
HAL Id: hal-01959766
https://hal.science/hal-01959766v2

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formally and Practically Verifying Flow Integrity
Properties in Industrial Systems

Jannik Dreier, Maxime Puys, Marie-Laure Potet, Pascal Lafourcade,
Jean-Louis Roch

To cite this version:
Jannik Dreier, Maxime Puys, Marie-Laure Potet, Pascal Lafourcade, Jean-Louis Roch. Formally and
Practically Verifying Flow Integrity Properties in Industrial Systems. Computers & Security, 2018,
86, pp.453-470. �10.1016/j.cose.2018.09.018�. �hal-01959766v2�

https://hal.science/hal-01959766v2
https://hal.archives-ouvertes.fr

Formally and Practically Verifying Flow Integrity
Properties in Industrial SystemsI

Jannik Dreiera,∗, Maxime Puysb,∗∗, Marie-Laure Potetc, Pascal Lafourcaded, Jean-Louis
Rochc

aUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
bUniversité Grenoble Alpes, CEA, LETI, DSYS, F-38000 Grenoble, France.

cUniversité Grenoble Alpes, CNRS, Verimag, UMR 5104, 700 av. centrale, IMAG/CS-40700, 38058 Grenoble
Cedex 9, France

dUniversité Clermont Auvergne, LIMOS, UMR 6158, Campus Universitaire des Cézeaux, BP 86, 63172
Aubière Cedex, France.

Abstract

Industrial systems are nowadays regularly the target of cyberattacks, the most famous
being Stuxnet. At the same time such systems are increasingly interconnected with
other systems and insecure media such as Internet. In contrast to other IT systems,
industrial systems often do not only require classical properties like data confidentiality
or authentication of the communication, but have special needs due to their interaction
with physical world. For example, the reordering or deletion of some commands sent to
a machine can cause the system to enter an unsafe state with potentially catastrophic
effects. To prevent such attacks, the integrity of the message flow is necessary. We
provide a formal definition of Flow Integrity. We apply our definitions to two well-
known industrial protocols: OPC-UA and MODBUS. Using TAMARIN, a cryptographic
protocol verification tool, we confirm that most of the secure modes of these protocols
ensure Flow Integrity given a resilient network. However, we also identify weaknesses
in a supposedly secure version of MODBUS, as well as subtleties in the handling of
sequence numbers in OPC-UA. We also practically examine an OPC-UA stack named
python-opcua, where some of the subtleties are not handled correctly.

Keywords: Security protocols, industrial systems, SCADA, symbolic model,
automated verification, flow integrity

IThis work has been partially funded by the CNRS PEPS SISC ASSI 2016, the French National Research
Agency in the framework of the Investissements d’Avenir program (ANR-15-IDEX-02), and received the
support of the “Digital Trust” Chair from the University of Auvergne Foundation, the Indo-French Centre
for the Promotion of Advanced Research (IFCPAR) and the Center Franco-Indien Pour La Promotion De La
Recherche Avancée (CEFIPRA) through the project DST/CNRS 2015-03 under DST-INRIA-CNRS Targeted
Programme.
∗Corresponding author. Address: LORIA, Campus Scientifique, BP 239, 54606 Vandœuvre-lès-Nancy

Cedex, France
∗∗This work was realized while author was affiliated to the Verimag laboratory.

Email addresses: Jannik.Dreier@loria.fr (Jannik Dreier), Maxime.Puys@cea.fr (Maxime Puys),
Marie-Laure.Potet@univ-grenoble-alpes.fr (Marie-Laure Potet), Pascal.Lafourcade@uca.fr
(Pascal Lafourcade), Jean-Louis.Roch@univ-grenoble-alpes.fr (Jean-Louis Roch)

Preprint submitted to Elsevier September 30, 2019

1. Introduction

Industrial systems are often used to monitor and control a physical process such as
energy production and distribution, water cleaning or transport systems. They are often
simply called Supervisory Control And Data Acquisition (SCADA) systems. Due to their
interaction with the real world, the safety of these systems is critical and any incident
can potentially harm humans and the environment. Since the Stuxnet worm in 2010 [22],
such systems increasingly face cyberattacks caused by various intruders, including
terrorists or enemy governments. As the frequency of such attacks is increasing, the
security of SCADA systems becomes a priority for governmental agencies, e.g. [32] for
the NIST or [1] for the ANSSI.

While security objectives for IT systems are usually confidentiality, integrity and
availability (CIA), industrial systems put a particular emphasis on integrity and availabil-
ity. One property required by such systems is that all sent commands are received in the
same order by the industrial machine, which is part of what we call Flow Integrity. This
property is crucial in industrial systems since most of commands require the system
to be in a specific state when they are launched. For instance, if an electric device
requires to be unpowered to be manipulated, the shutdown command must arrive before
any manipulation command. Inverting them could cause the device, along with its
environment, to be damaged.

Automated protocol verification has been performed during the past twenty years and
multiple efficient tools such as ProVerif [5], AVISPA [2], Scyther [9] or TAMARIN [24]
have been developed. However, they focused on cryptographic protocols for Internet
such as TLS [10] or special applications such as electronic voting [20] or auctions [12].
The Flow Integrity property differs from the properties usually verified in these classical
protocols. For example, we want to ensure that messages are delivered (a liveness
property), which requires a resilient channel. As Internet is not resilient, resilient chan-
nels are difficult to model in most tools that were designed to verify Internet protocols.
Moreover, the order of messages is ensured in most Internet protocols as the messages
have different formats, so reordering the messages simply aborts the protocol. In the
context of industrial systems most of the protocols are used to transport commands,
meaning that the messages always have the same format, rendering the ordering cru-
cial. In order to ensure the correct ordering of the messages, most of the transport
protocols including industrial ones use timestamps, counters and sequence numbers.
These solutions are notoriously difficult to model and verify using actual tools due to
some theoretical limitations of the tools that often lead to non-termination. In order
to face these limitations, we use the verification tool TAMARIN [24], that allows us to
model counters and resilient channels that can build on previous work concerning the
verification of liveness properties [3].

Contributions. To the best of our knowledge, the Flow Integrity property has not yet
been formalized in the context of industrial protocols. Hence, we have two main
contributions:

2

• We provide a formal definition of Flow Integrity in industrial control systems;
a property that ensures that all messages are received without alteration, and in
the same order as they were sent. We also define weaker properties, including
Non-injective and Injective Message Authenticity, which ignore the ordering of
messages but ensure that all received messages are unmodified (and cannot be
duplicated in the injective case). We also define the corresponding Non-injective
and Injective Message Delivery properties, making sure that all messages are
delivered (and in the injective case the correct number of times).

• We study Flow Integrity for two real industrial protocols: MODBUS and OPC-
UA. Using TAMARIN, we apply our definitions to multiple versions of these
protocols and discover a weakness in a version of MODBUS. We also identify
problems in OPC-UA if sequence number overflows appear.

• We also perform practical experiments to validate our results on a real OPC-UA
implementation. We were able to show that we can reproduce the traces found by
TAMARIN and achieve an insecure state of an example industrial process using
sequence number overflows.

Outline. In Section 2, we discuss related work. Then in Section 3, we explain our
definitions of the different properties, and in Section 4 how we modeled these properties
with the TAMARIN prover. In Section 5, we apply the verification of our property to
the MODBUS and OPC-UA industrial protocols. Then, in Section 6, we show that our
verification results can be experimentally confirmed. Finally, we conclude in Section 7.

2. Related Work

The notion of integrity can vary a lot depending on the context. A generic defini-
tion could state that integrity is the maintenance and assurance of the accuracy and
consistency of some data over its life-cycle. For instance, this notion has been applied
in 1987, by Clark and Wilson in [7]. They proposed an access control model able to
specify and analyze integrity policies. In such model, data alteration is restricted to
those authorized. In 1998 in a different field, Heintze et al. [18] analyzed the consistency
of the values of variables during a program execution. Within their framework, they
are able to ensure properties relying on integrity such as non-interference (i.e. the
modification of a variable should not affect another). Again in a different field, in 2005,
Umezawa et al. [33] proposed a methodology to ensure that the description of hardware
components (such as VHDL code) respects some temporal logic properties such as
invalid states for state machines or invalid values for counters. Their approach relies
both on model-checking and simulation.

In this paper, we studied the integrity of messages exchanged over a potentially
insecure network. Traditionally, message integrity is used to detect accidental changes
using error detection codes such as Cyclic Redundancy Checks (CRC). However, such
detection codes do not protect against a malicious intruder since he can easily recalculate
CRCs of the messages he changes. Similarly the TCP protocol protects against an
accidental reordering of messages, but not against a malicious intruder that also modifies
the sequence numbers used for this purpose. To guarantee message integrity in presence

3

of malicious intruders, cryptographic primitives are needed, such as digital signatures or
Message Authentication Codes (MAC).

Early works concerning the security of industrial protocols focused on discussing
the security properties supported or not by protocols. In 2004, Clarke et al. [8] studied
the security of DNP3 (Distributed Network Protocol) and ICCP (Inter-Control Center
Communications Protocol). In 2005, Dzung et al. [15] surveyed the security in SCADA
systems including informal analysis on the security properties offered by various indus-
trial protocols: OPC (Open Platform Communications), MMS (Manufacturing Message
Specification), IEC 61850, ICCP and EtherNet/IP. In 2006, authors of the technical docu-
mentation of OPC-UA (OPC Unified Architecture) detailed the security measures of the
protocol. In 2015, Wanying et al. [34] summarized the security offered by MODBUS,
DNP3 and OPC-UA. None of these works give any formal proof of security properties
on the protocols.

In more recent works, formal analyses started to appear for industrial protocols.
In [27] the authors proposed a formal verification of DNP3 using OFMC [4, Open-
Source Fixed-Point Model-Checker] and SPEAR II [30, Security Protocol Engineering
and Analysis Resource]. In [14], they detailed formal specifications of MODBUS
developed using PVS, a generic theorem prover in order to help proving the consistency
of an implementation with the standards. In [16], the authors proposed a secure version
of MODBUS relying on well-known cryptographic primitives such as RSA and SHA2.
In [17], they designed another secure version of the MODBUS protocol using hash-
based message authentication codes and built on SCTP (Stream Transmission Control
Protocol). In [6], authors provided a Deep-Packet Inspection tool to verify syntactic
correctness of DNP3 packets using the Hammer tool [28]. In [29], the authors formally
verified secrecy and authentication properties of OPC-UA handshake protocols using
the ProVerif tool [5]. However, none of these works formally define or verify Flow
Integrity.

In general – outside industrial systems – formal verification of authentication prop-
erties [23] is common. As shown by [21], this property is supported by many tools such
as AVISPA [2], ProVerif [5], Scyther [9] and TAMARIN [31]. However, our definition
of integrity goes beyond the usual authentication properties, as we also consider the or-
dering of the messages and ensure their delivery (a liveness property), which is difficult
to express and verify in most of these tools. We chose TAMARIN to build on previous
work [3] concerning the modeling of resilient channels and the verification of liveness
properties.

This paper is an extended version of a paper initially presented at SECRYPT’17 [13].
The previous version does not contain the practical experiments to validate our theoreti-
cal results.

3. Defining Authenticity, Delivery and Integrity

3.1. Notations

In our definitions, we talk about sequences of messages. Let S∗ denote the set
of sequences over a set S. For a sequence s, we write si for its i-th element, |s| for
its length, and idx(s) = {1, . . . , |s|} for the set of its indices. We use [] to denote the

4

empty sequence, [s1, . . . ,sk] to denote the sequence s of length k, and s · s′ to denote the
concatenation of the sequences s and s′. We say that the sequence [s1 . . .sn] is a subchain
of the sequence [r1 . . .rm] if there exist sequences1 z0, . . . ,zn such that:

z0 · [s1] · z1 · [s2] · . . . · [sk−1] · zn−1 · [sn] · zn = [r1 . . .rm]

We denote by set(S) the unordered set that contains only once each element of the
sequence S, and by multiset(S) the unordered multiset that contains the elements of S.
To distinguish operations on multisets from operations on sets we use the superscript]:
for example ∪ denotes set union, whereas ∪] denotes multiset union. We use regular set
notation {·} for sets and multisets whenever it is clear from the context whether it is a
set or a multiset.

In our model, the messages consist of terms. Let ΣFun be a finite signature of
functions of the set Fun and V be a set of variables, TΣFun(V) denotes the set of terms
built using functions from ΣFun and variables from V . Unlike classical cryptographic
protocols, which are a finite sequences of messages, we study transport protocols that
aim at transporting commands or data from a party to another, resulting in potentially
infinite sequences of messages. We call the transported commands the payload of the
message, in contrast to, e.g., protocol headers and other additional values added by the
protocol. To be able to identify the payload inside a larger protocol message, we use
types. We assume that this part of the message is of type D for data, and the rest of the
message has other types (e.g. H for hash or S for signatures).

3.2. Definitions & Intruder Model
We suppose a set of agents that exchange messages over a network which can be

(partly2) controlled by a Dolev-Yao intruder [11]. A classical Dolev-Yao intruder has
access to all messages on the public network and can modify, inject, delete or delay
them. He is however limited by the cryptographic primitives used: he can only decrypt
a ciphertext or forge a signature if he knows the corresponding keys. This is known as
the perfect cryptography assumption.

We define Flow Integrity for the flow of messages between two agents A and B. More
precisely, we define the integrity of message payload, i.e., we only aim at protecting
the contents of the message, as this is what is required by the applications in industrial
systems. This is modeled by syntactic subterms of type D (for data) in the messages.
We restrict our integrity definitions to the payload only as we can have false attacks
otherwise. For example, consider a protocol that sends each message together with a
signature on the message, and a random value. The message cannot be modified due to
the signature, but the random value is unprotected. If we considered the random value in
our definitions the protocol would not ensure any kind of integrity, although the payload
actually cannot be modified.

Definition 1. Let SA,B,D be the sequence that contains the subterms of type D of all
messages sent by agent A to agent B, and the sequence RA,B,D contains the subterms of
type D of all messages received by agent B from A.

1Note that zi can be the empty sequence.
2The degree of control by the intruder will depend on the type of network and the channel hypotheses.

5

For example, given a protocol that sends the message m of type D together with its
hash h(m) of type H, SA,B,D only contains the messages, and not the hashes. Since A
might not only send messages to B but also to another agent C, and B might receive
messages from A and E, we define the ordered sequence of messages that A sends to B,
and the ordered sequence of messages that B received from A.

Note that we understand the notions of origin and destination from the agents
perspective, i.e., a message m is in RA,B,D if B believes that it came from A. Similarly, a
message m that A wanted to send to B, but was received by C, is still in SA,B,D.

We now define several notions of integrity, authenticity and delivery. We have three
levels of integrity, authenticity and delivery, where at each level integrity is defined as
the conjunction of the corresponding authenticity and delivery properties. Intuitively, the
authenticity properties ensure that messages have not been altered during transmission
between sender and receiver, and the delivery properties ensure that messages are not
lost.

The first notion of authenticity requires that all received messages were sent by the
sender to the receiver, but messages can be lost or duplicated.

Property 1. A protocol ensures Non-Injective Message Authenticity (NIMA) between
sender A and receiver B for data D if set(RA,B,D)⊆ set(SA,B,D).

Note that this also ensures that all received messages are unmodified as each received
message equals a sent message, but not that they are actually delivered as we only have
a subset. For this, we define the corresponding delivery property.

Property 2. A protocol ensures Non-Injective Message Delivery (NIMD) between
sender A and receiver B for data D if set(RA,B,D)⊇ set(SA,B,D).

Note that message delivery is difficult to achieve using an insecure asynchronous
network such as Internet, but industrial systems often use special (real-time) networks
with stronger channel guarantees such as Parallel Redundancy Protocol (PRP) and High-
availability Seamless Redundancy (HSR) [19]. Taking the above properties together, we
obtain Non-Injective Message Integrity.

Property 3. A protocol ensures Non-Injective Message Integrity (NIMI) between sender
A and receiver B for data D if set(RA,B,D) = set(SA,B,D).

To ensure that messages cannot be duplicated, we have Injective Message Authen-
ticity and Injective Message Delivery.

Property 4. A protocol ensures Injective Message Authenticity (IMA) between sender
A and receiver B for data D if multiset(RA,B,D)⊆multiset(SA,B,D).

Property 5. A protocol ensures Injective Message Delivery (IMD) between sender A
and receiver B for data D if multiset(RA,B,D)⊇multiset(SA,B,D).

Both properties can be verified at the same time by checking Injective Message
Integrity.

Property 6. A protocol ensures Injective Message Integrity (IMI) between sender A
and receiver B for data D if multiset(RA,B,D) = multiset(SA,B,D).

6

Again it is easy to see that a protocol ensuring Injective Message Integrity also
ensures Injective Message Delivery and Injective Message Authenticity, and that vice
versa a protocol ensuring Injective Message Delivery and Injective Message Authenticity
also ensures Injective Message Integrity.

Injective Message Integrity ensures that all messages are delivered, and not dupli-
cated, but they can still be reordered. This is prevented by Flow Authenticity and Flow
Delivery.

Property 7. A protocol ensures Flow Authenticity (FA) between sender A and receiver
B for data D if RA,B,D is a subchain of SA,B,D.

Property 8. A protocol ensures Flow Delivery (FD) between sender A and receiver B
for data D if SA,B,D is a subchain of RA,B,D.

Both properties can be verified at the same time by checking Flow Integrity, which
corresponds to the property one would like to achieve in real systems.

Property 9. A protocol ensures Flow Integrity (FI) between sender A and receiver B
for data D if SA,B,D = RA,B,D.

Again it is easy to see that a protocol ensuring Flow Integrity also ensures Flow
Delivery and Flow Authenticity, and that vice versa a protocol ensuring Flow Delivery
and Flow Authenticity also ensures Flow Integrity.

Note that a protocol ensuring Flow Integrity also ensures Injective Message Integrity,
and that a protocol ensuring Injective Message Integrity also ensures Non-Injective
Message Integrity (and analogously for the authenticity and delivery properties). This is
summed up in Figure 1.

FA)(FD FI∧

∧

∧

IMA)(IMD IMI

NIMA)(NIMD NIMI

Figure 1: Relationship of our notions: A⇒ B if a protocol ensuring A also ensures B.

Moreover, if a protocol ensures either Flow Authenticity and Injective Message
Delivery, or Flow Delivery and Injective Message Authenticity, this is sufficient to
ensure Flow Integrity, as the following Theorem 1 shows.

Theorem 1. A protocol that ensures Flow Delivery and Injective Message Authenticity
also ensures Flow Integrity (FD∧ IMA⇒ FI). Similarly, a protocol that ensures Flow
Authenticity and Injective Message Delivery, also ensures Flow Integrity (FA∧ IMD⇒
FI).

Proof. Let [s1, . . . ,sn] = SA,B,D and [r1, . . . ,rm] = RA,B,D. Suppose that a protocol en-
sures Flow Delivery and Injective Message Authenticity, i.e. we have that SA,B,D
is a subchain of RA,B,D, and multiset(RA,B,D) ⊆ multiset(SA,B,D). Moreover, as any

7

protocol ensuring Flow Delivery also ensures Injective Message Delivery, we have
multiset(RA,B,D)⊇ multiset(SA,B,D), and thus multiset(RA,B,D) = multiset(SA,B,D).

This means that n = m, i.e. both sequences have the same length. By the definition
of subchains we have that there exist sequences z0, . . . ,zn such that z0 · [s1] · z1 · . . . · zn−1 ·
[sn] · zn = [r1 . . .rm]. As n = m, we have that [s1, . . . ,sn] = [r1, . . . ,rn], which is what we
wanted to show.

The second proof is similar.

4. The TAMARIN prover

We now recall the syntax and semantics of labeled multiset rewriting rules, which
constitute the input language of the TAMARIN prover [31]. We use the TAMARIN prover
since it allows us to model resilient channels and verify delivery properties.

4.1. Introducing the TAMARIN prover

In TAMARIN, equations are used to specify properties of functions, where an
equation over the signature ΣFun is an unordered pair of terms s, t ∈ TΣFun(V), written
s' t. An equational presentation is a pair E = (ΣFun;E) of a signature ΣFun and a set of
equations E. The corresponding equational theory =E is the smallest ΣFun-congruence
containing all instances of the equations in E. We often leave the signature ΣFun implicit
and identify the equations E with the equational presentation E . Similarly, we use =E
for the equational theory =E . We say that two terms s and t are equal modulo E iff
s =E t. We use the subscript E to denote the usual operations on sets, sequences, and
multisets where equality is modulo E instead of syntactic equality. For example, we
write ∈E for set membership modulo E.

Example 1. To model MACs, let ΣFun be the signature consisting of the functions
mac(·, ·) and veri f y(·, ·, ·) together with the equation

veri f y(mac(x,k),x,k)' true.

In TAMARIN any system is modeled with multiset rewrite rules. These rules ma-
nipulate multisets of facts which model the current state of the system, with terms as
arguments. Formally, given a signature ΣFun and a (disjoint) set of fact symbols ΣFact,
we define Σ = ΣFun ∪ΣFact, and we define the set of facts as F = {F(t1, . . . , tn)|ti ∈
TΣFun ,F ∈ ΣFact of arity n}. We assume that ΣFact is partitioned into linear and persis-
tent fact symbols; a fact F(t1, . . . , tn) is called linear if its function symbol F is linear,
and persistent if F is persistent. Linear facts can only be consumed once, whereas
persistent facts can be consumed as often as needed. In practice, messages and protocol
state facts are usually modeled as linear facts, whereas the intruder knowledge or, e.g.
long term keys are stored using persistent facts. Facts are said to be ground if they only
contain ground terms. We denote by F] the set of finite multisets built using facts from
F , and by G] the set of multisets of ground facts.

The system’s possible state transitions are modeled by labeled multiset rewrite
rules. A labeled multiset rewrite rule is a tuple (id, l,a,r), written id : l−−[a]→r,
where l,a,r ∈ F] and id ∈ I is a unique identifier. Given a rule ri = id : l−−[a]→r,

8

name(ri) = id denotes its name, prems(ri) = l its premises, acts(ri) = a its actions,
and concs(ri) = r its conclusions. Finally, rules are said to be ground if they only
contain ground facts, and ginsts(R) denotes the ground instances of a set R of multiset
rewrite rules, lfacts(l) is the multiset of all linear facts in l, and pfacts(l) is the set of all
persistent facts in l. We use mset(s) to highlight that s is a multiset, and we use set(s)
for the interpretation of s as a set, even if it is a multiset.

The semantics of a set of multiset rewrite rules P are given by a labeled transition
relation→P ⊆ G]×G]×G], defined by the transition rule:

ri = id : l−−[a]→r ∈E ginsts(P) lfacts(l)⊆] S pfacts(l)⊆ S

S
set(a)−−−→P ((S\] lfacts(l))∪] mset(r))

Note that the initial state of a labeled transition system derived from multiset rewrite
rules is the empty set of facts /0. Each transition transforms a multiset of facts S into a
new multiset of facts, according to the rewrite rule used. Moreover each transition is
labeled by the actions a of the rule. These labels are used to specify security properties
as explained below. Since we perform multiset rewriting modulo E, we use ∈E for the
rule instance. As linear facts are consumed upon rewriting, we use multiset inclusion,
written ⊆], to check that all facts in lfacts(l) occur sufficiently often in S. For persistent
facts, we only check that each fact in pfacts(l) occurs in S. To obtain the successor
state, we remove the consumed linear facts and add the generated facts. The actions
associated to the transition contain the set of actions of the rule instance, the identifier
of the rule, and the newly introduced variables.

Example 2. The following multiset rewrite rules describe a simple protocol that sends
messages together with a hash of the message. The first rule describes the agent A: he
uses the key shared with B to send a fresh message m to B. The second rule describes
B: he receives a message together with its hash. Note that the second rule can only be
triggered if the input matches the premise, i.e., if the hash is correctly computed.

Send_Message_A :
[Fr(m)]−−[Sent(m)]→[Out((m,h(m)))],

Receive_Message_B :
[In((m,h(m)))]−−[Received(m)]→[]

TAMARIN implements a Dolev-Yao intruder given by the message deduction rules
MD below. The intruder can receive any message sent on the network, send out any term
he knows, create fresh values or public values, and apply functions from the function
signature. This message deduction is considered modulo the equational theory.

MD = { Out(x)−−[]→K(x), K(x)−−[K(x)]→In(x),

Fr(x : fr)−−[]→K(x : fr), []−−[]→K(x : pub) }
∪{ K(x1), . . . ,K(xn)−−[]→K(f (x1, . . . ,xn))

| f ∈ ΣFun with arity n }

Note that all messages on the public network transit via the intruder, whose rules make
the connection between the Out and In facts in the protocol rules.

9

Moreover, in TAMARIN the Fr facts have a special semantics. These facts can only
be generated using a special rule FRESH : []−−[Fr(x)]→[Fr(x)], and each instance of the
rule generates a new fresh value, as ensured by the following definition of the possible
executions.

Definition 2 (Executions). Given a multiset rewriting system R we define its set of
executions as

execmsr(R) =
{

/0
A1−→R . . .

An−→RSn | ∀i, j ∈ Nn,a.

(Si+1 \# Si) = Fr(a)]∧

(S j+1 \# S j) = Fr(a)]⇒ i = j
}

Our security properties will be expressed as properties on the traces associated to
the executions. We define the set of traces as follows.

Definition 3 (Traces). The set of traces is defined as

tracesmsr(R) =
{
(A1, . . . ,An) | ∀ 0≤ i≤ n.

/0
A1=⇒R . . .

An=⇒R Sn ∈ execmsr(R)
}

where A
=⇒R is defined as /0−→ ∗R

A−→R
/0−→ ∗R for A 6= /0.

In TAMARIN, security properties are specified in an expressive two-sorted first-order
logic over the actions on the traces. In this logic, the sort time is used for time points, and
Vtime are the temporal variables. The other type msg for message is used for messages
and cryptographic terms.

Definition 4 (Trace formulas). A trace atom is either false ⊥, a term equality t1 ≈ t2, a
timepoint ordering il j, a timepoint equality i .

= j, or an action F@i for a fact F ∈ F
and a timepoint i. A trace formula is a first-order formula over trace atoms.

These trace formulas are used to specify the desired security properties, and
TAMARIN can then be used to check whether all traces respect a property, or whether
there is an execution that violates a property.

Example 3. Consider the multiset rewrite rules given in Example 2. The following
property specifies that any message received by B was previously sent by A:

∀i : time,m : msg.

Received(m)@i⇒ (∃ j.Sent(m)@ j∧ jl i)

For the formal definition of the semantics, see [31].

10

4.2. Defining our Security Properties
Using trace formulas we can specify all our properties in TAMARIN as follows. To

make messages visible on the trace, we instrument the protocol rules in TAMARIN with
two actions, Sent(A,B,m) and Received(A,B,m), where the first one denotes that the
message m was sent by A to B, and Received(A,B,m) denotes that B received message
m from A. Note that here we only use the message payload, i.e. m is the part of the
protocol message that is of type D. Using these actions, we can define Non-Injective
Message Authenticity in TAMARIN as follows.

Property 10. A TAMARIN protocol model ensures Non-Injective Message Authenticity
(NIMA) between sender A and receiver B for data D if the following formula is satisfied
on all traces:

∀i : time,A,B,m : msg.Received(A,B,m)@i

⇒ (∃ j.Sent(A,B,m)@ j∧ jl i)

This definition captures precisely the definition from Section 3: we require that any
message m received by B from A, i.e. m ∈ set(RA,B,D), is included in set(SA,B,D), i.e.
was sent by A to B. We can define Non-Injective Message Delivery analogously by
interchanging the Sent and Received actions.

Property 11. A TAMARIN protocol model ensures Non-Injective Message Delivery
(NIMD) between sender A and receiver B for data D if the following formula is satisfied
on all traces:

∀i : time,A,B,m : msg.Sent(A,B,m)@i

⇒ (∃ j.Received(A,B,m)@ j∧ il j)

To verify Non-Injective Message Integrity we can simply check whether both Non-
Injective Message Authenticity and Non-Injective Message Delivery hold.

To ensure injectivity, we have to ensure that a message cannot be duplicated, which
we express as follows.

Property 12. A TAMARIN protocol model ensures Injective Message Authenticity
(IMA) between sender A and receiver B for data D if the following formula is satisfied
on all traces:

∀i :time,A,B,m : msg.Received(A,B,m)@i

⇒(∃ j.Sent(A,B,m)@ j∧ jl i∧¬(∃i2 : time,

A2,B2 : msg.Received(A2,B2,m)@i2∧¬(i2 .
= i)))

This ensures that any received message was previously sent, and that there is not
other time point where the same message is received, thus capturing the injectivity
requirement3. The corresponding delivery property definition is obtained easily by
interchanging the Sent and Received actions, as above.

3We use unique fresh messages on the sender side to prevent false attacks that would result from the same
message being sent twice and received twice.

11

Property 13. A TAMARIN protocol model ensures Injective Message Delivery (IMD)
between sender A and receiver B for data D if the following formula is satisfied on all
traces:

∀i :time,A,B,m : msg.Sent(A,B,m)@i

⇒(∃ j.Received(A,B,m)@ j∧ il j

∧¬(∃i2 : time,A2,B2 : msg.

Sent(A2,B2,m)@i2∧¬(i2 .
= i)))

To verify Injective Message Integrity, we simply check both properties at the same
time.

Flow Authenticity and Flow Delivery are expressed in TAMARIN as follows: we
first verify that Injective Message Authenticity or Injective Message Delivery hold,
respectively, and then check whether the order of messages is preserved.

Property 14. A TAMARIN protocol model ensures Flow Authenticity (FA) between
sender A and receiver B for data D if it ensures Injective Message Authenticity and if
the following formula is satisfied on all traces:

∀i, j : time,A,B,m,m2 : msg.

(Received(A,B,m)@i∧Received(A,B,m2)@ j∧ il j)

⇒ (∃k, l.Sent(A,B,m)@k∧Sent(A,B,m2)@l∧ kl l)

Property 15. A TAMARIN protocol model ensures Flow Delivery (FD) between sender
A and receiver B for data D if it ensures Injective Message Delivery and if the following
formula is satisfied on all traces:

∀i, j : time,A,B,m,m2 : msg.

(Sent(A,B,m)@i∧Sent(A,B,m2)@ j∧ il j)

⇒ (∃k, l.Received(A,B,m)@k

∧Received(A,B,m2)@l∧ kl l)

Again, to verify Flow Integrity, we simply check both properties at the same time.

4.3. Resilient Channels, Counters and Timestamps

As noted above, delivery properties typically require a resilient channel as an
unrestricted Dolev-Yao intruder can simply delete all messages and thus prevent any
message from arriving. We can model a resilient channel in TAMARIN by adding a
restriction that enforces that all messages are eventually delivered. A restriction is a
trace formula that TAMARIN will assume true, i.e., it will discard all traces violating the
restriction when trying to prove a property.

To model a resilient channel, we add a new action Ch_Sent(m) to all rules that send
out messages on the resilient channel, and an action Ch_Received(m) to all rules that
receive messages from the resilient channel. Note that here m is not only the payload of
type D, but the entire protocol message, and that we do not include senders or recipients.

12

Using these actions, we can express the fact that the channel is resilient using the
following formula:

∀i :time,m : msg.Ch_Sent(m)@i

⇒ (∃ j.Ch_Received(m)@ j∧ il j)

Note that this restriction on the intruder’s capabilities does not prevent him from delaying
messages for a certain time, reordering or duplicating them, or injecting new messages.
This means that even when assuming a resilient channel our security properties do not
hold vacuously.

We also use restrictions to model sequence numbers and timestamps. An intuitive
way of modeling sequence number in TAMARIN would be to use state facts to implement
a counter using a constant (e.g. zero) and a function (e.g. inc(·)). Consider a protocol
that simply sends out a message together with its counter:

Counter_Init : []−−[]→[Counter(zero)],
Send_Message : [Counter(n),Fr(m)]−−[]→

[Counter(inc(n)),Out((m,n))]

Such a model usually results in non-termination. When TAMARIN tries to prove a
property, it tries to find a counterexample using a backwards-search approach. More
precisely, it starts from the negation of the formula, and tries to construct a valid
execution by resolving the premises of all rule instances mentioned in the formula until
it either has found a counterexample or a contradiction.

When analyzing the above counter model, resolving the first premise of the Send_Message
rule results in two cases: either the premise is the conclusion of a Counter_Init rule,
or it results from a Send_Message rule itself. In that case we need to resolve the same
premise again, and enter a loop.

Our solution to avoid this problem is to not model the counter explicitly, but to let
the intruder choose the sequence number, while limiting his choice using a restriction.
Consider the rule

Send_Message :
[In(n),Fr(m)]−−[Seq_Sent(A,B,n)]→[Out((m,n))]

and the following restriction

∀i, j : time,A,B,seq1,seq2 : msg.

(Seq_Sent(A,B,seq1)@i∧Seq_Sent(A,B,seq2)@ j

∧ il j)⇒ (∃di f .seq2 ≈ seq1 +di f)

where “+” is an associative and commutative infix operator provided by TAMARIN.
Note that “+” does not have any other associated equations and thus does not exactly
correspond to an addition of numbers. In particular we do not have a neutral element 0,
so that seq1 +0 6= seq1. The restriction ensures that the term representing the sequence
number in any two subsequent messages increases by including a new term dif, but
without fixing dif precisely. Although this abstraction allows jumps (for example

13

increments by 2 or more) in the sequence number which would not occur in reality, it
fixes an order on the sequence numbers which is sufficient to prove the properties we
are interested in, as we will see in the case studies. Finally timestamps can be modeled
in the same way, which means that the intruder controls the timing, but cannot go back
in time.

5. Applications to SCADA Protocols

We verify the security of multiple variants of two industrial communication protocols
(namely MODBUS and OPC-UA) to check if they guarantee the properties we defined
in Section 3. The TAMARIN code is available online4, all verifications where completed
on a standard laptop within a few minutes. As mentioned earlier, all protocols presented
in this Section are transport protocols which carry a request from a client to a server
(the responses from the server to the client can be considered as another instance of the
same protocol) over a potentially asynchronous and insecure network. We consider an
unbounded number of sessions of the protocol, where each session is an arbitrary long
sequence of messages.

5.1. MODBUS

Description. MODBUS [25] is an industrial communication protocol designed by
Modicon (now Schneider Electric) in 1979. It has become one of the most popular
protocols in the domain and can be used either on serial bus or on TCP communication.
We focus on the TCP version of the protocol, which is nowadays more popular than
the serial version. In all MODBUS protocols, only the client is able to send requests
to which the server answers (meaning that the server does never send a message on its
own). In the TCP version, the message includes a sequence number in addition to the
TCP sequence number. This number is called a transaction identifier and only increased
by one at each client request. Some other terms are also part of the message, i.e. (i) a
protocol identifier only used for compatibility with non-TCP versions, (ii) the length
of the message and (iii) the unit identifier which is used to dispatch the command to
actuators and sensors. Those three terms are public values that do not impact the security
of the protocol. We choose to model them as single public header ph. A generic session
of the protocol is displayed in Figure 2, where n is the transaction identifier, reqi is a
request from the client and respi is the corresponding response from the server.

The protocol relies on TCP to provide counter-measures against network errors
(e.g. checksums such as CRC or LRC), and does not implement any protection against
malicious adversaries. Thus anyone is able to forge a fake message or modify an
existing one, allowing an adversary to run arbitrary commands on servers. To avoid
such attacks, two secure versions were proposed. In [16], the authors proposed a version
of MODBUS based on well-known cryptographic primitives such as RSA and SHA2.
Figure 3 presents the same session than in Figure 2 plus the counter-measures proposed
in [16] where tsi is the timestamp of the i-th message.

4 http://sancy.univ-bpclermont.fr/~lafourcade/Cose.tar

14

http://sancy.univ-bpclermont.fr/~lafourcade/Cose.tar

Cli Srv

n, ph, req1

n, ph, resp1

n+ 1, ph, req2

n+ 1, ph, resp2

Figure 2: Two requests and responses in textbook MODBUS [25].

Cli Srv

ts1, n, ph, req1, sign(h(ts1, n, ph, req1), skCli)

ts2, n, ph, resp1, sign(h(ts2, n, ph, resp1), skSrv)

ts3, n+ 1, ph, req2, sign(h(ts3, n+ 1, ph, req2), skCli)

ts4, n+ 1, ph, resp2, sign(h(ts4, n+ 1, ph, resp2), skSrv)

Figure 3: Two requests and responses in secure MODBUS [16].

In [17], they designed another secure MODBUS protocol based on SCTP (Stream
Control Transmission Protocol). SCTP is a transmission layer protocol as TCP and
UDP which provides protection against Denial-of-Service attacks. However, like TCP it
provides counter-measures against network errors but none against malicious intruders.
To avoid an adversary forging fake messages or modifying existing ones, Hayes et al.
added message authentication codes (MACs). Moreover, to avoid replay attacks a nonce
(called verification tag) provided by SCTP is included in the MACs of the messages.
Figure 4 details the session in Figure 2 plus the counter-measures proposed in [17] with
vt the verification tag of the SCTP session.

Security Analysis. We modeled the three versions of MODBUS described above and
analyzed them with TAMARIN to check if they satisfy the properties we defined in
Section 3. We performed a first analysis assuming an insecure network, and the results
are presented in Table 1.

TAMARIN finds attacks for all properties against the standard version. This is not
surprising since this version of the protocol was not intended to provide any security.
However, the version with digital public key signatures from [16] is subject to attacks
since the identity of the receiver of the message is not specified in the signature. Thus
an intruder is able to reroute a message to different recipient which accepts the message,
violating all of our properties. This attack could be prevented by adding the receiver

15

Cli Srv

vt, n, ph, req1,mac((vt, n, ph, req1),K)

vt, n, ph, resp1,mac((vt, n, ph, resp1),K)

vt, n+ 1, ph, req2,mac((vt, n+ 1, ph, req2),K)

vt, n+ 1, ph, resp2,mac((vt, n+ 1, ph, resp2),K)

Figure 4: Two requests and responses in secure MODBUS [17].

Protocol NIMA IMA FA NIMD IMD FD
Standard MODBUS

[25] UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE

MODBUS Sign
[16] UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE

MODBUS MAC
[17] SAFE SAFE SAFE UNSAFE UNSAFE UNSAFE

Table 1: Results for MODBUS assuming an insecure network.

inside the signature, or using a different public and private key pair for each connection,
which however would be equivalent to using a symmetric authentication technique
such as MACs, which is done in version with MACs from [17]. In this version the
attack is prevented since the symmetric authentication keys are restricted to a specific
session between a specific client and a specific server. Thus if an intruder changed the
destination of a message, the new recipient would not be able to verify the MAC. This
version of the protocol ensures all authenticity properties, however it still fails on all
delivery properties as the intruder can simply delete all message. When assuming a
resilient channel, it also ensures all delivery properties (see Table 2). Note that even
when assuming a resilient channel the first two variants do still not ensure any property
as messages are still not guaranteed to be delivered at the right recipient, as in the above
attack.

5.2. OPC-UA
Description. OPC-UA is one of the most recent industrial communication protocols,
being released in 2006 [26]. It is developed by the OPC Foundation (a consortium of

Protocol NIMA IMA FA NIMD IMD FD
Standard MODBUS

[25] UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE

MODBUS Sign
[16] UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE

MODBUS MAC
[17] SAFE SAFE SAFE SAFE SAFE SAFE

Table 2: Results for MODBUS assuming an resilient channel.

16

the main stakeholders of the domain), and is often referred to as the next industrial
communication standard. It is a multi-level protocol, including transport and session
layers. The security layer implements key agreement through a handshake. Then the
client is invited to provide an authentication method such as a password or a certificate
using the generated key. The transport layer consists in sending messages from the
client to the server using the security keys negotiated.

Cli Srv

mh, sh, {n, rID1, req1, pad,mac((mh, sh, n, rID1, req1, pad),KSigCS)}KCS

mh, sh, {n+ 1, rID1, resp1, pad,mac((mh, sh, n+ 1, rID1, resp1, pad),KSigSC)}KSC

mh, sh, {n+ 2, rID2, req2, pad,mac((mh, sh, n+ 2, rID2, req2, pad),KSigCS)}KCS

mh, sh, {n+ 3, rID2, resp2, pad,mac((mh, sh, n+ 3, rID2, resp2, pad),KSigSC)}KSC

Figure 5: Two requests and responses in OPC-UA.

A generic session of the protocol is displayed in Figure 5 where:
• mh is a message header containing public values.
• sh is a security header consisting of a fresh nonce called security token.
• n is a sequence number incremented for each request and response.
• rIDi is the ID of the request to correctly associate responses.
• reqi (resp. respi) is the content of the request (resp. response).
• pad is a padding if needed.
• mac(...) is a signature of everything above.
Only the sequence number, message body and signatures are sent encrypted.
Finally, three security modes exist in OPC-UA:
• SignAndEncrypt (Figure 5): messages are signed mac(m,KSigXY) and encrypted
{m}KXY , where mac(·, ·) is a message authentication code function, KXY the
symmetric encryption key shared by X and Y , KSigXY the symmetric signature key
shared by X and Y .

• Sign: it is the same as SignAndEncrypt but messages are only signed using
mac(m,KSigXY), and not encrypted. Thus message 1 (respectively 2, 3, and 4) of
Figure 5 becomes:

mh,sh,n,rID1,req1, pad,mac((mh,sh,n,rID1,req1, pad),KSigCS)

• None: messages are neither signed nor encrypted (mainly used for compatibility).
Thus message 1 (respectively 2, 3, and 4) of Figure 5 becomes:

mh,sh,n,rID1,req1, pad

Security Analysis. We model the transport layer of OPC-UA presented in Figure 5 for
the three security modes (None, Sign and SignAndEncrypt). Results for the case of an
insecure network are presented in Table 3.

17

Protocol NIMA IMA FA NIMD IMD FD
OPC-UA None UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
OPC-UA Sign SAFE SAFE SAFE UNSAFE UNSAFE UNSAFE

OPC-UA SignAndEncrypt SAFE SAFE SAFE UNSAFE UNSAFE UNSAFE

Table 3: Results for OPC-UA [26], assuming an insecure network.

TAMARIN finds attacks on the version with security mode None. This is not
surprising since this version was not intended to not provide any security. However
both the Sign and SignAndEncrypt versions are safe for all authenticity properties. This
means that having only the MACs added in the Sign version is enough to guarantee
Flow Authenticity. To also have the corresponding delivery properties, we again need to
assume a resilient channel (see Table 4).

Protocol NIMA IMA FA NIMD IMD FD
OPC-UA None UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE UNSAFE
OPC-UA Sign SAFE SAFE SAFE SAFE SAFE SAFE

OPC-UA SignAndEncrypt SAFE SAFE SAFE SAFE SAFE SAFE

Table 4: Results for OPC-UA [26], assuming a resilient channel.

Out of curiosity, we also checked a variant of the protocol with only symmetric
encryption and no MAC (thus not an official version). It appears that we obtain the same
results as for signatures. This is due to the fact that the symmetric keys are only shared
by two participants and any message with its destination changed would not be readable
by its new recipient.

OPC-UA in case of bounded sequence numbers. Until now we assumed sequence
numbers to be unbounded integers from N. However, in reality machine integers are
obviously bounded and this can have an impact on properties such as Flow Integrity. To
evaluate this impact, we tested a modeling of OPC-UA SignAndEncrypt (described in
Figure 5) with explicitly bounded sequence numbers (in our example we bound it to
four). This means that if a client sends four messages, then the fourth message has the
same sequence number as the first one.

Protocol NIMA IMA FA NIMD IMD FD
OPC-UA SignAndEncrypt

with bounded numbers
Insecure Channel

SAFE SAFE UNSAFE UNSAFE UNSAFE UNSAFE

OPC-UA SignAndEncrypt
with bounded numbers

Resilient Channel
SAFE SAFE SAFE SAFE SAFE SAFE

Table 5: Results for OPC-UA with bounded counters.

We checked the properties described in Section 3 on this version with TAMARIN
and obtained the results presented in Table 5: it turns out that Flow Integrity is no longer
verified. The attack works as follows: the client sends out four messages, thus the fourth
message has the same sequence number as the first one. The intruder delays the first

18

three messages so that the first message received by the server is the forth with sequence
number zero. He then transmits the second message which has a sequence number of
one, and is thus accepted by the server although it was actually sent earlier than the
message he accepted previously.

Interestingly the described attack disappears if we assume a resilient channel. The
server will accept each sequence number only once5, and if we have two messages with
the same sequence number this leads to a contradiction since both of them have to be
received. This however implies that each sequence number can be used only once also
on the client side, thus there can be only a finite number of messages, bounded by the
range of the sequence numbers.

This analysis illustrates the need for a big range of sequence numbers. If more
messages than the range of sequence numbers allows need to be exchanged, one has
to reinitialize the session (i.e., exchange new keys) before running out of sequence
numbers. This is the solution adopted by OPC-UA: in [26, p. 36] it is stated that “A
SequenceNumber may not be reused for any TokenId. The SecurityToken lifetime
should be short enough to ensure that this never happens [...]”. Our analysis underlines
the importance of this requirement.

6. Experimental Validation

In this section, we illustrate the feasibility of some of the attacks we found using
TAMARIN in the case of bounded sequence numbers on a real world implementation of
the OPC-UA stack.

6.1. Scenario
We first recall the idea of the attacks we aim to find. They rely on the fact that

sequence numbers used by protocols to keep an order on messages are bounded. For
instance, if the client sends five messages M1, ...,M5, and that counters are wrapping
at four, then M5 and M1 will share the same sequence number. The attack on property
Flow Authenticity given by TAMARIN on OPC-UA with bounded sequence numbers
is presented in Figure 6. The clients sends five messages M1, ...,M5 with messages M5
and M1 sharing the same sequence number. The intruder delays or block messages M1
to M4, lets go message M5 and then either let go or replay M2. From the point of view
of the server, sequence numbers are correct and follow each other, but messages have
been reordered.

However, to the best of our knowledge, most implementations of OPC-UA rely
on TCP and the client will not send message M2 before having received an answer of
message M1. One can thus either spoof the acknowledgment, or use a variant of the
attack as presented in Figure 7. The client and the server will communicate normally
with messages M1, ...,M4. Then, when the client sends message M5, the attacker will
replace it with message M1 (previously sent by the client). We want to experimentally
check if the server would accept such a replayed message.

5Note that allowing a sequence number to be reused leads to attacks on Injective Message Authenticity as
the same message can be accepted multiple times.

19

SA,B =
M1

seq=1
M2

seq=2
M3

seq=3
M4

seq=4
M5

seq=1

RA,B =
M5

seq=1
M2

seq=2

Figure 6: Message reordering attack example

SA,B =
M1

seq=1
M2

seq=2
M3

seq=3
M4

seq=4
M5

seq=1

RA,B =
M1

seq=1
M2

seq=2
M3

seq=3
M4

seq=4
M1

seq=1

Figure 7: Message replaying attack example

6.2. Example Industrial Process

To motivate these experimentations, we propose a toy industrial scenario to instanti-
ate our attacks. In our example, a server controls a boiler with two pressure valves. The
client can control the pressure of these two valves by writing on two variables P1 and
P2. The process must always guarantee that P2 > P1. To interact with the server, while
ensuring this property, the client sends messages as presented in Table 6.

Packet Command Sent by Client Comment
1 OpenSecureChannel

OPC-UA Handshake2 CreateSession
3 ActivateSession
4 Browse, P1
5 Browse, P2
6 Read, P1 P1 = 40,P2 =?
7 Read, P2 P1 = 40,P2 = 50
8 Write, P2, 60 P1 = 40,P2 = 60
9 Write, P1, 50 P1 = 50,P2 = 60
10 Write, P2, 80 P1 = 50,P2 = 80
11 Write, P1, 70 P1 = 70,P2 = 80
12 Write, P2, 110 P1 = 70,P2 = 110
13 Write, P1, 100 P1 = 100,P2 = 110
14 Write, P2, 150 P1 = 100,P2 = 150

Table 6: Requests sent by the client

First, the client and the server perform the handshake in order to generate crypto-
graphic keys and authenticate each other. More information on this part of the protocol

20

can be found in [29]. Then the client performs two Browse requests, aiming to find the
location of variables P1 and P2. After this, the client sends two Read requests to find out
the current values of variables. Finally, the client sends a sequence of Write requests in
order to gradually increment the values of the variables while preserving the property.

6.3. Tools
We test our attacks on a free Python implementation of the OPC-UA stack called

python-opcua 6. Moreover, we rely on Docker to help virtualizing clients and servers
and Wireshark to check the network packets exchanged. We first detail in Section 6.3.1
some modifications we made to the stack under test. Then, in Section 6.3.2, we explain
the network and hosts configurations.

6.3.1. Modifications of the OPC-UA Stack
In the standard, as well as in implementations, the sequence number limit is fixed to

232−1024 which is rather difficult to reach. In order to easily demonstrate our attack,
we modify parts of the implementation to reduce this limit to 8. Such value is obviously
very low but presents the advantage to display easily understandable attack traces.
Moreover, when considering languages where the size of integer variables depend on
their type such as C, C++ or Java, a developer could choose a wrong type by mistake
and thus reduce the maximal value (e.g., char would be limited to 28−1). To bound
this limit to 8, we modified parts of the python-opcua stack. In particular we modified
at lines 212, 216, 254 and 263 of file opcua/common/connection.py (see Listing 1)
and line 61 of file opcua/client/ua_binary.py (see Listing 2). We emphasize that these
modifications only aim to change the value of the bound (i.e., to replace 232−1024 by
8) but do not alter the behavior of the server regarding replayed messages.

198 def message_to_binary(self, message, \

message_type=ua.MessageType.SecureMessage , \

request_id=0, algohdr=None):

[...]

208 chunks = MessageChunk.message_to_chunks(

209 self.security_policy , message, self._max_chunk_size ,

210 message_type=message_type ,

211 channel_id=self.channel.SecurityToken.ChannelId ,

212 request_id=request_id%8 if request_id%8>0 else 1,

213 token_id=token_id)

214 for chunk in chunks:

215 self._sequence_number += 1

216 if self._sequence_number >= 8:

217 logger.debug("Wrapping sequence number:

self._sequence_number)

218 self._sequence_number = 1

[...]

6https://github.com/FreeOpcUa/python-opcua

21

https://github.com/FreeOpcUa/python-opcua

223 def _check_incoming_chunk(self, chunk):

[...]

250 # sequence number must be incremented or wrapped

251 num = chunk.SequenceHeader.SequenceNumber

252 if self._peer_sequence_number is not None:

253 if num != self._peer_sequence_number + 1:

254 wrap = 8-1

255 if num < 1024 and self._peer_sequence_number >= wrap:

256 # specs Part 6, 6.7.2

257 logger.debug("Sequence number wrapped: 258

self._peer_sequence_number , num)

259 else:

260 raise ua.UaError(

"Wrong sequence {0} −> {1} (server bug or replay attack)"
262 .format(self._peer_sequence_number , num))

263 self._peer_sequence_number = num%8

Listing 1: opcua/common/connection.py

44 def _send_request(self, request, callback=None, timeout=1000, \

message_type=ua.MessageType.SecureMessage):

[...]

60 self._request_id += 1

61 if self._request_id == 8: self._request_id = 1

62 future = Future()

Listing 2: opcua/client/ua_binary.py

6.3.2. Network and Hosts Configuration
Classical network configurations considered for attacks such as those introduced in

Section 6.1 place the intruder in a Man-in-the-Middle position. Such an intruder bears a
resemblance with the Dolev-Yao intruder used in TAMARIN in the sense that the intruder
has a total control on messages exchanged between the client and the server (and can
for instance block messages). During experimentations, we noticed that depending on
the client behavior, such attack power is not needed for the kind of attacks we study. We
consider an attacker able to both sniff communications between the client and the server,
and able to send packets on the network. Such an intruder could denote for instance
a corrupted router, someone performing MAC flooding or, as we implemented it, the
host system of several virtualized machines. Our experimental network configuration
is described in Figure 8. For convenience, the client and the server are virtualized
applications in the form of Docker containers and the attacker is located on the host
system. The client and the server communicate on a dedicated network where the client
is identified as 172.18.0.3 and the server as 172.18.0.2. The attacker is an application
located on the host system that can wiretap this network and inject packets on it.

22

Docker
172.18.0.3

Client

Docker
172.18.0.2

Server

Host Attacker

Figure 8: Experimental network configuration

6.4. Results
We propose two experimental attacks on OPC-UA. Against security mode None, we

propose in Section 6.4.1 an injection attack where the attacker forges a new packet and
inserts it into an ongoing session. Against security mode Sign and SignAndEncrypt, we
propose in Section 6.4.2 a replay attack (similar as the one displayed in Figure 7). All
scripts used for attacks are made available7.

6.4.1. Security Mode “None”
Given the hypothesis that sequences numbers will wrap at 8, we propose the attack

detailed in Table 7. Messages 1 to 14 are sent normally by the client. Then, in message
15, the attacker forges a WRITE request in order to set variable P2 to 42, leading to
violating the property P2 > P1 ensured by the system.

Technical challenges that must be taken into account for this attack are mainly
dealing with the headers being accepted by the server. At Ethernet and IP levels, the
attacker must spoof MAC and IP addresses of both the client and the server (which
can be learned from observed traffic). Similarly at TCP level, the attacker must spoof
the source port used by the client. More complicated, the attacker must provide the
right TCP sequence and acknowledgment numbers. Those can be deduced from the last
packet sent by the server and its length. Multiple fields of the OPC-UA header must
also match the session initiated by the client (namely the channel ID, the security token
and the request ID). Finally, the OPC-UA sequence number must follow the one in the
previous request. We provided two scripts in order to demonstrate a communication
without and with the attack. An execution trace of both scripts is displayed in Listing 3.

$./runWithoutAttackNone.sh

[+] Launching server None.

[+] Checking attack success in server logs.

$./runWithAttackNone.sh

[+] Launching server None.

[+] Checking attack success in server logs.

7http://sancy.univ-bpclermont.fr/~lafourcade/Cose.tar

23

http://sancy.univ-bpclermont.fr/~lafourcade/Cose.tar

Packet Sequence Command Sent by Client CommentNumber
1 1 OpenSecureChannel

OPC-UA Handshake2 2 CreateSession
3 3 ActivateSession
4 4 Browse, P1
5 5 Browse, P2
6 6 Read, P1 P1 = 40,P2 =?
7 7 Read, P2 P1 = 40,P2 = 50
8 1 Write, P2, 60 P1 = 40,P2 = 60
9 2 Write, P1, 50 P1 = 50,P2 = 60

10 3 Write, P2, 80 P1 = 50,P2 = 80
11 4 Write, P1, 70 P1 = 70,P2 = 80
12 5 Write, P2, 110 P1 = 70,P2 = 110
13 6 Write, P1, 100 P1 = 100,P2 = 110
14 7 Write, P2, 150 P1 = 100,P2 = 150
15 1 (Forged) Write, P2, 42 P1 = 100,P2 = 42

Table 7: Forge attack trace

ERROR:root:[ALERT] Property failure: Pressure1 (100) >= Pressure2 (42)!

Listing 3: Execution traces for forge attack

Under attack, the server pushes a syslog to alert the safety property has been violated
(such log is accessed through Docker’s interface). Moreover, when looking at a network
analyzer such as Wireshark, we can clearly see highlighted in orange, the crafted packet
with our chosen value (here 42), and the server sending a response confirming the
modification of the variable (“Good”). Both packets are showed in Figure 9.

6.4.2. Security Modes “Sign” and “SignAndEncrypt”
In security mode Sign and SignAndEncrypt a cryptographic signature prevents the

attacker to forge a new packet (since the secret symmetric keys are required in order to
sign it, and these are renewed for each session). However, the attacker can still replay
an older packet from the same session, with the same sequence number, as shown in
Figure 7. Thus we can implement the attack presented in Table 7. Messages 1 to 14 are
sent normally by the client. Then, in message 15, the attacker replays the WRITE request
sent by the client in message 8 in order to set variable P2 to 60, leading to violating the
property P2 > P1 ensured by the system.

The technical challenges that must be taken into account for this attack are similar
to those in Section 6.4.1 at Ethernet, IP and TCP levels. Then, the OPC-UA level is a
simple replay of a previous packet (packet 8 in our case) and cannot be modified due
to the cryptographic signature. Thus all fields of the OPC-UA header obviously match
the session initiated by the client, including the OPC-UA sequence number that must
follow the one in the previous request. We provided two scripts in order to demonstrate
a communication without and with the attack. An execution trace of both scripts is
displayed in Listing 4. Again, under attack, the server pushes a syslog to alert the safety

24

Figure 9: Wireshark capture of forge attack

property has been violated (such log is accessed through Docker’s interface).

$./runWithoutAttackSign.sh

[+] Launching server in mode Sign.

[+] Checking attack success in server logs.

$./runWithAttackSign.sh

[+] Launching server in mode Sign.

[+] Checking attack success in server logs.

ERROR:root:[ALERT] Property failure: Pressure1 (100) >= Pressure2 (60)!

Listing 4: Execution traces for replay attack

When looking at a network analyzer such as Wireshark, we can clearly see high-
lighted in orange, the replayed packet with value 60, and the server sending a response
confirming the modification of the variable (“Good”). One can also notice random
looking bytes (starting at f 1 38 e2 and ending at bc f 2 30 at the very bottom of the
figure) denoting the cryptographic signature of the message. Both packets are showed

25

Packet Sequence Command Sent by Client CommentNumber
1 1 OpenSecureChannel

OPC-UA Handshake2 2 CreateSession
3 3 ActivateSession
4 4 Browse, P1
5 5 Browse, P2
6 6 Read, P1 P1 = 40,P2 =?
7 7 Read, P2 P1 = 40,P2 = 50
8 1 Write, P2, 60 P1 = 40,P2 = 60
9 2 Write, P1, 50 P1 = 50,P2 = 60
10 3 Write, P2, 80 P1 = 50,P2 = 80
11 4 Write, P1, 70 P1 = 70,P2 = 80
12 5 Write, P2, 110 P1 = 70,P2 = 110
13 6 Write, P1, 100 P1 = 100,P2 = 110
14 7 Write, P2, 150 P1 = 100,P2 = 150
15 1 (Replayed) Write, P2, 60 P1 = 100,P2 = 60

Table 8: Replay attack trace

in Figure 10. We can go further and demonstrate the exact same replay attack with the
server configured in security mode SignAndEncrypt as shown in Listing 5.

$./runWithoutAttackSignEnc.sh

[+] Launching server in mode SignEncrypt.

[+] Checking attack success in server logs.

$./runWithAttackSignEnc.sh

[+] Launching server.

[+] Checking attack success in server logs.

ERROR:root:[ALERT] Property failure: Pressure1 (100) >= Pressure2 (60)!

Listing 5: Execution traces for replay attack (with encryption)

Looking at a Wireshark capture of this transmission, one only sees that packets
are encrypted. The OPC-UA header is in plaintext (yet signed), allowing Wireshark to
recognize the packet as OPC-UA, but the applicative contents cannot be observed.

6.5. Limitations

Our experiments show some limitations of these attacks. First, assuming the “wiretap
and spoof” attacker introduced in Section 6.3.2, the attacker can only inject new packets
in the protocol flow but has no control over legitimate ones. As a consequence, injected
packets will decorrelate TCP and OPC-UA sequence numbers shared by the client
and the server, leading to the attack being easily detected (all packets later sent by the
client will be refused by the server). Yet, we argue that depending on the physical
consequences of the attack on the industrial process (including potential destruction

26

Figure 10: Wireshark capture of replay attack

of the facility), detection might become obvious anyway. Moreover, a real Man-in-
the-Middle attacker could tamper sequence numbers of packets later sent by the client
and keep the attack secret. In addition, in security mode SignAndEncrypt, the attacker
cannot read packets and is bound to replay unknown packets leading to the attack being
a lot less practical. However, there is a one-to-one correspondence between packets in
Sign and SignEncrypt modes. Thus, in our experimental setup, we knew exactly which
packet to replay in SignAndEncrypt mode based on the attack in Sign mode.

Finally, as mentioned at the end of Section 5.2, it is stated in the OPC-UA standard
that “A SequenceNumber may not be reused for any TokenId. The SecurityToken
lifetime should be short enough to ensure that this never happens [...]”. Our experiment
showed that this counter-measure is not implemented in python-opcua, thus other imple-
mentations should be checked. Yet, even if this counter-measure is not implemented,

27

the limit of 232− 1024 appears difficult to reach: for a client that sends a hundred
messages per second, it would take roughly sixteen months to reach the limit without
the session being renewed. Such running times can however be attained in the case of
some industrial systems that stay in place for several decades. Therefore, while this
attack might be hard to realize on many real systems, our experiment showed that it is
still technically possible, at least on one stack implementation.

7. Conclusion

We provided a formal definition of Flow Integrity and other related properties
in industrial systems. Flow Integrity ensures that all messages are received without
alteration, and in the same order as they were sent. We checked Flow Integrity on
multiple variants of two real industrial protocols: MODBUS and OPC-UA. Our analysis
confirms that most of the secure modes of these protocol ensure Flow Integrity given
a resilient network. However, we also identified a weakness in a supposedly secure
version of MODBUS, due to an insufficient use of cryptography. Moreover, our analysis
of bounded sequence numbers highlighted the importance of the renewal of session
keys to avoid the reuse of sequence numbers. Unsurprisingly, the insecure modes of
these protocols did not ensure any of our security properties. Moreover it turns out that
to ensure delivery one has to assume a resilient channel, as the intruder can otherwise
always block messages. At the same time, our results show that a resilient channel alone
is not sufficient to ensure Flow Integrity: one still needs to use cryptography to prevent
the intruder from rerouting or injecting messages.

We also performed practical experiments to validate our results on a real OPC-UA
implementation. We were able to show that we can reproduce the traces found by
TAMARIN and achieve an insecure state of an industrial process example.

In the future, we would also like to study other industrial protocols such as DNP3
or IEC 61850. Finally we are interested in formalizing properties similar to Flow
Integrity for protocols with encapsulation. Such protocols permit for example to transfer
MODBUS packets through OPC-UA as if they were OPC-UA data so that MODBUS
security is performed by OPC-UA. They are a real challenge for formal verification
as there is few work on protocol composition, and it has turned out that verifying the
composition is more complicated than verify the protocols independently.

References

[1] ANSSI. Managing cybersecurity for ICS, June 2012.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H.
Drielsma, P.-C. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. R., J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA
tool for the automated validation of internet security protocols and applications.
In CAV’05. 2005.

[3] M. Backes, J. Dreier, S. Kremer, and R. Künnemann. A novel approach for
reasoning about liveness in cryptographic protocols and its application to fair
exchange. In EuroS&P 2017, pages 76–91. IEEE, 2017.

28

[4] D. Basin, S. Mödersheim, and L. Viganò. An on-the-fly model-checker for security
protocol analysis. In ESORICS’03, 2003.

[5] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
CSFW’01, 2001.

[6] S. Bratus, A. J. Crain, S. M. Hallberg, D. P. Hirsch, M. L. Patterson, M. Koo, and
S. W. Smith. Implementing a vertically hardened dnp3 control stack for power
applications. In ICSS’16, pages 45–53, 2016.

[7] D. D. Clark and D. R. Wilson. A comparison of commercial and military computer
security policies. In Security and Privacy, 1987 IEEE Symposium on, pages
184–184. IEEE, 1987.

[8] G. R. Clarke, D. Reynders, and E. Wright. Practical modern SCADA protocols:
DNP3, 60870.5 and related systems. Newnes, 2004.

[9] C. Cremers. The Scyther Tool: Verification, falsification, and analysis of security
protocols. In CAV’08, 2008.

[10] C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. Automated analysis and
verification of TLS 1.3: 0-rtt, resumption and delayed authentication. In SP’16,
2016.

[11] D. Dolev and A. C. Yao. On the security of public key protocols. Information
Theory, IEEE Transactions on, 29(2):198–208, Mar. 1981.

[12] J. Dreier, P. Lafourcade, and Y. Lakhnech. Formal verification of e-auction
protocols. In POST’13, 2013.

[13] J. Dreier, M. Puys, M. Potet, P. Lafourcade, and J. Roch. Formally verifying flow
integrity properties in industrial systems. In SECRYPT’17, Madrid, Spain, 2017.

[14] B. Dutertre. Formal modeling and analysis of the MODBUS protocol. In Critical
Infrastructure Protection, pages 189–204. Springer, 2007.

[15] D. Dzung, M. Naedele, T. von Hoff, and M. Crevatin. Security for industrial
communication systems. Proceedings of the IEEE, 93(6):1152–1177, June 2005.

[16] I. Fovino, A. Carcano, M. Masera, and A. Trombetta. Design and implementation
of a secure MODBUS protocol. In IFIP AICT’09. 2009.

[17] G. Hayes and K. El-Khatib. Securing MODBUS transactions using hash-based
message authentication codes and stream transmission control protocol. In IC-
CIT’13, 2013.

[18] N. Heintze and J. G. Riecke. The slam calculus: programming with secrecy and
integrity. In POPL’98, 1998.

[19] IEC-62439. Industrial communication networks - High availability automation
networks - Part 3: Parallel Redundancy Protocol (PRP) and High-availability
Seamless Redundancy (HSR). International Electrotechnical Commission, 2016.

29

[20] S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied
pi-calculus. In ESOP’05, 2005.

[21] P. Lafourcade and M. Puys. Performance evaluations of cryptographic protocols.
verification tools dealing with algebraic properties. In FPS 2015, 2015.

[22] R. Langner. Stuxnet: Dissecting a cyberwarfare weapon. Security & Privacy,
IEEE, 9(3):49–51, 2011.

[23] G. Lowe. A hierarchy of authentication specifications. In CSFW ’97, 1997.

[24] S. Meier, B. Schmidt, C. Cremers, and D. Basin. The TAMARIN prover for the
symbolic analysis of security protocols. In CAV’13. 2013.

[25] MODBUS. MODBUS IDA, MODBUS messaging on TCP/IP implementation
guide v1.0a, 2004.

[26] OPC-UA. Part 6: Mappings, Aug. 2012.

[27] S. C. Patel and Y. Yu. Analysis of SCADA security models. International
Management Review, 3(2):68, 2007.

[28] M. Patterson and D. Hirsch. Hammer parser generator.
https://github.com/UpstandingHackers/hammer, Mar. 2014.

[29] M. Puys, M. Potet, and P. Lafourcade. Formal analysis of security properties on
the OPC-UA SCADA protocol. In SAFECOMP’16, 2016.

[30] E. Saul and A. Hutchison. SPEAR II – the security protocol engineering and
analysis resource. 1999.

[31] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis of diffie-
hellman protocols and advanced security properties. In CSF’12, 2012.

[32] K. Stouffer, J. Falco, and S. Karen. Guide to industrial control systems (ICS)
security. NIST special publication, 800(82):16–16, June 2011.

[33] Y. Umezawa and T. Shimizu. A formal verification methodology for checking data
integrity. In DATE’05, 2005.

[34] Q. Wanying, W. Weimin, Z. Surong, and Z. Yan. The study of security issues for
the industrial control systems communication protocols. JIMET’15, 2015.

30

	Introduction
	Related Work
	Defining Authenticity, Delivery and Integrity
	Notations
	Definitions & Intruder Model

	The Tamarin prover
	Introducing the Tamarin prover
	Defining our Security Properties
	Resilient Channels, Counters and Timestamps

	Applications to SCADA Protocols
	MODBUS
	OPC-UA

	Experimental Validation
	Scenario
	Example Industrial Process
	Tools
	Modifications of the OPC-UA Stack
	Network and Hosts Configuration

	Results
	Security Mode ``None''
	Security Modes ``Sign'' and ``SignAndEncrypt''

	Limitations

	Conclusion

