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Abstract

We consider the Cox model with piecewise constant baseline hazard to deal with a mixed
case of left-censored, interval-censored and right-censored data. Estimation is carried out
with the EM algorithm by treating the true event times as unobserved variables. This es-
timation procedure is shown to produce a block diagonal Hessian matrix of the baseline
parameters. Taking advantage of this interesting feature of the estimation procedure a L0
penalised likelihood method is implemented in order to automatically determine the number
and locations of the cuts of the baseline hazard. The method is directly extended to the
inclusion of exact observations and to a cure fraction. Statistical inference of the model
parameters is derived from likelihood theory. Through simulation studies, the penalisation
technique is shown to provide a good fit of the baseline hazard and precise estimations of
the resulting regression parameters. The method is illustrated on a dental dataset where
the effect of covariates on the risk of ankylosis for replanted teeth is assessed.

Keywords: Adaptive Ridge procedure; Interval censoring; Cure model; EM algorithm; Pe-
nalised likelihood; Piecewise constant hazard.

1 Introduction

Interval censored data arise in situations where the event of interest is only known to have oc-
curred between two observation times. These types of data are commonly encountered when the
patients are intermittently followed up at medical examinations. This is the case for instance in
AIDS studies, when HIV infection onset is determined by periodic testing, or in oncology where
the time-to-tumour progression is assessed by measuring the tumour size at periodic testing.
Dental dataset are another examples which are usually interval-censored because the teeth sta-
tus of the patients are only examined at visits to the dentist. While interval-censored data are
ubiquitous in medical applications it is still a common practice to replace the observation times
with their midpoints or endpoints and to consider these data as exact. This allows to analyse
the data using standard survival approach (with exact and right-censored data) but may results
in a large bias of the estimators.

In the context of interval-censored data, [1] introduced an iterative algorithm for the non-
parametric estimation of the survival function. As a different estimation method, the iterative
convex minorant was proposed by [2] and [3]. In [2], the authors derived the slow rate of
convergence of order n'/3 for the non-parametric survival estimator. Moreover, the obtained
law is not gaussian and cannot be explicitly computed. Many methods were also developed in a
regression setting. In particular, the Cox model with non-parametric baseline was studied in [4].



The authors derived a n!/? convergence rate for the regression parameter with a gaussian limit
but the problem of estimation and inference of the baseline survival function pertains in this
regression context: the baseline survival function has the n'/? slow rate of convergence and even
more problematic, the asymptotic distribution of this function could not be derived. The same
conclusions were observed in [5] where the authors use the more general Cox-Aalen model with
non-parametric baseline. As a consequence, alternatives to the non-parametric baseline have
been introduced. In [6] and [7] parametric baselines such as Weibull or piecewise constant are
introduced. In that case, the convergence rate of the global parameters is of order n'/2 and the
asymptotic distribution is gaussian (see [7]). In [8] a local likelihood is implemented which results
in a smooth estimation of the baseline hazard using a kernel function. However, asymptotic
properties of the estimators were not derived in their work and the estimators performance
depend on the choice of the kernel bandwidth. In [9], monotone B-splines are implemented
in order to estimate the cumulative baseline hazard. The authors introduce a two stage data
augmentation which allows them to use the Expectation Maximisation algorithm [EM, see 10]
in order to perform estimation. Asymptotics with n!/2 rate of convergence of the estimators
are derived. However, the number and location of the splines knots are pre-determined by the
user and the estimators performance depend on the choice of these tuning parameters.

In this work, we study the Cox model with piecewise constant baseline hazard. Treating the
unobserved true event times as missing variables we use the EM algorithm to perform estimation.
As a result, the Hessian of the log-likelihood to be maximised is seen to be diagonal. This is a
remarkable feature of the method that easily allows to perform estimation with the piecewise
constant baseline using arbitrarily large set of cuts. In contrast, this model had been already
introduced in [11] and [6] but maximisation of the model parameters was achieved using the
observed likelihood which resulted in a full rank Hessian matrix. In [11] for example, the authors
warn against computational issues which may force the user to reduce the number of cuts by
combining adjacent intervals. Using the EM algorithm to perform estimation in the piecewise
constant hazard model is new to our knowledge and easy to implement. Also, all the quantities
involved in the E-step can be explicitly computed in our method, contrary to previous works
(see [8] for example) which require to approximate integrals. In comparison with [9] the E-
step is more natural and directly applicable using the complete likelihood. Moreover, taking
advantage of the sparse structure of the Hessian matrix, our method can be combined with
a LO penalty designed to detect the location and number of cuts. This is performed through
the adaptive ridge procedure, a regularisation method that was introduced in [12], [13] and
then applied in a survival context (without covariates) in [14]. This penalisation technique
results in a flexible method where the cuts and locations of the piecewise constant baseline are
automatically chosen from the data, thus providing a good compromise between purely non-
parametric and parametric baseline functions. This is in contrast with existing techniques such
as in [9] where the location and number of knots of splines basis are fixed by the user. Finally
we also emphasise the advantage of the L0 method in terms of interpretability: by detecting
the relevant set of cuts of the baseline the method highlights the different regions of time where
the risk of failure varies. This can be of great interest in medical applications in order for the
clinicians to precisely detect time intervals of greater risks of failure for example.

Another advantage of using the EM algorithm is to provide direct extensions of the Cox
model. In this work we also consider the inclusion of exact data in the estimation method. This
mixed case of exact and interval-censored data is usually not easy to analyse as standard methods
for interval-censoring do not directly extend to exact data. However, using our method, inclusion
of exact data is straightforward through the E-step and the likelihood can be decomposed
into the contribution of exact and interval-censored observations. Another extension that is
developed in this work is the inclusion of a fraction of non-susceptible patients. This situation
is modelled using the cure model of [15] and [16], with a logit link for the probability of being
cured. Little attention has been paid to this model in the case of interval-censored data. In [17]



the authors consider a partially linear transformation model where the baseline is modelled
using spline basis but the number and location of knots are chosen in an ad-hoc manner.
In [18] a different cure model was introduced where the marginal survival function (without
conditioning on the susceptible group) is modelled. However, the asymptotic distribution of
the estimated parameters were not derived under this model. With our method, estimation in
the cure Cox model is straightforward. The E-step results in a weighted log-likelihood with
the weights corresponding to the probability of being cured such that our estimation method
readily extends to the cure model.

In Section 2 the piecewise constant hazard model is introduced. The estimation method
based on the EM algorithm is presented in Section 3 for interval censored data and fixed cuts
of the hazard. Estimation in the non-parametric case, in the regression model and extensions
for exact data and the cure model are also developed in this section. Then, the LO penalised
likelihood that allows to select the location and number of cuts from the data is presented in
Section 4. The construction of confidence intervals and statistical tests is discussed in Section 5.
In Section 6, an extensive simulation study is presented where our adaptive ridge estimator is
compared with the midpoint estimator and the ICsurv estimator from [9]. Finally, a dental
dataset on complications for replanted teeth is analysed in Section 7.

2 A piecewise constant hazard model for interval censored data

Let T denote the time to occurrence of the event of interest. We consider a situation where all
individuals are subject to interval censoring defined by the random variables (L, R) such that
L and R are observed and P(T' € [L, R]) = 1. The situation L = 0 and R < oo corresponds to
left-censoring, 0 < L < R < oo corresponds to strictly interval censoring and L < R = oo to
right censoring. The special case L = R is also allowed which corresponds to exact observations
of the time of interest. We introduce a covariate vector Z of dimension dz and for convenience
we also introduce § which equals 0 if an individual is right censored and 1 if he/she is exactly
observed, left censored or interval censored. The variable T is considered continuous and we
assume independent censoring in the following way (see for instance [19]):

P(T<t|L=1,R=r2)=P(T<t|I<T<r2Z).

This supposes that the variables (L, R) do not convey additional information on the law of
T apart from assuming 7T to be bracketed by L and R. Finally, we assume non-informative
censoring in the sense that the distribution of L and R does not depend on the model parameters
involved in the distribution of 7'

We consider the following Cox proportional hazard model for the time variable T":

A(t] Z) = Ao(t) exp(B2), (1)

where [ is an unknown row parameter vector of dimension dz. We model the baseline function
Ao through a piecewise constant hazard. Let cg, c1, ..., ckx represent K cuts, with the convention
that ¢ = 0 and cx = +oo. Let I(t) = I(cxg—1 < t < ¢), with I(-) denoting the indicator
function. We suppose that

K
Xo(t) =D I(t) exp(ay),
k=1

for k =1,..., K. Under this model, note that the survival and density functions are respectively



equal to:

K
S(t | Z) = exp ( I (VN ) (I t)),

k=1
K k
f(t12) =3 L(t)exp (ak + 823 et N - cj_l)).
k=1 j=1
We set 8 = (aq,...,ax,3) the model parameter we aim to estimate. In the following, we

will also study the so-called nonparametric situation, when no covariates are available, which
is encompassed in our modelling approach as the special case where Z = (0. In this context
the hazard function is simply equal to Ag which is assumed to be piecewise constant and the
model parameter is @ = (ai,...,ax). The observed data consist of data = (L;, R;, d;)1<i<n in
the nonparametric context and of data = (L;, R;, d;, Z;)1<i<n in the regression context, while
T; is considered as incompletely observed. In the latter context, we introduce the notation
ai ) = a + Z;.

3 Estimation procedure with fixed cuts

For the sake of simplicity, we first consider the scenario when no exact data are observed
(which means there only are left, interval and right censored data). The estimation method is
based on the EM algorithm and is presented in Section 3.1 in the general regression context
since the nonparametric context can be easily derived by setting Z = 0. The nonparametric
context is discussed in Section 3.2, the implementation of the M step for the regression context is
presented in Section 3.3 and the method when exact observations are also available is developped
in Section 3.4. Finally, the inclusion of a fraction of non-susceptible individuals is studied in
Section 3.5.

3.1 The EM algorithm for left, right and interval censored observations

The observed likelihood is defined with respect to the observed data by:

o= o (- [ saoms) (e (- [ v

=1

X {exp ( - /OLi Ao(t)dt eﬁZi> }1_6i .

The Maximum Likelihood Estimator (MLE) can be derived from maximisation of this observed
log-likelihood with respect to the model parameters, as in [11] for instance. The obtained pa-
rameter estimates are not explicit but a Newton-Raphson algorithm can be easily implemented.
However, in this optimisation problem, the block of the Hessian matrix corresponding of the
baseline coefficients a1,...,ax will be of full rank and can lead to intractable solutions if the
number of cuts K is large. An alternative method to compute the MLE is therefore to use
the EM algorithm based on the complete likelihood of the unobserved true event times. This
algorithm will result into a diagonal block matrix of the baseline coefficients.
The EM algorithm is based on the complete likelihood, defined by:

n

L) =[] (7| Z,6).

i=1



Denote by 6,4 the current parameter value. The E-step takes the expectation of the complete
log-likelihood with respect to the T;’s, given the L;’s, R;’s, §;’s, Z;’s and 0,4. Write

Qi(0]001q) :=Ellog(f(T; | Z;,0)) | data, O,1q] = /f(t | data, Oo1q) log f(t | Z;,0)dt

where f(t | data, O,q) represents the conditional density of T; given data and 604, evaluated at
t. Under the independent censoring assumption,

f(t | Z;, Gold)I(Ll- <t< Rl) '
S(Li | Zi,001a) — S(R; | Zi, 0014)

f(t | data, Oold) =

The E-step consists of computing the quantity Q(0 | Oola) = >, Qi(0 | Oo1a). We have:

Q0| o1a)
Z fL f(t| Zi,001q)log f(t | Z;; 0)dt
S(L; | Zi, 001a) — S(R; | Zi,001a)

1
B ZZ{ (L | Zz,eold) (R’L | Ziaeold)

K kAR k old k
X Z Jk:,i/ | exp ((lzlkd — z e%ii (t ANcj — ijl)) (am — Z ek (t Nej— ijl))dt ,
J

i—1 j=1

where Jj; is the indicator I{(L;, R;) N (ck—1,cx) # 0} and a A b, a V b respectively denote

min(a, b), max(a,b). Now, for k =1,..., K, introduce the quantities
exp (e zlgck 1 + aOld Z‘]]c 11 €a01d (cj — C] 1)) Jk,i cp\NR; gold
AOld = / exp( e kt)dt
S(Li | Zi,001a) — S(R; | Zs, 001a) o 1VLi

= €Xp ( - €a?*l’gckf1 V L-) (1 — exp ( — eaf};‘(% ANR; —cp_1V Lz)))

old old
" exp (e ik Cp_q — Zf lle“w (cj — cj_l))kai (2)
S(L; | Zi,0010) — S(R;i | Zi,001a)
and
old _ old
BOld exp <e 7 kck‘ 1 + aold Z‘I; 1 6 .7 (C] — Cj 1>>Jk‘,’L /Ck;/\Rz‘ (t . )eX ( . ;)lgt)dt
N S(Li | Zir0oa) — S(Ry | Zi, 01a) oL, DO

= {(exp( Old)—l—ck 1V Li — cp—1) exp(— ea?’l’?ck_l\/l}@-)

—(exp( Old) +cp NR; — ¢ 1) exp(— ea?}’gck A RZ)}

old old
L P (e"k ey — Zf Led (cj — ¢j—1)) Ik 3
S(Li | Zi,001a) — S(R;i | Zi,001a)

Finally, the M-step corresponds of maximising, with respect to @, the quantity

n K k-1
Q01040 = 33 { (011~ s~ ojem )t - ot |



3.2 Estimation in the absence of covariates

In the absence of covariates, the previous results hold with Z; = 0, a;; = a; and the model
parameters we aim to estimate are just @ = (aq,...,ax). The objective function in the M-step
can be defined with respect to the sufficient statlstlcs Ald =% AOId and B4 =3, BOld.

K k—1
Q(G | Hold) = Z { (ak — Z(Cj — Cj,l)ea]’)/izld _ easzld},
k=1 =1

The derivatives of () with respect to ar, k =1,..., K, equal

9Q(6 | Oo1a)

K
S = AR (o= ep)e M (k£ K) Y0 AP — e B

l=k+1
As a consequence, in the absence of covariates, one gets the explicit parameters estimators:

Aold
exp(ag) = ——k=1... K,
(k#K)Zl k+1 (Ck—ck 1)‘*‘313

at each step of the EM algorithm. At convergence, this provides an estimator of the hazard
function from which quantities of interest, such as the survival function, can be easily derived.

3.3 Estimation in the general regression framework

In the regression framework, each step of the EM algorithm is solved through a Newton-Raphson
procedure. The first and second order derivatives of () with respect to a; and 5 are equal to

K
0|6, . A
0Q(0 | 0o1a) Z {Aold (ch — o 1)e™ I(k # K) Z Aalide,BZZ _ eakBg}?eﬁZz},

Oa
k i—1 I=k+1

K -1
Q|6
‘ old Z 7 Z ;)lzd { Z(Cj N ijl)eajAagd(iﬂZi + ealBlOédGBZi} 7
j=1

=1 =1

and

2 016 n K
o700 boa) _ > {(ck —cp1)e™ I(k £ K) Y A7 4 eakBg}?eﬁZi} :

2
a
9 k i=1 I=k+1

Qoo
( ! old) _ Z 7 th Z — ¢y 1)e® APMePZi 4 cu ISz | |

=1 ] 1

Q0 00a) _  + S old .
o — Zil (e —c—1)e™I(k # K AO P 4 ea’“BOI?eﬁZl .
90108 ;:1 (ck — cx—1)e™ I(k # )l:§k+1 k,

The block matrix of the Hessian corresponding to the second order derivatives with respect to
the ai’s is diagonal while the three other blocks are of full rank. Inversion of the Hessian matrix
is then achieved using the Schurr complement which takes advantage of this sparse structure of
the Hessian. When considering a large number of cuts, that is K >> dz, the total complexity
of the inversion of the Hessian is of order O(K). The exact formula of the Schurr complement
is given in the Appendix section.



3.4 Inclusion of exact observations

It is straightforward to deal with exact observations since they can be directly included in the
EM algorithm. For an exact observation 1,

K
Ellog(f(T; | Zi;0)) | data, Oq1q] = log(f(T; | Zi;0)) = Z {O; ka;x — exp(aik) R},
=1

with O; = I(cy—1 < T; < ¢x) and R; , = T; A, —ci—1. Note that this corresponds to the classi-
cal contribution of an exact observation to the log-likelihood in the standard Poisson regression
for right censored observations (see for instance [20]). As a result, @ can be decomposed as

k—1

K
Q(0 | Gold) = Z Z { (ai’k — Z(Cj — Cj_1)6aivj)Azl,(ii — @ai,kBg}?}

i not exact k=1 j=1
K
+ > {Oz‘,kaz’,k - eXp(ai,k)Ri,k:}-
1 exact k=1

The estimation method follows as previously. In particular, in the absence of covariates, the
explicit parameters estimator of (ay,...,ax) are equal to:

_ A3+ O
Ik £ KK A (e — p_y) + BI 4 Ry
1=k+1 4] \Ck — Ck—1 k k

exp(ag) k=1,....K,

where Op = >, oot Oip and Ry =5, o Ri g

In the regression setting, maximisation over the § and aq,...,ax parameters is performed
through the Newton-Raphson algorithm as before. Full expressions of the score vector and
Hessian matrix are given in the Appendix section. The Schurr complement is used again to
inverse the Hessian matrix (see the Appendix section).

3.5 Inclusion of a fraction of non-susceptibles (cure fraction)

Taking into account non-susceptible individuals is possible using the cure model from [15].
This is achieved by modelling the latent status (susceptible/non-susceptible) of the individuals
through a variable Y which equals 1 for patients that will eventually experience the event and
0 for patients that will never experience the event. Since the estimation method uses the EM
algorithm, this latent variable can be easily dealt with through the E-step.

The probability of being susceptible is equal to p = P[Y" = 1]. For a right censored individual,
Y is not observed. The marginal survival function of T"is S(¢) = (1 —p) +pS(t | Y = 1) for
t < oo, where S(t | Y = 1) is the survival function of the susceptibles. Note that S(¢t) -1 —p
as t — oo. We assume that censoring is independent of Y. See [15] for more details about the
cure model. The proportional hazard Cox model for the susceptibles is defined as

AEIY =1,2) = Ao(t) exp(B2). (4)

The cure model specifies the hazard, conditional on Y and Z, to be equal to A(t | Y, Z) =
YA(t|Y =1,Z). The baseline function Ay is assumed to be piecewise constant as in Section 2
and the conditional density and survival functions of the susceptibles are respectively noted
fE|Y =1,Z) and S(t | Y = 1,Z). If one wants to model the effect of covariates on the
probability of being cured, a logistic link can be used:

exp(yX) (5)

p<X>:]P>[Y:1’X]:1+Tp(’)/)(),



where X is a covariate vector including the intercept and - is a row parameter vector, both
of dimension dy. The observed data then consist of data = (L;, R;, d;, Zi, X;)1<i<n while T;
and Y; are respectively incompletely observed and non observed data. The model parameter

is @ = (a1,...,ar,p) in the completely nonparametric context (no covariates X nor Z), 8 =
(a1,...,ar,B,p) if only the covariate Z is used or 8 = (ay,...,ar,,7) in the full regression
context (with covariates X and Z). In the later case, we 1ntroduce the notation p; = P[Y; = 1|

X;]. The other situations are encompassed in our modelling approach by setting X = 0 and/or
Z = 0. Note that our cure model is identifiable and does not require additional constraints such
as in [15] where the authors had to impose S(t | Y =1, Z) to be null for ¢ greater than the last
event time in the context of exact and right-censored data.

Under the cure model, the observed likelihood is now defined as

0= T o (- [t (1o (- o)) |

i=1

X {(1 — pi) + piexp ( - /OLi /\o(t)dteBOZi> }léi

and the complete likelihood is defined as

=[[p (—p)" (T | Vi =1, Zi;0)}
i=1

i=1

The E step is performed as follows. Let 794 = E[Y; | data, 8o14], we have:

old _ g (1 = 0i)poaS(Li | Yi =1, Zi, Ooa)
' " 1= pola + polaS(Li | Yi = 1, Zi, 0014)

The E-step consists of computing the function Q(6 | 0,4) = E[log(L(0)) | data,8y4]. In the
case of interval-censored and exact observations, we have:

n

Q6 | 80a) = Y {77 log(p) + (1 = 7M) log(1 — i)}

=1

+ 0> EK: { (ai,k

¢ not exact k=1

K
+ Z Z {Oi,kai,k - eXp(aM)Rivk},

i exact k=1

k—1

. 1d ; 1d
—cj_1)e" J)AO a”’“Blg,z‘}
=1

<.

where Ailf, BOld are defined as in Equations (2) and (3) with the quantity S(- | Z;, O,1q) replaced
by S(- | Y = 17 ZZ7 0o1q). The terms O; ;, and R; j, were defined in Section 3.4.

The @ function separates the terms with v and the terms involving (a1, ...,ax,3) such
that maximisation of these terms can be performed separately. Let AZ’OI = > WfldAzl?,

”Old = OldBOld and 7°d = > ﬂfld. In the nonparametric setting, explicit estimators of
the parameters can be computed at each step of the EM algorithm through the formulas:

,ﬁ.Old

b= )
n

rold A~
AZ’O + Oy,

K 7m,0ld —od oo k=1 K
Ik # K) 3 g1 A7 (ck — cpm1) + B0 + Ry,

exp(ax) =



In the general regression context, a Newton-Raphson procedure is implemented separately to
maximise both parts of (). The first and second order derivatives of () with respect to v are
equal to:

O] P ZX(fld_eXP(W>7

1 + exp(yX;)

n

(9 | Ood) exp(7Xi)
- Z 1 +exp(7X;))2

=1

Exact expressions of the first and second order derivatives of () with respect to a; and 3 are
given in the Appendix section. They are expressed as weighted versions with respect to 7r°1d of
the derivatives obtained in the context where all individuals are susceptibles. As prev10usly, the
block matrix corresponding to the second order derivatives with respect to the ays of the Hessian
is diagonal and inversion of the Hessian matrix is achieved using the Schurr complement.

4 Estimation procedure using the adaptive ridge method

In this section we present a penalised estimation method to detect the number and location of the
cuts of the baseline hazard, when those are not known in advance. The proposed methodology
is based on the work of [12], [13] and [14] and can be applied to any of the previous scenarios
(with exact observations, with a cure fraction, in a nonparametric setting, in a regression setting)
where the function @) represents the objective function associated with the context under study.

4.1 A penalised EM algorithm

If the number of cuts is not known in advance, we choose a large grid of cuts (i.e K large) and
we penalise the log-likelihood in the manner of [12], [13] and [14]. This penalisation is designed
to force consecutive values of the axs to be close to each other. It is defined in the following
way:

K-1
pen
001 00) = QO 0) — P52 3~ wrlanss — an)? (6)
k=1
where w = (wy,...,wx_1) are non-negative weights that will be iteratively updated in order

for the weighted ridge penalty term to approximate the L0 penalty. The pen term is a tuning
parameter that describes the degree of penalisation. Note that the two extreme situations
pen= 0 and pen= oo respectively correspond to the unpenalised log-likelihod model of Section 3
and to the Cox model with exponential baseline.

Only the maximisation over (ai,...,arx) is affected by the penalty. The first and second
order derivatives of ¢ with respect to ai,...,ax are equal to:
o000 | 6, 0Q0 | 6,
(61 8oia) = 6 | Boia) + (wr—1ap—1 — (W1 + wg)ag + wragy1)pen,
8ak 8ak
0%0(0 | 6q) 9%Q(0 | B41q)
da2 = dal — (wk—1 + wy)pen,
825(9 ’ Oold) 826(0 | gold)
= = wgpen,
0aag41 dagyrak
0%0(0 | 6419)

=0 for k, k" such that |k — k" |> 2.
8akak/

The block matrix corresponding to the second order derivatives with respect to the ags is
therefore tridiagonal. For a given value of pen and of the weight vector w, inversion of the



Hessian matrix is performed using the Schurr complement as previously (see the Appendix
section) and the Newton-Raphson algorithm is implemented to derive 8. Once the Newton-
Raphson algorithm has reached convergence, the weights are updated at the [th step from the
equation

! (1 (1 .
o = (- a0y +2)

fork=1,...,K—1withe = 107" (recommended value from [12]) and where the d,(f)’s represent
the estimates of the a;’s obtained through the Newton-Raphson algorithm. This form of weights
is motivated by the fact that wg(agr1 — ax)? is close to 0 when | ax 1 — ax |< ¢ and close to 1
when | ag41 —ag |> €. Hence the penalty term tends to approximate the L0 norm. The weights

are initialized by wko) = 1, which gives the standard ridge estimate of a.

Finally, for a given value of pen, once the adaptive ridge algorithm has reached convergence,
a set of cuts is found for the a;’s verifying wy(apy1 — az)? > 0.99. The non-penalised log-
likelihood @ is then maximised using this set of cuts and the final maximum likelihood estimate
is derived using the results of Section 3. It is important to stress that the penalised likelihood
is used only to select a set of cuts. Reimplementing the non-penalised log-likelihood @ in the
final step enables to reduce the bias classically induced by penalised maximisation techniques.

4.2 Choice of the penalty term

A Bayesian Information Criterion (BIC) is introduced in order to choose the penalty term. As
explained in the previous section, for each penalty value the penalised EM likelihood (6) selects
a set of cuts. For a selected set of cuts we denote by m the total number of parameters to be

estimated and by 60,, the corresponding non-penalised estimated model parameter obtained by
maximisation of the @) function. The BIC is then defined as:

BIC(m) = —21og(L°(0,,)) + mlog(n).

Note that the BIC is expressed here in terms of selected models. Since different penalty values
can yield the same selection of cuts, the BIC needs only to be computed for all different selected
models (and not for all different penalties). As an illustration of the model selection procedure,
a full regularisation path can be produced where for each penalty value corresponds a set of
cuts and parameter estimates, see for example Figure 3 of [14]. The final set of cuts along with
its estimator @, is chosen such that BIC(7h) is minimal.

Other criteria could be used to perform model selection such as the Akaike Information
Criterion (AIC). However we recommend to use the BIC as this criterion was shown to have
similar performance as the cross-validation criterion on time to event data in [14].

4.3 Discussion on computational aspects

The complexity for the inversion of the Hessian of ¢ is still of order O(K), in the case K >>
dx + dz (see the Appendix section on the Schurr complement for details about computational
complexity). However, for a given penalty, it should be noted that the global algorithm for
maximising @ or ¢ consists of an EM algorithm with a Newton-Raphson procedure at each
step. As a consequence, a Generalised Expectation Maximisation (GEM) algorithm (see [10])
is used instead of the standard EM where, as soon as the value of @) or ¢ increases, the Newton-
Raphson procedure is stopped. This results in computing only a few steps of the Newton-
Raphson algorithm (very often only one step is needed). As the EM algorithm is usually
very slow to reach convergence the turboEM R package with the squareEM option is used to
accelerate the procedure (see for instance [21]). Finally, the algorithm must be iterated for
the whole sequence of penalties. In order to evaluate the global computational cost, numerical
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experiments were conducted which showed that, for a maximum of K.« initial cuts, the total

complexity of the whole procedure is of order (’)(nK&l/fx). See Section 6.3 for more details on
these aspects.

5 Statistical inference

Inference on the model parameters can be achieved after selection of the cuts of the baseline
function by considering these cuts as fixed parameters. Then the problem reduces to a fully
parametric model. Theoretical results for parametric models with interval censored data have
been discussed in [7] for instance.

Statistical tests are implemented from the likelihood ratio test which is based on the observed
likelihood L°Ps. Let @ = (61, f) with 6, of dimension d. To test the null hypothesis Hy : 6; = 6,
with #y known, one can use the test statistic —2log(L°" (6, 02)/L°" (1, 6)) which follows a
chi-squared distribution with d degrees of freedom from standard likelihood theory. Confidence
intervals can also be constructed from the likelihood ratio statistic. Let us assume that 8 =
(61, 02) with 0; of dimension 1 and consider the test Hy : 6; = 6y versus Hy : 61 # 6p. The 1 — «
confidence interval level of the parameter 6 will be determined by the set of values 6y such that
the previous test is not significant at the significance level a. Note that the p-value of the test
is defined by (with a slight abuse of notation for the realisation of the test statistic)

L.obs(p é
P [x*(1) > —2log M ,
Lobs(g17 02)
and the test is non-significant if this value is greater than a. Let qi;a be the 1 — a quantile of

the x2(1) distribution. The bounds of the confidence intervals can therefore be determined by
resolving the equation

log (L (0o, 02)) + 505 — log(L™ (1, 62)) = 0, (7)
with respect to 6y. This equation has two solutions and since it is clear that 6y = 0, is part of
the confidence interval (the p-value equals one for this value), a grid search can be performed
using for example the uniroot package with the two starting intervals [él —c; él] and [él; 0 +d],
where c is a positive constant. This constant can be chosen arbitrarily large and should satisfy
that the left-hand side of Equation (7) is of opposite sign for y = 01 —c and 6y = 0; +c. See [22]
for more details about the likelihood ratio test approach for constructing confidence intervals.

A more classical method for deriving confidence intervals is based on the normal approx-
imation of the model parameter. It requires to compute the Hessian matrix of the observed
log-likelihood 82 log(L°"(8))/86? evaluated at @ = 0. This can be done by direct calculation
or by using the following relationship which makes use of the complete likelihood:

dlog (L°P5(0)) & [GIOg (L(9))

50 20 ’ data, 9} . (8)

In the above equation, the Hessian can be computed based on the complete likelihood by taking
the derivative of the right-hand side of the equation with respect to 8. Note that, in the absence
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of exact observations and of a cure fraction,

n K k
log (L(0)) = > Y I(cp1 < T; < cx) (ai,k =) e"i(Ti Ay — Cj—l))7
i—1 k=1 j=1
dlog (L(6)) _ + -
oa Zz; {I(Ck:—l <T; <c¢p) — ZZ];I(CZ—1 <T; < ¢)e" (T A eg — Ck—l)}7
dlog (L(B)) _ v :
T = ZZI(ck_l <T; < ck)Zi(l — Zeam (Ti Nej — cj,l)).

Il
—
e
Il
MR

i j=1

We now need to take the expectation conditionally on the data of the last two equations. This
will involve the quantities

S(Ck_l VvV L; | ZZ,O) — S(Ck N R; ’ Zz,B)
S(Li | Z;,0) — S(R; | Z;,0) ’

Plek—1 < T; < ¢k | data, 0] =

and

E[l(ck1 < Tt < c)T; | data, )]

cp\NR; k 1
", /C exp (a k= > €M (EA e — ¢ 1)> “S(Li | Zi,0) — S(R; | Z:,0)

k—1VL; j=1
= {(exp(—ai,k) +cp_1V Li) exp(—e®kcp_1 V L;) — (exp(—ai7k) +cp A Ri) exp(—e*Fep A Rl)}

exp (e%kcpy — 3521 €% (e; — ¢j1)) ra
S(Li| Zi,0) — S(R; | Z;,0)

Calculation of the right-hand side of Equation (8) is now straightforward. The Hessian is finally
obtained by taking the derivative with respect to 8 of this quantity. The explicit expression of
this quantity is given in the Appendix section.

The normal approximation method can be tedious to implement due to the calculation of
the Hessian matrix. On the other hand the likelihood ratio test approach does not suffer this
drawback and is easy to implement as long as the parameter of interest is of dimension one.
Finally, bootstrap methods can be implemented to derive confidence intervals. This technique
is particularly interesting when the interest lies in the estimation of the survival function in a
non-parametric or regression context. In order to derive the asymptotic distribution of such
functional one would need to use the delta-method which may result in very complicated formula
for the variance estimator. The bootstrap alternative avoids these technicalities.

6 Simulation study

In this section we study the performance of the proposed estimators on simulated data.

6.1 Two scenarios with exact, left, interval-censored and right-censored data

We first consider the Cox regression setting of Equation (1) where the aim is to correctly
estimate the regression coefficient 8 and the baseline function A\g. We set the baseline as a
piecewise constant function with three cuts in the following way:

0.5 x 1072 for t € (0,20],
1x1072  for t € (20,40],
2x 1072 for t € (40, 50],
4x1072  for t > 50.

Ao(t) =
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The covariate vector Z is of dimension dz = 2 with the first component simulated as a Bernoulli
variable with parameter 0.6 and the second component is independently simulated as a uniform
variable with parameters [0, 2]. The regression parameter is equal to 3 = (log(2), log(0.8))!. The
values of L; and R; were determined through a visit process defined in the following way. Let U
denote the uniform distribution. Two visits were simulated such that the first one V; ~ U]0, 60]
and the other one V5 = V; + U[0,120]. Then the observations for which 7; < Vj correspond
to left-censored observations with L; = 0 and R; = Vi, the observations for which T; > V5
correspond to right-censored observations with L; = V5 and R; = oo, and the observations for
which Vi < T; < V4 correspond to strictly interval-censored observations with L; = V; and
R; = V5. This simulation setting corresponds to Scenario S1 and gave a proportion of 25%
of left-censored observations, 52% of interval-censored observations and 23% of right-censored
observations. In Scenario S2, 18% of exact observations were first sampled and then the same
simulation scheme for the visit process was used. The percentage of left, interval and right
censored observations remains identical under this scenario. Note that the two simulation
settings produce very wide censoring intervals. As a result it is particularly challenging for our
method to recover the true baseline hazard with the correct cuts and estimated values. As a
matter of fact, when looking at strictly interval-censored observations only, the average width
of the interval E[R; — L;] is equal to 60.

Our adaptive ridge estimator was constructed from a grid of cuts ranging from ¢y = 10 to
c17 = 90, with all cuts equally spaced of size 5. The set of penalty terms was taken, on the log
scale, as the set of 200 equally spaced values ranging from log(0.1) to log(10000). For the EM
algorithm, the a; and [ parameters were initialised to 0. As described in Section 4, the BIC
was used to find an estimated set of cuts and the non penalised estimator was reimplemented
with this set of cuts in order to derive our final estimator. This estimator was compared with
the midpoint estimator and the ICsurv estimator from [9]. The midpoint estimator consists
of replacing the interval-censored observations by their midpoint (L; + R;)/2. The data then
consist of exact and right-censored observations and can be dealt with by implementing the
standard Cox regression estimators. The ICsurv estimator models the cumulative baseline
function using monotone splines and uses a two-stage data augmentation method to perform
estimation through the EM algorithm. This estimator is implemented using the ICsurv package.
Following the guidelines from [9] this estimator was computing using basis splines having degree
3 with 5 interior knots placed evenly across the range of endpoints of the observed intervals.
The B parameters and the spline coefficients were respectively initialised to 0 and 1. A very fine
grid of time was used for the calculation of the cumulative baseline hazard from time 0 to time
200 with a step equal to 0.1. This estimator cannot include exact observations and is computed
only for the scenario S1.

A total of M = 500 replications were implemented and the bias and the empirical standard
error (SE) of B were computed for each estimator. In order to assess the quality of estimation
of Ao, the baseline survival function Sy(t) = exp(— fg Ao(u)du) was also estimated with each
estimator. Then, as a measure of precision, the Integrated Mean Squared Error (MISE) was
decomposed as MISE(Sy) = IBias?(Sg) + IVar(Sp), where

204 (1N am 2
[Bias?(y) = /O L3 S w) — So(w) |

. 1 M 60 . 1 M o 2
IVar(So) = 7= /0 (ng)(u) TR gm><u)> du.
m=1 m/=1

The S(()m), m =1,..., M, represent the estimates for each replication. Finally, the total variation
between \g and A9 was also computed for our adaptive ridge estimator. For a given estimate

13



Xém), the following quantity was computed

K

TV AG) = (ex — err) | explan) — explar) |,
k=1

and the average over all estimates TV ()\g) = Yom TV(m)(X((]m)) /M was reported. The results
are presented in Tables 1 and 2 for Scenarios S1 and S2. Three different sample sizes (n =
200,400, 1000) were considered in the two scenarios, for the midpoint, the ICsurv and the
adaptive ridge estimators.

From the simulation results, it is seen that the midpoint and ICsurv estimates have a lower
variance than our adaptive ridge estimator both for 3 and Sy. However, the midpoint estimator
is systematically biased and this bias does not get smaller as the sample size increases. The
ICsurv also exhibits a strong bias which slightly decreases for large sample sizes. On the other
hand, our estimator always has the smallest bias and both the bias and the variance decrease
as the sample size increases. For example, in Scenario S1 for n = 400, which corresponds to the
sample size of the real data analysis of Section 7 and to similar proportions of left, interval and
right censoring, our estimator exhibits a bias for 3 = (log(2),log(0.8))! that is 15 and 19 times
smaller than the bias from the midpoint estimator and 12 and 2.6 times smaller than the bias
from the ICsurv estimator. For the estimation of Sy our estimator bias is more than 40 times
smaller than the midpoint estimator and more than 35 times smaller than the ICsurv estimator.
In terms of MSE, our estimator and the ICsurv estimators show comparable performance for the
estimation of 3 while for the estimation of Sy our estimator outperforms the ICsurv estimator.
In Scenario S2 the effect of adding exact observations is seen to decrease the bias and variance
of all estimators, for both estimation methods (midpoint and adaptive ridge). For n = 400 the
bias for our estimator of J is divided by 4 and 15 and the bias for our estimator of Sy is divided
by 3.

The performance of the BIC to detect the correct number of cuts was also assessed in the
simulation experiments. As previously noticed our simulation experiment generates very wide
intervals which makes it difficult for the estimation method to correctly recover the number of
cuts. As a result the BIC tends to over-penalise the estimator in this simulation setting. For
example in Scenario S1, for n = 1000, the BIC chose a model with only two cuts in 56% of the
simulated experiments, it chose a model with only one cut in 40% of the simulated experiments
and it chose the correct model with three cuts in only 4% of the simulated experiments. Other
simulation settings were considered. In particular, our estimator was seen to perform much
better in a setting with 14 visits such that Vi ~ #[0,20] and V; = V;_; + U[0,10], for j =
2,...,14. In that case, for n = 1000, our estimator chose the correct model with three cuts in
82% of cases. The total variation of 5\0 was equal to 0.191 in this setting, a value that must
be compared with 0.416, the total variation that was obtained in Scenario 1. The performance
of the other parameter estimates (B and go) were also much better in this setting (results not
shown).

6.2 Two scenarios that include exact observations and a cure fraction

We now consider two new scenarios which include a proportion of non-susceptible individuals.
For the susceptibles, the data include left, interval and right-censored observations along with a
proportion of exact observations. The model is defined by Equations (4) and (5) with a logistic
link for the probability of being cured. In both scenarios, the Z covariate, 8 coeflicient and Ag
baseline function are all generated as in Section 6.1. The X covariate is of dimension dx = 2
(including the intercept) and follows a Bernoulli distribution with parameter 0.8. In Scenario
S3, v = (log(2.35),10g(2))" and in Scenario S4, v = (log(0.8),log(2))!. These values yield an
average number of susceptible individuals E[p(X)] respectively equal to 80% and 58%. Among
the susceptibles, both scenarios correspond to a proportion of 18% of exact observations, 19% of
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Table 1: Simulation results for the estimation of 3 in Scenarios S1 and S2 with 100% of susceptible
individuals. S1: no exact data, 25% of left-censoring, 52% of interval-censoring, 23% of right-censoring.
S2: 18% of exact data, 19% of left-censoring, 40% of interval-censoring, 23% of right-censoring.

Adaptive Ridge estimate Midpoint estimate ICsurv estimate

n | Bias(8) SE(3) MSE(j3) | Bias(8) SE(f) MSE(B) | Bias(8) SE(3) MSE(j)
S1 | 200 0.032 0.235 0.056 | —0.174 0.184 0.064 | —0.158 0.175  0.056

—0.010 0.181 0.033 0.057  0.141 0.023 0.050  0.149  0.025

400 0.012 0.166  0.028 | —0.177 0.127 0.047 | —0.148 0.119  0.036

—0.014 0.120 0.015 0.050  0.096  0.012 0.037  0.101 0.012

1000 | 0.007 0.099 0.010 | —0.171 0.075  0.035 | —0.135 0.071 0.023

—0.003 0.075  0.006 0.056  0.062  0.007 0.035  0.063  0.005

S2 | 200 0.033 0.213  0.047 | —0.128 0.181 0.049
—0.006 0.169  0.029 0.045 0.147  0.024
400 0.003 0.153  0.023 —-0.138 0.128  0.035
-0.001 0.119  0.014 0.046  0.104  0.013
1000 | 0.006  0.092  0.009 —-0.136  0.078  0.025
0.002  0.071 0.005 0.051  0.062  0.006

Table 2: Simulation results for the estimation of Sy in Scenarios S1 and S2 with 100% of susceptible
individuals. S1: no exact data, 25% of left-censoring, 52% of interval-censoring, 23% of right-censoring.
S2: 18% of exact data, 19% of left-censoring, 40% of interval-censoring, 23% of right-censoring.

Adaptive Ridge estimate Midpoint estimate [Csurv estimate
n | IBias®(So) IVar(So) TV(ho) | IBias?(So) IVar(So) | IBias?(So) IVar(So)

S1 | 200 0.002 0.266 0.784 0.124 0.122 0.129 0.254

400 0.003 0.138 0.600 0.124 0.061 0.107 0.129

1000 0.002 0.059 0.416 0.126 0.023 0.100 0.052
S2 | 200 0.001 0.196 0.646 0.074 0.114
400 0.001 0.103 0.484 0.074 0.060
1000 0.000 0.038 0.277 0.075 0.022

left observations, 40% of interval-censored observations and 23% of right-censored observations.
The results are presented in Table 3. Only our adaptive ridge estimator has been implemented
for these two scenarios. The v estimator is initialised to 0 in the EM algorithm.

A slight deterioration of the variance estimation of B and ) is seen when a cure fraction is
included and the degree of deterioration increases as the proportion of cured gets bigger. On
the other hand the bias of the parameter estimates is similar with or without the cure fraction.
In the presence of a cure fraction, the v parameter is less accurately estimated as compared
to the 8§ parameter both in terms of bias and variance. Nevertheless the results show that as
the sample size increases the bias and variance of 4 get smaller with a bias very close to 0 for
a sample size equal to 1000. The estimation performance of E[p(X)] was also investigated by
computing the average value of ), p(X;)/n for all generated samples where p(X) is defined as
in Equation (5) with v replaced by 4. For example, in Scenario S4 we found a bias and empirical
standard error (SE) equal for n = 200 to 0.057 (SE = 0.064), for n = 400 to 0.046 (SE = 0.044)
and for n = 1000 to 0.033 (SE = 0.028).

More simulations were conducted. In particular, the cure model without covariates for the
cure fraction was also implemented in Scenario S1 such that the parameters to be estimated are
0 = (a1,...,ar,,p) with the true value of p equal to 1. In replications of samples of size 400,
it was seen that the model estimated the proportion of susceptibles p to a value greater than
0.99 in 98% of cases and the lowest value on the 500 replications for the estimation of p was
equal to 0.95. This highlights the very high specificity of our model in terms of detecting a cure
fraction. It shows that our model does not tend to overestimate the proportion of cured when
the population is homogeneous, which is a very important feature of the estimation method.
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On the other hand, a scenario identical to Scenario S1 but with a true proportion of susceptibles
equal to p = 0.7 was also considered. In replications of samples of size 400, the estimator of p
was equal to 0.712 on average and only 0.5% of the estimates where greater than 0.99. This
suggests in turn a high sensitivity of our model to detect heterogeneity in interval censored data.
Simulations under different true hazards were also considered, such as the Weibull distribution.
The performance of our estimator, the ICsurv and midpoint estimators was similar and the
results are therefore omitted here.

Table 3: Simulation results for the estimation of 3 and Sy in Scenarios S3 and S4. S3: 80% of susceptible
individuals. S4: 58% of susceptible individuals. Among the susceptible individuals, 18% of exact data,
19% of left-censoring, 40% of interval-censoring, 23% of right-censoring.

Adaptive Ridge estimate

n | Bias(8) SE(3) MSE(3) Bias(§) SE(§) MSE(J) IBias*(Sy) IVar(So) TV(Xo)

S3 | 200 | —0.015 0.291 0.085 0.102  0.498 0.259 0.004 0.324 0.840
0.003 0.236 0.056 0.011  0.630 0.398

400 | —0.017 0.207 0.043 0.075  0.356 0.132 0.002 0.160 0.659
—0.005 0.162 0.026 0.027  0.433 0.189

1000 [ 0.006 0.127 0.016  0.025 0.184  0.035 0.001 0.059 0.414
0.006 0.094 0.009 0012 0.198  0.039

S4 | 200 | —0.021 0.387 0.150 0.077  0.479 0.235 0.005 0.563 1.195
—0.010 0.310  0.096  0.038 0.511  0.262

400 | —0.023 0.255 0.066 0.048  0.296 0.090 0.003 0.255 0.810
0.003 0.209 0.044 0.016  0.309 0.096

1000 | —0.009 0.150  0.023  0.032 0.186  0.036 0.001 0.096 0.530
0.008 0.124 0.015 0.004  0.205 0.042

6.3 Computational cost of the adaptive ridge algorithm

The computation time for the method was evaluated on replicated samples for the three sample
sizes n = 200,400, 1000 and for different values of the maximal number of initial cuts: Kpax =
18,40,80. We estimated the implementation of the whole method with 200 penalty values
and using the turboEM R package with the squareEM option (see for instance [21]) in order to

accelerate the EM algorithm, to 0.0016 x nKrln/fx minutes. For example, for n = 400, K,,x = 40
the whole program takes 4 minutes, for n = 400, Kjnax = 80 it takes 5.7 minutes, for n =
1000, Kimax = 40 it takes 10.12 minutes and for n = 1000, K. = 80 it takes 14.3 minutes.
These values are given as an indication of the algorithmic complexity and should be considered
with caution as the implementation has not been optimised. In particular, computation of the
Azl’? and B,‘;’}? terms could be improved by computing the set of values (cx A R;,cp—1 V L)
such that (L;, R;) N (cx—_1,cx) # 0 more efficiently in C++. Also the non-penalised MLE is
implemented for each selection of cuts. For small penalty values, the set of selected cuts can
be quite large and the turboEM R package has trouble to converge in these cases. For very
large set of selected cuts it often does not converge at all and the algorithm is stopped after
200 iterations. This procedure could be greatly improved by only implementing the MLE for
reasonable sets of cuts.

Finally, it should be noted that the adaptive ridge procedure needs only to be implemented
once on the dataset, in order to detect the set of cuts. Then given this set of cuts, the piecewise-
constant hazard model is much faster to compute. For example in Scenario S1 with three cuts,
the computation time of the piecewise-constant hazard maximum likelihood model is on average
respectively equal to 1.13, 1.80 and 3.33 seconds for n = 200, 400, 1 000.
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7 Ankylosis complications for replanted teeth on a dental dataset

The method is illustrated on a dental dataset. 322 patients with 400 avulsed and replanted
permanent teeth were followed-up prospectively in the period from 1965 to 1988 at the university
hospital in Copenhagen, Denmark. The following replantation procedure was used: the avulsed
tooth was placed in saline as soon as the patient was received at the emergency ward. If the
tooth was obviously contaminated, it was cleansed with gauze soaked in saline or rinsed with
a flow of saline from a syringe. The tooth was replanted in its socket by digital pressure. The
patients were then examined at intermittent visits to the dentist. In this study, we focused on a
complication called ankylosis characterized by the fusion of the tooth to the bone such that the
variable of interest T is the time from replantation of the tooth to ankylosis. This complication
may occur if the cells on the root surface is damaged in which case, healing of the periodontal
ligament surrounding the tooth will be impaired, leading to local ingrowth of bone. Ankylosis
cannot be arrested and gradually the root of the tooth will be replaced by bone which will
eventually lead to tooth loss. The data are described in great details in [23].

A total of 28% of the data were left censored, 35.75% were interval censored and 36.25%
were right censored. Four covariates were included in the study: the stage of root formation
(72.5% of mature teeth, 27.5% of immature teeth), the length of extra-alveolar storage (mean
time is 30.9 minutes), the type of storage media (85.25% physiologic, 14.75% non physiologic)
and the age of the patient (the mean age for mature teeth is 16.81 years). There is no need for
a cure fraction in this analysis since all different models (non-parametric or regression models)
estimated the cure fraction to 0%. The adaptive ridge method found four cuts for the baseline
hazard at time points 100, 500, 800 and 900 where the initial grid search was composed of
10 spaced time points from 0 to 200 and then of 100 spaced time points from 200 to 2000
(Kmax = 40). The initial grid search was motivated by the data: for 71% of the left and
interval-censored data, the right endpoint is lower than 200.

Non-parametric survival estimates were first computed, one for the whole population and
two for each subgroup defined by the stage of root formation (see Figure 1). Confidence intervals
were also computed using the boostrap method with 500 replications. These plots illustrate an
interesting feature of the adaptive ridge procedure: by selecting a parsimonious set of cuts,
the method highlights the different regions of time where the risk of failure varies. There is
in particular a very high risk of ankylosis before 100 days as shown by the very steep survival
curve on this time interval. On the global survival curve, the risk of developing ankylosis (one
minus the survival function) before 100 days is estimated to 48.35% [43.39%; 53.67%]. Then the
slope of the survival curve decreases from 100 days to 500 days, with a risk to develop ankylosis
before 500 days estimated to 59.94% [54.96%;64.57%)]. The risk of ankylosis after 900 days is
almost null (as shown by the plateau of the survival curve) suggesting that if a patient has not
yet developed ankylosis after 900 days he/she is almost no longer at risk for this complication.

When looking at the two subgroups defined by stage of root formation we can see that the
risk of ankylosis is much higher in the mature group than in the immature group. This is a
very interesting result as it confirms the finding from [24] where periodontal ligament healing
was seen to be less frequent with advanced stages of root development. From our analysis,
it is seen that the risk is in particular higher in the interval [100,500] for the mature group
than for the immature group, with ankylosis coming mostly from the mature group in this time
range. For the immature group, the risk of developing ankylosis before 100 days is estimated
to 35.54% [26.85%;45.13%] and to 52.84% [46.26%;59.03%)] for the mature teeth. Then the
slope of the survival curve decreases from 100 days to 500 days, with a risk to develop ankylosis
before 500 days estimated to 38.74% [28.97%;47.62%)] for the immature teeth and to 67.92%
[62.36%; 73.31%] for the mature teeth. The risk gets very low after 500 days for all groups.

Finally a Cox model was implemented with all the covariates included. Since age shows little
variation for immature teeth, this last variable was only included in interaction with the stage
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Figure 1: On the left panel, estimate of the survival function of time to ankylosis for the whole
population. On the right panel, estimates of the survival function for the immature teeth (solid
line) and for the mature teeth (dotted lines). Confidence intervals are plotted along the curves
in shaded areas using the bootstrap approach.

Covariates HR 95% CI p-value
Mature 2.00 | [1.74;2.29] | 1.89 x 10~°
Storage time (hours) | 1.23 | [1.11;1.34] 0.0017
Physiologic storage 0.93 | [0.81;1.06] 0.6980
Age>20 (mature teeth) | 1.27 | [0.99;1.61] 0.1272

Table 4: Regression modelling of time to ankylosis on the dental dataset (HR: Hazard Ratio,
CI: Confidence Interval). The adaptive ridge found four cuts for the baseline hazard at times
100, 500, 800 and 900.

of root formation such that the baseline value corresponds to immature teeth and the covariate
is defined as age greater than 20 years for mature teeth only. The results for the effects of
the covariates are shown in Table 4. Statistical tests and confidence intervals for each variable
were implemented using the log-ratio statistic test as explained in Section 5. It can be seen
that the stage of root formation is highly significant with a two-fold increased risk for mature
teeth to develop ankylosis. The storage time is also highly significant with a 1.23 increase of
risk per hour. The type of storage media seems to have no effect on ankylosis and age is not
significant even at the 10% level. The baseline hazard values along with their 95% confidence
intervals are also displayed in Table 5. This hazard corresponds to the risk of immature teeth
with non-physiologic type of storage and a storage time of 20 minutes. We can see how the risk
is much higher before 100 days than at any other time period. Prediction curves for any specific
individual can be plotted using these values.

Cuts exp(ag) x 103 | 95% CI x 103
(0,100] 3.71 [3.19; 4.28]
(100, 500] 0.39 [0.28; 0.52]
(500, 800] 0.00 [0.00; 0.00]
(800, 900] 0.62 [0.31; 1.07]
(900, +00) 0.02 [0.01;0.04]

Table 5: Baseline hazard from the regression modelling of time to ankylosis on the dental
dataset (CI: Confidence Interval). This hazard corresponds to the risk of immature teeth with
non-physiologic type of storage and a storage time of 20 minutes.
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8 Conclusion

The estimation method proposed in this paper is very general and allows to deal with a wide
range of situations. We first introduced the method for the mixed case of left-censored, interval-
censored and right-censored data and we then directly extended it to consider the inclusion
of exact observations and a cure fraction. We showed that treating the true event times as
unobserved and using the EM algorithm to perform estimation resulted in a diagonal block
matrix of the baseline hazard in the piecewise constant Cox model. This is a very interesting
feature of our approach since the standard estimation method for this model (see for instance [7])
results in a full rank Hessian matrix, which can pose some serious computational problems for
a moderate number of baseline cuts. Moreover, this allowed us to use the L0 penalisation
technique developed in [12] and [13] which was also implemented for exact and right censored
data in [14]. Starting from a large grid of baseline cuts this penalisation technique forces two
similar adjacent values to be equal. This results in a very flexible model since the location
and number of cuts of the baseline are directly determined from the data. As compared to
the ICsurv method from [9], the EM algorithm is readily applicable without need of a data
augmentation step. Even though our cumulative baseline hazard does not result in a smooth
function as compared to their spline approach, our method was shown to perform greatly on
simulated data and even to outperform the method from [9] especially in terms of bias of the
estimated parameters. On the dental dataset we also showed the interesting feature of the
adaptive ridge procedure: by detecting the different time regions where the hazard for ankylosis
changes, it revealed a very high risk of failure from replantation of the tooth until 100 days
after replantation and a risk near to zero after 900 days.

By use of a logit link we developed the general cure model introduced by [15] and [16], for
interval-censored data. From this model the effect of covariates on the odds of being cured and
on the hazard risk of the susceptibles can be assessed. Interestingly, the combination of the
piecewise constant baseline hazard and the adaptive ridge procedure produce a very flexible
model in this context and avoids the use of arbitrary constraints such as in [15] where the
authors had to require that the conditional survival function is set to zero beyond the last event
time.

Another type of heterogeneity could be modelled with the use of frailty models (see [25]
for instance). The EM approach for frailty models could then be used as a direct extension
of our estimation method. However, it would require to compute the conditional value of the
frailty variable given the observed data, a work that is left to future research. Similarly the
standard mixture problem where one assumes the population to be composed of two (or more)
subgroups with different hazards could be considered (see for instance [26] for this model in a
high dimensional setting). The use of the piecewise constant baseline hazard would be crucial
for this problem as the model is only identifiable for parametric baselines. The implementation
of the adaptive ridge procedure would then result in a very flexible model for this problem.

9 Appendix

9.1 The Schurr complement

The Schurr complement is used to compute the inverse of the Hessian matrix of (), in the case
of fixed cuts (Section 3) and of [, for the adaptive ridge estimator (Section 4). It makes use
of the special structure of the block matrix corresponding to the second order derivatives with
respect to the ais which is either diagonal (for @) or tri-diagonal (for [).

Let Z(a, 5) be minus the Hessian matrix of @ or [ for the maximisation problem with respect
toai,...,ar and Bi,...,Bq4,. Let A be of dimension K x K, B of dimension K x dz and C be
of dimension dz x dz such that
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15 = (5 )

Let Ul(a, B) be the score vector of @ or [ and by be the column vector of dimension K, by be the
column vector of dimension dz such that U(a, 3) = (b1, b2)!. Using the Schurr complement, we
have

A7y — AT'B(C — BPAT'B) " (by — B'A™ b
Z(a, ) VU (a, 8) = ( G BB s Bty 1)>'

For the inversion of the Hessian matrix of @ and [, the K x K matrix A is either diagonal (for
Q) or a band matrix of bandwidth equal to 1 (for ). Its inverse can be efficiently computed
using a fast C++ implementation of the LDL algorithm. This is achieved in linear complexity
using the R bandsolve package. As a result, the total complexity for the computation of
Z(a,3)VU(a, B) is of order O(K) in the case K >> dy.

9.2 Score vector and Hessian matrix for the function () when including exact
observations and a cure fraction

In the presence of exact observations and a cure fraction, the score vector and the Hessian
matrix are given from the following formulas:

7‘ - E Old { AOld (Ck Ck—1 ) eak (k 7 ) § ?,l’bdeBZZ eak Bg}? eBZ’L }
k 4 not exact l*k"‘l‘l

+Z{ ik —explar + BZ;)R; },

7 exact

¢ not exact

K -1
8Q(0 ‘ 0 1d) 1d Id ; 1d _BZ; 1d i
A E 7 Z; E AO —C; “ A7 eBZi 4 e By eBZi
8,8 o 1( 71— 1) L, l

+ > Z Z{ — exp(a; + BZi)R; }

7 exact
and
9?Q(0 | 0,1q) 1d = 1d_BZ d_BZ
e = S al (er = cror)e™ I(k £ K) Y AP 4 et BlePZ
ak 7 not exact I=k+1
— > explay + BZi)Ri,
i exact
eICAN)
Q(a |2 old) _ S ez, th Z 1) APIT . B
'8 % not exact =1 \j=1
— Z ZZ Zexpal+ﬁZ ils
i exact
9’Q(0 | ,1q) 1d x 1d_BZ 1d_BZ:
e = - S mMZ | (o —amr)e™ I(k £ K) Y APef% 4 et BRidePZ |
Ak B 7 not exact l=k+1

— Y Ziexp(ak + BZi)Riy,

i exact
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9.3 Score vector and Hessian matrix for the observed log-likelihood

For simplicity, the formulas are given in the absence of cure fraction. In order to compute the
score 01og(L°P%(0)) /06 we use the relation (8) and we separate exact and non exact observations
in the following way:

dlog(LP5(6)) OL:(0) OL5(0)
90 > o T2 e

4 not exact 7 exact

For the non-exact observations, we introduce

S(ck—1V Li | Z;,0) — S(cx, NR; | Z;,0)
S(Li | Z;,0) — S(R; | Z;,0) 7

D; k(0) = Jii {(exp(—a;k) + ck—1 V L;) exp(—e**cp_1 V L)

exp (kg1 — Y i—) €% (cj — ¢j1))
S(Li | Zi,0) — S(Ri | Zs,0) ’

Cir(0) =

—(exp(—aM) + ¢ A Ri) exp(—e® ke A Rz)}

such that
OLYY (9) | | =
é;;ak = Cip(0) — e+ (Di,k(g) — Ck—lci,k(9)> — " (e —exo1) Y Ciu(8),
I=k+1

o obs k—1
OLEF®) _ Zi{ci,k(a) — Cip(0) ) €™ (c; — cjo1) — €k (Di,k(e) - Ck—1C¢,k(9)) }

op =
For the exact observations we have
ALY (9)
——— = O —exp(ar + BZ;)R; 1,
oay,
L (0)
7 =7 Z {Oi,l - exp(al + BZi)Ri,l}-

1=1
For the Hessian matrix 9% log(L°>%(8))/06?, we first compute
aS(Ck_l\/ L; | Zi, 0)

= — (Lifk(Li) + CkI(LZ' > Ck)) eai*kS(Li ’ Zi, 9),

8ak
K
8S(Ck_1\g§l | Z’La 0) e —Z'L Z(CZ /\ Ck—l\/ LZ - Cl—l)I(Cl—l S Ck‘—l \/ Li)eai’kS(Ck_l\/ LZ ‘ Zi’ 0),
=1
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k
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K
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such that calculation of the partial derivatives of C; ;(0) are calculated from the formulas

601,]@(0) B 8S(Ck,1 VvV L; | Zi, 0)/8% — aS(Ck A R; ‘ Zi, 9)/8%

8ak N S(Lz ‘ Zi,G) — S(RZ ‘ ZZ-,H)
_ Ck(e)ﬁs(Lz ’ Zi,O)/aak - 85<R2 ‘ ZZ-,B)/aak
b S(LZ ’ ZZ‘,O) — S(Rl | Zi,g) ’
801716(9) B 0S(ck—1V L; | Z;,0)/08 — dS(cx, N R; | Z;,0)/00
B S(Li| Z;,0) — S(Ri | Z;,0)

C. (0 9S(L; | Z;,0)/0B8 — 0S(R; | Zi,0)/0B
~ Cinl6) S(Li | Zi,0) — S(R; | Zi,0) .

Then, we can show that

K2 f: Co(6) — (Y L~ )e S S(a v Li| 2,,6)
Oay, I=k+1 A S(Li | Zi,0) — S(R; | Zi,0)
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- i C.(0) 25 Wi | Z0,0)/0ai — 05 (R | 2,,0)/0u
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We now introduce:

B, = exp(—a;jr — €™ *cp_1V Li) + (exp(—a;x) + ck—1V Li) (exp(air — e**cp_1V Li)cg—1V L;)
+ exp(—a;r — e**ep_1 V Li) + (eXp(—aM) + ¢ A Ri)(exp(aik —e%kep A Ry)eg V Ri),

such that
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Finally, we have
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and for the exact observations
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