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Abstract

A new method for the analysis of time to ankylosis complication on a dataset of replanted
teeth is proposed. In this context of left-censored, interval-censored and right-censored
data, a Cox model with piecewise constant baseline hazard is introduced. Estimation is
carried out with the EM algorithm by treating the true event times as unobserved variables.
This estimation procedure is shown to produce a block diagonal Hessian matrix of the
baseline parameters. Taking advantage of this interesting feature of the estimation method
a L0 penalised likelihood method is implemented in order to automatically determine the
number and locations of the cuts of the baseline hazard. This procedure allows to detect
specific areas of time where patients are at greater risks for ankylosis. The method can be
directly extended to the inclusion of exact observations and to a cure fraction. Theoretical
results are obtained which allow to derive statistical inference of the model parameters from
asymptotic likelihood theory. Through simulation studies, the penalisation technique is
shown to provide a good fit of the baseline hazard and precise estimations of the resulting
regression parameters.
Keywords: Adaptive Ridge procedure; Cure model; EM algorithm; Interval censoring;
Penalised likelihood; Piecewise constant hazard.

1 Introduction

Interval censored data arise in situations where the event of interest is only known to have
occurred between two observation times. These types of data are commonly encountered when
the patients are intermittently followed up at medical examinations. This is the case for instance
in AIDS studies, when HIV infection onset is determined by periodic testing, or in oncology
where the time-to-tumour progression is assessed by measuring the tumour size at periodic
testing. Dental data are another examples which are usually interval-censored because the teeth
status of the patients are only examined at visits to the dentist. While interval-censored data are
ubiquitous in medical applications it is still a common practice to replace the observation times
with their midpoints or endpoints and to consider these data as exact. This allows to analyse
the data using standard survival approach but may result in a large bias of the estimators. In
the present paper we develop a new method for the analysis of time to ankylosis complication
on a dataset of replanted teeth. The three main goals for our method is to adequately take into
account interval-censoring, to be able to identify time ranges where patients are particularly at
high risk of developing the complication and to investigate if a sub-population of non susceptible
patients exists.

In the context of interval-censored data, [24] introduced an iterative algorithm for the non-
parametric estimation of the survival function. As a different estimation method, the iterative
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convex minorant was proposed by [11] and [14]. In [11], the authors derived the slow rate of
convergence of order n1/3 for the non-parametric survival estimator. Moreover, the obtained
law is not Gaussian and cannot be explicitly computed. Many methods were also developed
in a regression setting. In particular, the Cox model with non-parametric baseline was studied
in [13]. The authors derived a n1/2 convergence rate for the regression parameter with a Gaussian
limit but the problem of estimation and inference of the baseline survival function pertains in
this regression context: the baseline survival function has the n1/3 slow rate of convergence
and even more problematic, the asymptotic distribution of this function could not be derived.
The same conclusions were observed in [5] where the authors use the more general Cox-Aalen
model with non-parametric baseline. As a consequence, alternatives to the non-parametric
baseline have been introduced. In [16] and [21] parametric baselines such as Weibull or piecewise
constant are introduced. In that case, the convergence rate of the global parameters is of
order n1/2 and the asymptotic distribution is Gaussian (see [21]). In [4] a local likelihood
is implemented which results in a smooth estimation of the baseline hazard using a kernel
function. However, asymptotic properties of the estimators were not derived in their work and
the performance of the estimators depends on the choice of the kernel bandwidth. In [27],
monotone B-splines are implemented in order to estimate the cumulative baseline hazard. The
authors introduce a two stage data augmentation which allows them to use the Expectation
Maximisation algorithm [EM, see 9] in order to perform estimation. Asymptotics with n1/2 rate
of convergence of the estimators are derived. However, the number and location of the splines
knots are pre-determined by the user and the estimators performance depend on the choice
of these tuning parameters. A similar two stage data augmentation approach was developed
in [28] where the authors study the more general class of semi-parametric transformation models,
using a non-parametric baseline and allowing for time dependent covariates. The n1/2 rate of
convergence of the regression parameter is derived but the asymptotic distribution of the non-
parametric baseline was not obtained.

In this work, we study the Cox model with piecewise constant baseline hazard. Treating the
unobserved true event times as missing variables we use the EM algorithm to perform estimation.
As a result, the Hessian of the log-likelihood to be maximised is seen to be diagonal. This is a
remarkable feature of the method that easily allows to perform estimation with the piecewise
constant baseline using arbitrarily large set of cuts. In contrast, this model had been already
introduced in [8] and [16] but maximisation of the model parameters was achieved using the
observed likelihood which resulted in a full rank Hessian matrix. In [8] for example, the authors
warn against computational issues which may force the user to reduce the number of cuts by
combining adjacent intervals. Using the EM algorithm to perform estimation in the piecewise
constant hazard model is new to our knowledge and easy to implement. Also, all the quantities
involved in the E-step can be explicitly computed in our method, contrary to previous works
(see [4] for example) which require to approximate integrals. In comparison with [27] the E-
step is more natural and directly applicable using the complete likelihood. Moreover, taking
advantage of the sparse structure of the Hessian matrix, our method can be combined with a
L0 penalty designed to detect the location and number of cuts. This is performed through the
adaptive ridge procedure, a regularisation method that was introduced in [20], [10] and then
applied in a survival context (without covariates) in [6]. This penalisation technique results in a
flexible method where the cuts and locations of the piecewise constant baseline are automatically
chosen from the data, thus providing a good compromise between purely non-parametric and
parametric baseline functions. This is in contrast with existing techniques such as in [27] where
the location and number of knots of splines basis are fixed by the user. Finally we also emphasise
the advantage of the L0 method in terms of interpretability: by detecting the relevant set of
cuts of the baseline the method highlights the different regions of time where the risk of failure
varies. This is of great interest for the dental application in order for the dentists to precisely
detect time intervals where patients are at a higher risk of ankylosis.
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Another advantage of using the EM algorithm is to provide direct extensions of the Cox
model. In this work we also consider the inclusion of exact data in the estimation method. This
mixed case of exact and interval-censored data is usually not easy to analyse as standard methods
for interval-censoring do not directly extend to exact data. However, using our method, inclusion
of exact data is straightforward through the E-step and the likelihood can be decomposed
into the contribution of exact and interval-censored observations. Another extension that is
developed in this work is the inclusion of a fraction of non-susceptible patients. This situation
is modelled using the cure model of [22] and [19], with a logit link for the probability of being
cured. Little attention has been paid to this model in the case of interval-censored data. In [12]
the authors consider a partially linear transformation model where the baseline is modelled
using spline basis but the number and location of knots are chosen in an ad-hoc manner.
In [17] a different cure model was introduced where the marginal survival function (without
conditioning on the susceptible group) is modelled. However, the asymptotic distribution of
the estimated parameters were not derived under this model. With our method, estimation in
the cure Cox model is straightforward. The E-step results in a weighted log-likelihood with
the weights corresponding to the probability of being cured such that our estimation method
readily extends to the cure model. This model is especially useful on the dental dataset to
assess if there exists a subpopulation of patients who are not at risk of developing the ankylosis
complication.

In Section 2 the piecewise constant hazard model is introduced. The estimation method
based on the EM algorithm is presented in Section 3 for interval censored data and fixed cuts
of the hazard. Estimation in the non-parametric case, in the regression model and extensions
for exact data and the cure model are also developed in this section. Then, the L0 penalised
likelihood that allows to select the location and number of cuts from the data is presented
in Section 4. Asymptotic properties of the penalised estimator are discussed in Section 5.
In particular, these results show that confidence intervals and tests can be constructed by
considering the selected cuts as fixed. In Section 6, an extensive simulation study is presented
where our adaptive ridge estimator is compared with the midpoint estimator and the ICsurv
estimator from [27]. Finally, the dental dataset on ankylosis complications for replanted teeth
is analysed in Section 7 using the proposed methodology.

2 A piecewise constant hazard model for interval censored data

Let T denote the time to occurrence of the event of interest. We consider a situation where all
individuals are subject to interval censoring defined by the random variables (L,R) such that
L and R are observed and P(T ∈ [L,R]) = 1. The situation L = 0 and R < ∞ corresponds to
left-censoring, 0 < L < R < ∞ corresponds to strictly interval censoring and L < R = ∞ to
right censoring. The special case L = R is also allowed which corresponds to exact observations
of the time of interest. We introduce a column covariate vector Z of dimension dZ and for
convenience we also introduce δ which equals 0 if an individual is right censored and 1 if he/she
is left, interval censored or exactly observed. The variable T is considered continuous and we
assume independent censoring in the following way (see for instance [29]): P(T ≤ t | L =
l, R = r, Z) = P(T ≤ t | l ≤ T ≤ r, Z). This supposes that the variables (L,R) do not convey
additional information on the law of T apart from assuming T to be bracketed by L and R.
Finally, we assume non-informative censoring in the sense that the distribution of L and R does
not depend on the model parameters involved in the distribution of T .

We consider the following Cox proportional hazard model for the time variable T :

λ(t | Z) = λ0(t) exp(βZ), (1)

where β is an unknown row parameter vector of dimension dZ . We model the baseline function
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λ0 through a piecewise constant hazard. Let c0, c1, . . . , cK represent K + 1 cuts, with the
convention that c0 = 0 and cK = +∞. Let Ik(t) = I(ck−1 < t ≤ ck), with I(·) denoting the
indicator function. We suppose that λ0(t) =

∑K
k=1 Ik(t) exp(ak). Under this model, note that

the survival and density functions are respectively equal to:

S(t | Z) = exp
(
−

K∑
k=1

eak+βZ(t ∧ ck − ck−1)I(ck−1 ≤ t)
)
,

f(t | Z) =

K∑
k=1

Ik(t) exp
(
ak + βZ −

k∑
j=1

eaj+βZ(t ∧ cj − cj−1)
)
.

We set θ = (a1, . . . , aK , β) the model parameter we aim to estimate. In the following, we will
also study the so-called nonparametric situation, when no covariates are available, which is
encompassed in our modelling approach as the special case where Z = 0. In this context the
hazard function is simply equal to λ0 which is assumed to be piecewise constant and the model
parameter is θ = (a1, . . . , aK). The observed data consist of data = {datai, i = 1, . . . , n} with
datai = (Li, Ri, δi) in the nonparametric context and datai = (Li, Ri, δi, Zi) in the regression
context, while Ti is considered as incompletely observed. In the latter context, we introduce
the notation ai,k = ak + βZi.

3 Estimation procedure with fixed cuts

For the sake of simplicity, we first consider the scenario when no exact data are observed (which
means there only are left, interval and right censored data). The estimation method is based
on the EM algorithm and is presented in Section 3.1 in the general regression context since
the nonparametric context can be easily derived by setting Z = 0. The nonparametric context
is discussed in Section 3.2, the implementation of the M step for the regression context is
presented in Section 3.3 and the method when exact observations are also available is developed
in Section 3.4. Finally, the inclusion of a fraction of non-susceptible individuals is studied in
Section 3.5.

3.1 The EM algorithm for left, right and interval censored observations

The observed likelihood is defined with respect to the observed data by:

Lobs
n (θ) =

n∏
i=1

(S(Li | Zi,θ)− S(Ri | Zi,θ))

=

n∏
i=1

{
exp

(
−
∫ Li

0
λ0(t)dt e

βZi

)(
1− exp

(
−
∫ Ri

Li

λ0(t)dt e
βZi

))}δi
×
{

exp
(
−
∫ Li

0
λ0(t)dt e

βZi

)}1−δi
,

with the slight abuse of notation S(Ri | Zi,θ) = 0 if Ri =∞ (for a right-censored observation).
The Maximum Likelihood Estimator (MLE) can be derived from maximisation of this observed
log-likelihood with respect to the model parameters, as in [8] for instance. The obtained pa-
rameter estimates are not explicit but a Newton-Raphson algorithm can be easily implemented.
However, in this optimisation problem, the block of the Hessian matrix corresponding of the
baseline coefficients a1, . . . , aK will be of full rank and can lead to intractable solutions if the
number of cuts K is large. An alternative method to compute the MLE is therefore to use
the EM algorithm based on the complete likelihood of the unobserved true event times. This
algorithm will result into a diagonal block matrix of the baseline coefficients.
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The EM algorithm is based on the complete likelihood, defined by: Ln(θ) =
∏n
i=1 f(Ti |

Zi,θ). Denote by θold the current parameter value. The E-step takes the expectation of the
complete log-likelihood with respect to the Ti’s, given the Li’s, Ri’s, δi’s, Zi’s and θold. Write

Qi(θ | θold) := E[log(f(Ti | Zi,θ)) | datai,θold] =

∫
f(t | datai,θold) log f(t | Zi,θ)dt,

where f(t | datai,θold) represents the conditional density of Ti given datai and θold, evaluated
at t. Under the independent censoring assumption,

f(t | datai,θold) =
f(t | Zi,θold)I(Li < t < Ri)

S(Li | Zi,θold)− S(Ri | Zi,θold)
·

The E-step consists of computing the quantity Q(θ | θold) =
∑

iQi(θ | θold). We have:

Q(θ | θold)=

n∑
i=1

∫ Ri

Li
f(t | Zi,θold) log f(t | Zi;θ)dt

S(Li | Zi,θold)− S(Ri | Zi,θold)

Q(θ | θold)=
n∑
i=1

{
1

S(Li | Zi,θold)− S(Ri | Zi,θold)

×
K∑
k=1

Jk,i

∫ ck∧Ri

ck−1∨Li

exp
(
aoldi,k −

k∑
j=1

ea
old
i,j (t ∧ cj − cj−1)

)(
ai,k −

k∑
j=1

eaj,k(t ∧ cj − cj−1)
)
dt

}
,

where Jk,i is the indicator I{(Li, Ri) ∩ (ck−1, ck) 6= ∅} and b1 ∧ b2, b1 ∨ b2 respectively denote
min(b1, b2), max(b1, b2). Finally, the M-step corresponds of maximising, with respect to θ, the
quantity

Q(θ | θold) =

n∑
i=1

K∑
k=1

{(
ai,k −

k−1∑
j=1

(cj − cj−1)eai,j
)
Aold
k,i − eai,kBold

k,i

}
,

where exact expressions of the statistics Aold
k,i and Bold

k,i can be found in the Supplementary Ma-
terial.

3.2 Estimation in the absence of covariates

In the absence of covariates, the previous results hold with Zi = 0, ai,k = ak and the model
parameters we aim to estimate are just θ = (a1, . . . , aK). The objective function in the M-step
can be defined with respect to the sufficient statistics Āold

k =
∑

iA
old
k,i and B̄old

k =
∑

iB
old
k,i :

Q(θ | θold) =
K∑
k=1

{(
ak −

k−1∑
j=1

(cj − cj−1)eaj
)
Āold
k − eakB̄old

k

}
.

The derivatives of Q with respect to ak, k = 1, . . . ,K, equal

∂Q(θ | θold)

∂ak
= Āold

k − (ck − ck−1)eakI(k 6= K)
K∑

l=k+1

Āold
l − eakB̄old

k .
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As a consequence, in the absence of covariates, one gets the explicit parameters estimators:

exp(âk) =
Āold
k

I(k 6= K)
∑K

l=k+1 Ā
old
l (ck − ck−1) + B̄old

k

, k = 1, . . . ,K,

at each step of the EM algorithm. At convergence, this provides an estimator of the hazard
function from which quantities of interest, such as the survival function, can be easily derived.

3.3 Estimation in the general regression framework

In the regression framework, each step of the EM algorithm is solved through a Newton-Raphson
procedure. The first and second order derivatives of Q with respect to ak and β are equal to

∂Q(θ | θold)

∂ak
=

n∑
i=1

{
Aold
k,i − (ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi − eakBold
k,i e

βZi

}
,

∂Q(θ | θold)

∂β
=

n∑
i=1

Zi

K∑
l=1

Aold
l,i −

{
l−1∑
j=1

(cj − cj−1)eajAold
l,i e

βZi + ealBold
l,i e

βZi

} ,

and

∂2Q(θ | θold)

∂a2k
= −

n∑
i=1

{
(ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi + eakBold
k,i e

βZi

}
,

∂2Q(θ | θold)

∂β2
= −

n∑
i=1

ZiZ
t
i

K∑
l=1

 l−1∑
j=1

(cj − cj−1)eajAold
l,i e

βZi + ealBold
l,i e

βZi

 ,

∂2Q(θ | θold)

∂ak∂β
= −

n∑
i=1

Zi

(
(ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi + eakBold
k,i e

βZi

)
.

The block matrix of the Hessian corresponding to the second order derivatives with respect to
the ak’s is diagonal while the three other blocks are of full rank. Inversion of the Hessian matrix
is then achieved using the Schurr complement which takes advantage of this sparse structure of
the Hessian. When considering a large number of cuts, that is K >> dZ , the total complexity
of the inversion of the Hessian is of order O(K). The exact formula of the Schurr complement
is given in the Supplementary Material.

3.4 Inclusion of exact observations

It is straightforward to deal with exact observations since they can be directly included in the
EM algorithm. For an exact observation i, E[log(f(Ti | Zi;θ)) | data,θold] = log(f(Ti | Zi;θ)) =∑K

k=1

{
Oi,kai,k − exp(ai,k)Ri,k

}
, with Oi,k = I(ck−1 < Ti < ck) and Ri,k = Ti ∧ ck − ck−1. Note

that this corresponds to the classical contribution of an exact observation to the log-likelihood
in the standard Poisson regression for right censored observations (see for instance [1]). As a
result, Q can be decomposed as

Q(θ | θold) =
∑

i not exact

K∑
k=1

{(
ai,k −

k−1∑
j=1

(cj − cj−1)eai,j
)
Aold
k,i − eai,kBold

k,i

}

+
∑
i exact

K∑
k=1

{
Oi,kai,k − exp(ai,k)Ri,k

}
.
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The estimation method follows as previously. In particular, in the absence of covariates, the
explicit parameters estimator of (a1, . . . , aK) are equal to:

exp(âk) =
Āold
k + Ōk

I(k 6= K)
∑K

l=k+1 Ā
old
l (ck − ck−1) + B̄old

k + R̄k
, k = 1, . . . ,K,

where Ōk =
∑

i exact Ōi,k and R̄k =
∑

i exact R̄i,k.
In the regression setting, maximisation over the β and a1, . . . , aK parameters is performed

through the Newton-Raphson algorithm as before. Full expressions of the score vector and
Hessian matrix are given in the Supplementary Material. The Schurr complement is used again
to invert the Hessian matrix (see the Supplementary Material).

3.5 Inclusion of a fraction of non-susceptibles (cure fraction)

Taking into account non-susceptible individuals is possible using the cure model from [22].
This is achieved by modelling the latent status (susceptible/non-susceptible) of the individuals
through a variable Y which equals 1 for patients that will eventually experience the event and
0 for patients that will never experience the event. Since the estimation method uses the EM
algorithm, this latent variable can be easily dealt with through the E-step.

We assume that Y is independent of T conditionally on (L,R). The proportional hazard
Cox model for the susceptibles is defined as

λ(t | Y = 1, Z) = λ0(t) exp(βZ). (2)

The cure model specifies the hazard, conditional on Y and Z, to be equal to λ(t | Y,Z) =
Y λ(t | Y = 1, Z). The baseline function λ0 is assumed to be piecewise constant as in Section 2
and the conditional density and survival functions of the susceptibles are respectively noted
f(t | Y = 1, Z) and S(t | Y = 1, Z). If one wants to model the effect of covariates on the
probability of being cured, a logistic link can be used:

p(X) = P[Y = 1 | X] =
exp(γX)

1 + exp(γX)
, (3)

where X is a covariate vector including the intercept and γ is a row parameter vector, both
of dimension dX . The observed data then consist of data = (Li, Ri, δi, Zi, Xi)1≤i≤n while Ti
and Yi are respectively incompletely observed and non observed data. The model parameter
is θ = (a1, . . . , aL, p) in the completely nonparametric context (no covariates X nor Z), θ =
(a1, . . . , aL, β, p) if only the covariate Z is used or θ = (a1, . . . , aL, β, γ) in the full regression
context (with covariates X and Z). In the later case, we introduce the notation pi = P[Yi = 1 |
Xi]. The other situations are encompassed in our modelling approach by setting X = 0 and/or
Z = 0. Note that our cure model is identifiable and does not require additional constraints such
as in [22] where the authors had to impose S(t | Y = 1, Z) to be null for t greater than the last
event time in the context of exact and right-censored data.

Under the cure model with interval-censored and exact observations, the observed likelihood
is now defined as

Lobs
n (θ) =

∏
i not exact

{
pi exp

(
−
∫ Li

0
λ0(t)dte

β0Zi

)(
1− exp

(
−
∫ Ri

Li

λ0(t)dte
β0Zi

))}δi
×
{

(1− pi) + pi exp
(
−
∫ Li

0
λ0(t)dte

β0Zi

)}1−δi ∏
i exact

pif(Ti | Yi = 1, Zi;θ)

and the complete likelihood is defined as: Ln(θ) =
∏n
i=1 p

Yi
i (1− pi)1−Yi{f(Ti | Yi = 1, Zi;θ)}Yi .

The E-step consists of computing the function Q(θ | θold) = E[log(Ln(θ)) | data,θold]. Let
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πoldi = E[Yi | data,θold], we have:

πoldi = δi +
(1− δi)poldS(Li | Yi = 1, Zi,θold)

1− pold + poldS(Li | Yi = 1, Zi,θold)
·

In the case of interval-censored and exact observations,

Q(θ | θold) =
n∑
i=1

{
πoldi log(pi) + (1− πoldi ) log(1− pi)

}
+

∑
i not exact

πoldi

K∑
k=1

{(
ai,k −

k−1∑
j=1

(cj − cj−1)eai,j
)
Aold
k,i − eai,kBold

k,i

}

+
∑
i exact

K∑
k=1

{
Oi,kai,k − exp(ai,k)Ri,k

}
,

where Aold
k,i , B

old
k,i are defined as in the Supplementary Material with the quantity S(· | Zi,θold)

replaced by S(· | Yi = 1, Zi,θold). The terms Oi,k and Ri,k were defined in Section 3.4.
The Q function separates the terms with γ and the terms involving (a1, . . . , aK , β) such

that maximisation of these terms can be performed separately. Let Āπ,oldk =
∑

i π
old
i Aold

k,i ,

B̄π,old
k =

∑
i π

old
i Bold

k,i and π̄old =
∑

i π
old
i . In the nonparametric setting, explicit estimators of

the parameters can be computed at each step of the EM algorithm through the formulas:

p̂ =
π̄old

n
,

exp(âk) =
Āπ,oldk + Ōk

I(k 6= K)
∑K

l=k+1 Ā
π,old
l (ck − ck−1) + B̄π,old

k + R̄k
, k = 1, . . . ,K.

In the general regression context, a Newton-Raphson procedure is implemented separately to
maximise both parts of Q. The first and second order derivatives of Q with respect to γ are
equal to:

∂Q(θ | θold)

∂γ
=

n∑
i=1

Xi

(
πoldi −

exp(γXi)

1 + exp(γXi)

)
,

∂2Q(θ | θold)

∂γ2
= −

n∑
i=1

XiX
t
i

exp(γXi)

(1 + exp(γXi))2
·

Exact expressions of the first and second order derivatives of Q with respect to ak and β are
given in the Supplementary Material. They are expressed as weighted versions with respect
to πoldi of the derivatives obtained in the context where all individuals are susceptibles. As
previously, the block matrix corresponding to the second order derivatives with respect to the
aks of the Hessian is diagonal and inversion of the Hessian matrix is achieved using the Schurr
complement.

4 Estimation procedure using the adaptive ridge method

In this section we present a penalised estimation method to detect the number and location of the
cuts of the baseline hazard, when those are not known in advance. The proposed methodology is
based on the work of [20], [10] and [6] and can be applied to any of the previous scenarios (with
exact observations, with a cure fraction, in a nonparametric setting, in a regression setting)
where the function Q represents the objective function associated with the context under study.
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4.1 A penalised EM algorithm

If the number of cuts is not known in advance, we choose a large grid of cuts (i.e K large) and
we penalise the log-likelihood in the manner of [10], [20] and [6]. This penalisation is designed
to enforce consecutive values of the aks that are close to each other to be equal. It is defined in
the following way:

`pen(θ | θold) = Q(θ | θold)− pen

2

K−1∑
k=1

ŵk(ak+1 − ak)2, (4)

where ŵ = (ŵ1, . . . , ŵK−1) are non-negative weights that will be iteratively updated in order
for the weighted ridge penalty term to approximate the L0 penalty. The pen term is a tuning
parameter that describes the degree of penalisation. Note that the two extreme situations
pen= 0 and pen=∞ respectively correspond to the unpenalised log-likelihood model of Section 3
and to the Cox model with exponential baseline.

Only the maximisation over (a1, . . . , aK) is affected by the penalty. The first and second
order derivatives of `pen with respect to a1, . . . , aK are equal to:

∂`pen(θ | θold)

∂ak
=
∂Q(θ | θold)

∂ak
+ (ŵk−1ak−1 − (ŵk−1 + ŵk)ak + ŵkak+1)pen,

∂2`pen(θ | θold)

∂a2k
=
∂2Q(θ | θold)

∂a2k
− (ŵk−1 + ŵk)pen,

∂2`pen(θ | θold)

∂akak+1
=
∂2`pen(θ | θold)

∂ak+1ak
= ŵkpen,

∂2`pen(θ | θold)

∂akak′
= 0 for k, k′ such that | k − k′ |≥ 2.

The block matrix corresponding to the second order derivatives with respect to the aks is
therefore tridiagonal. For a given value of pen and of the weight vector ŵ, inversion of the
Hessian matrix is performed using the Schurr complement as previously (see the Supplementary
Material) and the Newton-Raphson algorithm is implemented to derive θ̂. Once the Newton-
Raphson algorithm has reached convergence, the weights are updated at the lth step from the
equation

ŵ
(l)
k =

(
(â

(l)
k+1 − â

(l)
k )2 + ε2

)−1
, (5)

for k = 1, . . . ,K−1 with ε = 10−5 (recommended value from [10]) and where the â
(l)
k ’s represent

the estimates of the ak’s obtained through the Newton-Raphson algorithm. This form of weights
is motivated by the fact that wk(ak+1 − ak)2 is close to 0 when | ak+1 − ak |< ε and close to 1
when | ak+1−ak |> ε. Hence the penalty term tends to approximate the L0 norm. The weights

are initialized by ŵ
(0)
k = 1, which gives the standard ridge estimate of a.

Finally, for a given value of pen, once the adaptive ridge algorithm has reached convergence,
a set of cuts is found for the âk’s verifying ŵk(âk+1− âk)2 > 0.99. This hard thresholding allows
to provide a sparse collection of cuts. The non-penalised log-likelihood Q is then maximised
using this set of cuts and the final maximum likelihood estimate is derived using the results of
Section 3. It is important to stress that the penalised likelihood is used only to select a set of
cuts. Reimplementing the non-penalised log-likelihood Q in the final step enables to reduce the
bias classically induced by penalised maximisation techniques.
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4.2 Choice of the penalty term

A Bayesian Information Criterion (BIC) is introduced in order to choose the penalty term. As
explained in the previous section, for each penalty value the penalised EM likelihood (4) selects
a set of cuts. For a selected set of cuts we denote by m the total number of parameters to be
estimated and by θ̂m the corresponding non-penalised estimated model parameter obtained by
maximisation of the Q function. The BIC is then defined as: BIC(m) = −2 log(Lobs

n (θ̂m)) +
m log(n).

Note that the BIC is expressed here in terms of selected models. Since different penalty
values can yield the same selection of cuts, the BIC needs only to be computed for all different
selected models (and not for all different penalties). As an illustration of the model selection
procedure, a full regularisation path is displayed in Section A.4 of the Supplementary Material
on a simulated data sample, where for each penalty value correspond a selection of cuts and
parameter estimates. The final set of cuts along with its estimator θ̂m̂ is chosen such that
BIC(m̂) is minimal.

5 Asymptotic results

Theoretical properties of the derived estimator are presented in this section for interval-censored
observations which can also include exact data. Theoretical results for the cure model are
omitted for the sake of presentation. Two main results are established: it is first shown that the
penalised estimator asymptotically detects the true support of the baseline, in the case where
the true baseline is piecewise constant and the grid used to implement the estimator contains the
true cuts of the baseline hasard. In the second step of the algorithm, using the cuts obtained from
the penalised estimator, the non-penalised estimator from Section 3 is implemented. It is then
shown that the resulting estimator is asymptotically normal and unbiased. The limiting variance
is optimal in the sense that it is equal to the variance one would obtain from implementing the
non-penalised estimator with the true cuts.

In the presence of interval-censored and exact data, the observed likelihood is equal to:

Lobs
n (θ) =

∏
i not exact

(S(Li | Zi,θ)− S(Ri | Zi,θ))
∏

i exact

f(Ti | Zi,θ),

with the slight abuse of notation S(Ri | Zi,θ) = 0 if Ri =∞ (for a right-censored observation).
We assume that the EM procedure converges which entails that the penalised estimator that
maximises Equation (4) also verifies

θ̂ = (â1, . . . , âK , β̂) = arg max
θ∈RK+dZ

{
log(Lobs

n (θ))− pen

2

K−1∑
k=1

ŵ
(1)
k (ak+1 − ak)2

}
. (6)

In the above formula, we consider only one iteration of the adaptive ridge procedure (5) where
â(1) is supposed to be a consistent estimator (for example the unpenalised estimator or the ridge
estimator). We now define a true parameter θ∗ = (a∗1, . . . , a

∗
K∗ , β

∗) which is assumed to be in

a compact set and a true baseline hazard function λ∗0(t) =
∑K∗

k=1 I(c∗k−1 < t ≤ c∗k) exp(a∗k) with
true cuts A∗ = {c∗1, . . . , c∗K∗}. Solving (6) provides, after detecting the consecutive values of âk
that are equal, an estimated set of cuts denoted An = {ĉ1, . . . , ĉK̂}. Note that the size of An and
A∗ might be different and typically smaller than K. The unpenalised estimator obtained when

using An is noted ˆ̂θAn = (ˆ̂a1,An , . . . ,
ˆ̂aK̂,An

,
ˆ̂
βAn). We also define

ˆ̂
λ0,An(t) =

∑K̂
k=1 I(ĉk−1 < t ≤

ĉk) exp(ˆ̂ak,An). In order to state our theorem we first introduce

h∗θ(Li, Ri, Zi) = I(Li 6= Ri) log(S∗(Li | Zi,θ)− S∗(Ri | Zi,θ)) + I(Li = Ri) log(f∗(Ti | Zi,θ))
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and the matrices Σ = −E[∇2
θh
∗
θ(Li, Ri, Zi))|θ=θ∗ ] of dimension (K∗ + dZ) × (K∗ + dZ) and

Σβ∗ = {Σi,j : K∗ + 1 ≤ i ≤ K∗ + dZ ,K
∗ + 1 ≤ j ≤ K∗ + dZ} . In the formulas, S∗ and

f∗ represent the survival and density functions computed using the true set of cuts for a θ of
dimension K∗ + dZ . Finally we let τ represents the endpoint of the study.

Theorem 5.1 Assume that A∗ ⊂ {c1, . . . , cK}, P[{R > τ,R <∞}∪{L > τ}] > 0, Z is almost
surely bounded and Σ is a non-singular matrix. Then, if pen/

√
n→ 0 as n→∞ we have:

1. limn→∞ P[An = A∗] = 1.

2. for all t ∈ [0, τ ],
√
n(

ˆ̂
λ0,An(t)−λ∗0(t)) converges in distribution toward a centered Gaussian

variable with variance equal to
∑K∗

k=1 I(c∗k−1 < t ≤ c∗k) exp(a∗k)(Σk,k)
−1.

3.
√
n(

ˆ̂
βAn−β∗) converges in distribution toward a centered Gaussian variable with variance

equal to (Σβ∗)
−1.

Two important remarks can be made from this theorem. Firstly, the asymptotic variances
in 2. and 3. are identical to the variances obtained in the parametric piecewise constant hazard
model using the true cuts. Secondly, these two variances can be consistently estimated by

−n×
K̂∑
k=1

I(ĉk−1 < t ≤ ĉk) exp(ˆ̂ak,An)(∂2 log(Lobs
An

( ˆ̂θAn))/∂a2k)
−1,

and

−n(∇2
β log(Lobs

An
( ˆ̂θAn)))−1,

where Lobs
An

( ˆ̂θAn) represents the observed likelihood evaluated at the estimated parameter ˆ̂θAn

with the estimated cuts. In other words, this theorem states that inference on the model
parameters can be achieved after selection of the cuts of the baseline function by considering
these cuts as fixed parameters. The proof of the theorem is inspired from [31] and is provided
in the Supplementary Materials.

A direct method for deriving confidence intervals or statistical tests can therefore be based
on the normal approximation of the model parameter after computing the Hessian matrix of the
observed log-likelihood. However since the calculation of the Hessian matrix is tedious under
the piecewise constant hazard model, we prefer to use a likelihood ratio test approach. This
approach and the explicit expression of the Hessian are detailed in the Supplementary Mate-
rial. See also [30] for more details about the likelihood ratio test approach for constructing
confidence intervals. Finally, note that bootstrap methods can also be implemented to derive
confidence intervals. This technique is particularly relevant when the interest lies in the esti-
mation of the survival function in a non-parametric or regression context. In order to derive
the asymptotic distribution of such functional one would need to use the delta-method which
may result in complicated formula for the variance estimator. The bootstrap alternative avoids
these technicalities.

6 Simulation study

In this section we study the performance of the proposed estimators on simulated data. In what
follows, two models including two scenarios with exact, left, interval-censored and right-censored
data are presented. More scenarios considering the inclusion of a cure fraction can be found in
the Supplementary Material.

We consider the Cox regression setting of Equation (1) where the aim is to correctly estimate
the regression coefficient β and the baseline function λ0. We set the baseline as a piecewise
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constant function with three cuts in Model M1 and as a Weibull function in Model M2 in the
following way:

M1: λ0(t) =
(

0.5 I(0 < t ≤ 20) + I(20 < t ≤ 40) + 2 I(40 < t ≤ 50) + 4 I(50 < t)
)
·10−2

M2: λ0(t) =
µ

κ

(µ
κ

)(µ−1)
, µ = 8, κ = 50.

In both models, the covariate vector Z is of dimension dZ = 2 with the first component sim-
ulated as a Bernoulli variable with parameter 0.6 and the second component is independently
simulated as a uniform variable with parameters [0, 2]. The regression parameter is equal to
β = (log(2), log(0.8)). The values of Li and Ri were determined through a visit process defined
in the following way. Let U denote the uniform distribution. Two visits were simulated such
that the first one V1 ∼ U [0, 60] and the other one V2 = V1 + U [0, 120]. Then the observations
for which Ti < V1 correspond to left-censored observations with Li = 0 and Ri = V1, the
observations for which Ti > V2 correspond to right-censored observations with Li = V2 and
Ri = ∞, and the observations for which V1 < Ti < V2 correspond to strictly interval-censored
observations with Li = V1 and Ri = V2. This simulation setting corresponds to Scenario S1 and
gave a proportion of 25% of left-censored observations, 52% of interval-censored observations
and 23% of right-censored observations in Model M1 and a proportion of 2% of left-censored
observations, 76% of interval-censored observations and 22% of right-censored observations in
Model M2. In Scenario S2, 18% of exact observations were first sampled and then the same
simulation scheme for the visit process was used. The percentage of right-censored observations
remains identical under this scenario for both models.

Our adaptive ridge estimator was constructed from a grid of cuts ranging from c0 = 10 to
c17 = 90, with all cuts equally spaced of size 5. The set of penalty terms was taken, on the log
scale, as the set of 200 equally spaced values ranging from log(0.1) to log(10 000). For the EM
algorithm, the ak and β parameters were initialised to 0. As described in Section 4, the BIC was
used to find an estimated set of cuts and the non penalised estimator was reimplemented with
this set of cuts in order to derive our final estimator. This estimator was compared with the
midpoint estimator and the ICsurv estimator from [27]. The midpoint estimator consists of re-
placing the interval-censored observations by their midpoint (Li+Ri)/2. The data then consist
of exact and right-censored observations and can be dealt with by implementing the standard
Cox regression estimators. The ICsurv estimator models the cumulative baseline function us-
ing monotone splines and uses a two-stage data augmentation method to perform estimation
through the EM algorithm. This estimator is implemented using a more recent version of the
fast.PH.ICsurv.EM function provided from the maintainer of the ICsurv package. Following
the guidelines from the maintainer of the ICsurv package this estimator was computed using
basis splines having degree 3 with 5 interior knots placed evenly across the range of endpoints of
the observed intervals. The β parameters and the spline coefficients were respectively initialised
to 0 and 1. A very fine grid of time was used for the calculation of the cumulative baseline
hazard from time 0 to time 200 with a step equal to 0.1. This estimator cannot include exact
observations and is computed only for the Scenario S1 in Models M1 and M2.

A total of M = 500 replications were implemented and the bias and the empirical standard
error (SE) of β̂ were computed for each estimator. Confidence intervals at the 95% level were
constructed for β̂ using the likelihood ratio test approach, as described in the Supplementary
Material (see also Section 5), and the coverage probability (CP) was reported. In order to
assess the quality of estimation of λ0, the baseline survival function S0(t) = exp(−

∫ t
0 λ0(u)du)

was also estimated with each estimator. Then, as a measure of precision, the Integrated Mean
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Squared Error (MISE) was decomposed as MISE(Ŝ0) = IBias2(Ŝ0) + IVar(Ŝ0), where

IBias2(Ŝ0) =

∫ 60

0

(
1

M

M∑
m=1

Ŝ
(m)
0 (u)− S0(u)

)2

du,

IVar(Ŝ0) =
1

M

M∑
m=1

∫ 60

0

(
Ŝ
(m)
0 (u)− 1

M

M∑
m′=1

Ŝ
(m′)
0 (u)

)2

du.

The Ŝ
(m)
0 , m = 1, . . . ,M , represent the estimates for each replication. Finally, the total variation

between λ̂0 and λ0 was also computed for our adaptive ridge estimator. For a given estimate

λ̂
(m)
0 , the quantity TV(m)(λ̂

(m)
0 ) =

∑K
k=1(ck − ck−1) | exp(âk) − exp(ak) | was calculated in

Model M1 and the average over all estimates TV(λ̂0) =
∑

m TV(m)(λ̂
(m)
0 )/M was reported.

The results are presented in Tables 1, 2 for Model M1 and Tables 3, 4 for Model M2. Results
on the performance of cuts detection are displayed in Tables 5 and 6. Three different sample
sizes (n = 200, 400, 1 000) were considered in all models and scenarios, for the midpoint, the
ICsurv and the adaptive ridge estimators.

From the simulation results, it is seen that the midpoint estimate has a lower variance
than our adaptive ridge estimator both for β̂ and Ŝ0. However, the midpoint estimator is
systematically biased and this bias does not get smaller as the sample size increases. On the
other hand, our estimator always has a smaller bias for all scenarios and models and both the
bias and the variance decrease as the sample size increases. For example, in Scenario S1, Model
M1, for n = 400, which corresponds to the sample size of the real data analysis of Section 7
and to similar proportions of left, interval and right censoring, our estimator exhibits a bias for
β = (log(2), log(0.8)) that is 15 and 4 times smaller than the bias from the midpoint estimator.
For the estimation of S0 the bias of our estimator is more than 40 times smaller than the
midpoint estimator. The ICsurv estimator shows similar performance as our adaptive ridge
estimator in Model M1. However in Model M2, our estimator has a lower bias than ICsurv
but a bigger variance, and a slightly bigger MSE. In Scenarios S2 the effect of adding exact
observations is seen to decrease the bias and variance of our estimator. For n = 400 in Model
M1, Scenario S2 the bias for our estimator of β is divided by 4 and 23 and the bias for our
estimator of S0 is divided by 3.

Finally, the likelihood ratio test approach seems to provide adequate coverage probabilities
for β especially for n = 400 and n = 1 000, in all scenarios and models. Tables 5 and 6 show
that, in the piecewise constant baseline scenario (Model M1), a majority of one cut is found
for n = 200 and n = 400, most of the time in the set [35, 55] and a majority of two cuts are
found for n = 1 000, with 44% of chances to detect at least one cut in the set [10, 30] and 96%
of chances to detect at least one cut in the set [10, 30]. Due to the wide range of the two visits
variables V1 and V2, the algorithm is able at best to detect two cuts under this scenario, and
miss most of the time one cut in the set [35, 55]. More simulations were conducted: scenarios
including a cure fraction can be found in the Supplementary Material along with a discussion
on computational complexity.

7 Ankylosis complications for replanted teeth

The method is illustrated on a dental dataset. 322 patients with 400 avulsed and replanted
permanent teeth were followed-up prospectively in the period from 1965 to 1988 at the university
hospital in Copenhagen, Denmark. The following replantation procedure was used: the avulsed
tooth was placed in saline as soon as the patient was received at the emergency ward. If the
tooth was obviously contaminated, it was cleansed with gauze soaked in saline or rinsed with
a flow of saline from a syringe. The tooth was replanted in its socket by digital pressure. The
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patients were then examined at intermittent visits to the dentist. In this study, we focused on a
complication called ankylosis characterized by the fusion of the tooth to the bone such that the
variable of interest T is the time from replantation of the tooth to ankylosis. This complication
may occur if the cells on the root surface is damaged in which case, healing of the periodontal
ligament surrounding the tooth will be impaired, leading to local ingrowth of bone. Ankylosis
cannot be arrested and gradually the root of the tooth will be replaced by bone which will
eventually lead to tooth loss. The data are described in great details in [2] and were analysed
using our adaptive ridge method in [15].

A total of 28% of the data were left censored, 35.75% were interval censored and 36.25%
were right censored. Four covariates were included in the study: the stage of root formation
(72.5% of mature teeth, 27.5% of immature teeth), the length of extra-alveolar storage (mean
time is 30.9 minutes), the type of storage media (85.25% physiologic, 14.75% non physiologic)
and the age of the patient (the mean age for mature teeth is 16.81 years). There is no need for
a cure fraction in this analysis since all different models (non-parametric or regression models)
estimated the cure fraction to 0%. The adaptive ridge method found four cuts for the baseline
hazard at time points 100, 500, 800 and 900 where the initial grid search was composed of
10 spaced time points from 0 to 200 and then of 100 spaced time points from 200 to 2 000
(Kmax = 40). The initial grid search was motivated by the data: for 71% of the left and
interval-censored data, the right endpoint is lower than 200.

Non-parametric survival estimates were first computed, one for the whole population and
two for each subgroup defined by the stage of root formation (see Figure 1). Confidence intervals
were also computed using the boostrap method with 500 replications. These plots illustrate an
interesting feature of the adaptive ridge procedure: by selecting a parsimonious set of cuts,
the method highlights the different regions of time where the risk of failure varies. There is
in particular a very high risk of ankylosis before 100 days as shown by the very steep survival
curve on this time interval. On the global survival curve, the risk of developing ankylosis (one
minus the survival function) before 100 days is estimated to 48.35% [43.39%; 53.67%]. Then the
slope of the survival curve decreases from 100 days to 500 days, with a risk to develop ankylosis
before 500 days estimated to 59.94% [54.96%; 64.57%]. The risk of ankylosis after 900 days is
almost null (as shown by the plateau of the survival curve) suggesting that if a patient has not
yet developed ankylosis after 900 days he/she is almost no longer at risk for this complication.

When looking at the two subgroups defined by stage of root formation we can see that the
risk of ankylosis is much higher in the mature group than in the immature group. This is a
very interesting result as it confirms the finding from [3] where periodontal ligament healing
was seen to be less frequent with advanced stages of root development. From our analysis,
it is seen that the risk is in particular higher in the interval [100, 500] for the mature group
than for the immature group, with ankylosis coming mostly from the mature group in this time
range. For the immature group, the risk of developing ankylosis before 100 days is estimated
to 35.54% [26.85%; 45.13%] and to 52.84% [46.26%; 59.03%] for the mature teeth. Then the
slope of the survival curve decreases from 100 days to 500 days, with a risk to develop ankylosis
before 500 days estimated to 38.74% [28.97%; 47.62%] for the immature teeth and to 67.92%
[62.36%; 73.31%] for the mature teeth. The risk gets very low after 500 days for all groups.

Finally a Cox model was implemented with all the covariates included. Since age shows
little variation for immature teeth, this last variable was only included in interaction with the
stage of root formation such that the baseline value corresponds to immature teeth and the
covariate is defined as age greater than 20 years for mature teeth only. The results for the
effects of the covariates are shown in Table 7. Statistical tests and confidence intervals for each
variable were implemented using the log-ratio statistic test as explained in the Supplementary
Material (see also Section 5). It can be seen that the stage of root formation is highly significant
with a two-fold increased risk for mature teeth to develop ankylosis. The storage time is also
highly significant with a 1.23 increase of risk per hour. The type of storage media seems to
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have no effect on ankylosis and age is not significant even at the 10% level. The baseline hazard
values along with their 95% confidence intervals are also displayed in Table 8. This hazard
corresponds to the risk of immature teeth with non-physiologic type of storage and a storage
time of 20 minutes. We can see how the risk is much higher before 100 days than at any other
time period. Prediction curves for any specific individual can be plotted using these values.

8 Conclusion

The estimation method proposed in this paper is very general and allows to deal with a wide
range of situations. We first introduced the method for the mixed case of left-censored, interval-
censored and right-censored data and we then directly extended it to consider the inclusion of
exact observations and a cure fraction. We showed that treating the true event times as unob-
served and using the EM algorithm to perform estimation resulted in a diagonal block matrix
of the baseline hazard in the piecewise constant Cox model. This is a very interesting feature of
our approach since the standard estimation method for this model (see for instance [21]) results
in a full rank Hessian matrix, which can pose some serious computational problems for a mod-
erate number of baseline cuts. Moreover, this allowed us to use the L0 penalisation technique
developed in [10] and [20] which was also implemented for exact and right censored data in [6].
Starting from a large grid of baseline cuts this penalisation technique forces two similar adja-
cent values to be equal. This results in a very flexible model since the location and number of
cuts of the baseline are directly determined from the data. As compared to the ICsurv method
from [27], the EM algorithm is readily applicable without need of a data augmentation step.
Even though our cumulative baseline hazard does not result in a smooth function as compared
to their spline approach, our method was shown to perform greatly on simulated data and even
to outperform the method from [27] especially in terms of bias of the estimated parameters.
It should be mentioned that their method could probably be improved by using an automatic
procedure to choose the location and number of knots from the data. However, this is a com-
plicated problem and there is currently no available method that could be directly applied on
this estimator (see [26] for a review on selection methods of knots for spline estimators). On
the dental dataset we also showed the interesting feature of the adaptive ridge procedure: by
detecting the different time regions where the hazard for ankylosis changes, it revealed a very
high risk of failure from replantation of the tooth until 100 days after replantation and a risk
near to zero after 900 days. Finally, theoretical results were also provided for the adaptive ridge
estimator. They show that the asymptotic distribution of the parameters can be determined
by considering the estimated set of cuts as fixed and by using standard asymptotic likelihood
theory for the piecewise constant hazard model.

By use of a logit link we developed the general cure model introduced by [22] and [19], for
interval-censored data. From this model the effect of covariates on the odds of being cured and
on the hazard risk of the susceptibles can be assessed. Interestingly, the combination of the
piecewise constant baseline hazard and the adaptive ridge procedure produce a very flexible
model in this context and avoids the use of arbitrary constraints such as in [22] where the
authors had to require that the conditional survival function is set to zero beyond the last event
time.

Another type of heterogeneity could be modelled with the use of frailty models (see [23]
for instance). The EM approach for frailty models could then be used as a direct extension
of our estimation method. However, it would require to compute the conditional value of the
frailty variable given the observed data, a work that is left to future research. Similarly the
standard mixture problem where one assumes the population to be composed of two (or more)
subgroups with different hazards could be considered (see for instance [7] for this model in a
high dimensional setting). The use of the piecewise constant baseline hazard would be crucial
for this problem as the model is only identifiable for parametric baselines. The implementation
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of the adaptive ridge procedure would then result in a very flexible model for this problem.
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[7] S. Bussy, A. Guilloux, S. Gäıffas, and A.-S. Jannot. C-mix: A high-dimensional mixture
model for censored durations, with applications to genetic data. Statistical methods in
medical research, 2017.

[8] B. Carstensen. Regression models for interval censored survival data: application to hiv
infection in danish homosexual men. Statistics in Medicine, 15(20):2177–2189, 1996.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society. Series B (methodological),
pages 1–38, 1977.

[10] F. Frommlet and G. Nuel. An adaptive ridge procedure for l0 regularization. PLoS ONE,
11(2), 2016.

[11] P. Groeneboom and J. A. Wellner. Information bounds and nonparametric maximum
likelihood estimation, volume 19. Springer Science and Business Media, 1992.

[12] T. Hu and L. Xiang. Partially linear transformation cure models for interval-censored data.
Computational Statistics & Data Analysis, 93:257–269, 2016.

[13] J. Huang and J. A. Wellner. Efficient estimation for the proportional hazards model with
“case 2” interval censoring. Technical Report 290, Department of Statistics, University of
Washington, Seattle, 1995.

[14] G. Jongbloed. The iterative convex minorant algorithm for nonparametric estimation.
Journal of Computational and Graphical Statistics, 7(3):310–321, 1998.

[15] E. Lauridsen, J. O. Andreasen, O. Bouaziz, and L. Andersson. Risk of ankylosis of 400
avulsed and replanted human teeth in relation to length of dry storage. a re-evaluation of
a long-term clinical study. Dental Traumatology, 2019.

[16] J. Lindsey. A study of interval censoring in parametric regression models. Lifetime data
analysis, 4(4):329–354, 1998.

16



[17] H. Liu and Y. Shen. A semiparametric regression cure model for interval-censored data.
Journal of the American Statistical Association, 104(487):1168–1178, 2009.

[18] T. A. Louis. Finding the observed information matrix when using the em algorithm. Journal
of the Royal Statistical Society. Series B (Methodological), pages 226–233, 1982.

[19] Y. Peng and K. B. Dear. A nonparametric mixture model for cure rate estimation. Bio-
metrics, 56(1):237–243, 2000.

[20] R. C. Rippe, J. J. Meulman, and P. H. Eilers. Visualization of genomic changes by seg-
mented smoothing using an l0 penalty. PloS one, 7(6), 2012.

[21] J. Sun. The statistical analysis of interval-censored failure time data. Springer Science and
Business Media, 2007.

[22] J. P. Sy and J. M. Taylor. Estimation in a cox proportional hazards cure model. Biometrics,
56(1):227–236, 2000.

[23] T. M. Therneau and P. M. Grambsch. Modeling survival data: extending the Cox model.
Statistics for Biology and Health. Springer-Verlag, New York, 2000.

[24] B. W. Turnbull. The empirical distribution function with arbitrarily grouped, censored
and truncated data. Journal of the Royal Statistical Society. Series B (Methodological),
pages 290–295, 1976.

[25] R. Varadhan and C. Roland. Simple and globally convergent methods for accelerating the
convergence of any em algorithm. Scandinavian Journal of Statistics, 35(2):335–353, 2008.

[26] M. P. Wand. A comparison of regression spline smoothing procedures. Computational
Statistics, 15(4):443–462, 2000.

[27] L. Wang, C. S. McMahan, M. G. Hudgens, and Z. P. Qureshi. A flexible, computation-
ally efficient method for fitting the proportional hazards model to interval-censored data.
Biometrics, 72(1):222–231, 2016.

[28] D. Zeng, L. Mao, and D. Lin. Maximum likelihood estimation for semiparametric trans-
formation models with interval-censored data. Biometrika, 103(2):253–271, 2016.

[29] Z. Zhang, L. Sun, X. Zhao, and J. Sun. Regression analysis of interval-censored failure
time data with linear transformation models. Canadian Journal of Statistics, 33(1):61–70,
2005.

[30] M. Zhou. Empirical likelihood method in survival analysis. Chapman and Hall/CRC, 2015.

[31] H. Zou. The adaptive lasso and its oracle properties. Journal of the American statistical
association, 101(476):1418–1429, 2006.

17



Table 1: Simulation results for the estimation of β in Model M1 (piecewise constant baseline hazard),
for Scenarios S1 and S2 with 100% of susceptible individuals. S1: no exact data, 25% of left-censoring,
52% of interval-censoring, 23% of right-censoring. S2: 18% of exact data, 19% of left-censoring, 40% of
interval-censoring, 23% of right-censoring.

Adaptive Ridge estimate Midpoint estimate ICsurv estimate
n Bias(β̂) SE(β̂) MSE(β̂) CP(β̂) Bias(β̂) SE(β̂) MSE(β̂) Bias(β̂) SE(β̂) MSE(β̂)

S1 200 0.032 0.235 0.056 0.942 −0.174 0.184 0.064 0.038 0.229 0.054
−0.010 0.181 0.033 0.924 0.057 0.141 0.023 −0.017 0.184 0.034

400 0.012 0.166 0.028 0.946 −0.177 0.127 0.047 0.016 0.160 0.026
−0.014 0.120 0.015 0.938 0.050 0.096 0.012 −0.013 0.121 0.015

1 000 0.007 0.099 0.010 0.948 −0.171 0.075 0.035 0.007 0.096 0.009
−0.003 0.075 0.006 0.946 0.056 0.062 0.007 −0.003 0.075 0.006

S2 200 0.033 0.213 0.047 0.945 −0.128 0.181 0.049
−0.006 0.169 0.029 0.954 0.045 0.147 0.024

400 0.003 0.153 0.023 0.947 −0.138 0.128 0.035
−0.001 0.119 0.014 0.952 0.046 0.104 0.013

1 000 0.006 0.092 0.009 0.948 −0.136 0.078 0.025
0.002 0.071 0.005 0.949 0.051 0.062 0.006

Table 2: Simulation results for the estimation of S0 in Scenarios S1 and S2 in Model M1 (piecewise
constant baseline hazard), with 100% of susceptible individuals. S1: no exact data, 25% of left-censoring,
52% of interval-censoring, 23% of right-censoring. S2: 18% of exact data, 19% of left-censoring, 40% of
interval-censoring, 23% of right-censoring.

Adaptive Ridge estimate Midpoint estimate ICsurv estimate
n IBias2(Ŝ0) IVar(Ŝ0) TV(λ̂0) IBias2(Ŝ0) IVar(Ŝ0) IBias2(Ŝ0) IVar(Ŝ0)

S1 200 0.002 0.266 0.784 0.124 0.122 0.003 0.438
400 0.003 0.138 0.600 0.124 0.061 0.002 0.213

1 000 0.002 0.059 0.416 0.126 0.023 0.001 0.077

S2 200 0.001 0.196 0.646 0.074 0.114
400 0.001 0.103 0.484 0.074 0.060

1 000 0.000 0.038 0.277 0.075 0.022

Table 3: Simulation results for the estimation of β in Model M2 (Weibull baseline hazard), for Scenarios
S1 and S2 with 100% of susceptible individuals. S1: no exact data, 25% of left-censoring, 52% of interval-
censoring, 23% of right-censoring. S2: 18% of exact data, 19% of left-censoring, 40% of interval-censoring,
23% of right-censoring.

Adaptive Ridge estimate Midpoint estimate ICsurv estimate
n Bias(β̂) SE(β̂) MSE(β̂) CP(β̂) Bias(β̂) SE(β̂) MSE(β̂) Bias(β̂) SE(β̂) MSE(β̂)

S1 200 0.027 0.572 0.328 0.916 −0.596 0.168 0.383 −0.267 0.307 0.166
−0.032 0.516 0.267 0.922 0.184 0.146 0.055 0.091 0.258 0.075

400 0.022 0.412 0.171 0.930 −0.609 0.116 0.384 −0.263 0.234 0.124
−0.021 0.298 0.089 0.934 0.193 0.104 0.048 0.087 0.174 0.038

1 000 0.021 0.206 0.043 0.948 −0.611 0.075 0.379 −0.251 0.158 0.088
0.009 0.170 0.029 0.954 0.198 0.062 0.043 0.078 0.112 0.018

S2 200 −0.085 0.295 0.094 0.936 −0.581 0.157 0.362
0.012 0.239 0.057 0.941 0.192 0.149 0.059

400 −0.066 0.217 0.052 0.942 −0.582 0.115 0.352
0.015 0.159 0.025 0.950 0.181 0.096 0.042

1 000 −0.048 0.134 0.020 0.949 −0.587 0.072 0.349
−0.004 0.103 0.011 0.950 0.190 0.061 0.040
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Table 4: Simulation results for the estimation of S0 in Scenarios S1 and S2 in Model M2 (Weibull
baseline hazard), with 100% of susceptible individuals. S1: no exact data, 25% of left-censoring, 52%
of interval-censoring, 23% of right-censoring. S2: 18% of exact data, 19% of left-censoring, 40% of
interval-censoring, 23% of right-censoring.

Adaptive Ridge estimate Midpoint estimate ICsurv estimate
n IBias2(Ŝ0) IVar(Ŝ0) IBias2(Ŝ0) IVar(Ŝ0) IBias2(Ŝ0) IVar(Ŝ0)

S1 200 0.026 0.647 1.857 0.077 0.082 0.229
400 0.005 0.391 1.856 0.043 0.069 0.148

1 000 0.005 0.169 1.931 0.015 0.050 0.060

S2 200 0.016 0.196 1.033 0.087
400 0.010 0.104 1.046 0.040

1 000 0.003 0.044 1.056 0.017

Table 5: Proportions of the number of cuts found by the adaptive ridge algorithm in Scenario S1 Model
M1 (piecewise constant baseline hazard). The true number of cuts is 3.

Number Proportions found for:
of cuts n = 200 n = 400 n = 1 000

1 0.690 0.598 0.400
2 0.288 0.358 0.560
3 0.020 0.036 0.038
4 0.002 0.006 0.002

Table 6: Probabilities that a cut value has been selected by the adaptive ridge algorithm in the sets
[10, 30] and [35, 55] in Scenario S1 Model M1 (piecewise constant baseline hazard). The true cuts are
located at positions 20, 40 and 50.

n = 200 n = 400 n = 1 000

Number 0 0.718 0.710 0.560
of cuts 1 0.280 0.286 0.434

in [10, 30] 2 0.020 0.004 0.006

Number 0 0.198 0.094 0.040
of cuts 1 0.782 0.844 0.860

in [35, 55] 2 0.020 0.062 0.100
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Figure 1: On the left panel, estimate of the survival function of time to ankylosis for the whole
population. On the right panel, estimates of the survival function for the immature teeth (solid
line) and for the mature teeth (dotted lines). Confidence intervals are plotted along the curves
in shaded areas using the bootstrap approach.
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Covariates HR 95% CI p-value

Mature 2.00 [1.74; 2.29] 1.89× 10−5

Storage time (hours) 1.23 [1.11; 1.34] 0.0017
Physiologic storage 0.93 [0.81; 1.06] 0.6980

Age>20 (mature teeth) 1.27 [0.99; 1.61] 0.1272

Table 7: Regression modelling of time to ankylosis on the dental dataset (HR: Hazard Ratio,
CI: Confidence Interval). The adaptive ridge found four cuts for the baseline hazard at times
100, 500, 800 and 900.

Cuts exp(âk)× 103 95% CI× 103

(0, 100] 3.71 [3.19; 4.28]
(100, 500] 0.39 [0.28; 0.52]
(500, 800] 0.00 [0.00; 0.00]
(800, 900] 0.62 [0.31; 1.07]
(900,+∞) 0.02 [0.01; 0.04]

Table 8: Baseline hazard from the regression modelling of time to ankylosis on the dental
dataset (CI: Confidence Interval). This hazard corresponds to the risk of immature teeth with
non-physiologic type of storage and a storage time of 20 minutes.
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Supplementary Material

A.1 Expressions of the statistics Aold
k,i and Bold

k,i

For k = 1, . . . ,K, i = 1, . . . , n, define

Aold
k,i =

exp
(
ea

old
i,k ck−1 + aoldi,k −

∑k−1
j=1 e

aoldi,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θold)− S(Ri | Zi,θold)

∫ ck∧Ri

ck−1∨Li

exp
(
− ea

old
i,k t
)
dt

= exp
(
− ea

old
i,k ck−1 ∨ Li

)(
1− exp

(
− ea

old
i,k (ck ∧Ri − ck−1 ∨ Li)

))
×

exp
(
ea

old
i,k ck−1 −

∑k−1
j=1 e

aoldi,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θold)− S(Ri | Zi,θold)

and

Bold
k,i =

exp
(
ea

old
i,k ck−1 + aoldi,k −

∑k−1
j=1 e

aoldi,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θold)− S(Ri | Zi,θold)

∫ ck∧Ri

ck−1∨Li

(t− ck−1) exp(−ea
old
i,k t)dt

Bold
k,i =

{(
exp(−aoldi,k ) + ck−1 ∨ Li − ck−1

)
exp(−ea

old
i,k ck−1 ∨ Li)

−
(

exp(−aoldi,k ) + ck ∧Ri − ck−1
)

exp(−ea
old
i,k ck ∧Ri)

}
×

exp
(
ea

old
i,k ck−1 −

∑k−1
j=1 e

aoldi,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θold)− S(Ri | Zi,θold)
·

The function Q is then expressed as a function of these two statistics (see Section 3 of the
main paper).

A.2 The Schurr complement

The Schurr complement is used to compute the inverse of the Hessian matrix of Q, in the case of
fixed cuts (Section 3 of the main paper) and of `pen, for the adaptive ridge estimator (Section 4 of
the main paper). It makes use of the special structure of the block matrix corresponding to the
second order derivatives with respect to the aks which is either diagonal (for Q) or tri-diagonal
(for `pen).

Let I(a, β) be minus the Hessian matrix of Q or `pen for the maximisation problem with
respect to a1, . . . , aL and β1, . . . , βdZ . Let A be of dimension K ×K, B of dimension K × dZ
and C be of dimension dZ × dZ such that

I(a, β) =

(
A B
Bt C

)
Let U(a, β) be the score vector of Q or `pen and b1 be the column vector of dimension K, b2 be
the column vector of dimension dZ such that U(a, β) = (b1, b2)

t. Using the Schurr complement,
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we have

I(a, β)(−1)U(a, β) =

(
A−1b1 −A−1B(C −BtA−1B)−1(b2 −BtA−1b1)

(C −BtA−1B)−1(b2 −BtA−1b1)

)
.

For the inversion of the Hessian matrix of Q and `pen, the K×K matrix A is either diagonal (for
Q) or a band matrix of bandwidth equal to 1 (for `pen). Its inverse can be efficiently computed
using a fast C++ implementation of the LDL algorithm. This is achieved in linear complexity
using the R bandsolve package. As a result, the total complexity for the computation of
I(a, β)(−1)U(a, β) is of order O(K) in the case K >> dZ .

A.3 Score vector and Hessian matrix for the function Q when
including exact observations and a cure fraction

In the presence of exact observations and a cure fraction, the score vector and the Hessian
matrix are given from the following formulas:

∂Q(θ | θold)

∂ak
=

∑
i not exact

πoldi

{
Aold
k,i − (ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi − eakBold
k,i e

βZi

}

+
∑
i exact

{
Oi,k − exp(ak + βZi)Ri,k

}
,

∂Q(θ | θold)

∂β
=

∑
i not exact

πoldi Zi

K∑
l=1

Aold
l,i −

{
l−1∑
j=1

(cj − cj−1)eajAold
l,i e

βZi + ealBold
l,i e

βZi

}
+
∑
i exact

Zi

K∑
l=1

{
Oi,l − exp(al + βZi)Ri,l

}
,

∂2Q(θ | θold)

∂a2k
= −

∑
i not exact

πoldi

{
(ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi + eakBold
k,i e

βZi

}
−
∑
i exact

exp(ak + βZi)Ri,k,

∂2Q(θ | θold)

∂β2
= −

∑
i not exact

πoldi ZiZ
t
i

K∑
l=1

 l−1∑
j=1

(cj − cj−1)eajAold
l,i e

βZi + ealBold
l,i e

βZi


−
∑
i exact

ZiZ
t
i

K∑
l=1

exp(al + βZi)Ri,l,

∂2Q(θ | θold)

∂ak∂β
= −

∑
i not exact

πoldi Zi

(
(ck − ck−1)eakI(k 6= K)

K∑
l=k+1

Aold
l,i e

βZi + eakBold
k,i e

βZi

)
,

−
∑
i exact

Zi exp(ak + βZi)Ri,k.

A.4 Full regularisation path on a simulated dataset

We illustrate in this section the full regularisation path of the algorithm. As explained in
Section 4 of the main paper the algorithm consists of the detection of the set of cuts from the
penalised estimator combined with the non-penalised estimator using this estimated set of cuts.
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We consider one sample generated from Model M1, Scenario S1 of Section 6 of the main paper
in the absence of covariates and we estimate the hasard function using both the ridge and the
adaptive ridge algorithm. More precisely, the first algorithm uses the weights ŵk equal to 1
while the second algorithm iteratively updates the ŵk using Equation (5) of the main paper.
A set of penalty is chosen, on the log scale, as the set of 200 equally spaced values ranging
from log(0.1) to log(10 000). Figure 2 displays the regularisation path for the ridge on the left
and for the adaptive ridge on the right where the y-axis represents the values of the estimated
ak’s for each penalty value of the x-axis. We clearly see that the ridge procedure produces a
smooth estimation and the adaptive ridge procedure provides a selection of the cuts along with
an estimated piecewise constant hazard. Both estimators converge toward the same constant
model as pen tends to infinity. Figure 3 shows the resulting estimated hazard from the adaptive
ridge procedure after selection of the cuts using the BIC. On the left panel it is seen that the
BIC chooses a model with three cuts and four values of ak’s. On the right panel we see that,
on this sample, the adaptive ridge estimator follows closely the true value of the hazard.

A.5 Proof of Theorem 5.1 of the main document

Proof of 1.
For this proof, we only consider the initial fixed set of cuts {c1, . . . , cK}. In order to avoid

confusion, we denote by θ† = (a†1, . . . , a
†
K , β

∗) the true parameter using this set of cuts. This

means that there might exist several k’s for which a†k = a†k+1. Note that removing the equal

consecutive values of a†k will yield θ∗. In the following, we will prove that θ̂ → θ† in probability.
For interval-censored, left or right-censored data, the full likelihood function can be written

as

L̃obs
n (θ) =

n∏
i=1

(fL,R,δ(Li, Ri, 1))δi(fL,R,δ(Li, Ri, 0))1−δi ,

where fL,R,δ(Li, Ri, 1), fL,R,δ(Li, Ri, 0) represent the joint density of the mixed distribution
(L,R, δ) respectively evaluated at (Li, Ri, 1) and (Li, Ri, 0). It is then seen that fL,R,δ(Li, Ri, 1) =
P[δ = 1 | L = Li, R = Ri, Zi,θ]fL,R,Z(Li, Ri, Zi) where fL,R,Z represents the joint density of
(L,R,Z) and P[δ = 1 | L = Li, R = Ri, Zi,θ] = (S(Li | Zi,θ) − S(Ri | Zi,θ))δi under the
independent censoring assumption. The same kind of reasoning holds for fL,R,δ(Li, Ri, 0) such
that

L̃obs
n (θ) =

n∏
i=1

(S(Li | Zi,θ)− S(Ri | Zi,θ))δi(S(Li | Zi,θ))1−δifL,R,Z(Li, Ri, Zi),

=
n∏
i=1

gθ(Li, Ri, Zi),

where gθ(Li, Ri, Zi) := (S(Li | Zi,θ) − S(Ri | Zi,θ))fL,R,Z(Li, Ri, Zi) with the slight abuse of
notation S(Ri | Zi,θ) = 0 if Ri = ∞ (for a right-censored observation). The above equation
shows that the full likelihood is simply the observed likelihood Lobs

n (θ) of Section 3.1 of the
main document multiplied by the quantity fL,R,Z(Li, Ri, Zi) which does not depend on θ. In
case of exact observations, the full likelihood can be rewritten as:

L̃obs
n (θ) =

∏
i not exact

gθ(Li, Ri, Zi)
∏

i exact

f(Li | Zi,θ).
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It should be noted that gθ(Li, Ri, Zi) and f(Li | Zi,θ) are densities. For gθ, write∫∫∫
l 6=r

gθ(l, r, z)dldrdz = Eθ

[
I(Li 6= Ri)Eθ[S(Li | Zi,θ)− S(Ri | Zi,θ) | L,R,Z]

]
=

∫∫∫
P[T ∈ (l, r) | L = l, R = r, Z = z,θ)fL,R,Z(l, r, z)dldrdz.

From the independent censoring assumption, P[T ∈ (l, r) | L = l, R = r, Z = z,θ)] = 1 and
consequently gθ is a density.

Now the penalised estimator defined in (6) of the main document verifies θ̂ = arg maxθ `
pen
n (θ),

where

`penn (θ) =

{
`n(θ)− pen

2n

K−1∑
k=1

ŵ
(1)
k (ak+1 − ak)2

}
,

with `n(θ) = log(L̃obs
n (θ))/n. We introduce `(θ) = Eθ† [I(Li 6= Ri) log(gθ(Li, Ri, Zi))] +

Eθ† [I(Li = Ri) log(f(Li | Zi,θ))] and we write:

|`penn (θ)− `(θ)| ≤ |`n(θ)− `(θ)|+ pen

2n

K−1∑
k=1

ŵ
(1)
k (ak+1 − ak)2.

The two terms on the right-hand side of the equation converge toward 0 in probability: the first

one from the law of large numbers, and the second one from the consistency of ŵ
(1)
k and the

condition pen/n→ 0.
Then, from Jensen inequality,

Eθ†

[
−I(Li 6= Ri) log

(
gθ(Li, Ri, Zi)

gθ†(Li, Ri, Zi)

)]
≥ − log

(
Eθ†

[
I(Li 6= Ri)

gθ(Li, Ri, Zi)

gθ†(Li, Ri, Zi)

])
≥ − log

(∫∫∫
l 6=r

gθ(l, r, z)

gθ†(l, r, z)
gθ†(l, r, z)dldrdz

)
= 0.

The same reasoning applies to Eθ† [I(Li = Ri) log(f(Li | Zi,θ)/f(Li | Zi,θ†))] which proves
that `(θ) ≤ `(θ†) for all θ. To conclude, we have proved that |`n(θ)− `(θ)| → 0 in probability,
with θ̂ = arg maxθ `

pen
n (θ) and θ† = arg maxθ `(θ). The concavity of `penn (θ) yields that θ̂ → θ†

in probability.

Proof of 2. and 3.
We start by working on the true set of cuts A∗. We need to define the estimator

ˆ̂
θA∗ , that

is our estimator using the true set of cuts. In particular we need to define the value of ˆ̂ak,A∗

on each interval c∗k−1 < t ≤ c∗k. As a matter of fact, for a given n the sets An and A∗ might be

different and therefore some ˆ̂ak,A∗ might not exist. We set:

exp(ˆ̂ak,A∗) =
ˆ̂
λ0,An(c∗k−1).

This definition is arbitrary and any value of t ∈ (c∗k−1, c
∗
k] could be taken for

ˆ̂
λ0,An(t). We now

also define `n,A∗(θ) = log(Lobs
n,A∗(θ)) the observed log-likelihood defined using the true set of

cuts A∗. From a Taylor expansion, we have:

∇θ`n,A∗(
ˆ̂
θA∗) = ∇θ`n,A∗(θ

∗) + (
ˆ̂
θA∗ − θ∗)t∇2

θ`n,A∗(θ̃A∗),
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where θ̃A∗ is on the line segment between
ˆ̂
θA∗ and θ∗. As a consequence,

√
n( ˆ̂θA∗ − θ∗)t = −(∇2

θ`n,A∗(θ̃A∗)/n)−1(∇θ`n,A∗(θ
∗)−∇θ`n,A∗(

ˆ̂θA∗))
1√
n
· (7)

From the result in 1. of this theorem, ˆ̂θA∗ → θ∗ in probability, and thus ∇2
θ`n,A∗(θ̃A∗)/n −

∇2
θ`n,A∗(θ

∗)/n converges to 0 in probability and−∇2
θ`n,A∗(θ̃A∗)/n→ −E[∇2

θh
∗
θ(Li, Ri, Zi))|θ=θ∗ ] =

Σ in probability.

The key to the proof is now to show that ∇θ`n,A∗(
ˆ̂
θA∗)/

√
n converges to 0 in probability.

We denote by θ̂A∗ the estimator that maximises `n,A∗(θ). Noticing that ∇θ`n,A∗(θ̂A∗) = 0 we
have

∇θ`n,A∗(
ˆ̂θA∗)/

√
n =
√
n( ˆ̂θA∗ − θ̂A∗)t∇2

θ`n,A∗(θ̃A∗)/n, (8)

where θ̃A∗ is on the line segment between
ˆ̂
θA∗ and θ̂A∗ . Since θ̂A∗ → θ∗ and

ˆ̂
θA∗ − θ̂A∗ → 0

in probability, we can prove as previously that ∇2
θ`n,A∗(θ̃A∗)/n→ Σ in probability.

We now work on the initial set of cuts {c1, . . . , cK} and we define θ̂†, the estimator θ̂A∗ that
is defined on {c1, . . . , cK} (this is always possible since A∗ ⊂ {c1, . . . , cK}). We need to prove

that
√
n(θ̂− θ̂†)t converges to 0 in probability which will imply that

√
n(

ˆ̂
θA∗ − θ̂A∗)t converges

to 0 in probability. Introduce the function:

ψn(u, v) := `n(θ̂† + (u, v)/
√
n)− `n(θ̂†)− pen

2n

K−1∑
k=1

ŵ
(1)
k (V (â†k + uk/

√
n)− V (â†k)),

where (u, v) = (u1, . . . , uK , v1, . . . , vdZ ) is a row vector of dimension (K + dZ) and V (ak) =
(ak+1 − ak)2. For

(û, v̂) = arg min
u,v

ψn(u, v),

we have â = â†+ û/
√
n and β̂ = β̂†+ v̂/

√
n, that is û =

√
n(â− â†) and v̂ =

√
n(β̂− β̂†). We

now study the limit of ψn. First of all,

`n(θ̂† + (u, v)/
√
n)− `n(θ̂†) =

(u, v)√
n
∇θ`n(θ̂†) +

1

2n
(u, v)∇2

θ`n(θ̂†)(u, v)t + oP(1),

where the oP(1) is obtained from the law of large numbers applied to the partial derivatives of
order three of `n(θ̃n), for a θ̃n on the line segment between θ̂† and (u, v)/

√
n. By definition, θ̂†

maximises `n and therefore ∇θ`n(θ̂†) = 0. By the law of large numbers, 1
2n(u, v)∇2

θ`n(θ̂†)(u, v)t

converges in probability toward 1
2(u, v)∇2

θ`(θ
†)(u, v)t = −1

2(u, v)Σ(u, v)t. Secondly,

V (â†k + uk/
√
n)− V (â†k) =

2√
n

(â†k+1 − â
†
k)(uk+1 − uk) +

(uk+1 − uk)2

n
.

Since ŵ
(1)
k → ((a†k+1 − a

†
k)

2 + ε2)−1, â†k+1 − â
†
k → a†k+1 − a

†
k in probability and∣∣∣∣∣ a†k+1 − a

†
k

(a†k+1 − a
†
k)

2 + ε2

∣∣∣∣∣ < 1,

we see that V (â†k + uk/
√
n) − V (â†k) → 0 in probability. To summarise we have shown that

ψn(u, v)→ −1
2(u, v)Σ(u, v)t in probability. Since Σ is a positive definite matrix, −1

2(u, v)Σ(u, v)t

is minimal for (u, v) = (0, 0). This proves that
√
n(θ̂ − θ̂†)t converges to 0 in probability.

Going back to Equations (7) and (8), and from the asymptotic normality of ∇θ`n,A∗(θ
∗)/
√
n
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using the Central Limit Theorem, we finally obtain:

√
n(

ˆ̂
θA∗ − θ∗)t = −(∇2

θ`n,A∗(θ̃A∗)/n)−1(∇θ`n,A∗(θ
∗))

1√
n

+ oP(1) −→ Σ−1N (0,Σ),

in distribution. This concludes the proof.

A.6 Extended simulation study for the piecewise constant haz-
ard model: two scenarios that include exact observations
and a cure fraction

We consider two new scenarios which include a proportion of non-susceptible individuals. For
the susceptibles, the data include left, interval and right-censored observations along with a
proportion of exact observations. The model is defined by Equations (2) and (3) of the main
paper with a logistic link for the probability of being cured. In both scenarios, the Z covariate,
β coefficient and λ0 baseline function are all generated as in the simulation section of the main
paper. The X covariate is of dimension dX = 2 (including the intercept) and follows a Bernoulli
distribution with parameter 0.8. In Scenario S3, γ = (log(2.35), log(2))t and in Scenario S4,
γ = (log(0.8), log(2))t. These values yield an average number of susceptible individuals E[p(X)]
respectively equal to 80% and 58%. Among the susceptibles, both scenarios correspond to
a proportion of 18% of exact observations, 19% of left observations, 40% of interval-censored
observations and 23% of right-censored observations. The results are presented in Table 9. Only
our adaptive ridge estimator has been implemented for these two scenarios. The γ estimator is
initialised to 0 in the EM algorithm.

A slight deterioration of the variance estimation of β̂ and λ̂0 is seen when a cure fraction is
included and the degree of deterioration increases as the proportion of cured gets bigger. On
the other hand the bias of the parameter estimates is similar with or without the cure fraction.
In the presence of a cure fraction, the γ parameter is less accurately estimated as compared
to the β parameter both in terms of bias and variance. Nevertheless the results show that as
the sample size increases the bias and variance of γ̂ get smaller with a bias very close to 0 for
a sample size equal to 1 000. The estimation performance of E[p(X)] was also investigated by
computing the average value of

∑
i p̂(Xi)/n for all generated samples where p̂(X) is defined as

in Equation (3) of the main paper with γ replaced by γ̂. For example, in Scenario S4 we found
a bias and empirical standard error (SE) equal for n = 200 to 0.057 (SE = 0.064), for n = 400
to 0.046 (SE = 0.044) and for n = 1 000 to 0.033 (SE = 0.028).

More simulations were conducted. In particular, the cure model without covariates for the
cure fraction was also implemented in Scenario S1, Model M1 of the main paper such that
the parameters to be estimated are θ = (a1, . . . , aL, β, p) with the true value of p equal to 1.
In replications of samples of size 400, it was seen that the model estimated the proportion of
susceptibles p to a value greater than 0.99 in 98% of cases and the lowest value on the 500
replications for the estimation of p was equal to 0.95. This highlights the very high specificity
of our model in terms of detecting a cure fraction. It shows that our model does not tend
to overestimate the proportion of cured when the population is homogeneous, which is a very
important feature of the estimation method. On the other hand, a scenario identical to Scenario
S1, Model M1 but with a true proportion of susceptibles equal to p = 0.7 was also considered.
In replications of samples of size 400, the estimator of p was equal to 0.712 on average and only
0.5% of the estimates where greater than 0.99. This suggests in turn a high sensitivity of our
model to detect heterogeneity in interval censored data.
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A.7 Computational cost of the adaptive ridge algorithm

The complexity for the inversion of the Hessian of ` is of order O(K), in the case K >> dX +dZ
(see Section A.2 in the Supporting Information about the Schurr complement). However, for a
given penalty, it should be noted that the global algorithm for maximising Q or `pen consists
of an EM algorithm with a Newton-Raphson procedure at each step. As a consequence, in
the simulations and for the dental dataset a Generalised Expectation Maximisation (GEM)
algorithm (see [1]) is used instead of the standard EM where, as soon as the value of Q or
`pen increases, the Newton-Raphson procedure is stopped. This results in computing only a
few steps of the Newton-Raphson algorithm (very often only one step is needed). As the EM
algorithm is usually very slow to reach convergence the turboEM R package with the squareEM

option is used to accelerate the procedure (see for instance [3]). Finally, the algorithm must
be iterated for the whole sequence of penalties. In order to evaluate the global computational
cost, numerical experiments were conducted which showed that, for a maximum of Kmax initial

cuts, the total complexity of the whole procedure is of order O(nK
1/2
max).

More specifically, the computation time for the method was evaluated on replicated samples
for the three sample sizes n = 200, 400, 1 000 and for different values of the maximal number
of initial cuts: Kmax = 18, 40, 80. We estimated the implementation of the whole method with

200 penalty values to 0.0016× nK1/2
max minutes. For example, for n = 400,Kmax = 40 the whole

program takes 4 minutes, for n = 400,Kmax = 80 it takes 5.7 minutes, for n = 1 000,Kmax = 40
it takes 10.12 minutes and for n = 1 000,Kmax = 80 it takes 14.3 minutes. These values are
given as an indication of the algorithmic complexity and should be considered with caution
as the implementation has not been optimised. In particular, computation of the Aold

k,i and

Bold
k,i terms could be improved by computing the set of values (ck ∧ Ri, ck−1 ∨ Li) such that

(Li, Ri) ∩ (ck−1, ck) 6= ∅ more efficiently in C++. Also the non-penalised MLE is implemented
for each selection of cuts. For small penalty values, the set of selected cuts can be quite large
and the turboEM R package has trouble to converge in these cases. For very large set of selected
cuts it often does not converge at all and the algorithm is stopped after 200 iterations. This
procedure could be greatly improved by only implementing the MLE for reasonable sets of cuts.

Finally, it should be noted that the adaptive ridge procedure needs only to be implemented
once on the dataset, in order to detect the set of cuts. Then given this set of cuts, the piecewise-
constant hazard model is much faster to compute. For example in Scenario S1 from the main
paper with three cuts, the computation time of the piecewise-constant hazard maximum likeli-
hood model is on average respectively equal to 1.13, 1.80 and 3.33 seconds for n = 200, 400, 1 000.

A.8 The likelihood ratio approach to construct confidence in-
tervals

As shown in Section 5, statistical inference in our model reduces to a fully parametric problem
since, after selection of the cuts, one can consider these cuts as fixed and the asymptotic dis-
tribution of the final estimator is identical to the asymptotic distribution one would get if the
true cuts were initially provided.

Statistical tests are implemented from the likelihood ratio test which is based on the observed
likelihood Lobs

n . Let θ = (θ1, θ2) with θ1 of dimension d. To test the null hypothesis H0 : θ1 = θ0,
with θ0 known, one can use the test statistic −2 log(Lobs

n (θ0, θ̂2)/L
obs
n (θ̂1, θ̂2)) which follows a

chi-squared distribution with d degrees of freedom from standard likelihood theory. Confidence
intervals can also be constructed from the likelihood ratio statistic. Let us assume that θ =
(θ1, θ2) with θ1 of dimension 1 and consider the test H0 : θ1 = θ0 versus H1 : θ1 6= θ0. The 1−α
confidence interval level of the parameter θ1 will be determined by the set of values θ0 such that
the previous test is not significant at the significance level α. Note that the p-value of the test
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is defined by (with a slight abuse of notation for the realisation of the test statistic)

P

[
χ2(1) > −2 log

(
Lobs
n (θ0, θ̂2)

Lobs
n (θ̂1, θ̂2)

)]
,

and the test is non-significant if this value is greater than α. Let q1−α
χ2 be the 1− α quantile of

the χ2(1) distribution. The bounds of the confidence intervals can therefore be determined by
resolving the equation

log(Lobs
n (θ0, θ̂2)) +

1

2
q1−α
χ2 − log(Lobs

n (θ̂1, θ̂2)) = 0, (9)

with respect to θ0. This equation has two solutions and since it is clear that θ0 = θ̂1 is part of
the confidence interval (the p-value equals one for this value), a grid search can be performed
using for example the uniroot package with the two starting intervals [θ̂1−c; θ̂1] and [θ̂1; θ̂1+c],
where c is a positive constant. This constant can be chosen arbitrarily large and should satisfy
that the left-hand side of Equation (9) is of opposite sign for θ0 = θ̂1− c and θ0 = θ̂1 + c. See [4]
for more details about the likelihood ratio test approach for constructing confidence intervals.

A more classical method for deriving confidence intervals can be based on the normal ap-
proximation of the model parameter obtained from Theorem 5.1. It requires to compute the
Hessian matrix of the observed log-likelihood. The details for this approach are given in the
next section.

A.9 Score vector and Hessian matrix for the observed log-likelihood

Computation of the Hessian matrix of the observed log-likelihood ∂2 log(Lobs
n (θ))/∂θ2 evaluated

at θ = θ̂ can be done by direct calculation or by using the following relationship which makes
use of the complete likelihood Ln (see [2]):

∂ log
(
Lobs
n (θ)

)
∂θ

= E
[
∂ log (Ln(θ))

∂θ

∣∣∣∣ data,θ

]
. (10)

In the above equation, the Hessian can be computed based on the complete likelihood by taking
the derivative of the right-hand side of the equation with respect to θ. For simplicity, we assume
that all individuals are susceptibles. Then,

log (Ln(θ)) =
∑

i not exact

K∑
k=1

I(ck−1 < Ti ≤ ck)
(
ai,k −

k∑
j=1

eai,j (Ti ∧ cj − cj−1)
)
,

+
∑
i exact

K∑
k=1

{
Oi,kai,k − exp(ai,k)Ri,k

}
∂ log (Ln(θ))

∂ak
=

n∑
i not exact

{
I(ck−1 < Ti ≤ ck)−

K∑
l=k

I(cl−1 < Ti ≤ cl)eai,k(Ti ∧ ck − ck−1)
}
,

+
∑
i exact

{
Oi,k − exp(ai,k)Ri,k

}
∂ log (Ln(θ))

∂β
=

n∑
i=1

K∑
l=1

I(cl−1 < Ti ≤ cl)Zi
(

1−
l∑

j=1

eai,j (Ti ∧ cj − cj−1)
)

+
∑
i exact

K∑
l=1

Zi
{
Oi,l − exp(ai,l)Ri,l

}
.
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We now need to take the expectation conditionally on the data of the last two equations. This
will involve the quantities

P[ck−1 < Ti ≤ ck | data,θ] =
S(ck−1 ∨ Li | Zi,θ)− S(ck ∧Ri | Zi,θ)

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

and

E[I(ck−1 < Ti ≤ ck)Ti | data,θ)]

= Jk,i

∫ ck∧Ri

ck−1∨Li

t exp
(
ai,k −

k∑
j=1

eai,j (t ∧ cj − cj−1)
)
dt× 1

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

=
{(

exp(−ai,k) + ck−1 ∨ Li
)

exp(−eai,kck−1 ∨ Li)−
(

exp(−ai,k) + ck ∧Ri
)

exp(−eai,kck ∧Ri)
}

×
exp

(
eai,kck−1 −

∑k−1
j=1 e

ai,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θ)− S(Ri | Zi,θ)
·

Calculation of the right-hand side of Equation (10) is now straightforward. We first separate
exact and non exact observations in the following way:

∂ log(Lobs
n (θ))

∂θ
=

∑
i not exact

∂Lobs
i,1 (θ)

∂θ
+
∑
i exact

∂Lobs
i,2 (θ)

∂θ
.

For the non-exact observations, we introduce

Ci,k(θ) =
S(ck−1 ∨ Li | Zi,θ)− S(ck ∧Ri | Zi,θ)

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

Di,k(θ) = Jk,i
{(

exp(−ai,k) + ck−1 ∨ Li
)

exp(−eai,kck−1 ∨ Li)

−
(

exp(−ai,k) + ck ∧Ri
)

exp(−eai,kck ∧Ri)
} exp

(
eai,kck−1 −

∑k−1
j=1 e

ai,j (cj − cj−1)
)

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

such that

∂Lobs
i,1 (θ)

∂ak
= Ci,k(θ)− eai,k

(
Di,k(θ)− ck−1Ci,k(θ)

)
− eai,k(ck − ck−1)

K∑
l=k+1

Ci,l(θ),

∂Lobs
i,1 (θ)

∂β
= Zi

{
Ci,k(θ)− Ci,k(θ)

k−1∑
j=1

eai,j (cj − cj−1)− eai,k
(
Di,k(θ)− ck−1Ci,k(θ)

)}
.

For the exact observations we have

∂Lobs
i,2 (θ)

∂ak
= Oi,k − exp(ak + βZi)Ri,k,

∂Lobs
i,2 (θ)

∂β
= Zi

K∑
l=1

{
Oi,l − exp(al + βZi)Ri,l

}
.

For the Hessian matrix ∂2 log(Lobs
n (θ))/∂θ2, we first compute
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∂S(ck−1∨ Li | Zi,θ)

∂ak
= − (LiIk(Li) + ckI(Li > ck)) e

ai,kS(Li | Zi,θ),

∂S(ck−1∨ Li | Zi,θ)

∂β
= −Zi

K∑
l=1

(cl ∧ ck−1∨ Li − cl−1)I(cl−1 ≤ ck−1 ∨ Li)eai,kS(ck−1∨ Li | Zi,θ),

∂S(ck ∧Ri | Zi,θ)

∂ak
= −(ck ∧Ri − ck−1)eai,kS(ck ∧Ri | Zi,θ)I(Ri ≥ ck−1),

∂S(ck ∧Ri | Zi,θ)

∂β
= −Zi

K∑
l=1

(cl ∧ ck ∧Ri − cl−1)I(cl−1 ≤ ck ∧Ri)eai,kS(ck ∧Ri | Zi,θ),

∂S(Li | Zi,θ)

∂ak
= −(ck ∧ Li − ck−1)eai,kS(Li | Zi,θ)I(Li ≥ ck−1),

∂S(Li | Zi,θ)

∂β
= −Zi

K∑
l=1

(cl ∧ Li − cl−1)eai,lS(Li | Zi,θ)I(Li ≥ cl−1),

∂S(Ri | Zi,θ)

∂ak
= −(ck ∧Ri − ck−1)eai,kS(Ri | Zi,θ)I(Ri ≥ ck−1),

∂S(Ri | Zi,θ)

∂β
= −Zi

K∑
l=1

(cl ∧Ri − cl−1)eai,lS(Ri | Zi,θ)I(Ri ≥ cl−1),

such that calculation of the partial derivatives of Ci,k(θ) are calculated from the formulas

∂Ci,k(θ)

∂ak
=
∂S(ck−1 ∨ Li | Zi,θ)/∂ak − ∂S(ck ∧Ri | Zi,θ)/∂ak

S(Li | Zi,θ)− S(Ri | Zi,θ)

− Ci,k(θ)
∂S(Li | Zi,θ)/∂ak − ∂S(Ri | Zi,θ)/∂ak

S(Li | Zi,θ)− S(Ri | Zi,θ)
,

∂Ci,k(θ)

∂β
=
∂S(ck−1 ∨ Li | Zi,θ)/∂β − ∂S(ck ∧Ri | Zi,θ)/∂β

S(Li | Zi,θ)− S(Ri | Zi,θ)

− Ci,k(θ)
∂S(Li | Zi,θ)/∂β − ∂S(Ri | Zi,θ)/∂β

S(Li | Zi,θ)− S(Ri | Zi,θ)
·

Then, we can show that

∂

∂ak

K∑
l=k+1

Ci,l(θ) =
(ck ∨ Li − ck−1)eai,k

∑K
l=k S(cl ∨ Li | Zi,θ)

S(Li | Zi,θ)− S(Ri | Zi,θ)

−
(ck ∧Ri − ck−1)eai,kI(Ri ≥ ck−1)

∑K
l=k+1 S(cl ∨Ri | Zi,θ)

S(Li | Zi,θ)− S(Ri | Zi,θ)

−
K∑

l=k+1

Ci,l(θ)
∂S(Li | Zi,θ)/∂ak − ∂S(Ri | Zi,θ)/∂ak

S(Li | Zi,θ)− S(Ri | Zi,θ)
·

We now introduce:

Ei,k = exp(−ai,k − eai,kck−1∨ Li) +
(

exp(−ai,k) + ck−1∨ Li
)(

exp(ai,k − eai,kck−1∨ Li)ck−1∨ Li
)

+ exp(−ai,k − eai,kck−1 ∨ Li) +
(

exp(−ai,k) + ck ∧Ri
)(

exp(ai,k − eai,kck ∧Ri)ck ∨Ri
)
,

30



such that

∂Di,k(θ)

∂ak
= −

Ei,k exp
(
eai,kck−1 −

∑k−1
j=1 e

ai,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θ)− S(Ri | Zi,θ)
+Di,k(θ)eai,kck−1Jk,i

−Di,k(θ)
∂S(Li | Zi,θ)/∂ak − ∂S(Ri | Zi,θ)/∂ak

S(Li | Zi,θ)− S(Ri | Zi,θ)
Jk,i,

∂Di,k(θ)

∂β
= −Zi

Ei,k exp
(
eai,kck−1 −

∑k−1
j=1 e

ai,j (cj − cj−1)
)
Jk,i

S(Li | Zi,θ)− S(Ri | Zi,θ)

+ ZiDi,k(θ)(eai,kck−1 −
k−1∑
j=1

eai,j (cj − cj−1))Jk,i

−Di,k(θ)Jk,i
∂S(Li | Zi,θ)/∂β − ∂S(Ri | Zi,θ)/∂β

S(Li | Zi,θ)− S(Ri | Zi,θ)
·

Finally, we have

∂2Lobs
1 (θ)

∂a2k
=
∂Ci,k(θ)

∂ak
− eai,k

(
Di,k(θ)− ck−1Ci,k(θ) +

∂Di,k(θ)

∂ak
− ck−1

∂Ci,k(θ)

∂ak

)
− eai,k(ck − ck−1)

(
K∑

l=k+1

Ci,l(θ) +
∂

∂ak

K∑
l=k+1

Ci,l(θ)

)
,

∂2Lobs
1 (θ)

∂ak∂β
= Zi

{
∂Ci,k(θ)

∂ak
−
∂Ci,k(θ)

∂ak

k−1∑
j=1

eai,j (cj − cj−1)

− eai,k
(
Di,k(θ)− ck−1Ci,k(θ) +

∂Di,k(θ)

∂ak
− ck−1

∂Ci,k(θ)

∂ak

)}
,

∂2Lobs
1 (θ)

∂β2
= Zi

{
∂Ci,k(θ)t

∂β
−
∂Ci,k(θ)t

∂β

k−1∑
j=1

eai,j (cj − cj−1)

− eai,k
(
ZtiDi,k(θ)− ck−1ZtiCi,k(θ) +

∂Di,k(θ)t

∂β
− ck−1

∂Ci,k(θ)t

∂β

)}
,

and for the exact observations

∂2Lobs
2 (θ)

∂a2k
= − exp(ak + βZi)Ri,k,

∂2Lobs
2 (θ)

∂ak∂β
= −Zi exp(ak + βZi)Ri,k,

∂2Lobs
2 (θ)

∂β2
= −ZiZti

K∑
l=1

{
exp(al + βZi)Ri,l

}
.
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Figure 2: Regularization path for the ridge on the left panel and for the adaptive ridge on the
right panel. The x-axis represents the penalty value and the y-axis represents the estimated
values of the ak’s.
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Figure 3: Regularization path for the adaptive-ridge on the left panel. The estimated set of
cuts using the BIC is shown as a vertical dotted line. The resulting piecewise constant hazard
estimator is shown on the right panel as a solid line. The dotted line represents the true hazard.
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Table 9: Simulation results for the estimation of β and S0 in Scenarios S3 and S4. S3: 80% of susceptible
individuals. S4: 58% of susceptible individuals. Among the susceptible individuals, 18% of exact data,
19% of left-censoring, 40% of interval-censoring, 23% of right-censoring.

Adaptive Ridge estimate
n Bias(β̂) SE(β̂) MSE(β̂) Bias(γ̂) SE(γ̂) MSE(γ̂) IBias2(Ŝ0) IVar(Ŝ0) TV(λ̂0)

S3 200 −0.015 0.291 0.085 0.102 0.498 0.259 0.004 0.324 0.840
0.003 0.236 0.056 0.011 0.630 0.398

400 −0.017 0.207 0.043 0.075 0.356 0.132 0.002 0.160 0.659
−0.005 0.162 0.026 0.027 0.433 0.189

1 000 0.006 0.127 0.016 0.025 0.184 0.035 0.001 0.059 0.414
0.006 0.094 0.009 0.012 0.198 0.039

S4 200 −0.021 0.387 0.150 0.077 0.479 0.235 0.005 0.563 1.195
−0.010 0.310 0.096 0.038 0.511 0.262

400 −0.023 0.255 0.066 0.048 0.296 0.090 0.003 0.255 0.810
0.003 0.209 0.044 0.016 0.309 0.096

1 000 −0.009 0.150 0.023 0.032 0.186 0.036 0.001 0.096 0.530
0.008 0.124 0.015 0.004 0.205 0.042
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