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ABSTRACT

This article presents a photoreceptor detection algorithm ap-
plied to in-vivo Adaptive Optics (AO) images of the retina
obtained from an advanced ophthalmic diagnosis device. Our
algorithm is based on a recursive construction of thresholded
connected components when the seeds of the recursions are
the regional maxima of the deconvoluted image. This algo-
rithm is validated on a gold standard dataset obtained thanks
to manual cones detections made by ophtalmologist physi-
cians.

Index Terms— Adaptive Optics, Photoreceptor detec-
tion, in vivo diagnosis, retina imaging

1. INTRODUCTION

Adaptive Optics (AO) is a new ophtalmic imaging system in-
herited from spectacular technological advances in astronomy
[1]. An AO system is made up of a deformable mirror which
compensates (it can be viewed as some kind of physical de-
convolution) for the image defects due to atmospheric dis-
tortions. The imaging of the retina with an AO system [2]
is particularly interesting because the light distortions due to
the iris, pupil and lens system of the eye are similar to the
distortions due to atmosphere.

The AO imaging modality technically outperforms any
other up-to-date retinal imaging modality. It allows the imag-
ing of the living human retina at the microscopic scale. For
instance, the rtx/ AO system has a resolution of 0.8um per
pixel, while usual fundus cameras reach resolutions from 6 to
10 pm per pixel. This feature is illustrated in Figure 1.
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Fig. 1. Usual eye fundus image vs. Adaptive Optics image of
the retina on a pathological eye

This new imaging modality is of prime importance for a
clinical use in routine. At a microscopic level, the retina is a
stack of several neuronal layers whose aim is to transform the
incident light in an electrical signal that will be transmitted to
the brain [3]. Within this process, the photosensitive neurons
are the photoreceptor cells (rods and cones). Many inherited
and acquired diseases or disorders provoke degeneration of
the retina [4, 5], a progressive loss of the cones cells. It leads
to severe visual handicap. In some diseases such as retinitis
pigmentosa, visual loss can occur very early in life. In [6], the
authors illustrate the diagnosis power of retinal AO images on
degenerative cones distrophy by comparing visual diagnosis
procedures from these AO images (like cone counting, man-
ual delineation of degenerated area,...) with well managed
usual diagnosis procedures performed with other modalities.

Automated retinal AO image analysis methods for as-
sisting in vivo diagnosis and follow up of early degenerative
cones dystrophy are essential for physicians. In this paper,
we propose an automatic photoreceptor detection algorithm
on AO images. From this cornerstone procedure of automatic



cone detection on AO images, we can derive many clinically
useful features such as photoreceptor density maps or extract
other statistics.

The algorithm that we present in this article is an exten-
sion of an algorithm already proposed by the authors [7]. This
algorithm is based on a recursive construction of thresholded
connected components whose seeds are the regional maxima
of the image. The stopping rules of this recursive construc-
tion are deduced from geometrical arguments: preference is
given to brighter spots for closed merged spots which are thus
considered as noisy spots. In this present article we propose
to use an additional preliminary deconvolution step. The de-
convolution of AO images has been proved to be particularly
useful [8]: it considerably facilitates the distinction between
background and information (cones) on retinal AO images.

Rare other automatic photoreceptors detection algorithms
have already been proposed in the literature [9, 10]. Both are
based on the detection of regional maxima; in [9], the image is
pre-filtered and post morphologically processed and in [10],
the regional maxima are processed in a decreasing intensity
order to discriminate the dimest ones. In this present article,
we propose a validation of our algorithm by comparing it with
the ones presented in [9, 10].

In Section 2, we present our photoreceptor detection algo-
rithm. Then, Section 3 details the performed experiments to
validate our tool, before concluding.

2. PHOTORECEPTOR DETECTION ALGORITHM

2.1. Previous version [7]

In the used AO images, the photoreceptors that we aim at
detecting are bright spots, i.e. pixels with high grey levels.
Hence a first natural step of our algorithm is a simple regional
maxima detection. Afterwards, a maximum area of a regional
maximum is defined up to a tolerance parameter, denoted by
T'. This tolerance parameter finds its roots in the component
tree decomposition of an image [11]. In this scope, an image
is seen as a decomposition of a-level connected components.
The level range corresponding to the greyscale range of the
image, an image is decomposed in a stack of connected com-
ponents. The tolerance parameter 7' that we are using in our
algorithm tunes the height of the top part of this stack that we
consider as a maximum area.

Note that the proposed algorithm is a truncated adaptation
of the watershed by immersion algorithm [12] when applied
to the inverted image. In the inverted image, the origins of
the basins used in the watershed by immersion are the re-
gional maxima of the original image. In our case, we are
not interested in reaching a complete separation of the basins
(the maxima) but only in elicitating these basins until a given
height, i.e. the maximum areas up to a tolerance parameter.

2.2. What’s new ?

Even for adaptive optics which is physically corrected by
means of deformable mirrors, an acquisition necessarily
transforms the real information into an altered one: a mea-
surement. The relationship between the physical reality and
its measurement is supposed to be linear, which leads to
model any acquisition by a convolution operator. Deconvo-
lution of a signal is, in some sense, reversing the acquisition
process to reach as close as possible, the physical reality.
With AO retinal images, the results of the deconvolution are
particularly interesting. In [8], the authors propose to learn
the parameters of the deconvolution kernel, i.e. the point

spread function (PSF) of the sensor model, from the entire
image: this is called blind deconvolution. Their results are
impressive but their algorithm is too much time consuming in
a clinical context. In our case, we propose a simpler approach,
less computationally demanding: we use a simple Gaussian
convolution model of the PSF with a unique parameter: o, its
standard deviation.

Fig. 2. Deconvolution illustration

Figure 2 illustrates the interest of this technique. The right
column shows (for illustration) the obtained deconvoluted im-
ages from the left column images. On the left column we can
also observe the results of our method for the following pa-
rameters: o = 5; T = 10 for the firstrow and ¢ = 6; T = 25
for the second row. The results seem to be as good as with
the blind deconvolution method. However, we add a new pa-
rameter to our method, which makes the physician task more
complex.

2.3. Algorithm implementation: an interactive tool for
the physicians

This algorithm is very rapid: after a complete cover of the
image for finding the regional maxima, the recursive cover-
age is only applied to these extracted spots which highly di-
minishes the computational cost. When java-implemented as
an imageJ plugin (which is not the most rapid computational
framework) the algorithm result is quite instantly displayable.
This remark is very important because it allows us to pro-
vide an interactive tool to the final user, the physician. This



non algorithmic part of our work is greatly appreciated by the
physicians who can thus easily interact with the algorithm and
adapt its parameters to his visual expertise in an intuitive way.
This feature highly contributes to the fact that, even if still in
development, this tool is already in use in a clinical context.

Another way to interact on the photoreceptors detection is
to incorporate in our imagelJ plugin the possibility to add non
automatically detected cones and to remove wrongly detected
cones by the hand.

3. VALIDATION

3.1. Material and Methods

The AO images used along this validation procedure are
obtained with two prototypic systems: INOVEO and rtxl]
manufactured by Imagine Eyes, Orsay, France, http:
//www.imagine-eyes.com/content/view/122/
124. Those systems are currently operational in clinical
and research settings at the Clinical Investigation Cen-
ter 503 of the XV-XX hospital. According to the used
system (INOVEO and rtxl), in each image, for an axial
length of 24.7mm, one pixel corresponds respectively to a
1.2pum x 1.2um and 0.8um x 0.8um spot on the retina.

The gold standard dataset is constructed from 52 patch
images of 13 bigger AO images. Thus, for each of the 13 im-
ages, 4 patch images were extracted. Among the 4 images of
one bigger 2 were exactly the same patch images. Those 52
images were presented in a random order to two ophtalmo-
gist physicians of XV-XX hospital (Kiyoko Nakashima and
Michel Paques). They marked the cones on these images
thanks to a developped imageJ plugin which enabled us to
recover the supposedly true cone positions. This procedure
enables us to sort the images by quality: we consider that the
less important is the difference (computed in terms of sensi-
bility and false positive rate) between the manual detections
obtained with the same patch images presented at two dif-
ferent times, the better is the quality of the global including
image. Table 1 presents the images by increasing quality from
left to right.

10 25 2 17 42 20 32 28 21 23 24 27 51
3 5 16 1 18 13 52 34 26 37 4 31 8
48 44 14 9 33 46 29 11 15 30 47 43 6
49 7 40 35 22 45 36 41 39 12 19 38 50

Table 1. Increasing quality image ordering

Not only we proposed to compare our algorithm with
this gold standard but we also proposed to compare it with
two other existing algorithms. In [9], the authors proposed
a multi-step algorithm. First, they propose to work with an
above-threshold version of the image in order to eliminate
the dim spots. Afterwards, the regional maxima are detected
from a low-pass filtered version of the thresholded image in

order to eliminate the noise. Finally, a morphological dilation
is used to merge close enough detected spots. The structuring
element is chosen according to the minimal cone spacing. In
[10], the same kind of procedure is presented but the regional
maxima detection is performed by decreasing greylevel re-
gions in order to favor the brightest detected spots and avoid
the threshold step of the method in [9].

In order to compare our method to [9, 10], we used
Matlab implementations of these tools. The personal web-
page of Kaccie Yiang Li http://vision.berkeley.
edu/roordalab/Kaccie/KaccieResearch.htm
provides the implementation of their method [9], while Jan
Kopec, from the company Imagine Eyes provided the imple-
mentation of the method of Xue et al. [10].

Our comparison were based on (i) the sensibility (Se) in-
dex which is the percentage of identifed cones by the algo-
rithm which are well inside the gold standard dataset (Se €
[0,1]) and (ii) the false positive rate (FPR) index which is
the ratio of the number of identifed cones by the algorithm
which are not inside the gold standard dataset (number of
false positives) over the number of cones in the gold standard
(FPR > 0 and unbounded).

3.2. Results
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Fig. 3. Maximum of Se-FPR for each image and each com-
pared method

First, we present a graph showing, for each studied
method (Xue et al. [10] in blue, Li ef al. [9], Loquin et
al. [7] in black and our method in green) the maximum of
the difference between Se and FPR for the set of possible
parameterization for each method. The number of tested
parameters were of 3052 for Xue, 1216 for Li, 7680 (30 stan-
dard deviations and 256 tolerances) for the method presented
in this article and 256 for Loquin 2011. We took the maxi-
mum of Se-FPR since the detection is better for higher value
of Se-FPR. This remark leads to a simple interpretation of
this graph: globally (appart for images 6 and 18) our method
is better than the ones proposed in [9, 10]. We can observe
a striking improvement of the detection with our algorithm
on the bad quality images. Indeed, for patch images 3, 5, 7,



10, 48 and 49 which are all belonging to two worst images
(cf. Table 1), Figure 3 shows that our method particularly
outperforms the other ones.

Second, we present the ROC (Receiver Operating Char-
acteristic) cloud and its associated logarithmic fit curve. The
ROC curve has FPR in abscissa and Se in ordinate. Such
curve is supposed to measure the ability of a decision making
support to diagnose. The bigger the area under the curve the
more discriminative is the proposed tool. It can be noticed
that, according to this ROC analysis, our algorithm is more
able to detect cones than the compared ones [9, 10].
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Fig. 4. ROC cloud and fitted (logrithmic) ROC curve for each
compared methods

From Figure 4, but in contradiction with Figure 3, we
could conclude that the approach without deconvolution (the
black curve) is more accurate than the method presented in
this article (the black curve). This is due to the fact that the
number of tested parameterizations with deconvolution is 30
times bigger than without deconvolution. Therefore, the num-
ber of aberrant parameters, thus leading to worst results with
deconvolution. However this comparison bias due to the num-
ber of tested parameters can not be advocated for comparing
the Li and Xue approach with the present one. Indeed, the
number of tested parameters is higher in our approach than
any of the other tested approaches.

4. CONCLUSION

In this paper, we proposed a new photoreceptor detection al-
gorithm applied to in-vivo AO images of the retina. This al-
gorithm is an extension of our work in [7] where we add a
preliminary deconvolution step. Our method is implemented
as an imageJ plugin already in use in a clinical setting at the
XV-XX hospital. This use shows its early clinical value be-
fore any objective evaluation. However, in this paper, we also
present a validation procedure of this algorithm which seems
to show that our method is more efficient than the available
rare litterature in that field especially for poor quality images.
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