problems framework the system above is called the direct problem, i.e, to determine the ob-
servation y(t) = Cz(t) of the state z(¢) for given initial state zp and unbounded operator A. The inverse
problem is to recover the initial state zp from the knowledge of the observation y(¢) for t € [0,T] where
T > 0 is chosen to be large enough.

Inverse problems for evolution equations driven by numerous applications, have been a very active area
in mathematical and numerical research over the last decades [15]. They are intrinsically difficult to solve:
this fact is due in part to their very mathematical structure and to the effect that generally only partial
data is available. Many different linear inverse problems in evolution equations related to data assimilation,
medical imaging, and geoscience, may fit in the general formulation of the system (2) (see for instance
[30, 2, 3, 4, 5, 7, 26] and references therein).

The system (2) has a unique weak solution z € C'(IR, X) defined by:
(3) 2(t) = ez,

If 2zp is not in X, in general z(t) does not belong to X5, and hence the last equation in (2) might not be
defined. We further make the following additional admissibility assumption on the observation operator C":
VT >0, 3Cr >0,

T
(4) Yz € Xa, f |Ce 23 dt < Crlzol-
0

We immediately deduce from the admissibility assumption that the map from X to L? (IRy;Y) that assigns
y for each zp, has a continuous extension to X. Therefore the last equation in (2) is now well defined for all
zo € X. Without loss of generality we assume that Cp is an increasing function of T' (if the assumption is

not satisfied we substitute Cr by supy<;<7 C1).

Since A is a self-adjoint operator with a compact resolvent, it follows that the spectrum of A is given by
o(A) = {\, k € N*} where \; is a sequence of strictly increasing real numbers. We denote (¢ )gen* the
orthonormal sequence of eigenvectors of A associated to the eigenvalues (Ag)pens-
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Let z € Xo\{0} € X — A(z) € R be the A-frequency function defined by
(5) A(2) (Az, 2)x|2l%%,

+00 +o0 -1
(6) PIRTECRINE <Z<27¢k>§(> :
k=1 k=1
We observe that z — A(z) is continuous on X2\{0}, and A(¢x) = A, k € N*.

Let € be the set of functions ¢ : Ry — R* continuous and decreasing. Recall that if ¢ € € is not bounded
below by a strictly positive constant it satisfies lim;—, o 1(¢) = 0.

Definition 1.1. The system (2) is said to be weakly observable in time T > 0 if there exists ¢ € € such that
following observation inequality holds:
T

) Vo€ Xoy (A(z0)20l% < f |Ceit 2|2 dt.
0

If 4(t) is lower bounded, the system is said to be exactly observable.

Remark 1.1. If the system (2) is weakly observable in time T > 0, it is weakly observable in any time T"
larger than T. The function v appearing in the observability inequality (7) may depends on the time T.

Most of the existing works on observability inequalities for systems of partial differential equations are
based on a time domain techniques as nonharmonic series [1, 16], multipliers method [20, 21], and microlocal
analysis techniques [10, 17]. Ounly few of them have considered frequency domain techniques in the spirit of
the well known Fattorini-Hautus test for finite dimensional systems [12, 13, 11, 25, 31].

The wanted frequency domain test for the observability of the system (2) would be only formulated in
terms of the operators A, C. The time domain system (2) would be converted into a frequency domain one,
and the test would involve essentially the solution in the frequency domain and the observability operator
C. The frequency domain test seems to be more suitable for numerical validation and for the calibration
of physical models for many reasons: the parameters of the system are in general measured in frequency
domain; the computation of the solution is more robust and efficient in frequency domain.

The objective here is to derive sufficient and if possible necessary conditions on
(1) the spectrum of A, and
(ii) on the action of the operator C on the associated eigenfunctions of A,
such that the closed system (2) verifies, for some T > 0, sufficiently large, the inequality (7). The aim of
this paper is to obtain Fattorini-Hautus type tests on the pair (A, C') that guarantee the weak observability

property (7).

The rest of the paper is organized as follows: In section 2 we present the main results of our paper related
to the weak observability. Section 3 contains the proof of the main Theorem 2.1 based on new resolvent
inequality and Fourier transform techniques. In section 4 we study the relation between the spectral coercivity
of the observability operator and his action on vector spaces spanned by eigenfunctions associated to close

eigenvalues. Finally, in section 5 we apply the results of the main Theorem 2.1 to boundary observability of
the Schrédinger equation in a square.

2. MAIN RESULTS
We present in this section the main results of our paper.

Definition 2.1. The operator C is spectrally coercive if there exist functions €,1 € € such that if z € X5\ {0}
satisfies

(8)

|Az]%

I21%

= X(2) <e(A(2)),
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then
(9) [C2]% = v(A(2))]2]%-
Remark 2.1. We remark that the following relation
2 o | Az]% 2
(10) 0<[(A—=A)Dzlxl=lx" = Er A (2)
X

holds for all z € X2\{0}. In addition, the equality IAz% A2(2) = 0 is satisfied if and only if z = ¢y, for

I215%
some k € N*,

Now, we are ready to announce our main result.

Theorem 2.1. The system (2) is weakly observable iff C is spectrally coercive, that is the following two
assertions are equivalent.

(1) There exist €,1) € € such that if z € X5\ {0} satisfying
|4=1%
l21%

= X(2) < (X)),

then

IC2]3 = v(A()]2]%-
(2) The following weak observation inequality holds:

T
(1) vaoe X 00 (00 (3 +20)) )l < [ €50 ar
0

for all T = T(A\(z0)), where T(A(z0)) is the unique solution to the equation

(12) Te (00 <; + A(zo)>) 6,

and e, € € are the functions appearing in the spectral coercivity of C. The strictly positives constants
0;,1=0,1,2, do not depend on the parameters of the observability system. In addition, the function
A — T(X) is increasing.

The above theorem can be viewed as a extension of several results in the literature [13, 11, 25, 31, 24].

3. PROOF OF THE MAIN THEOREM 2.1

In order to prove our main theorem, we need to derive a sequence of preliminary results. We start with
the main tool in the proof of the theorem which is a generalized Hautus-type test.

Theorem 3.1. The operator C € L(X2,Y), is spectrally coercive, if and only if there exist functions v, € € €,
such that the following resolvent inequality holds

s [ 1CHE (A= AD)z|
(13) l2[% < mf{d)(/\(;)/)’ (A= X(2))2 + E();(Z))

Proof. Let z € X5\{0} be fixed. A forward computation gives the following key identity:
(14) [(A = AD)2]% = (A= M(2))? 2% + (A = A(2)D)2] %
We remark that the minimum of |[(A — A )z|% for a fixed 2 with respect to A € IR is reached at A = A(z).

} ,VAeIR, Vz e X5\{0}.

We first assume that C € £L(X2,Y), is spectrally coercive and prove that (13) is satisfied. Let now ¢, ¢ € €
the functions appearing in the spectral coercivity of the operator C' in Definition 2.1, and consider the fol-
lowing two possible cases:
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(i) The inequality |Az|% — A\2(2)]z]|% < e(A(2))|z||% is satisfied. Then by the spectral coercivity of C,
we deduce

(15) IC2]3 = $(A(2)]2]%-
(ii) The inequality |Az|% — A2(2)|z[% = ()\(z))HzHX holds. Then, the identity (14) implies
(16) [(A=AD2[% = (A= A(2))* +e(A(2) [k

By combining both inequalities (15) and (16), we obtain the resolvent inequality (13).

We now assume that (13) holds and, we shall show that C' € £L(X3,Y), satisfies the spectrally coercivity
in Definition 2.1. Let €, ¢ € € the functions appearing in (13), and assume that z € X5\{0} satisfies

(17) [(A=XE)D)2l% = [42]% = N (2)21% < e(A=))]=]%-
Then, we have two possibilities
(i) The inequality

IC=13 _ (A= ADzI%
P(A(2) (A= A2))? +e(A(2))
holds for some A € IR. Consequently the following spectral coercivity
[C2[3 = v(A2))l1=]%
can be trivially deduced from the resolvent identity (13).

(ii) The inequality
IC=15 (A= ADz[%
P(A2) (A= A2))? + (M=)
is valid for all A € IR. We then deduce from the identity (14) the following inequality
2 _ 2 2 _ 2
o A O) I R (P YOI S
P(A(2)) (A= A(2))? +e(A(2))
Taking A to infinity we get the wanted inequality, that is
|C21% 2
> |z|%,
e R

which finishes the proof of the Theorem.
O

Next we use a method developed in [11] to derive observability inequalities based on resolvent inequalities
and Fourier transform techniques. Our objective is to prove the equivalence between the resolvent inequality
(13) and the weak observability (11). The proof of the Theorem is then achieved by considering the results
obtained in Theorem 3.1.

We further assume that the resolvent inequality (13) holds and shall prove the weak observability.
Let x € C(IR) be a cut off function with a compact support in (—1,1). For T > 0, we further denote
t
(19) w) = x(3) rem

Let zo € Xo\{0}. Set 2(t) = €42, x = xrz and f = & — iAx. Since 2 —iAz = 0, we have f = Yrz. The
Fourier transform of f with respect to time is given by

f(r) = (it = i4)(7),
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where Z(7) is the Fourier transform of x(t). Applying (13) to Z(7) € X2\{0} for A = 7, we obtain

312 < inr | JCFOIE )15
19) s f{wu@m))’(fA@(T»)us@@(ﬂ))}'

We remark that since Z(7) # 0, we have A(Z(7)) # +o0, and the inequality (19) is well justified. Next,
we study how do the frequency A(Z(7)) behave as a function of 7. We expect that A(Z(7)) that is close to
A(zp), the frequency of the initial state zp, and reach increases when |7| tends to infinity.

To simplify the analysis we will make some assumptions on the cut-off function x(s). We further assume
that x € Co(IR) satisfies the following inequalities:

1 K1 K2
(20) XeH(-L1), = <RXOl< 5 7e R,

where ko > k1 > 0 are two fixed constants that do not depend on 7. We will show in the Appendix the
existence of a such function.

Theorem 3.2. Let zy € Xo\{0}, and let 2(t) = ez, and let (1) be the Fourier transform of z(t) =
xr(t)z(t), where xr(t) is the cut-off function defined by (18), and satisfying the inequality (20).

Then, there exists a constant co = co(x) > 0 such that the following inequality
(21) )\1 < )\(‘{C\(T)) < 4‘7’| + C())\(Z())7
holds for all T € IR.

Proof. Recall the expression of the frequency function:
(22) A@(7)) = (AZ(7), 2(r)x [2(T)]%*, V7 € R.
Let 29 = Z;ﬁol 201 € Xo. Hence

+o0
(23) (1) = ), X7(T — M) 2k P
k=1
Hence
-1
(24) AE(r ZAMXW—M 22 <2|XTT—Ak z) :
k=1

We first remark that A(Z(7)) = A\ for all 7 € R, and it tends to A(zg) when T approaches 0. In order to
study the behavior of A(Z(7)) when 7 is large we need to derive the behavior of X7 (s) when s tends to infinity.

We start with the trivial case where 7 is far away from the spectrum of A, that is 7 < A1.

Let K € R, be large enough, and set

0]
MRr(r =) = > Re(r =P+ D) Re(r = M)PE =T+ .

IT— | <K 7= g |>K
We claim that there exists K, > 0 large enough such that
(25) 215, <1y, forall K > K.,.
We first observe that there exists g > 0 large enough such that
(26) 2y Y, <k Y, %
A>T0 Ak<ro

or equivalently
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(2+1> 22 <=l

A >T0
In fact, we have
)
(27) D A< Z Aizi; < HZOHX
Ak >To )\k>TO
Hence the inequality (26) holds if
(28) ro =2 (2”2 + 1> A(z0).
K1
Now by taking K = |7| + 19, and using the bounds (20) with X7 (s) = TX(T's) in mind, we get
2/{2T2 2
(1+ K2T17?) N
H1T2 2
(30) L > s D, A
(1 + KT ) A<K+T

Since K > rg, inequalities (26), (29) and (30) imply

(31) 2T, < Z Mozt < T,

A <K+T

Then, inequality (25) is valid for K, = max(7,rg). Consequently the inequalities
1 ~ ~

(32) 74 < 121X = D 1Re(r = M)P27 < 3T,

holds for all K > K.

Considering now identity (24), and inequalities (32), we obtain
-1

AMz(r)) <2 D MlRe(r = M) [P2E D Re(r = M) Pa
IT—Akng IT—Akng
-1
+2 Z AelXr (T = AR) P20 Z Xe(r =) | =T+ T
|[7—=Xk|>K [T—Ap|<K
On the other hand we have
(33) Ty <2(7 + K).

In addition, using again the bounds (20), we obtain

—1
(34) J2 < 2( Z AM’;%) < Z Z,%) .
A >T+HK A <S<K+T

Since K + 7 > rg, inequality (26) gives

1
K1
(35) Z %= (%2 + 1) l20]% -

Hence
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+00 +00 -1 K1
2 2 _

(36) Jo <2 (252 + 1) (Z Ak,zk) (Z zk) =2 (252 + 1) A(z0).

k=1 k=1
Combining inequalities (33), (36)and (35), we get

ANz(r)) < 2|7+ 2K + 2 (2 + 1) A(z0)-
K2

for all K > K.

Consequently, the proof is achieved by taking cy = 8:—? + % + 6.
|

Remark 3.1. The upper bound of A\(Z(7)) obtained in Theorem 3.2 is not optimal since N(Z(7)) = A\ = A(20)
if z0 = ¢r. Moreover when Apmayz(20) = max{\g, k € N* (20, dr)x + 0} < o0, we can easily show that
AMZ(T)) < Mnax(20). We remark that in both cases the bounds of AM(Z(7)) are independent of the Fourier
frequency 7.

:KHLE% 20 € Xo\{0}, and let z(t) = €2y, and let 2(7) be the Fourier transform
L 1,1

of x(t) = xr(t)z(t), where xr(t) is the cut-off function defined by (18).

Lemma 3.1. Let ¢ =

Then, the following inequality

1 [/c _ R
(37) (1 -2 (2360 ) ol < Il [ 1ar

holds for all R > =& 4 A(z0).

Proof. Recall that & = f + iAx where f = xyrz. By integration by parts we then have

#r) = = (Fr) +i42(r))
Consequently

21 = (= (Fr) +i43() &)

Then for any R > 0, by Fourier-Plancherel Theorem, we have

R
~ 1 /1, .
W npliol < [ 180+ 4 ( pldicnldeey + Ao ) Ll

Hence for R large enough we have

(1- 5 (PR ae) ) bl < Il | o)
T x> e N A X’

which finishes the proof of the lemma.

Back now to the proof of the theorem. Combining inequalities (19) and (37), we find

Lo o) ) 1 el , o (f IFOBR
@ (107 (3 +3e) ) Il < iz ( Rrcakadl Rsu(am))")'
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Applying the upper bound \(Z(7)) derived in Theorem 3.2, and considering the monotony of the functions
1 and € in €, we obtain

(1 L <06 A >)> 20l < : LUZIEH! J Rty
- 0 0llx = T
r\T X S SR conzo) Xl 1a) Jo (OO
n 1 ‘|XH%2(—1,1) HZO‘@(
TeR T co\(0)) NP 1)
for all R > % + A(z0).
Now, by taking R =2 (2 + A(zg)), and 6y = max(cj, 8 + ¢p), we find
T 0
2 HXH2L2(_1 1) 2 HXH%OO(—l 1) r
- D) faolf < D [ este) .
< Te (6o (7 + A20))) HXHZLQ(—I,I) YTy (0 (7 + A(20))) HXH2L2(—1,1) 0 v
a2y, s,
Let 61 = . 0 and 02 = =20

Then, for Te(4R + coA(z0)) = 01, we finally get the wanted estimate:

(39 oat (00 (543G ) ) ol < [ =03

0

Simple calculation shows that the function T — T (6 (% + A(20))) is increasing, tends to infinity when T
approaches +o0, and tends to 0 when T approaches 0. Then there exists a unique value T (A(29)) > 0 that
solves the equation (12). In addition, the function A — T'()) is increasing. Finally, the inequality (39) is
valid for all T = T'(A(z0))-

Now, we shall prove the converse. Our strategy is to adapt the proof of Theorem 1.2 in [29] for the clas-
sical exact controllability to our settings (see also [11, 24]). We further assume that the weak observability
inequality (11) holds for some fixed ¥ and ¢ in €. Our goal now is to show that C' is indeed spectrally coercive.

Let 2z € X4, and x¢ := (iA — i71)2o for some 7 € IR. Define x(t) = e’z and z(t) = e 2.

A forward computation shows that z(t) solves the following

z(t) —itz(t) = x(t), VteRY,
z(0) = zp.

Then

t
2(t) = ez + J ™) 1 (s)ds.
0

Applying now the observability operator both sides gives
¢

Cz(t) = '™ Cz + J ™= Cu(s)ds,
0

whence

t
IC2(D5 < 2Cal5 + QL [Ca(s)5-ds.
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Integrating the inequality above both sides over (0,7, we obtain

T T
J |C2(t)|5-dt < 2T|Czol5 + 2TJ [Ca(s)[3 ds.
0 0

We deduce from the admissibility assumption (4) that

T
j |C(t)dt < 2T|Czo % + 2TCr (A — 1)zl
0

Applying the weak observability inequality (11) for T' = T(\(zo)), leads to

21 (90 (m " A<ZO>)) 20l < 2T(A(20)|C20 % + 2T(Mz0))Coriageon (A — 7120/

for all 7 € R.
Since T'(\) = Tp = T(0), for all A = 0, we have

b (ao (Tl ; A(zo>)) 20l% < 2T(A(20))|C20 3 + 2T(A(z0))Cringean (A — 710l %

Taking 7 = A(zg) in the previous inequality implies

o (0 (000 it < o
O [ — + A(= 2l < 5——
QT()‘(ZO))CT(A(ZO))w "\ T (o)) ) lzolix Cr(x(z0))

o g w3 +2)

6 1
AN)=——=9Y(0|=+A)].
W=t ( (7 +))
We deduce from the monotonicity properties of 1)(\), Cy, and T(A) that ¥()\), &(A) € €.

|Cz0l% + (A = Az0) D20l

Let

N

Consequently C' becomes spectrally coercive with the functions 7;()\), g(A), that is

|4z1%

R

= X%(2) < E(A\(2)),
implies

1C2[% = v(A (=)=l
which finishes the proof of the Theorem.

4. SUFFICIENT CONDITIONS FOR THE SPECTRAL COERCIVITY.

In this section we study the relation between the spectral coercivity of the observability operator C' given
in Definition 2.1, and the action of the operator C' on vector spaces spanned by eigenfunctions associated to
close eigenvalues.

For Ae Ry and € > 0, set
(40) N-(\) = {k € N* such that |\ — \;| < &},

to be the index function of eigenvalues of A in a e-neighborhood of a given .
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Definition 4.1. The operator C is weakly spectrally coercive if there exist a constant € > 0 and a function
1 € € such that for all A € R, the following inequality
(41) 1C2[% = v(V)]2[%
holds for all z =3,y 20k € X2\ {0}.

Lemma 4.1. The operator C is weakly spectrally coercive iff there exist a constant € > 0 and a function
1 € € such that the following inequality

(42) 1C2[3 = v(ha)|2]%
holds for all z = ZkeNs(An) 2k P, and for all n € N*,

Proof. Assume that C is weakly spectrally coercive. By taking A = A, in (41), inequality (42) immediately
holds. Conversely, assume that inequality (42) is satisfied, and let A € R. One can easily check that the set
Ne () is either empty or it contains at least an element ng € N*. Since Nz () © Ne(\y,), we have

IC25 = (o) 21%
holds for all z = 3, . (\) zk®k € X2\ {0}. On the other hand the fact that ¢ is non-increasing implies
2

€
213 = v (A+ 5) 1%
holds for all z = ZkeNs(A) zror € X5\ {0}, which shows that C is weakly spectrally coercive with the
2

constant § > 0 and DN == (A + 5)ecd.
]

The Lemma 4.1 has been proved in [25] for the particular case where 1) is a constant function.

Theorem 4.1. Let € > 0 be a fized constant and let 1 € €. If C is spectrally coercive with e,, then it
is weakly spectrally coercive. Conversely, if C' is weakly spectrally coercive with €,v, then C is spectrally
coercive.

Proof. Let A e Ry, and 8 > 0 being fixed. A direct calculation shows that if

2= > ok,

keNg(A)
we have
A=) =Nzl = D) (e =Nz
kENﬁ(}\)
Hence
[A(z) = Al < B.

On the other hand
|Az[5% = X (2)[21% = [(A = A=) Dz]% < 2(A = ADzl% + 21x = A(2) P |2]% < 26%]2]%-

Then, we deduce from the spectral coercivity in Definition 2.1 that (41) holds if we choose 8 such that
262 < e.

Now, we shall prove the opposite implication. Assume that (41) is satisfied for all A € R, and let

400
z= ) Zkbr,
k=1

being in X5\{0}, and satisfying the inequality
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|Az]%
I21%

where 8 will be chosen later in terms of ¢ and .

(43) —X(2) < B(A(2)),

Set
(44) (A= Xz))z = f.
We deduce from (43), the following estimate
(45) 1713 < Bl=I%
We now introduce the following orthogonal decomposition of z:
(46) z = 2°+3
with
(47) L= mdk, T= ), bk

keN:(A(z)) k¢N:(M(2))
We deduce from (43), (44) and (45) the following estimate

fi 1

p
5 < Sl < Sl

kEN-(A(2)) kEN-(A(2)) k

On the other hand the inequality (41) for A = A\(z) implies

o=
$(A(2))

The following result has been proved for admissible operator C' first on (0,400) in [29], and on (0,7) in
[25].

(49) 12°1% <

Proposition 4.1. For each e > 0 and A € IR, we define the subspace V(\) < X by

V(A) = A{¢e: k¢ N(N)},
and we denote Ay : V(A) n Xo — X, the restriction of the unbounded operator to V(A).

Then, there exists a constant M > 0, such that
(50) [CAN =AD" eviyyy S M, VA€ Ry,
We deduce from (44) and (46), the following inequality

(51) [C2°1% < 21C2[} +2|CZ]3 < 2|C2]F +2|C(Ary — M) D) T
Applying now the results of Proposition 4.1 on (51), we get

(52) |C2°15 < 2|C2|% + 2M | f1%-
Inequalities (45) and (52), give

|C2°15 < 2|C=3 +2M Bz |%-
Now, using the inequality (49), we get
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P(A(=) D)

(53) 2% <2

Combining (48) and (53), we obtain

I21% = [2°1% + 121k < p(A(2)]2]% + Q%L(C;Z(g)
with
(54) p(A(2)) := (Miﬂé)) i) B(A(2))
By taking
-1
(55) BOMz)) = % <M2Af‘é)) . i) |
we find

1
1Y) < lczly-

One can check easily that S(\) belongs to € Then C becomes spectrally coercive with the functions

BN, ¥ eC.
O

Remark 4.1. Theorem 4.1 shows that the results of the paper [25] by M. Tucsnak and al. correspond to the
particular case of spectral coercivity where € and ¢ are constant functions. Finally, applying Proposition 4.1
is not necessary to prove the theorem. In fact we can bound in inequality (51), C by |C||*(A(z) + E)QE%Hzﬂg(
where |C| is the norm of C in L(X2,Y). Applying the results of Proposition 4.1 improves the behavior of
e(A) for large .

5. APPLICATION TO OBSERVABILITY OF THE SCHRODINGER EQUATION

Let Q = (0,m) x (0,7), and 02 be its boundary. We consider the following initial and boundary value
problem:

2'(x,t) + 1Az(x,t) =0, x € Q, t >0,
(56) 2(z,t) =0,2€0Q,t >0,
z(z,0) = zo(x),x € Q.

Let T be an open nonempty subset of Q2. Define C' to be the following boundary observability operator

(57) y(x,t) = Cz(z,t) = dy2|r,
where v is the outward normal vector on 0f2, and 0, is the normal derivative.
We further show that the observation system (56)-(57) fits perfectly in the general formulation of the
system (2).
Let X = H}(Q) be the Hilbert space with scalar product
(v, wyx = j Vu - Vvdz.
Q

Therefore A = —A : Xo € X — X, is a linear unbounded self-adjoint, strictly positive operator with a
compact resolvent. Hence the operator iA generates a strongly continuous group of isometries in X denoted
(€*)4er. Moreover for B > 0, X = D(Ag) is given by
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X5 = {oe Hi(Q): (-A)Fpe HYO).
Then the observability operator C' : Xy — Y := L?(T'), defined by (57), is a bounded operator. In addition

it is known that C' is an admissible observability operator, that is for any 7' > 0 there exists a constant
Cr > 0, such that the following inequality holds

T
| [ 03P dstayie < 2 | Va0l a
o Jr Q

for all 29 € Xo.

The eigenvalues of A are
(58) A =m? +n% m,neN*

A corresponding family of normalized eigenfunctions in Hg (£2) are

sin(nmzy) sin(mrzs), m,n € N* x = (z1,12) € Q.

2
59 T) = ——
(5) Omnl) =
Next we derive observability inequalities corresponding to different geometrical assumptions on the ob-
servability set T'.

Assumption I. We assume that I" contains at least two touching sides of €.

In this case it is known that T" satisfies the geometrical assumptions of [10], and the exact controllability
is reached [19]. We will show that it is indeed the situation by applying our coercivity test.

Consider the Helmholtz equation defined by

Au+Eku=f xeQ,
(60) u =0, ze T,
Oyu —iku=0,x2€el,
where g € L*(T) and f € L*(Q).
It has been shown using Rellich’s identities (which are somehow related to the multiplier approach in
observability [20, 21]) the following result [14].
Proposition 5.1. Under the assumptions I on T', a solution u € H' () to the system (60) satisfies the
following inequality
(61) Elul 2y + VUl 2@y < co (If]lz20) + l9lz2m) »
for all k = ko, where kg > 0 and ¢y > 0 are constants that only depend on I.
We deduce from Proposition 5.1 the following inequality
(62) lzlx < e (|42 = A(2)z]x + [Czly),
for all z € X2\{0}, where A(z) is the A-frequency of z, and ¢; > 0 are constants that only depend on I'. Then
by taking e(\) = é, we find that C is spectrally coercive with ¢(\) = é, which implies in turn that the
1 1

system (56)-(57) is exactly observable.

Theorem 5.1. Under the assumptions I on T', the system (56)-(57), is exactly observable.

Assumption II: We assume that I' in a one side of 2. Without loss of generality, we further assume that
I'=(0,7) x {0}.
The following result has been derived partially in [8].
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Proposition 5.2. Under the assumptions I on T, a solution u € H*(Q2) to the system (60) satisfies the
following inequality
(63) klulz20) + VUl L2y < cok (1£]z2) + 9l z2r)) -

for all k = ko, where kg > 0 and ¢y > 0 are constants that only depend on T.

We again deduce from Proposition 5.2 the following resolvent inequality

(64) l2lx < er(T+VAR) (|42 = A(z)z]x +[C=[y),

for all z € X3\{0}, where A(z) is the A-frequency of z, and ¢; > 0 is a constant that only depends on T.
Then by taking e(\) = m, we find that C is spectrally coercive with ¥ () = m. This implies in
turn that the system (56)-(57) is weakly observable: there exists a constant 7° > 0 such that

T 2
(63) VGl < | | 10,4 dstear

for all zp € X, and for all T > T°.

Theorem 5.2. Under the assumptions IT on T', the system (56)-(57), is weakly observable for any zp € X.

Assumption IIT: We assume that T is included in a one side of 2. Without loss of generality, we further
assume that (o, ) x {0} < T' < (0,7) x {0}, with 0 < @ < 8 < 7. Then, we have the following weak
observability inequality.

Theorem 5.3. Under the assumptions III on T, the system (56)-(57), is weakly observable for any zo € X

with £(A) = fm and Y(A) = i—‘;\, where dp > 0 is a constant that only depends on T', and M > 0 is the
&

admissibility cimstant appearing in Proposition 4.1.

Different from the proofs in the two first cases, the proof of the weak observability in the theorem above
is based on intrinsic properties of the eigenelements of A and the operator C. We first present the following
useful result.

Lemma 5.1. The operator C' is weakly spectrally coercive, that is, the following inequality

(66) IC23 = ¥ (Amn) 2%

holds for all z = ZkeNl Oom )quﬁk where Y(A) = %F, with dp > 0 is a constant that only depends on T'.
3 ,n

Proof. Let Ay = m? + n? be fixed eigenvalue, and let z = ZkeNl (x 2o be a fixed vector in X5\{0}.
2

m,n)

It is easy to check that
(67) Ni(Aman) = {k = (p,q) € N* x N* p®+q* =m® +n?).

Therefore

2

L Z zCor(x)| ds(x),

kEN1 (Am.n)
2

IC21%

2

4 (7 q .
T 2p,qSin(pr1)| day,

(68) p PCEpTIvY
@ |p?+q?=m?+n? P> +4¢°)>

A\

Based on techniques related to nonharmonic Fourier series, the following inequality has been proved in
Proposition 7 of [25].
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2

B 2
q . < q 2
(69) J ————Zpgsin(pz1)| dzr = 0 ——— %4l
* P2+q2=27n2+n2 (p?+q2)z " i p2+q2§n2+n2 p* e

where Saﬁ > (0 only depends on « and .

Combining now inequalities (68) and (69), we find

2 7 2 or 2
ICz|y = or > g2 lmal” 2 ek
p2+q2=m2+n2 +q m,n

which achieves the proof. Here dr := %5%5 only depends on I'.
O

Proof of Theorem 5.3. The result of the theorem is a direct consequence of Lemma 4.1, Theorem 4.1, and
-1 -~
Lemma 5.1. We finally obtain that C is spectrally coercive with £(\) = 1 (j(—]\f) + 1) and P(X) = T1(N),
which finishes the proof.
O

Remark 5.1. We observe that the result of Theorem 5.2 based on clever analysis of Fourier series derived
in [8], is indeed a particular case of Theorem 5.3 (o = 0 and B = ) obtained from Ingham type inequalities.

APPENDIX

Let x € Ch(IR) be a cut off function with a compact support in (—1,1) given by

X(s) = (1= s])e Iy ).
Then we have the following result.

Proposition 5.3. The function x(s) satisfies

K1 ~ K2

s <RI <

= 1+72’TE]R

X € Hy(—1,1),

)

where K1 > Ko are two fized constants.

Proof. Since |X(7)]| is even we shall prove the inequality only for 7 € IR..

A forward computation gives

R ) 1— 67(1+i7)

Then

On the other hand, we have



Using the estimate sinc(s) >
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% for s € (0, 5), we get

TJo1l4(s—7)°
4 1 1 4 1
> —(arctan(- — + arctan(— + = Zarctan | —2—
7r( (4 7) (4 7)) T (124—7’2)
1 1 3
T +72 3\12+ 72
4
3
> % + 72
4
3
1472’
which finishes the proof. O
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