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In the paper we consider the linear inverse problem that consists in recovering the initial state in a first order evolution equation generated by a skew-adjoint operator. We studied the well-posedness of the inversion in terms of the observation operator and the spectra of the skew-adjoint generator. The stability estimate of the inversion can also be seen as a weak observability inequality. The proof of the main results is based on a new resolvent inequality and Fourier transform techniques which are of interest themselves.
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Introduction

Let X be a complex Hilbert space with norm and inner product denoted respectively by } ¨}X and x¨, ¨yX . Let A : X Ñ X be a linear unbounded self-adjoint, strictly positive operator with a compact resolvent. Denote by DpA 1 2 q the domain of A 1 2 , and introduce for β P R the scale of Hilbert spaces X β , as follows: for every β ě 0, X β " DpA β 2 q, with the norm }z} β " }A β 2 z} X (note that 0 R σpAq where σpAq is the spectrum of A). The space X ´β is defined by duality with respect to the pivot space X as follows: X ´β " X β for β ą 0. The operator A can be extended (or restricted) to each X β , such that it becomes a bounded operator [START_REF] Avdonin | Families of exponentials[END_REF] A : X β Ñ X β´2 @β P R.

The operator iA generates a strongly continuous group of isometries in X denoted pe itA q tPR [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF].

Further, let Y be a complex Hilbert space (which will be identified to its dual space) with norm and inner product respectively denoted by ||.|| Y and x¨, ¨yY , and let C P LpX 2 , Y q, the space of linear bounded operators from X 2 into Y . This paper is concerned with the following abstract infinite-dimensional dual observation system with an output y P Y described by the equations [START_REF] Ammari | Logarithmic stability in determining two coefficients in a dissipative wave equation. Extensions to clamped Euler-Bernoulli beam and heat equations[END_REF] $ & % 9 zptq ´iAzptq " 0, t ą 0, zp0q " z 0 P X, yptq " Czptq, t ą 0.

In inverse problems framework the system above is called the direct problem, i.e, to determine the observation yptq " Czptq of the state zptq for given initial state z 0 and unbounded operator A. The inverse problem is to recover the initial state z 0 from the knowledge of the observation yptq for t P r0, T s where T ą 0 is chosen to be large enough.

Inverse problems for evolution equations driven by numerous applications, have been a very active area in mathematical and numerical research over the last decades [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF]. They are intrinsically difficult to solve: this fact is due in part to their very mathematical structure and to the effect that generally only partial data is available. Many different linear inverse problems in evolution equations related to data assimilation, medical imaging, and geoscience, may fit in the general formulation of the system (2) (see for instance [START_REF] Yamamoto | Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method[END_REF][START_REF] Ammari | Logarithmic stability in determining two coefficients in a dissipative wave equation. Extensions to clamped Euler-Bernoulli beam and heat equations[END_REF][START_REF] Ammari | Logarithmic stability in determining a boundary coefficient in an ibvp for the wave equation[END_REF][START_REF] Ammari | Determining the potential in a wave equation without a geometric condition. Extension to the heat equation[END_REF][START_REF] Ammari | Hölder stability in determining the potential and the damping coefficient in a wave equation[END_REF][START_REF] Bao | On the stability of an inverse problem for the wave equation[END_REF][START_REF] Ren | A Global stability estimate for the photo-acoustic inverse problem in layered media[END_REF] and references therein).

The system (2) has a unique weak solution z P CpIR, Xq defined by: zptq " e itA z 0 .

(3) If z 0 is not in X 2 , in general zptq does not belong to X 2 , and hence the last equation in [START_REF] Ammari | Logarithmic stability in determining two coefficients in a dissipative wave equation. Extensions to clamped Euler-Bernoulli beam and heat equations[END_REF] might not be defined. We further make the following additional admissibility assumption on the observation operator C: @T ą 0, DC T ą 0,

@z 0 P X 2 , ż T 0 }Ce itA z 0 } 2 Y dt ď C T }z 0 } 2 X . (4) 
We immediately deduce from the admissibility assumption that the map from X 2 to L 2 loc pIR `; Y q that assigns y for each z 0 , has a continuous extension to X. Therefore the last equation in ( 2) is now well defined for all z 0 P X. Without loss of generality we assume that C T is an increasing function of T (if the assumption is not satisfied we substitute C T by sup 0ďtďT C T ).

Since A is a self-adjoint operator with a compact resolvent, it follows that the spectrum of A is given by σpAq " tλ k , k P N ˚u where λ k is a sequence of strictly increasing real numbers. We denote pφ k q kPN ˚the orthonormal sequence of eigenvectors of A associated to the eigenvalues pλ k q kPN ˚.

Let z P X 2 zt0u Ă X Þ ÝÑ λpzq P R `be the A-frequency function defined by λpzq " xAz, zy X }z} ´2 X , (5)

" `8 ÿ k"1 λ k xz, φ k y 2 X ˜`8 ÿ k"1 xz, φ k y 2 X ¸´1 . (6) 
We observe that z Þ ÝÑ λpzq is continuous on X 2 zt0u, and λpφ k q " λ k , k P N ˚.

Let C be the set of functions ψ : R `Ñ R ˚continuous and decreasing. Recall that if ψ P C is not bounded below by a strictly positive constant it satisfies lim tÑ`8 ψptq " 0.

Definition 1.1. The system (2) is said to be weakly observable in time T ą 0 if there exists ψ P C such that following observation inequality holds:

@z 0 P X 2 , ψpλpz 0 qq}z 0 } 2 X ď ż T 0 }Ce itA z 0 } 2 Y dt. ( 7 
)
If ψptq is lower bounded, the system is said to be exactly observable.

Remark 1.1. If the system (2) is weakly observable in time T ą 0, it is weakly observable in any time T 1 larger than T . The function ψ appearing in the observability inequality (7) may depends on the time T .

Most of the existing works on observability inequalities for systems of partial differential equations are based on a time domain techniques as nonharmonic series [START_REF] Avdonin | Families of exponentials[END_REF][START_REF] Komornik | Fourier Series in Control Theory[END_REF], multipliers method [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF][START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF], and microlocal analysis techniques [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Laurent | Uniform observability estimates for linear waves[END_REF]. Only few of them have considered frequency domain techniques in the spirit of the well known Fattorini-Hautus test for finite dimensional systems [START_REF] Fattorini | Some remarks on complete controllability[END_REF][START_REF] Hautus | Controllability and observability conditions of linear autonomous systems[END_REF][START_REF] Burq | Control in the presence of a black box[END_REF][START_REF] Ramdani | A spectral approach for the exact observability of infinitedimensional systems with skew-adjoint generator[END_REF][START_REF] Zhou | Hautus condition on the exact controllability of conservative systems[END_REF].

The wanted frequency domain test for the observability of the system (2) would be only formulated in terms of the operators A, C. The time domain system (2) would be converted into a frequency domain one, and the test would involve essentially the solution in the frequency domain and the observability operator C. The frequency domain test seems to be more suitable for numerical validation and for the calibration of physical models for many reasons: the parameters of the system are in general measured in frequency domain; the computation of the solution is more robust and efficient in frequency domain.

The objective here is to derive sufficient and if possible necessary conditions on (i) the spectrum of A, and (ii) on the action of the operator C on the associated eigenfunctions of A, such that the closed system (2) verifies, for some T ą 0, sufficiently large, the inequality [START_REF] Bao | On the stability of an inverse problem for the wave equation[END_REF]. The aim of this paper is to obtain Fattorini-Hautus type tests on the pair pA, Cq that guarantee the weak observability property [START_REF] Bao | On the stability of an inverse problem for the wave equation[END_REF].

The rest of the paper is organized as follows: In section 2 we present the main results of our paper related to the weak observability. Section 3 contains the proof of the main Theorem 2.1 based on new resolvent inequality and Fourier transform techniques. In section 4 we study the relation between the spectral coercivity of the observability operator and his action on vector spaces spanned by eigenfunctions associated to close eigenvalues. Finally, in section 5 we apply the results of the main Theorem 2.1 to boundary observability of the Schrödinger equation in a square.

Main results

We present in this section the main results of our paper. Now, we are ready to announce our main result.

Theorem 2.1. The system (2) is weakly observable iff C is spectrally coercive, that is the following two assertions are equivalent.

(1) There exist ε, ψ P C such that if z P X 2 z t0u satisfying

0 ď }Az} 2 X }z} 2 X ´λ2 pzq ă εpλpzqq, then }Cz} 2 Y ě ψpλpzqq}z} 2 X . (2)
The following weak observation inequality holds:

@z 0 P X 2 , θ 2 ψ ˆθ0 ˆ1 T `λpz 0 q ˙˙}z 0 } 2 X ď ż T 0 }Czptq} 2 Y dτ (11) 
for all T ě T pλpz 0 qq, where T pλpz 0 qq is the unique solution to the equation

T ε ˆθ0 ˆ1 T `λpz 0 q ˙˙" θ 1 , (12) 
and ε, ψ P C are the functions appearing in the spectral coercivity of C. The strictly positives constants θ i , i " 0, 1, 2, do not depend on the parameters of the observability system. In addition, the function λ Þ Ñ T pλq is increasing.

The above theorem can be viewed as a extension of several results in the literature [START_REF] Hautus | Controllability and observability conditions of linear autonomous systems[END_REF][START_REF] Burq | Control in the presence of a black box[END_REF][START_REF] Ramdani | A spectral approach for the exact observability of infinitedimensional systems with skew-adjoint generator[END_REF][START_REF] Zhou | Hautus condition on the exact controllability of conservative systems[END_REF][START_REF] Miller | Controllability cost of conservative systems: resolvent condition and transmutation[END_REF].

Proof of the main Theorem 2.1

In order to prove our main theorem, we need to derive a sequence of preliminary results. We start with the main tool in the proof of the theorem which is a generalized Hautus-type test.

Theorem 3.1. The operator C P LpX 2 , Y q, is spectrally coercive, if and only if there exist functions ψ, ε P C, such that the following resolvent inequality holds

}z} 2 X ď inf " }Cz} 2 Y ψpλpzqq , }pA ´λIqz} 2 X pλ ´λpzqq 2 `εpλpzqq * , @λ P IR, @z P X 2 zt0u. ( 13 
)
Proof. Let z P X 2 zt0u be fixed. A forward computation gives the following key identity:

}pA ´λIqz} 2 X " pλ ´λpzqq 2 }z} 2 X `}pA ´λpzqIqz} 2 X . ( 14 
)
We remark that the minimum of }pA ´λIqz} 2 X for a fixed z with respect to λ P IR is reached at λ " λpzq.

We first assume that C P LpX 2 , Y q, is spectrally coercive and prove that ( 13) is satisfied. Let now ε, ψ P C the functions appearing in the spectral coercivity of the operator C in Definition 2.1, and consider the following two possible cases:

(i) The inequality }Az} 2 X ´λ2 pzq}z} 2 X ă εpλpzqq}z} 2 X is satisfied.
Then by the spectral coercivity of C, we deduce

}Cz} 2 Y ě ψpλpzqq}z} 2 X . (15) (ii) The inequality }Az} 2 X ´λ2 pzq}z} 2 X ě εpλpzqq}z} 2 X holds. Then, the identity (14) implies }pA ´λIqz} 2 X ě `pλ ´λpzqq 2 `εpλpzqq ˘}z} 2 X . (16) 
By combining both inequalities ( 15) and ( 16), we obtain the resolvent inequality [START_REF] Hautus | Controllability and observability conditions of linear autonomous systems[END_REF].

We now assume that ( 13) holds and, we shall show that C P LpX 2 , Y q, satisfies the spectrally coercivity in Definition 2.1. Let ε, ψ P C the functions appearing in [START_REF] Hautus | Controllability and observability conditions of linear autonomous systems[END_REF], and assume that z P X 2 zt0u satisfies

}pA ´λpzqIqz} 2 X " }Az} 2 X ´λ2 pzq}z} 2 X ă εpλpzqq}z} 2 X . (17) 
Then, we have two possibilities (i) The inequality

}Cz} 2 Y ψpλpzqq ď }pA ´λIqz} 2 X
pλ ´λpzqq 2 `εpλpzqq holds for some λ P IR. Consequently the following spectral coercivity

}Cz} 2 Y ě ψpλpzqq}z} 2 X
can be trivially deduced from the resolvent identity ( 13).

(ii) The inequality

}Cz} 2 Y ψpλpzqq ą }pA ´λIqz} 2 X pλ ´λpzqq 2 `εpλpzqq
is valid for all λ P IR. We then deduce from the identity ( 14) the following inequality

}Cz} 2 Y ψpλpzqq ą pλ ´λpzqq 2 }z} 2 X `}pA ´λpzqIqz} 2 X
pλ ´λpzqq 2 `εpλpzqq , @λ P IR.

Taking λ to infinity we get the wanted inequality, that is

}Cz} 2 Y ψpλpzqq ě }z} 2 X ,
which finishes the proof of the Theorem.

Next we use a method developed in [START_REF] Burq | Control in the presence of a black box[END_REF] to derive observability inequalities based on resolvent inequalities and Fourier transform techniques. Our objective is to prove the equivalence between the resolvent inequality (13) and the weak observability [START_REF] Burq | Control in the presence of a black box[END_REF]. The proof of the Theorem is then achieved by considering the results obtained in Theorem 3.1.

We further assume that the resolvent inequality (13) holds and shall prove the weak observability.

Let χ P C 8 0 pIRq be a cut off function with a compact support in p´1, 1q. For T ą 0, we further denote

χ T ptq " χ ˆt T ˙, t P R. (18) 
Let z 0 P X 2 zt0u. Set zptq " e itA z 0 , x " χ T z and f " 9

x ´iAx. Since 9 z ´iAz " 0, we have f " 9 χ T z. The Fourier transform of f with respect to time is given by p f pτ q " piτ ´iAqp xpτ q, where p xpτ q is the Fourier transform of xptq. Applying (13) to p xpτ q P X 2 zt0u for λ " τ , we obtain

(19) }p xpτ q} 2 X ď inf # }C p xpτ q} 2 Y ψpλpp xpτ qqq , } p f pτ q} 2 X pτ ´λpp xpτ qqq 2 `εpλpp xpτ qqq + .
We remark that since p xpτ q " 0, we have λpp xpτ qq " `8, and the inequality ( 19) is well justified. Next, we study how do the frequency λpp xpτ qq behave as a function of τ . We expect that λpp xpτ qq that is close to λpz 0 q, the frequency of the initial state z 0 , and reach increases when |τ | tends to infinity.

To simplify the analysis we will make some assumptions on the cut-off function χpsq. We further assume that χ P C 0 pIRq satisfies the following inequalities:

χ P H 1 0 p´1, 1q, κ 1 1 `τ 2 ď |p χpτ q| ď κ 2 1 `τ 2 , τ P IR, ( 20 
)
where κ 2 ą κ 1 ą 0 are two fixed constants that do not depend on τ . We will show in the Appendix the existence of a such function.

Theorem 3.2. Let z 0 P X 2 zt0u, and let zptq " e itA z 0 , and let p xpτ q be the Fourier transform of xptq " χ T ptqzptq, where χ T ptq is the cut-off function defined by [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF], and satisfying the inequality [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF].

Then, there exists a constant c 0 " c 0 pχq ą 0 such that the following inequality

λ 1 ď λpp xpτ qq ď 4|τ | `c0 λpz 0 q, (21) 
holds for all τ P IR.

Proof. Recall the expression of the frequency function:

λpp xpτ qq " xAp xpτ q, p xpτ qy X }p xpτ q} ´2 X , @τ P IR. (22) Let z 0 " ř `8 k"1 z k φ k P X 2 . Hence (23) p xpτ q " `8 ÿ k"1 p χ T pτ ´λk qz k φ k . Hence (24) λpp xpτ qq " `8 ÿ k"1 λ k |p χ T pτ ´λk q| 2 z 2 k ˜`8 ÿ k"1 |p χ T pτ ´λk q| 2 z 2 k ¸´1 .
We first remark that λpp xpτ qq ě λ 1 for all τ P R, and it tends to λpz 0 q when T approaches 0. In order to study the behavior of λpp xpτ qq when τ is large we need to derive the behavior of p χ T psq when s tends to infinity.

We start with the trivial case where τ is far away from the spectrum of A, that is τ ă λ 1 .

Let K P R `be large enough, and set

`8 ÿ k"1 |p χ T pτ ´λk q| 2 z 2 k " ÿ |τ ´λk |ďK |p χ T pτ ´λk q| 2 z 2 k `ÿ |τ ´λk |ąK |p χ T pτ ´λk q| 2 z 2 k " I 1 `I2 .
We claim that there exists K τ ą 0 large enough such that

(25) 2I 2 ď I 1 , for all K ě K τ .
We first observe that there exists r 0 ą 0 large enough such that

(26) 2κ 2 ÿ λ k ąr0 z 2 k ď κ 1 ÿ λ k ďr0 z 2 k , or equivalently ˆ2 κ 2 κ 1 `1˙ÿ λ k ąr0 z 2 k ď }z 0 } 2 X .
In fact, we have

ÿ λ k ąr0 z 2 k ă 1 r 0 ÿ λ k ąr0 λ k z 2 k ď λpz 0 q r 0 }z 0 } 2 X . (27) 
Hence the inequality (26) holds if [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF] r 0 " 2 ˆ2 κ 2 κ 1 `1˙λ pz 0 q.

Now by taking K " |τ | `r0 , and using the bounds [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF] with p χ T psq " T p χpT sq in mind, we get

2I 2 ď 2κ 2 T 2 p1 `K2 T 2 q 2 ÿ λ k ąK`τ z 2 k , (29) 
I 1 ě κ 1 T 2 p1 `K2 T 2 q 2 ÿ λ k ďK`τ z 2 k . ( 30 
)
Since K ě r 0 , inequalities ( 26), ( 29) and (30) imply

2I 2 ď κ 1 T 2 p1 `K2 T 2 q 2 ÿ λ k ďK`τ λ k z 2 k ď I 1 . (31) 
Then, inequality ( 25) is valid for K τ " maxpτ, r 0 q. Consequently the inequalities

1 2 I 1 ď }p xpτ q} 2 X " `8 ÿ k"1 |p χ T pτ ´λk q| 2 z 2 k ď 3I 1 , (32) 
holds for all K ě K τ .

Considering now identity [START_REF] Miller | Controllability cost of conservative systems: resolvent condition and transmutation[END_REF], and inequalities [START_REF] Zuazua | Controllability and observability of partial differential equations: some results and open problems[END_REF], we obtain

λpp xpτ qq ď 2 ¨ÿ |τ ´λk |ďK λ k |p χ T pτ ´λk q| 2 z 2 k '¨ÿ |τ ´λk |ďK |p χ T pτ ´λk q| 2 z 2 k '´1 `2 ¨ÿ |τ ´λk |ąK λ k |p χ T pτ ´λk q| 2 z 2 k '¨ÿ |τ ´λk |ďK |p χ T pτ ´λk q| 2 z 2 k '´1 " J 1 `J2 .
On the other hand we have

(33) J 1 ď 2pτ `Kq.
In addition, using again the bounds [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], we obtain

(34) J 2 ď 2 ˜ÿ λ k ąτ `K λ k z 2 k ¸˜ÿ λ k ďK`τ z 2 k ¸´1 .
Since K `τ ě r 0 , inequality [START_REF] Ren | A Global stability estimate for the photo-acoustic inverse problem in layered media[END_REF] gives

(35) ÿ λ k ďK`τ z 2 k ě ˆκ1 2κ 2 `1˙´1 }z 0 } 2 X . Hence (36) J 2 ď 2 ˆκ1 2κ 2 `1˙˜`8 ÿ k"1 λ k z 2 k ¸˜`8 ÿ k"1 z 2 k ¸´1 " 2 ˆκ1 2κ 2 `1˙λ pz 0 q.
Combining inequalities (33), ( 36)and (35), we get

λpp xpτ qq ď 2|τ | `2K `2 ˆκ1 2κ 2 `1˙λ pz 0 q. for all K ě K τ .
Consequently, the proof is achieved by taking c 0 " 8 κ2 κ1 `κ1 κ2 `6.

Remark 3.1. The upper bound of λpp xpτ qq obtained in Theorem 3.2 is not optimal since λpp xpτ qq " λ k " λpz 0 q if z 0 " φ k . Moreover when λ max pz 0 q " maxtλ k , k P N ˚, xz 0 , φ k y X " 0u ă 8, we can easily show that λpp xpτ qq ď λ max pz 0 q. We remark that in both cases the bounds of λpp xpτ qq are independent of the Fourier frequency τ .

Lemma 3.1. Let c 1 0 " } 9 χ} L 2 p´1,1q }χ} L 2 p´1,1q
, z 0 P X 2 zt0u, and let zptq " e itA z 0 , and let p xpτ q be the Fourier transform of xptq " χ T ptqzptq, where χ T ptq is the cut-off function defined by [START_REF] Jerison | Nodal sets of sums of eigenfunctions[END_REF].

Then, the following inequality

ˆ1 ´1 R ˆc1 0 T `λpz 0 q ˙˙}z 0 } 2 X ď }χ} ´2 L 2 p´1,1q ż R ´R }p xpτ q} 2 X dτ (37)
holds for all R ą c 1 0 T `λpz 0 q. Proof. Recall that 9

x " f `iAx where f " 9 χ T z. By integration by parts we then have

p xpτ q " ´i τ ´p f pτ q `iAp xpτ q ¯.
Consequently }p xpτ q} 2 X " x´i τ ´p f pτ q `iAp xpτ q ¯, p xpτ qy X .

Then for any R ą 0, by Fourier-Plancherel Theorem, we have

}χ} 2 L 2 p´1,1q }z 0 } 2 X ď ż R ´R }p xpτ q} 2 X dτ `1 R ˆ1 T } 9 χ} L 2 p´1,1q }χ} L 2 p´1,1q `λpz 0 q}χ} 2 L 2 p´1,1q ˙}z 0 } 2 X .
Hence for R large enough we have

ˆ1 ´1 R ˆ1 T } 9 χ} L 2 p´1,1q }χ} L 2 p´1,1q `λpz 0 q ˙˙}z 0 } 2 X ď }χ} ´2 L 2 p´1,1q ż R ´R }p xpτ q} 2 X dτ,
which finishes the proof of the lemma.

Back now to the proof of the theorem. Combining inequalities ( 19) and (37), we find

ˆ1 ´1 R ´c0 T `λpz 0 q ¯˙}z 0 } 2 X ď }χ} ´2 L 2 p´1,1q ˜ż R ´R }C p xpτ q} 2 Y ψpλpp xpτ qqq dτ `ż R ´R } p f pτ q} 2 X εpλpp xpτ qqq dτ ¸. ( 38 
)
Applying the upper bound λpp xpτ qq derived in Theorem 3.2, and considering the monotony of the functions ψ and ε in C, we obtain

ˆ1 ´1 R ˆc1 0 T `λpz 0 q ˙˙}z 0 } 2 X ď 1 ψp4R `c0 λpz 0 qq }χ} 2 L 8 p´1,1q }χ} 2 L 2 p´1,1q ż T 0 |Czptq} 2 Y dτ `1 T εp4R `c0 λpz 0 qq } 9 χ} 2 L 2 p´1,1q }χ} 2 L 2 p´1,1q }z 0 } 2 X ,
for all R ą c 1 0 T `λpz 0 q. Now, by taking R " 2 `c0 T `λpz 0 q ˘, and θ 0 " maxpc 1 0 , 8 `c0 q, we find

˜1 ´2 T ε `θ0 `1 T `λpz 0 q ˘˘} 9 χ} 2 L 2 p´1,1q }χ} 2 L 2 p´1,1q ¸}z 0 } 2 X ď 2 ψ `θ0 `1 T `λpz 0 q ˘˘}χ} 2 L 8 p´1,1q }χ} 2 L 2 p´1,1q ż T 0 }Czptq} 2 Y dt. Let θ 1 " 4}χ} 2 L 2 p´1,1q } 9 χ} 2 L 8 p´1,1q
, and θ 2 "

4}χ} 2 L 2 p´1,1q }χ} 2 L 8 p´1,1q
.

Then, for T εp4R `c0 λpz 0 qq ě θ 1 , we finally get the wanted estimate:

θ 2 ψ ˆθ0 ˆ1 T `λpz 0 q ˙˙}z 0 } 2 X ď ż T 0 }Czptq} 2 Y dt. (39) 
Simple calculation shows that the function T Þ Ñ T ε `θ0 `1 T `λpz 0 q ˘˘is increasing, tends to infinity when T approaches `8, and tends to 0 when T approaches 0. Then there exists a unique value T pλpz 0 qq ą 0 that solves the equation [START_REF] Fattorini | Some remarks on complete controllability[END_REF]. In addition, the function λ Þ Ñ T pλq is increasing. Finally, the inequality (39) is valid for all T ě T pλpz 0 qq. Now, we shall prove the converse. Our strategy is to adapt the proof of Theorem 1.2 in [START_REF] Russell | A general necessary condition for exact observability[END_REF] for the classical exact controllability to our settings (see also [START_REF] Burq | Control in the presence of a black box[END_REF][START_REF] Miller | Controllability cost of conservative systems: resolvent condition and transmutation[END_REF]). We further assume that the weak observability inequality [START_REF] Burq | Control in the presence of a black box[END_REF] holds for some fixed ψ and ε in C. Our goal now is to show that C is indeed spectrally coercive. Let z 0 P X 4 , and x 0 :" piA ´iτ Iqz 0 for some τ P IR. Define xptq " e itA x 0 and zptq " e itA z 0 .

A forward computation shows that zptq solves the following 9 zptq ´iτ zptq " xptq, @t P IR ˚, zp0q " z 0 .

Then zptq " e iτ t z 0 `ż t 0 e iτ pt´sq xpsqds.

Applying now the observability operator both sides gives

Czptq " e iτ t Cz 0 `ż t 0 e iτ pt´sq Cxpsqds, whence

}Czptq} 2 Y ď 2}Cz 0 } 2 Y `2 ż t 0 }Cxpsq} 2 Y ds.
Integrating the inequality above both sides over p0, T q, we obtain

ż T 0 }Czptq} 2 Y dt ď 2T }Cz 0 } 2 Y `2T ż T 0 }Cxpsq} 2 Y ds.
We deduce from the admissibility assumption (4) that

ż T 0 }Czptq} 2 Y dt ď 2T }Cz 0 } 2 Y `2T C T }pA ´τ Iqz 0 } 2 X .
Applying the weak observability inequality [START_REF] Burq | Control in the presence of a black box[END_REF] for T " T pλpz 0 qq, leads to

θ 2 ψ ˆθ0 ˆ1 T pλpz 0 qq `λpz 0 q ˙˙}z 0 } 2 X ď 2T pλpz 0 qq}Cz 0 } 2 Y `2T pλpz 0 qqC T pλpz0qq }pA ´τ Iqz 0 } 2 X ,
for all τ P R.

Since T pλq ě T 0 " T p0q, for all λ ě 0, we have

θ 2 ψ ˆθ0 ˆ1 T 0 `λpz 0 q ˙˙}z 0 } 2 X ď 2T pλpz 0 qq}Cz 0 } 2 Y `2T pλpz 0 qqC T pλpz0qq }pA ´τ Iqz 0 } 2 X ,
Taking τ " λpz 0 q in the previous inequality implies

θ 2 2T pλpz 0 qqC T pλpz0qq ψ ˆθ0 ˆ1 T 0 `λpz 0 q ˙˙}z 0 } 2 X ď 1 C T pλpz0qq }Cz 0 } 2 X `}pA ´λpz 0 qIqz 0 } 2 X . Let r ψpλq " θ 2 4T pλq ψ ˆθ0 ˆ1 T 0 `λ˙˙, r εpλq " θ 2 4T pλqC λ ψ ˆθ0 ˆ1 T 0 `λ˙˙.
We deduce from the monotonicity properties of ψpλq, C λ , and T pλq that r ψpλq, r εpλq P C.

Consequently C becomes spectrally coercive with the functions r ψpλq, r εpλq, that is

0 ď }Az} 2 X }z} 2 X ´λ2 pzq ă r εpλpzqq, implies }Cz} 2 Y ě r ψpλpzqq}z} 2
X , which finishes the proof of the Theorem.

Sufficient conditions for the spectral coercivity.

In this section we study the relation between the spectral coercivity of the observability operator C given in Definition 2.1, and the action of the operator C on vector spaces spanned by eigenfunctions associated to close eigenvalues.

For λ P R `and ε ą 0, set (40) N ε pλq " tk P N ˚such that |λ ´λk | ă εu, to be the index function of eigenvalues of A in a ε-neighborhood of a given λ.

Definition 4.1. The operator C is weakly spectrally coercive if there exist a constant ε ą 0 and a function ψ P C such that for all λ P R, the following inequality

(41) }Cz} 2 Y ě ψpλq}z} 2 X , holds for all z " ř kPNεpλq z k φ k P X 2 z t0u . Lemma 4.1.
The operator C is weakly spectrally coercive iff there exist a constant ε ą 0 and a function ψ P C such that the following inequality

(42)
}Cz} 2 Y ě ψpλ n q}z} 2 X , holds for all z " ř kPNεpλnq z k φ k , and for all n P N ˚.

Proof. Assume that C is weakly spectrally coercive. By taking λ " λ n in (41), inequality (42) immediately holds. Conversely, assume that inequality (42) is satisfied, and let λ P R. One can easily check that the set N ε 2 pλq is either empty or it contains at least an element

n 0 P N ˚. Since N ε 2 pλq Ă N ε pλ n0 q, we have }Cz} 2 Y ě ψpλ n0 q}z} 2 X , holds for all z " ř kPN ε 2 pλq z k φ k P X 2 z t0u .
On the other hand the fact that ψ is non-increasing implies

}Cz} 2 Y ě ψ ´λ `ε 2 ¯}z} 2 X , holds for all z " ř kPN ε 2 pλq z k φ k P X 2 z t0u
, which shows that C is weakly spectrally coercive with the constant ε 2 ą 0 and ψpλq :" ψpλ `ε 2 q P C.

The Lemma 4.1 has been proved in [START_REF] Ramdani | A spectral approach for the exact observability of infinitedimensional systems with skew-adjoint generator[END_REF] for the particular case where ψ is a constant function.

Theorem 4.1. Let ε ą 0 be a fixed constant and let ψ P C. If C is spectrally coercive with ε, ψ, then it is weakly spectrally coercive. Conversely, if C is weakly spectrally coercive with ε, ψ, then C is spectrally coercive.

Proof. Let λ P R `, and β ą 0 being fixed. A direct calculation shows that if

z " ÿ kPN β pλq z k φ k , we have pλpzq ´λq}z} 2 X " ÿ kPN β pλq pλ k ´λqz 2 k .
Hence |λpzq ´λ| ă β. On the other hand

}Az} 2 X ´λ2 pzq}z} 2 X " }pA ´λpzqIqz} 2 X ď 2}pA ´λIqz} 2 X `2|λ ´λpzq| 2 }z} 2 X ă 2β 2 }z} 2 X .
Then, we deduce from the spectral coercivity in Definition 2.1 that (41) holds if we choose β such that 2β 2 ă ε. Now, we shall prove the opposite implication. Assume that (41) is satisfied for all λ P R `, and let z "

`8 ÿ k"1 z k φ k ,
being in X 2 zt0u, and satisfying the inequality

}Az} 2 X }z} 2 X ´λ2 pzq ă βpλpzqq, (43) 
where β will be chosen later in terms of ε and ψ.

Set

ppA ´λpzqIqz " f. (44)

We deduce from (43), the following estimate

}f } 2 X ď β}z} 2 X . (45) 
We now introduce the following orthogonal decomposition of z:

z " z 0 `r z, (46) 
with

z 0 " ÿ kPNεpλpzqq z k φ k , r z " ÿ kRNεpλpzqq z k φ k . (47) 
We deduce from (43), ( 44) and (45) the following estimate

}r z} 2 X " ÿ kRNεpλpzqq z 2 k " ÿ kRNεpλpzqq f 2 k pλpzq ´λk q 2 ď 1 ε 2 }f } 2 X ď β ε 2 }z} 2 X . (48) 
On the other hand the inequality (41) for λ " λpzq implies

}z 0 } 2 X ď }Cz 0 } 2 Y ψpλpzqq . (49) 
The following result has been proved for admissible operator C first on p0, `8q in [START_REF] Russell | A general necessary condition for exact observability[END_REF], and on p0, T q in [START_REF] Ramdani | A spectral approach for the exact observability of infinitedimensional systems with skew-adjoint generator[END_REF].

Proposition 4.1. For each ε ą 0 and λ P IR `, we define the subspace V pλq Ă X by V pλq :" tφ k : k R N ε pλqu , and we denote A λ : V pλq X X 2 Ñ X, the restriction of the unbounded operator to V pλq.

Then, there exists a constant M ą 0, such that }CpA λ ´λIq ´1} LpV pλq,Y q ď M, @λ P IR `. (50)

We deduce from (44) and (46), the following inequality where }C} is the norm of C in LpX 2 , Y q. Applying the results of Proposition 4.1 improves the behavior of εpλq for large λ.

}Cz 0 } 2 Y ď 2}Cz} 2 Y `2}C r z} 2 Y ď 2}Cz}

Application to observability of the Schrödinger equation

Let Ω " p0, πq ˆp0, πq, and BΩ be its boundary. We consider the following initial and boundary value problem:

(56) $ & % z 1 px, tq `i∆zpx, tq " 0, x P Ω, t ą 0, zpx, tq " 0, x P BΩ, t ą 0, zpx, 0q " z 0 pxq, x P Ω.

Let Γ be an open nonempty subset of BΩ. Define C to be the following boundary observability operator

(57) ypx, tq " Czpx, tq " B ν z| Γ ,
where ν is the outward normal vector on BΩ, and B ν is the normal derivative.

We further show that the observation system (56)-(57) fits perfectly in the general formulation of the system (2).

Let X " H 1 0 pΩq be the Hilbert space with scalar product xv, wy X " ż Ω ∇u ¨∇v dx.

Therefore A " ´∆ : X 2 Ă X Ñ X, is a linear unbounded self-adjoint, strictly positive operator with a compact resolvent. Hence the operator iA generates a strongly continuous group of isometries in X denoted pe itA q tPR . Moreover for β ě 0, X β " DpA β 2 q is given by

X β " ! φ P H 1 0 pΩq : p´∆q β 2 φ P H 1 0 pΩq
) .

Then the observability operator C : X 2 Ñ Y :" L 2 pΓq, defined by (57), is a bounded operator. In addition it is known that C is an admissible observability operator, that is for any T ą 0 there exists a constant C T ą 0, such that the following inequality holds

ż T 0 ż Γ |B ν z| 2 dspxqdt ď C 2 T ż Ω |∇z 0 | 2 dx,
for all z 0 P X 2 .

The eigenvalues of A are

(58) λ m,n " m 2 `n2 , m, n P N ˚.
A corresponding family of normalized eigenfunctions in H 1 0 pΩq are (59) φ m,n pxq " 2 π ? m 2 `n2 sinpnπx 1 q sinpmπx 2 q, m, n P N ˚, x " px 1 , x 2 q P Ω.

Next we derive observability inequalities corresponding to different geometrical assumptions on the observability set Γ.

Assumption I: We assume that Γ contains at least two touching sides of Ω.

In this case it is known that Γ satisfies the geometrical assumptions of [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF], and the exact controllability is reached [START_REF] Lebeau | Contrôle de l'équation de Schrödinger[END_REF]. We will show that it is indeed the situation by applying our coercivity test.

Consider the Helmholtz equation defined by (60)

$ & % ∆u `k2 u " f, x P Ω, u " 0, x P BΩzΓ, B ν u ´iku " 0, x P Γ, where g P L 2 pΓq and f P L 2 pΩq.

It has been shown using Rellich's identities (which are somehow related to the multiplier approach in observability [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF][START_REF] Lions | Exact controllability, stabilization and perturbations for distributed systems[END_REF]) the following result [START_REF] Hetmaniuk | Stability estimates for a class of Helmholtz problems[END_REF]. Proposition 5.1. Under the assumptions I on Γ, a solution u P H 1 pΩq to the system (60) satisfies the following inequality

(61) k}u} L 2 pΩq `}∇u} L 2 pΩq ď c 0 `}f } L 2 pΩq `}g} L 2 pΓq ˘,
for all k ě k 0 , where k 0 ą 0 and c 0 ą 0 are constants that only depend on Γ.

We deduce from Proposition 5.1 the following inequality (62) }z} X ď c 1 p}Az ´λpzqz} X `}Cz} Y q , for all z P X 2 zt0u, where λpzq is the A-frequency of z, and c 1 ą 0 are constants that only depend on Γ. Then by taking εpλq " 1 4c 2

1

, we find that C is spectrally coercive with ψpλq " 1 4c 2

1

, which implies in turn that the system (56)-( 57) is exactly observable. Theorem 5.1. Under the assumptions I on Γ, the system (56)-(57), is exactly observable.

Assumption II: We assume that Γ in a one side of Ω. Without loss of generality, we further assume that Γ " p0, πq ˆt0u.

The following result has been derived partially in [START_REF] Bao | Stability for the electromagnetic scattering from large cavities[END_REF]. Proposition 5.2. Under the assumptions II on Γ, a solution u P H 1 pΩq to the system (60) satisfies the following inequality

(63) k}u} L 2 pΩq `}∇u} L 2 pΩq ď c 0 k `}f } L 2 pΩq `}g} L 2 pΓq ˘,
for all k ě k 0 , where k 0 ą 0 and c 0 ą 0 are constants that only depend on Γ.

We again deduce from Proposition 5.2 the following resolvent inequality (64) }z} X ď c 1 p1 `aλpzqq p}Az ´λpzqz} X `}Cz} Y q , for all z P X 2 zt0u, where λpzq is the A-frequency of z, and c 1 ą 0 is a constant that only depends on Γ. Then by taking εpλq " 1 8c 2 1 p1`λq , we find that C is spectrally coercive with ψpλq " 1 8c 2 1 p1`λq . This implies in turn that the system (56)-( 57) is weakly observable: there exists a constant T 0 ą 0 such that (65) ψpλpz 0 qq}z 0 } 2

H 1 0 pΩq ď ż T 0 ż Γ |B ν z| 2 dspxqdt,
for all z 0 P X 2 , and for all T ě T 0 .

Theorem 5.2. Under the assumptions II on Γ, the system (56)-(57), is weakly observable for any z 0 P X.

Assumption III: We assume that Γ is included in a one side of Ω. Without loss of generality, we further assume that pα, βq ˆt0u Ă Γ Ă p0, πq ˆt0u, with 0 ă α ă β ă π. Then, we have the following weak observability inequality.

Theorem 5.3. Under the assumptions III on Γ, the system (56)-(57), is weakly observable for any z 0 P X with r εpλq "

1 4M δ Γ
λ`1 and r ψpλq " δΓ 4λ , where δ Γ ą 0 is a constant that only depends on Γ, and M ą 0 is the admissibility constant appearing in Proposition 4.1.

Different from the proofs in the two first cases, the proof of the weak observability in the theorem above is based on intrinsic properties of the eigenelements of A and the operator C. We first present the following useful result.

Lemma 5.1. The operator C is weakly spectrally coercive, that is, the following inequality (66) }Cz} 2 Y ě ψpλ m,n q}z} 2 X , holds for all z " ř kPN 1 2 pλm,nq z k φ k where ψpλq " δΓ λ , with δ Γ ą 0 is a constant that only depends on Γ.

Proof. Let λ m,n " m 2 `n2 be fixed eigenvalue, and let z " ř kPN 1 2 pλm,nq z k φ k be a fixed vector in X 2 zt0u.

It is easy to check that (67) N 1 2 pλ m,n q " tk " pp, qq P N ˚ˆN ˚: p 2 `q2 " m 2 `n2 u. Therefore z p,q sinppx 1 q

ˇˇˇˇˇ2 dx 1 , (68) 
Based on techniques related to nonharmonic Fourier series, the following inequality has been proved in Proposition 7 of [START_REF] Ramdani | A spectral approach for the exact observability of infinitedimensional systems with skew-adjoint generator[END_REF].

Using the estimate sinc(s) ě 2 π for s P p0, π 2 q, we get p χpτ q ě 4 π ż 

2

 2 `q2 "m 2 `n2 q pp 2 `q2 q 1 2

  Definition 2.1. The operator C is spectrally coercive if there exist functions ε, ψ P C such that if z P X 2 z t0u satisfies

	then			
	(9)	}Cz} 2 Y ě ψpλpzqq}z} 2 X .
	Remark 2.1. We remark that the following relation
	(10)	0 ď }pA ´λpzqIqz} 2 X }z} ´2 X "	}Az} 2 X X }z} 2	´λ2 pzq
	holds for all z P X 2 zt0u. In addition, the equality some k P N ˚.	}Az} 2 X }z} 2 X	´λ2 pzq " 0 is satisfied if and only if z " φ k for
	(8)	}Az} 2 X X }z} 2	´λ2 pzq ă εpλpzqq,

  One can check easily that βpλq belongs to C. Then C becomes spectrally coercive with the functions βpλq,1 4 ψpλq P C. Remark 4.1. Theorem 4.1 shows that the results of the paper [25] by M. Tucsnak and al. correspond to the particular case of spectral coercivity where ε and ψ are constant functions. Finally, applying Proposition 4.1 is not necessary to prove the theorem. In fact we can bound in inequality (51), C by }C} 2 pλpzq `εq 2 β ε 2 }z} 2

	(53)	}z 0 } 2 X ď 2	}Cz} 2 Y ψpλpzqq	`2M β ψpλpzqq	}z} 2 X .
	Combining (48) and (53), we obtain				
	}z} 2 X " }z 0 } 2 X `}r z} 2 X ď ρpλpzqq}z} 2 X	`2 }Cz} 2 Y ψpλpzqq	,
	with					
				ˆ2M	˙βpλpzqq.
	(54)	ρpλpzqq :"	ψpλpzqq `1 ε
	By taking					
	(55)	βpλpzqq :"	1 2	ˆ2M ψpλpzqq `1 ε	˙´1	,
	we find					
		1 4	ψpλpzqq}z} 2 X ď }Cz} 2 Y .
							X
	(51)						2 Y `2}CpA λpzq ´λpzqIq ´1f } 2 Y .
	Applying now the results of Proposition 4.1 on (51), we get
	(52)	}Cz 0 } 2 Y ď 2}Cz} 2 Y `2M }f } 2 X .
	Inequalities (45) and (52), give					
		}Cz 0 } 2 Y ď 2}Cz} 2 Y `2M β}z} 2 X .
	Now, using the inequality (49), we get				
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where δα,β ą 0 only depends on α and β.

Combining now inequalities (68) and (69), we find

which achieves the proof. Here δ Γ :" Remark 5.1. We observe that the result of Theorem 5.2 based on clever analysis of Fourier series derived in [START_REF] Bao | Stability for the electromagnetic scattering from large cavities[END_REF], is indeed a particular case of Theorem 5.3 (α " 0 and β " π) obtained from Ingham type inequalities.

Appendix

Let χ P C 0 pIRq be a cut off function with a compact support in p´1, 1q given by χpsq " p1 ´|s|qe ´2|s| 1 p´1,1q .

Then we have the following result.

Proposition 5.3. The function χpsq satisfies χ P H 1 0 p´1, 1q,

where κ 1 ą κ 2 are two fixed constants.

Proof. Since |p χpτ q| is even we shall prove the inequality only for τ P IR `.

A forward computation gives

Then |p χpτ q| ď 6 1 `τ 2 . On the other hand, we have p χpτ q " ż IR 2 1 `ps ´τ q 2 sinc 2 ´s 2 ¯ds.