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1 Introduction

In the past decade, massive gravity has been studied extensively as a possible alternative

to general relativity, both at the fundamental and the phenomenological level (see [1–4] for

reviews on massive gravity and bi-metric theories). This interest was triggered in particular

by the discovery by de Rham, Gabadaze, and Tolley (dRGT) [5, 6] of a non-linear theory

of massive gravity which propagates the five degrees of freedom1 of a massive spin-two

particle but does not contain the (in)famous Boulware-Deser ghost [7].

1In this article we will always talk about degrees of freedom in configuration space, and not in phase space.
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At the difference with general relativity, ghost-free massive gravity in four (spacetime)

dimensions is not invariant under diffeomorphisms since it requires a “background” metric

in order to be defined. Diffeomorphism-invariance of dRGT massive gravity can however

be restored either by introducing Stueckelberg fields or by considering the background

metric as dynamical. In either case, this restauration is done at the price of including

extra dynamical fields in addition to the usual metric.

The situation is radically different in three dimensions, where it is possible to construct

non-linear theories of massive gravity which are diffeomorphism-invariant while depending

on the degrees of freedom of a single metric only. A first example of such a theory is

topologically-massive gravity (TMG), which was introduced in [8, 9] and whose properties

(stability, black hole solutions, holography, etc. . . ) have been extensively studied in the

literature (see for instance [10–12]). It propagates only one massive graviton (which is pos-

sible in three dimensions), breaks parity, and has higher order equations of motion. It also

admits a four-dimensional generalization, known as Chern-Simons modified gravity [13],

which however breaks Lorentz invariance in addition to parity, and propagates “only” three

degrees of freedom as a scalar-tensor theory [14]. A second example is new massive gravity

(NMG), which was introduced in [15]. This theory does not break parity, and can be shown

to propagate two massive gravitons since it reproduces the Pauli-Fierz action at the linear

level. It relies however heavily on the topological nature of three-dimensional gravity, and

attempts to generalize it to four dimensions can be shown to lead to the propagation of Os-

trogradsky ghosts [14], which makes the resulting theory physically non-viable. Finally, a

third class of theories is known as minimal massive gravity (MMG) [16, 17], which extends

TMG while having more desirable (bulk and asymptotic) properties in an AdS background.

In this article we introduce a new action for massive gravity in three dimensions, given

in (2.1) below, which is diffeomorphism- although not Lorentz-invariant, parity-breaking

like TMG, but at the difference with other theories of massive gravity does not have

higher order equations of motion.2 This action takes a very simple form and is most

naturally written in terms of independent connection and triad variables. More precisely, it

is obtained by simply adding to the usual Hilbert-Palatini action a potential term (i.e. with

no derivatives) which is invariant under diffeomorphisms but only global internal Lorentz

transformations. We therefore allow, as the key mechanism, for terms which break the local

internal Lorentz symmetry. We argue that there actually exist only two such (potential)

terms which can lead to a massive theory of three-dimensional gravity, each coming with a

new mass scale. Thus, the new action which we propose contains four coupling constants.

These are the Planck mass, the cosmological constant, and the two new mass scales coming

with the Lorentz-breaking terms. We show that this action reproduces at the linear level

the equations of motion of a model known as self-dual massive gravity [15, 18–20], and

possesses the single degree of freedom of a (three-dimensional) massive graviton at the full

non-linear level. The mass of this graviton depends on the four coupling constants of the

new action, which can therefore in a sense be thought of as a describing a four-parameter

family of theories of massive gravity.

2More precisely, the equations of motion are first order, but can also be recast in a second order form.
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This article is organized as follows. First, we will present in section 2 the new action for

three-dimensional massive gravity, and motivate its construction by explaining how (just

enough) degrees of freedom can be introduced in three-dimensional gravity by breaking the

local internal Lorentz symmetry while retaining diffeomorphism-invariance. In section 3

we will then analyse in details some important properties of this new action. We will

start by studying the equations of motion and the conditions under which they admit

Minkowski spacetime solutions. Next, we will explain how to go from the formulation

in terms of independent connection-triad variables to a pure triad formulation where the

connection degrees of freedom have been integrated out.3 Then, we will study the linearized

theory around a Minkowski background, and show precisely how the quadratic action for

the perturbations around Minkowski reproduces the action of self-dual massive gravity, in

agreement with the expectation that the theory propagates one massive graviton. Finally,

we will carry out in section 4 the rigorous Hamiltonian analysis of the new action in order

to confirm, at the full non-linear level, that it describes the propagation of the single degree

of freedom of a three-dimensional massive graviton. We will conclude in section 5 with a

discussion of interesting open questions and the possible extension of this result to four

dimensions. Details about our notations and conventions can be found in appendix A.

Assorted technical comments and results are given in subsequent appendices.

2 A new action for three-dimensional massive gravity

In this section we present the new action without entering into the technical details, and

spend some time discussing the physical motivations behind its construction.

2.1 Main results

The context of this work is gravity expressed in the so-called first order formalism, where

the dynamical variables are a triad and a gauge connection. These can be seen as so(2, 1)-

valued one-forms with respective components eiµ and ωiµ (see appendix A for details about

our notations). Using the compact notation of differential forms, the new action for three-

dimensional massive gravity which we set out to study is

S(e, ω) = mp

∫
e ∧ dω +

λ0

6
e ∧ [e ∧ e] +

λ1

2
ω ∧ [e ∧ e] +

λ2

2
e ∧ [ω ∧ ω] +

λ3

6
ω ∧ [ω ∧ ω],

(2.1)

where mp is the three-dimensional Planck mass. One can think of this action as being the

sum of a kinetic term, which contains the only (first order) derivative, and a potential. The

numerical factors have been chosen strictly for later convenience, and will turn out to be

very natural. For the unfamiliar reader, when making explicit the spacetime and internal

Lorentz indices the action becomes (4.3). In addition to the Planck mass (which is in fact

3We refrain from calling this a metric formulation since the true dynamical variable will be the triad,

and violation of Lorentz invariance will prevent us from rewriting all the terms of the action in terms of

gµν = eiµe
j
νηij (which is obviously a Lorentz-invariant quantity).

– 3 –
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irrelevant when we consider the classical theory without coupling to external matter), this

theory depends on the four coupling constants λn, with n ∈ {0, 1, 2, 3}.
Since e is interpreted as a dimensionless triad, ω has the dimension of a mass, and λn

has the dimension of a mass to the power 2−n. In general relativity, which is obtained when

setting λ1 = λ3 = 0, the standard coupling constants remain. These are the cosmological

constant λ0, which has the dimension of a squared mass, and λ2 which is dimensionless and

can be set to λ2 = 1 without loss of generality.4 In the new theory, the coupling constants

λ1 and λ3 are generically non-vanishing and bring in two new mass scales.

We are going to study the most important properties of the theory (2.1) in great

details. In particular, we will show that when the condition λ0λ3 = λ1λ2 holds, this theory

has only first class constraints and does not possess any local degrees of freedom. This

topological property in itself is already a surprise, and we comment further on the reason

for this in appendix B. More interesting is the case λ0λ3 6= λ1λ2, in which, as we will show,

this simple action propagates a single degree of freedom, and as such describes a massive

graviton. We will study later on linear perturbations around a Minkowski background, and

show how the mass of the graviton depends on the coupling constants.

2.2 Motivations for breaking internal Lorentz invariance

We will now take a step back and first give some motivations leading to the action (2.1).

For this, let us start by recalling basic properties of general relativity with a cosmological

constant λ0 in three dimensions. The action in this case is given by (2.1) with λ1 = λ3 = 0,

which is the Hilbert-Palatini action

SGR(e, ω) = mp

∫
e ∧ dω + VGR(e, ω), VGR(e, ω) =

1

2
e ∧ [ω ∧ ω] +

λ0

6
e ∧ [e ∧ e],

(2.2)

where in addition we have set λ2 = 1 and made explicit the separation between the ki-

netic term and the potential. The kinetic term reveals that the spatial components eia and

ωia of the connection and the triad are the only dynamical variables and play the role of

canonically-conjugated variables (up to a factor of εab). The remaining temporal compo-

nents, i.e. ei0 and ωi0, are Lagrange multipliers which enforce the six primary constraints.

These constraints are first class and generate the six-dimensional symmetry algebra of the

theory, which is nothing but Diff(M)× so(2, 1), where M is the spacetime manifold. As a

result and as is well-known, the theory described by (2.2), i.e. three-dimensional gravity,

is topological and has no propagating degrees of freedom.

A natural way of modifying this theory such that it propagates degrees of freedom

is to break some of its symmetries. The problem however is that in general breaking the

symmetries can lead to the propagation of ghost-like degrees of freedom, which is obviously

4As can be seen in the action (2.1), it will be interesting for our purposes to keep λ2 explicit. This is

because, regardless of whether the coupling constants satisfy the “massive condition” λ0λ3 6= λ1λ2 or the

“topological condition” λ0λ3 = λ1λ2, the limiting case λ2 = 0 is viable and non-trivial. Notice that one

can also recover general relativity by taking λ0 = λ2 = 0, in which case the roles of e and ω have to be

exchanged and, in particular, ω/mp has to be interpreted as the new triad.

– 4 –
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not desirable. We therefore look for a “gentle” breaking of the symmetries which does not

introduce ghosts. In the well-known dRGT formulation of massive gravity for instance,

diffeomorphisms and internal Lorentz invariance are broken by adding to the action (2.2)

a potential of the form

VdRGT(e) = α1e ∧ [f ∧ f ] + α2f ∧ [e ∧ e], (2.3)

where α1 and α2 are coupling constants, and f iµ is an external fixed triad whose pres-

ence clearly breaks diffeomorphism-invariance as well as the internal Lorentz symmetry.

This theory has been extensively studied (mostly in four dimensions) and can be shown to

propagate in three dimensions two massive gravitons. Indeed, since by definition the poten-

tial (2.3) does not modify the kinetic term of (2.2), only the 12 components eia and ωia are

(canonically-conjugated) dynamical variables, whereas ei0 and ωi0 are Lagrange multipliers

enforcing six primary constraints which are now obviously second class. Furthermore, the

dRGT potential has been designed in such a way that the theory admits two extra second

class constraints, which is a highly non-trivial feature. At the end of the day, glossing

over the details of this analysis, the theory propagates (12 − (3 + 3 + 2))/2 = 2 degrees of

freedom. By expanding the action around a Minkowski background when f iµ = δiµ is itself

a flat triad, these can be shown to represent massive gravitons.

Here, we propose to construct a theory of massive gravity by adding to (2.2) a potential

term V (e, ω) which is invariant under diffeomorphisms and does not contain new fields.

This therefore leaves us with the possibility of breaking only the internal local Lorentz

symmetry, while keeping global Lorentz invariance. The most general potential satisfying

this requirement can be expanded in powers of ωiµ as follows:

V (e, ω) = |e|
∑
α,n

V̂ j1...jn
i1...in

(α)
(
ωi1µ1 . . . ω

in
µn

)(
êµ1j1 . . . ê

µn
jn

). (2.4)

Here the spacetime indices of the connection components are contracted with that of the

inverse triad ê, while internal Lorentz indices are contracted by the tensor V̂ (α), which is

constructed itself from tensor products of εijk and ηij . For a given n, there are therefore

many possible V̂ (α)’s labelled by α. The volume factor |e| is simply ensuring that this is

a proper density.

A complete analysis of the degrees of freedom which propagate in the theory obtained

by using the potential V (e, ω) in the action (2.2) is rather involved in general. However,

since the potential does not modify the kinetic structure of the theory, the spatial com-

ponents eia and ωia are again canonically-conjugated, and the only subtlety comes from

dealing with the components ei0 and ωi0. These can indeed appear in an arbitrary V (e, ω)

in a non-linear manner, which implies that they cannot be treated as Lagrange multipliers.

In fact, a quick analysis indicates that with a generic potential there will be too many

degrees of freedom, meaning that the resulting theory cannot be considered as a candidate

for massive gravity. The argument goes as follows. First, introducing canonical momenta

for ei0 and ωi0, we have that the non-physical phase space is spanned by the canonical pairs

(eia, ω
i
a), (ei0, pi), and (ωi0, πi), which is a total of 24 variables. Then, one has to impose the

– 5 –
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3 + 3 primary constraints pi ≈ 0 and πi ≈ 0. Because of diffeomorphism-invariance, the

preservation of these constraints implies in turn the existence of 3 first class constraints gen-

erating diffeomorphisms and another s (secondary, or potentially higher order) constraints.

If there are no hidden or accidental symmetries, these 9 + s constraints will separate into 6

first class constraints and 3+s second class ones. At the end of the day, there are therefore

(24 − (2 × 6 + 3 + s))/2 = (9 − s)/2 physical degrees of freedom. While it is of course

possible that there exists a clever choice of potential which gives s = 7, and therefore a

single degree of freedom, this requires the existence of (at least) tertiary constraints, and

the corresponding theory (with a non-linear dependency on ω0 and e0) is probably much

more complicated than the simple action (2.1) which we propose here. Moreover, in the

case s < 7 the theory with (2.4) can propagate up to 4 degrees of freedom, and it is likely

that some of them are ghosts.

One natural way of getting rid of these extra unwanted degrees of freedom is to consider

potentials V (e, ω) which are at most linear in ei0 and ωi0. In fact, a very similar strategy is

implemented in dRGT massive gravity, where one considers potentials which are at most

linear in the lapse function and the shift vector. In our case, the most general potential is

at most cubic in ωiµ and takes precisely the form

V (e, ω) =
λ0

6
e ∧ [e ∧ e] +

λ1

2
ω ∧ [e ∧ e] +

λ2

2
e ∧ [ω ∧ ω] +

λ3

6
ω ∧ [ω ∧ ω] (2.5)

introduced in (2.1). The two new terms (in addition to the ones defining general relativity)

clearly break the internal Lorentz symmetry. At the end of the day, with this potential we

obtain the new action which we will now study.

It is interesting to notice that, in this new action (2.1), the triad e and the connection

ω play a very similar and symmetric role. In fact, it can be seen that the new action

satisfies the exchange property

S(e, ω|λ0, λ1, λ2, λ3) = S(ω, e|λ3, λ2, λ1, λ0) = S(e′, ω′|m3
pλ3,mpλ2,m

−1
p λ1,m

−3
p λ0), (2.6)

where in the last equality we have defined the new triad e′ ≡ ω/mp and the new connection

ω′ ≡ mpe. This is a bit reminiscent of bi-metric theories, such as the ones studied in [21–

23], although in the present case we are not doubling the number of dynamical variables.

The precise link between the action (2.1) and the zwei-Dreibein model of gravity studied

in [23] is given in appendix C.

A comment about our choice of kinetic term in (2.1) is now in order. Indeed, it is

possible in principle to add to this action the first order kinetic terms e ∧ de and ω ∧ dω,

which would have the effect of changing the canonical variables. Here we do not consider

this more general possibility in order to keep the symplectic structure of three-dimensional

gravity, and so that our massive modification is as minimalistic as possible and consists

only in adding the two terms in λ1 and λ3. Moreover, this choice is justified in appendix D

with a calculation showing that the two extra possible kinetic terms, if initially introduced,

can actually be eliminated (under fairly general and reasonable conditions) with a simple

change of variables.

– 6 –
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Finally, it is interesting to point out that the action (2.1) falls into the class of theories

known as Chern-Simons-like theories of gravity5 presented in [24, 25]. By appropriately

choosing the fields, the internal metric, and the structure constants of this so-called Chern-

Simons-like formulation, one can easily map it to the action (2.1). This can then be used

as a consistency check for some of the results derived below, in particular the Hamilto-

nian analysis derived in section 4. In [24], the authors have used this Chern-Simons-like

formulation to study in particular a model called general massive gravity (GMG), which

generalizes and interpolates between TMG and MMG, as well as zwei-Dreibein gravity.

Again, these are theories which posses internal Lorentz invariance, in contrast with (2.1).

In order to see how the breaking of internal Lorentz invariance bring in a massive graviton,

let us now turn to the detailed analysis of (2.1).

3 Properties of the new action

In this section we study in details some important properties of the new action. First,

we compute the equations of motion and give the conditions under which they admit

Minkowski spacetime solutions. Then, we explain how to go from a formulation in terms of

independent connection and triad variables to a pure triad formulation. Finally, we study

the linear analysis around a Minkowski background, and show how the quadratic action

for the perturbations reproduces the action of self-dual massive gravity, in agreement with

the expectation that the theory propagates one massive graviton.

3.1 Minkowski solutions

Let us start with the first order equations of motion obtained by varying the action (2.1)

with respect to e and ω. They are given respectively by

dω +
λ0

2
[e ∧ e] + λ1[ω ∧ e] +

λ2

2
[ω ∧ ω] = 0, (3.1a)

de+
λ1

2
[e ∧ e] + λ2[e ∧ ω] +

λ3

2
[ω ∧ ω] = 0. (3.1b)

This shows once again the symmetric role played by the two variables.

We are going to search for flat Minkowski spacetime solutions to these equations of

motion. For this, we choose the diagonal Minkowski triad eiµ = δiµ and the non-vanishing

connection ωiµ = ω̄δiµ, with ω̄ a real constant6 which does not depend on spacetime. Note

that this ansatz breaks the symmetry between the role of e and ω. By plugging this in the

equations of motion, we find that they reduce to the following two conditions:

λ0 + 2λ1ω̄ + λ2ω̄
2 = 0, λ1 + 2λ2ω̄ + λ3ω̄

2 = 0. (3.2)

We are now going to classify the solutions to these two equations according to whether λ2

and λ3 vanish or not. The most generic case corresponds to the situation where λ2 and λ3

5We thank Wout Merbis for bringing this to our attention.
6Please note that this variable is different from the one used in appendix B.

– 7 –
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are both non-vanishing. If, in addition, we require the condition λ1λ3− λ2
2 6= 0, then there

is a Minkowski solution only if

λ1λ3 − λ2
2 6= 0, 4(λ0λ2 − λ2

1)(λ1λ3 − λ2
2) = (λ0λ3 − λ1λ2)2, ω̄ =

λ1λ2 − λ0λ3

2(λ1λ3 − λ2
2)
.

(3.3)

In the special case where λ1λ3 − λ2
2 = 0, one can see immediately that the conditions to

have a Minkowski solution imply λ0λ3 = λ1λ2. This particular case will therefore not

be so interesting for our analysis, since it corresponds to the topological condition (see

appendix B) in which the theory has no degrees of freedom. For the sake of completeness

we can still give the conditions for Minkowski solutions to exist, and these are

λ1λ3 − λ2
2 = 0, λ0 =

λ2
1

λ2
, λ3 =

λ2
2

λ1
, ω̄ = −λ1

λ2
, (3.4)

where we have assumed that λ1 is not vanishing neither. Finally, if λ2 = λ3 = 0 there is

no Minkowski solution (except if λ0 = λ1 = 0, in which case the theory becomes trivial).

In order to illustrate and simplify the generic conditions (3.3), we can consider the

four following special cases where only one of the coupling constants λn vanishes (i.e. λ2

and λ3 are not simultaneously vanishing):

• If λ0 = 0, there is a Minkowski solution only if

3λ2
2 − 4λ1λ3 = 0, ω̄ = −2

λ1

λ2
. (3.5)

• If λ1 = 0, there is a Minkowski solution only if

λ0λ
2
3 + 4λ3

2 = 0, ω̄ = −2
λ2

λ3
. (3.6)

• If λ2 = 0, there is a Minkowski solution only if

4λ3
1 + λ2

0λ3 = 0, ω̄ = − λ0

2λ1
. (3.7)

• If λ3 = 0, there is a Minkowski solution only if

4λ0λ2 − 3λ2
1 = 0, ω̄ = − λ1

2λ2
. (3.8)

General relativity (λ2 = 1 and λ1 = λ3 = 0) belongs to this last case, and we recover the

condition that a Minkowski solution exists only if there is no cosmological constant, i.e.

if λ0 = 0.

Note that this analysis only gives us conditions on the coupling constants for Minkowski

spacetime solutions to exist, but does not constraint the theory outside of this sector. For

example, when λ2 = λ3 = 0 there is no Minkowski solution, but the action (2.1) still

– 8 –
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defines a non-trivial topological theory (since we necessarily have λ0λ3 = λ1λ2 = 0 in this

case). Moreover, as we will show in section 4, the theory always has a single degree of

freedom when λ0λ3 6= λ1λ2, even if for some values of the parameters there may not exist

a Minkowski solution.

It would therefore be interesting to extend this analysis and to find the conditions for

the theory to admit other physically-relevant solutions, such as de Sitter, anti-de Sitter,

and black hole spacetimes. It is however interesting to note at this point that the search for

solutions is more subtle than in general relativity owing to the fact that the theory (2.1)

is not Lorentz-invariant. This means that, given a triad e which is a solution of (3.1)

(and the corresponding connection) and which gives a metric gµν = eiµe
j
νηij , a triad ẽ

obtained from a Lorentz transformation of e will not necessarily be a solution anymore,

although it will of course represent the same metric gµν . The same subtlety appears in

other Lorentz-violating theories formulated in terms of triads (or tetrads), such as f(T )

teleparallel theories of gravity [26, 27]. We will come back to this in future work.

3.2 Triad formulation

In general relativity (i.e. when λ1 = λ3 = 0 and λ2 = 1), going from the connection-triad

formulation to the metric formulation relies on expressing ω as a function of e by solving

the torsion-free condition (3.1b). When e is invertible, this equation has a unique solution

given by the Levi-Civita connection, and plugging this solution into the connection-triad

Hilbert-Palatini action then leads to the Einstein-Hilbert action. This latter therefore

depends only on the triad, or equivalently on the metric through gµν = eiµe
j
νηij .

We can try to follow this method to derive a pure triad action for the modified theory

of gravity (2.1), which requires solving (3.1b) for ω for arbitrary values of the coupling

constants λn. However, when λ3 6= 0 this equation is of order two in ω, which makes its

resolution only implicit. Because of this difficulty, we are going to first derive the triad

action in the case7 λ3 = 0, and present in appendix G the first correction to this result in

a perturbative expansion for a small λ3.

It turns out that the manipulations involved in this derivation are much more conve-

nient when changing variables and trading e and ω for the two 3× 3 matrices

Ωij ≡ εµνρeiµ∂νejρ, M ij ≡ ωiµêµj , (3.9)

where ê is the inverse of e in the sense that eiµê
µ
j = δij and eiµê

ν
i = δνµ. When working with

these matrices the spacetime indices are traded for internal Lie algebra indices only, and

we show in appendix E that the action (2.1) can be written as

S(e, ω) = mp

∫
d3x

{
tr(ΩM) + V (M)

}
, (3.10)

where the potential V (M) is given by

V (M) = −|e|
(
λ0 + λ1tr(M) +

λ2

2

[
tr2(M)− tr(M2)

]
+ λ3 det(M)

)
, (3.11)

7The linearization of the theory and the Hamiltonian analysis will of course be performed in the

case λ3 6= 0.
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and where det(M) is the determinant of the matrix M i
j (with indices up and down). We

now want to study the equations of motion, and in the case λ3 = 0 go from the connection-

triad to the triad formulation by writing M as a function of Ω. Taking λ3 = 0, we have

that the equations of motion (3.1b) written in terms of Ω and M take the form

Ω− |e|
(
λ1η + λ2

[
tr(M)η −M

])
= 0. (3.12)

Taking the trace of this equation then leads to

tr(M) =
1

2λ2|e|
tr(Ω)− 3λ1

2λ2
, (3.13)

which when plugged back into (3.12) gives the solution

M =
1

2λ2|e|
[
tr(Ω)η − 2Ω

]
− λ1

2λ2
η. (3.14)

This equation is essentially the solution of the equations of motion (3.1b) (still in the case

λ3 = 0) which gives ω in terms of e, and explicit expressions for the connection are given

in appendix F. Now, we can also multiply (3.12) by M before taking the trace to find

λ2|e|
[
tr2(M)− tr(M2)

]
= tr(ΩM)− λ1|e|tr(M), (3.15)

and multiply (3.14) by Ω before taking the trace to find

tr(ΩM) =
1

2λ2|e|
[
tr2(Ω)− 2tr(Ω2)

]
− λ1

2λ2
tr(Ω). (3.16)

Inserting these expressions into the original action (3.10) finally leads to the matrix form

of the triad action, which is

S0(e) =
mp

2λ2

∫
d3x

{
1

2|e|
[
tr2(Ω)− 2tr(Ω2)

]
+

1

2
(3λ2

1 − 4λ0λ2)|e| − λ1tr(Ω)

}
. (3.17)

At this stage the action is still written in terms of the triad, and it is natural to ask whether

it is possible to write it in terms of the metric gµν = eiµe
j
νηij .

To go from the triad formulation to an expression involving the metric, we can first

switch between the fundamental and the adjoint representation of the Lie algebra by in-

troducing the notation ωijµ ≡ −εijkωkµ and writing

Rijµν = ∂µω
ij
ν − ∂νωijµ + ωiµkω

kj
ν − ωiνkωkjµ

= − εijk
(
∂µω

k
ν − ∂νωkµ + εkmnω

m
µ ω

n
ν

)
= −εijkF kµν , (3.18)

where eventually we will take ωij to be the torsion-free connection Γij(e) given below (F.5),

so that this Rµν becomes the Ricci tensor. Use the identity εµνρεijke
k
ρ = −e(êµi êνj − ê

µ
j ê
ν
i )

to write

ηijε
µνρeiµF

j
νρ =

1

2
εαµνεijke

i
αR

jk
µν = −eêµi ê

ν
jR

ij
µν = −√gR, (3.19)
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we then get that

S0(e) = −mp

2λ2

∫
d3x

{√
|g|(R− 2Λ) + λ1ε

µνρeiµ∂νeρi

}
. (3.20)

When λ1 = 0 we therefore recover the Einstein-Hilbert action with a cosmological constant

equal to Λ ≡ (3λ2
1− 4λ0λ2)/4. This is indeed the combination of coupling constants which

has to vanish in order for Minkowski spacetime to be a solution, in agreement with the

case (3.8) discussed above. Finally, one can see that the parity-breaking term coming with

λ1 cannot be rewritten in terms of the metric because of the pattern of index contraction.

3.3 Linearization for λ3 = 0

We are now going to study the linearization of the theory around a Minkowski background,

which will exhibit and make manifest the presence of the massive graviton. With the

Hamiltonian analysis we will then confirm the presence of this single degree of freedom at

the full non-linear level.

Before presenting the general result, let us first focus on the simpler case λ3 = 0 as in

the previous subsection. In this case, we have obtained in (3.17) the triad action, which we

can take as our starting point. We consider perturbations around a Minkowski background

by writing

eiµ = δiµ + f iµ, (3.21)

and expand the action (3.17) to second order in f . Plugging this expression for the lin-

earized triad in the definition (3.9) of Ω leads to

Ωij = εµνρ(δiµ + f iµ)∂νf
j
ρ , (3.22a)

tr(Ω) = εµνρ(∂ρfµν + fµ
σ∂νfρσ), (3.22b)

tr2(Ω) = εµνρεαβσ(∂ρfµν)(∂σfαβ) +O(f3), (3.22c)

tr(Ω2) = εµνρεαβσ(∂νfρα)(∂βfσµ) +O(f3), (3.22d)

where we have introduced the notation fµν ≡ f iµδνi. Notice that this fµν is therefore not

symmetric. Using (3.22) in the action (3.17) then leads to the following quadratic action

for the perturbations:

S0(f) =
mp

2λ2

∫
d3x

{
εµνρεαβσ

(
1

2
(∂ρfµν)(∂σfαβ)− (∂νfρα)(∂βfσµ)

)
− λ1ε

µνρfµ
σ∂νfρσ

}
=
mp

2λ2

∫
d3x

{(
1

2
εµνρεαβσ − εµβρενσα

)
(∂ρfµν)(∂σfαβ)− λ1ε

µνρfµ
σ∂νfρσ

}
,

(3.23)

where the second rewriting will be useful when deriving the equations of motion. At

the linear level, our new theory (2.1) therefore reproduces the action of self-dual massive

gravity [15, 18–20], exactly as dRGT reproduces the Pauli-Fierz theory in four dimensions.

Let us make two comments before studying the equations of motion of this action

for the perturbations. First, one can see that this action is invariant under the linearized
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diffeomorphisms defined by the transformation law δξfµν = ∂µξν for any one-form ξµ.

Second, decomposing the perturbations fµν into a symmetric part hµν = hνµ and an anti-

symmetric part described by a vector Aρ as

fµν = hµν + εµνρA
ρ, (3.24)

one gets in the case λ1 = 0 corresponding to general relativity that

SGR(h) = −mp

2λ2

∫
d3x εµνρεαβσ(∂νhρα)(∂βhσµ). (3.25)

This is the usual linearized action for the metric perturbations hµν . Note that in this

calculation the relative coefficient of −2 between the first two terms in (3.23) is crucial

in order to get the expected result. Indeed, any other coefficient would have left in the

action a term of the form (∂µA
µ)2, which would be responsible for the propagation of

an extra ghost-like degree of freedom (for the longitudinal mode of the vector introduced

as Aµ = ∂µφ).

We are now going to study the equations of motion for the perturbations obtained

from (3.23), which is known to reproduce the dynamics of a massive graviton. Here, we

would like to manipulate the equations of motion to arrive at equations which explicitly

suggest that a massive graviton is propagating. For this, we start by differentiating this

action with respect to fµν , which leads to the equations of motion(
1

2
εµνρεσαβ − εµβρενσα

)
∂ρ∂σfαβ + λ1ε

µρσ∂ρfσ
ν = 0. (3.26)

Expanding the two products of Levi-Civita symbols, one gathers symmetric combinations

of terms, which can be written in terms of hµν , and these equations of motion become

�hµν + ∂µ∂νh−�hηµν + (∂ρ∂σhρσ)ηµν − ∂ρ(∂µhρν + ∂νhρµ) + λ1εµρσ∂
ρfσν = 0. (3.27)

We can now manipulate this expression in several ways to obtain useful relations. First,

multiplying by ηµν and εµνα leads respectively to

�h− ∂ρ∂σhρσ − λ1εµρσ∂
ρfσµ = 0, ∂αf − ∂νfαν = 0, (3.28a)

where h ≡ hµµ. Then, acting on the second relation with ∂α and making use of the

decomposition (3.24) leads to �h − ∂ρ∂σhρσ = 0, so that the first relation reduces to

εµρσ∂
ρfσµ = 0. Using once again the decomposition (3.24) in this finally gives

∂µA
µ = 0, (3.29)

which we can supplement by the gauge condition

∂µfµν = ∂µhµν + εµνρ∂
µAρ = 0. (3.30)

Using these relations we can now simplify the equations of motion (3.27) to put them in

the form

�hµν + ∂µ∂νh− ∂ρ(∂µhρν + ∂νhρµ) + λ1εµρσ∂
ρhσν + λ1∂νAµ = 0. (3.31)
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Multiplying this equation by εµνα and using the gauge condition (3.30) now leads to

∂αh = 2∂ρhρα, (3.32)

which can be used in the equations of motion to simply them further and obtain

�hµν + λ1εµρσ∂
ρhσν + λ1∂νAµ = 0. (3.33)

Multiplying this by ηµν and using (3.29) now gives �h = 0, while acting with ∂ν and

using (3.32) leads to �Aµ = 0. With this, we can then act on the equations of motion with

� to obtain

�2hµν + λ1εµρσ∂
ρ�hσν = �2hµν − λ2

1εµρσ∂
ρ(εσαβ∂αhβν + ∂νA

σ) = 0. (3.34)

Finally, expanding the Levi-Civita symbol and using (3.30) together with (3.32) leads to

the result

�
(
�− λ2

1

)
hµν = 0. (3.35)

This propagation equation, which is slightly unusual since it has an extra d’Alembertian

operator, strongly suggests (but does not prove) that the dynamical degree of freedom

is a massive graviton of mass λ1. More precisely, this equation does in fact tell us that

the theory contains a massless and/or a massive excitation. However, massless gravitons

do not propagate in three dimensions. Therefore, since the Hamiltonian analysis reveals

that the theory has a single propagating degree of freedom (at the full non-linear level),

this necessarily means that it describes a massive graviton, in agreement with the analysis

of [8, 9] or more recently of [15].

3.4 Linearization for λ3 6= 0

We can now generalize the result of the previous subsection to the case λ3 6= 0. Since we do

not have the expression for the pure triad action in this case (appart from the perturbative

result of appendix G), we are going to linearize the connection-triad action (2.1) instead.

In order to linearize this action around a Minkowski background, we expand the triad and

the connection as

eiµ = δiµ + f iµ, ωiµ = ω̄δiµ + qiµ. (3.36)

First, plugging this in the action (2.1) leads to

S(f, q) = mp

∫
d3x

{
εµνρfµσ∂νqρ

σ +
1

2
(λ0 + λ1ω̄)(fµνf

νµ − f2)

+
1

2
(λ2 + λ3ω̄)(qµνq

νµ − q2) + (λ1 + λ2ω̄)(fµνq
νµ − fq)

}
, (3.37)

where we have again used the notation fµν ≡ f iµδνi. Then, using the conditions (3.2) for

the Minkowski solution enables us to rewrite this action in the form

S(f, q) = mp

∫
d3x

{
εµνρfµσ∂νqρ

σ

+
1

2
(λ2 + λ3ω̄)

(
(qµν − ω̄fµν)(qµν − ω̄fµν)− (q − ω̄f)2

)}
= mp

∫
d3x

{
εµνρ(pµσ + ω̄fµσ)∂νfρ

σ +
1

2
(λ2 + λ3ω̄)(pµνp

µν − p2)

}
, (3.38)
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where for the second equality we have introduced the new variable

pµν ≡ qµν − ω̄fµν . (3.39)

This is the linearized connection-triad action for arbitrary values of the coupling constants.

While it was not possible in section 3.2 to obtain the triad action for the non-linear theory

with λ3 6= 0, at the linearized level this calculation is however possible.

To obtain the triad action for the perturbations, we have to proceed like in the non-

linear case and solve for half of the equations of motion. The equations of motion obtained

by differentiating with respect to pµσ are

εµνρ∂νfρ
σ + (λ2 + λ3ω̄)(pσµ − pησµ) = 0. (3.40)

This can be solved to find

pσµ =
1

2(λ2 + λ3ω̄)
(ησµεαβρ∂ρfαβ − 2εµνρ∂νfρ

σ), (3.41)

where we further assume that λ2 + λ3ω̄ 6= 0. This can finally be inserted back into the

linearized connection-triad action (3.38) (after first contracting the equations of motion

with pσµ to simplify the action) to find the triad action

S(f) =
mp

2(λ2 + λ3ω̄)

∫
d3x

{(
1

2
εµνρεαβσ − εµβρενσα

)
(∂ρfµν)(∂σfαβ)

−mgε
µνρfµ

σ∂νfρσ

}
, (3.42)

where we have introduced the new mass

mg ≡ −2ω̄(λ2 + λ3ω̄), (3.43)

and where the dependency of ω̄ on the coupling constants is determined by the different

cases discussed in section 3.1. It is important to emphasize once again that the expres-

sion (3.42) for the quadratic action is valid only if λ2 + λ3ω̄ 6= 0. If this condition is not

satisfied the quadratic action (3.38) trivializes, which is a sign of a strong coupling problem.

The remarkable result (3.42), which extends naturally that of the previous subsection,

shows that for any values of the coupling constants λn compatible with the massive con-

dition λ0λ3 6= λ1λ2, the (no-strong coupling) condition λ2 + λ3ω̄ 6= 0, and the criteria of

section 3.1, we obtain the same quadratic action (3.42) for the perturbations. This there-

fore achieves the proof that at the linear level the new action (2.1) describes a massive

graviton of mass mg determined by the coupling constants.

Let us conclude by looking at specific cases for the mass of the graviton by combin-

ing (3.43) with the results of section 3.1. First of all, one can see that the graviton is

massless, i.e. that mg = 0, only when ω = 0. This in turn implies that λ0 = λ1 = 0, which

corresponds to the topological case in which the theory has no propagating degrees of free-

dom. Conversely, if the topological condition λ0λ3 = λ1λ2 is satisfied then ω̄ = 0 and the

graviton is massless (assuming that λ2+λ3ω̄ 6= 0), as can be seen from the expression (3.43)

and the results of section 3.1. As a conclusion, we have as expected an equivalence between
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the topological sector and the masslessness of the graviton (still bearing in mind that we

actually have a family of topological theories since the topological condition can be satisfied

in many different ways).

In the generic massive case, when the condition λ1λ3 − λ2
2 6= 0 is satisfied (which is

required in order to have a Minkowski solution), the mass is given by mg with ω̄ as in (3.3).

Explicitly this is

mg =
2λ2

1λ3 − λ1λ
2
2 − λ0λ2λ3

λ1λ3 − λ2
2

. (3.44)

Then we can look at the particular cases studied in section 3.1, where only one of the

coupling constants is vanishing, and find that the corresponding masses are given by

m(λ0=0)
g = −2λ1, m(λ1=0)

g = −4
λ2

2

λ3
, m(λ2=0)

g = 2λ1, m(λ3=0)
g = λ1. (3.45)

Beyond the simple exercise in numerology, these expressions are interesting as a consistency

check and as a way to illustrate the subtleties which can arise when sending some of the

coupling constants of (2.1) to zero. For example, the limit of m
(λ0=0)
g = −2λ1 when λ2 → 0

gives −2λ1, while starting from a (topological) theory with λ0 = λ2 = 0 from the onset

leads to a vanishing mass. This indicates that one has to be careful when studying the

topological limit of a massive theory (and even more so in the present case since we have

a four-parameter family of theories). Many other subtle example can be worked out.

4 Hamiltonian analysis

We are now going to proceed to the Hamiltonian analysis of the new action (2.1), which

will reveal the role played by the condition λ0λ3 6= λ1λ2, and show that when it is satisfied

this theory has a single degree of freedom. We follow the usual Dirac algorithm, and

therefore start with the primary constraints before evolving them in time to study the

secondary constraints. After having gathered all the constraints, we separate them between

first and second class, and then proceed to the counting of the degrees of freedom. As

announced, this counting will lead to a single configuration space degree of freedom in the

case λ0λ3 6= λ1λ2, and to zero degrees of freedom otherwise.

4.1 Primary constraints

First, by putting the terms in λ2 together with ordinary derivatives in order to define the

curvature and torsion two-forms

F̃ ≡ dω +
λ2

2
[ω ∧ ω], D̃e ≡ de+ λ2[ω ∧ e], (4.1)

one can easily see that the variation of the action is given by8

δS = mp

∫
δe ∧

(
F̃ +

1

2

(
λ0[e ∧ e] + 2λ1[ω ∧ e]

))
+ δω ∧

(
D̃e+

1

2

(
λ1[e ∧ e] + λ3[ω ∧ ω]

))
. (4.2)

8We neglect possible boundaries and terms obtained from integrations by parts. If boundaries are

present, the variational principle and the choice of boundary conditions are the same as in general relativity

since we have the standard kinetic term e ∧ dω in our action (2.1).
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This will be useful below in order to compute the action of the symmetries. Notice that in

the case λ2 = 1 we have that F̃ = F and D̃e = De correspond to the familiar definitions of

curvature and torsion.

Starting from the action (2.1) and making all the indices explicit, one can perform a

2 + 1 decomposition of the spacetime indices as µ = {0, a} and write the action in the

Hamiltonian form

S = mp

∫
d3x εµνρ

{
eiµ∂νωρi + εijk

(
λ0

6
eiµe

j
νe
k
ρ +

λ1

2
ωiµe

j
νe
k
ρ +

λ2

2
eiµω

j
νω

k
ρ +

λ3

6
ωiµω

j
νω

k
ρ

)}
= mp

∫
d3x εab

{
∂0ω

i
aebi + ei0

(
1

2
F̃abi +

1

2
εijk
(
λ0e

j
ae
k
b + 2λ1ω

j
ae
k
b

))
+ωi0

(
D̃aebi +

1

2
εijk
(
λ1e

j
ae
k
b + λ3ω

j
aω

k
b

))}
= mp

∫
dt

∫
Σ
∂0ω ∧ e+ e0

(
F̃ +

1

2

(
λ0[e ∧ e] + 2λ1[ω ∧ e]

))
+ ω0

(
D̃e+

1

2

(
λ1[e ∧ e] + λ3[ω ∧ ω]

))
, (4.3)

where the spatial components of the curvature and the torsion are given by

F̃ iab = ∂aω
i
b − ∂bωia + λ2ε

i
jkω

j
aω

k
b , D̃ae

i
b = ∂ae

i
b + λ2ε

i
jkω

j
ae
k
b . (4.4)

In the last equality, we have simply rewritten the 2+1 decomposition in terms of differential

forms on the two-dimensional spatial manifold Σ. This compact notation is very useful for

the rest of the calculations, and there should be no possible confusion since one can clearly

see that the integrand only makes sense as a two-form.

From the Hamiltonian form of the action, one can now read the canonical Poisson

brackets between the phase space variables:{
eia(x), ωjb(y)

}
=
{
ωia(x), ejb(y)

}
= ηijεabδ

(2)(x, y). (4.5)

The Hamiltonian itself is given by

H = F(e0) + G(ω0), (4.6)

and is as usual the sum of the primary constraints enforced by the Lagrange multipliers ei0
and ωi0, which are given in smeared form by

F(α) ≡
∫

Σ
α

(
F̃ +

1

2

(
λ0[e ∧ e] + 2λ1[ω ∧ e]

))
≈ 0, (4.7a)

G(α) ≡
∫

Σ
α

(
D̃e+

1

2

(
λ1[e ∧ e] + λ3[ω ∧ ω]

))
≈ 0. (4.7b)

The infinitesimal action of these constraints on the phase space variables is given by the

Poisson brackets {
F(α), e

}
= D̃α+ λ1[e, α], (4.8a){

F(α), ω
}

= λ0[e, α] + λ1[ω, α], (4.8b){
G(α), e

}
= λ2[e, α] + λ3[ω, α], (4.8c){

G(α), ω
}

= D̃α+ λ1[e, α], (4.8d)
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where once again all these differential forms should be understood as being pulled-back to

the spatial hypersurface Σ.

With this, one can now see that spatial diffeomorphisms are obtained, up to the primary

constraints (which are nothing but the spatial components of the equations of motion), as

the action of F and G with specific field-dependent smearing functions. More precisely,

using the notation ξy v = ξava for a one-form v and for a vector field ξ ∈ Σ, we have the

following formulas:{
F(α), e

}∣∣
α=ξy e +

{
G(α), e

}∣∣
α=ξyω+ξy

(
D̃e+

1

2

(
λ1[e ∧ e] + λ3[ω ∧ ω]

))
= Lξe, (4.9a)

{
F(α), ω

}∣∣
α=ξy e +

{
G(α), ω

}∣∣
α=ξyω+ξy

(
F̃ +

1

2

(
λ0[e ∧ e] + 2λ1[ω ∧ e]

))
= Lξω, (4.9b)

where Lξ( · ) = d(ξy · ) + ξy (d · ) is the Lie derivative along the vector field ξ. This means

that the quantity V(ξ) ≡ F(ξy e) + G(ξyω) is the generator of the two spatial diffeomor-

phisms for ξ ∈ Σ. As for the generator of time-like diffeomorphisms, it is given by the

Hamiltonian constraint (4.6) with the values of the multipliers determined by the Hamilto-

nian analysis. Since V and H are built from the same combination of F and G and simply

feature different smearing fields, we might as well consider a spacetime vector field X and

the three smeared constraints

D(X) ≡ F(Xy e) + G(Xyω), (4.10)

where the smearing is now with Xy v = Xµvµ. These are the generators of spacetime diffeo-

morphisms, or in other words the three first class constraints which can be extracted from F
and G, and which we expect to find since the theory is manifestly diffeomorphism-invariant.

4.2 Secondary constraints

What is now important is to study the time evolution of the primary constraints F and

G. For this, it is useful to first compute the three elementary Poisson brackets between the

constraints. A lengthy but elementary calculation shows that these are given by{
F(α),F(β)

}
= λ0G([α, β]) + λ1F([α, β]) +

1

2
(λ1λ2 − λ0λ3)

∫
Σ

[α, β][ω ∧ ω], (4.11a){
G(α),G(β)

}
= λ2G([α, β]) + λ3F([α, β]) +

1

2
(λ1λ2 − λ0λ3)

∫
Σ

[α, β][e ∧ e], (4.11b){
F(α),G(β)

}
= λ1G([α, β]) + λ2F([α, β]) + (λ1λ2 − λ0λ3)

∫
Σ

[α, e] ∧ [ω, β]. (4.11c)

Remarkably, one can see that all these Poisson brackets are weakly vanishing if λ0λ3 = λ1λ2.

In this case, the 3+3 primary constraints F and G are first class, the Dirac algorithm stops,

and there are (12−2×(3+3))/2 = 0 degrees of freedom. The reason behind this topological

property is that when the topological condition on the coupling constants is satisfied there

is a hidden local Lorentz symmetry in addition to the manifest diffeomorphism symmetry.

Yet another way to see this is to promote the infinitesimal action (4.8) of the constraints on

the phase space variables to an action on all the spacetime components of the variables (i.e.
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to also act on the multipliers). Then we can plug the action of F and G in the infinitesimal

variation (4.2) to find

δFα S =
1

2

∫
(λ1λ2 − λ0λ3)[α, e] ∧ [ω ∧ ω], δGαS =

1

2

∫
(λ1λ2 − λ0λ3)[α, ω] ∧ [e ∧ e].

(4.12a)

This again shows that when the topological condition on the coupling constants is satisfied,

the action is invariant under the action of 3 + 3 symmetries (although it should be clear

that neither F nor G act like infinitesimal Lorentz transformations), which kills all the

degrees of freedom and results in a topological theory. This is explained in more details

in appendix B, where we show that in this topological case there is a change of variables

which maps the action (2.1) to that of a coupled BF and Chern-Simons theory.

To continue, let us now focus on the case λ0λ3 6= λ1λ2. The time evolution ∂t =
{
H, ·
}

of the primary constraints is then given by

∂tF(α) ≈ 1

2
(λ0λ3 − λ1λ2)M(α), ∂tG(α) ≈ 1

2
(λ0λ3 − λ1λ2)N (α), (4.13)

where the right-hand side is written in terms of the smeared 3 + 3 quantities

M(α) ≡
∫

Σ
[α, e0][ω ∧ ω] + 2[α, e] ∧ [ω, ω0], N (α) ≡

∫
Σ

[α, ω0][e ∧ e] + 2[α, ω] ∧ [e, e0].

(4.14)

By projecting onto (or smearing with) eiµ and ωiµ, one can easily show that these quantities

are in fact not all independent, but actually satisfyM(eµ) +N (ωµ) = 0. This is consistent

with the observation made above that D is the first class constraint generating spacetime

diffeomorphisms. For the analysis of the secondary constraints, it is therefore sufficient

to focus only on the three components of (say) M. Switching back to a more explicit

notation, these are given by

Mi = 2

∫
Σ

d2x εab
(
ωia
(
ej0ω

k
b − ω

j
0e
k
b

)
− ωi0ejaωkb

)
ηjk. (4.15)

The stability of the three components of (say) F , which requires the vanishing of M, is

therefore equivalent to the two conditions on multipliers(
ei0ω

j
a − ωi0eja

)
ηij = 0, (4.16)

and to the single secondary constraint

S ≡ εabeiaω
j
bηij ≈ 0. (4.17)

Finally, we now have to check the stability of this secondary constraint. Using F and G,

one can show that its time evolution is given by

∂tS ≈
1

2
e0

(
3λ0[e ∧ e] + 2λ1[ω ∧ e]− λ2[ω ∧ ω]

)
+

1

2
ω0

(
λ1[e ∧ e]− 2λ2[ω ∧ e]− 3λ3[ω ∧ ω]

)
,
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which gives one condition on the Lagrange multipliers. There are therefore no further con-

straints, and the Dirac algorithm stops here. At the end of the day, we have gathered a total

of three conditions on the six multipliers ei0 and ωi0, which leaves three unspecified multi-

pliers corresponding to the three first class constraints (which are the diffeomorphisms).

Out of the six constraints F and G, we can extract three first class constraints D
corresponding to the diffeomorphisms, while the remaining three constraints will form a

second class system together with the secondary constraint S. Putting all this together,

the counting therefore shows that there is (12 − (2× 3 + 3 + 1))/2 = 1 degree of freedom,

as announced.

5 Perspectives

In this work we have introduced and studied the new non-linear action (2.1) for three-

dimensional massive gravity. Although this action is manifestly diffeomorphism-invariant,

it does not posses local Lorentz symmetry, and as we have argued in section 2 it is precisely

this breaking of Lorentz-invariance which is responsible for the appearance of a massive

graviton. In addition, this theory is chiral in the sense that is breaks parity invariance

(like TMG). At the difference with TMG and NMG however, the new action presented

here does not have higher order equations of motion. We have started by giving the simple

form of the action in terms of connection and triad variables, which leads to first order

equations of motion. Then we have explained how half of the equations of motion can be

solved (exactly for λ3 = 0 or perturbatively for λ3 6= 0) in order to express the connection

in terms of the triad. Reinserting this connection in the original action then leads to a pure

triad formulation which has second order equations of motion. This second order action

(given by (3.20) in the case λ3 = 0) is the sum of a metric contribution, which is the usual

Einstein-Hilbert action, and parity breaking terms which can only be expressed in terms

of the triad. In this sense, this theory should really be thought of as having the triad as

its fundamental dynamical variable.

The action (2.1) contains four coupling constants, which are the Planck mass, the

cosmological constant, and the two new mass scales coming from the Lorentz-breaking

terms. In this sense, it can be thought of as describing a four-parameter family of theories

of massive gravity. We have shown that Minkowski spacetime is a solution provided that the

coupling constants satisfy a simple algebraic condition. For the linearized perturbations on

top of this Minkowski background, we have then found the equations of motion of a model

known as self-dual massive gravity, meaning that the linear theory describes a massive

graviton. The mass of this graviton depends on the four coupling constants of the new

action according to (3.44), and remains non-vanishing when the coupling constants are

taken to be vanishing one by one. In the last section of this work, we have studied the full

non-linear theory through a detailed Hamiltonian analysis, and shown that it generically

propagates the single degree of freedom of a three-dimensional massive graviton. Only

when the coupling constants satisfy a simple relation does the theory become topological

with no propagating degrees of freedom.
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There are many interesting aspects of this new theory which deserve to be studied

in more details. First of all, we would like to understand whether its relation with TMG

goes beyond linear order (where we have shown the equivalence). If such a relation ex-

ists it is potentially very non-trivial, since for example TMG is purely metric and higher

order, while the new theory presented here depends (in its triad formulation) on the nine

components of the triad and is second order. Furthermore, the TMG action contains a

Chern-Simons term for the torsionless Levi-Civita connection, while the theory presented

here has non-vanishing torsion. An interesting direction would therefore be to extract the

torsionless content of the action (2.1) by imposing the vanishing of the torsion with a La-

grange multiplier in the action. Adding such a term would alter drastically the analysis of

this paper, which would have to be repeated, but could lead to interesting results.

Second, it would be very interesting to study further the equations of motion and to

analyse whether this theory admits de Sitter or anti-de Sitter spacetime solutions. Can

these two other maximally-symmetric spacetimes be solutions of the theory if some condi-

tions between the coupling constants hold, like in the Minkowski case? If not, how are these

solutions modified by the new mass terms of the theory? As we have explained at the end

of section 3.1, the analysis of the equations of motion and the search for solutions is more

subtle than in general relativity because of the breaking of Lorentz symmetry, which forces

us to be very careful about the choice of Lorentz frame in which the triad is expressed.

Nonetheless, it might be possible to find interesting BTZ-like black hole solutions and to

study their stability and thermodynamic properties. One could envision studying aspects

of holography [11, 12, 28] in this theory, investigating the boundary symmetries along the

lines of [29, 30] (and in particular how they are affected by and handle the topological or

the various massive limits), or even constructing the quantum theory.

Finally, it would be extremely interesting if the present construction could be ex-

tended to four spacetime dimensions, and this direction definitely deserves further investi-

gation. In the first order connection-tetrad formulation, one can also envision preserving

diffeomorphism-invariance (at the difference with dRGT) but introducing Lorentz-breaking

terms constructed out of contractions of the tetrad eIµ (where I is an internal so(3, 1) index)

and the connection ωIJµ with the tensors ηIJ,KL ≡ ηIKηJL− ηILηJK and εIJKL. Following

what we have done here in three dimensions, one would then consider the terms which are

linear in the multipliers e0 and ω0. The question is then whether it is possible to construct

a theory with a non-trivial Minkowski vacuum in which the connection is not vanishing,

just like in the case of our equations of motion (3.1) (where we have ω̄ 6= 0), and around

which the perturbations could reveal the presence of a massive graviton.
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A Notations

Throughout this article we denote spacetime indices with Greek letters µ, ν, . . . ∈ {0, 1, 2},
and spatial indices with Latin letters a, b, . . . ∈ {1, 2}. Spacetime indices are lowered and

raised with the spacetime metric gµν . Latin letters i, j, . . . from the middle of the alphabet

are used to denote so(2, 1) Lie algebra indices, which are lowered and raised with the

internal metric ηij = diag(−1, 1, 1).

We denote by εµνρ = εµνρ the tensor densities of weight +1 and −1 respectively, which

are defined such that ε012 = 1 in every coordinate system. The spatial restriction of these

symbols is denoted by ε0ab = εab. The so(2, 1) Levi-Civita symbol εijk satisfies the relations

εijkε
lmn = −

(
δliδ

m
j δ

n
k − δliδmk δnj + δmi δ

n
j δ

l
k − δmi δnk δlj + δni δ

l
jδ
m
k − δni δlkδmj

)
, (A.1a)

εijkε
lmk = −

(
δliδ

m
j − δljδmi

)
, (A.1b)

εijkε
ljk = −2δli, (A.1c)

εijkε
ijk = −3!. (A.1d)

With these Levi-Civita symbols we have that the determinant of the triad satisfies

|e| ≡ det(eiµ) = −1

6
εµνρεijke

i
µe
j
νe
k
ρ, εµνρeiµe

j
νe
k
ρ = |e|εijk. (A.2)

Our index-free notation uses the usual definitions and properties of differential forms, such

as in particular

e ∧ F =
1

2
d3x εµνρeµFνρ, e ∧ [e ∧ e] = d3x εµνρeµ[eν , eρ]. (A.3)

Furthermore, in this notation there is always an implicit pairing of Lie algebra indices, and

[· , ·] denotes the Lie algebra commutator. We therefore have that

e ∧ F = ηije
i ∧ F j = ei ∧ Fi, e ∧ [e ∧ e] = ηije

i ∧ [e ∧ e]j = εijke
i ∧ ej ∧ ek. (A.4)

For two one-forms e and ω, and two zero-forms α and β, we have the useful formulas

[α, e] ∧ [β, ω] + [α, ω] ∧ [β, e] = [α, β][e ∧ ω], D̃α ∧ D̃β = λ2[α, β]F̃ , (A.5)

while for (p, q, r)-forms (P,Q,R) we have

[P ∧Q] ∧R = (−1)(p+q)r[R ∧ P ] ∧Q, [P ∧Q] = (−1)pq+1[Q ∧ P ]. (A.6)

B Topological case

In section 3.1 we show that when the condition λ0λ3 = λ1λ2 holds the theory has six first

class constraints and no degrees of freedom. This justifies the name “topological condition”

for this particular relation between the coupling constants. Here we will show that when

this condition is satisfied there is a change of variables which sends the action (2.1) to an

action which is indeed manifestly topological.
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For this, consider the new variables ē and ω̄ defined in terms of the initial e and ω by

the invertible change of variables

e = ē+ aω̄, ω = bω̄, a =
λ1

λ2
1 − λ0λ2

, b = −λ0

λ1
a = − λ0

λ2
1 − λ0λ2

. (B.1)

One can see that this requires that λ2
1 6= λ0λ2 as well. Plugging this change of variables in

the action (2.1) leads to

S(ē, ω̄) = bmp

∫
ē ∧
(
F̄ +

λ0

6
[ē ∧ ē]

)
+ aω̄ ∧

(
dω̄ +

1

3
[ω̄ ∧ ω̄]

)
+

ab

6λ1
(λ1λ2 − λ0λ3)ω̄ ∧ [ω̄ ∧ ω̄]

= bSGR(ē, ω̄) + abSCS(ω̄) + “unwanted”. (B.2)

When the topological condition is satisfied, the last term drops, and the action (2.1) is

therefore rewritten as the sum of a gravitational action (2.2) for ē and ω̄ and a Chern-

Simons action for ω̄. This makes manifest the fact that the theory (2.1) has no degrees of

freedom when the topological condition is satisfied.

In terms of symmetries, the Hamiltonian analysis has shown that when the topological

condition is satisfied there are six first class constraints. These include obviously the

diffeomorphisms, but also a hidden Lorentz symmetry, which the above rewriting makes

explicit. This Lorentz symmetry can actually be obtained from a certain combination of

F and G acting on ē and ω̄. Indeed, the inverse of the above change of variables being

given by

ē = e− a

b
ω, ω̄ =

1

b
ω, (B.3)

one can then use the action of F and G on e and ω to compute{
aF(α) + bG(α), ē

}
= [ē, α],

{
aF(α) + bG(α), ω̄

}
= dα+ [ω̄, α], (B.4)

which shows as expected that the combination aF + bG generates infinitesimal Lorentz

transformations of the new variables ē and ω̄.

C Relation to zwei-Dreibein gravity

In this appendix we explain for the sake of completeness the relationship between our new

action (2.1) and the three-dimensional bi-metric theory known as zwei-Dreibein gravity.

Let us take as the starting point the zwei-Dreibein action of [23] given by equation (2.1).

This action depends on two triad fields and two connections, and can be written as

S(e+, e−, ω+, ω−) =

∫
e+ ∧ F+ + e− ∧ F− −

Λ+

6
e+ ∧ [e+ ∧ e+]− Λ−

6
e− ∧ [e− ∧ e−]

− β+

2
e− ∧ [e+ ∧ e+]− β−

2
e+ ∧ [e− ∧ e−].

(C.1)
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On the first line we recognize the sum of two gravitational actions (2.2) with a cosmological

constant, and on the second line are two coupling terms between the triads (or the two

metrics) e+ and e−. With the choice

e+ = e, e− = ω, ω+ = ω, ω− = 0, (C.2)

this action then becomes

S(e, ω) =

∫
e ∧ F − Λ+

6
e ∧ [e ∧ e]− Λ−

6
ω ∧ [ω ∧ ω]− β+

2
ω ∧ [e ∧ e]− β−

2
e ∧ [ω ∧ ω],

(C.3)

and one finally obtains (2.1) by setting the coupling constants to

Λ+ = −λ0, β+ = −λ1, β− = 1− λ2, Λ− = −λ3, (C.4)

and rescaling by an overall factor of mp.

Notice that this map, because it involves setting one of the two initial connections to

zero, is of course not an innocent invertible change of variables. This is indeed to be ex-

pected since the three-dimensional bi-metric theories actually propagate two degrees of free-

dom instead of one, and therefore describe very different physics from the new action (2.1).

Obviously, identifying the two triads and the two connections in the zwei-Dreibein action

leads to the action for general relativity, and not to a theory with a single degree of free-

dom. The theory (2.1) can therefore in a sense be thought of as living “in between” general

relativity and the zwei-Dreibein theory: it has a single set of gravitational data, i.e. a triad

and a connection, but still propagates one degree of freedom. Moreover, it is interesting to

note that the Hamiltonian analysis of section 4 is very similar in spirit to that of [23], and

that in this reference the authors have carefully studied the issue of partial masslessness

of one of the two degrees of freedom, which is also a bit reminiscent of the topological and

massless limits which exist for (2.1).

D Extra kinetic terms

In this appendix we discuss the possibility of having other kinetic terms in the action (2.1),

and the condition under which they can be eliminated by a change of variables. Indeed,

one could in principle consider the most general (first order) kinetic terms constructed out

of e and ω, and study the action

S(e, ω) = mp

∫
α1e ∧ dω +

α2

2
e ∧ de+

α3

2
ω ∧ dω + V (e, ω), (D.1)

where the potential is again (2.5).

Given this action, it is natural to ask whether there can exist a change of variables

which eliminates the kinetic terms in α2 and α3. If this is possible, then we can conclude

that we can take α2 = α3 = 0 without loss of generality. To investigate this, consider the
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new variables ē and ω̄ defined in terms of the initial e and ω by the invertible change of

variables

e = aē+ bω̄, ω = cē+ dω̄, ad− bc 6= 0. (D.2)

The nice property of the potential (2.5) is that it already contains the four possible

terms which can be constructed out of e and ω, and will therefore have the same form

when expressed in terms of the new variables, but simply contain new coupling constants

λ̄n(λn, a, b, c, d). To know whether the action (D.1) can be rewritten in the form (2.1), it

is thus sufficient to focus on the fate of the kinetic terms.

Obviously, the action expressed with the new variables will also contain the three

possible kinetic terms, but now with new coupling constants given by

ᾱ1 = ad
[
(1 + xy)α1 + yα2 + xα3

]
, ᾱ2 = a2(α3x

2 + 2α1x+ α2),

ᾱ3 = d2(α2y
2 + 2α1y + α3), (D.3)

where we have introduced x ≡ c/a and y ≡ b/d. If the condition ∆ ≡ α2
1 − α2α3 > 0

is satisfied, it is therefore always possible to find real coefficients (a, b, c, d) which can set

ᾱ2 = ᾱ3 = 0 while satisfying ad− bc 6= 0. For this we simply need to choose

x =
−α1 ±

√
∆

α3
, y =

−α1 ±
√

∆

α2
, (D.4)

with the same sign ± in both solutions in order to have ad − bc 6= 0. If however we have

∆ < 0, then the transformation which eliminates the kinetic terms in ᾱ2 and ᾱ3 still exists

but becomes imaginary, which could indicate that the theory might then propagate more

than one degree of freedom. This is an interesting point which should be studied with

more care.

E Matrix formulation

We explain in this appendix how to rewrite the action (2.1) in terms of the two 3×3 matrices

Ωij ≡ εµνρeiµ∂νejρ, M ij ≡ ωiµêµj , (E.1)

where ê is the inverse of e in the sense that eiµê
µ
j = δij and eiµê

ν
i = δνµ. To obtain this

rewriting, we proceed by analyzing and rewriting all the terms in the first line of (4.3).

First, since M ij = ωiµê
µj and êµjeρj = δµρ , we have ωiρ = M ijeρj . Up to a total

derivative obtained from the integration by parts, we can therefore rewrite the kinetic

term in (4.3) as

εµνρeµi∂νω
i
ρ = −εµνρ∂νeµiωiρ = −εµνρ∂νeiµMije

j
ρ = εµνρejµ∂νe

i
ρMij = ΩjiMij = tr(ΩM).

(E.2)

Then, for the term in λ0, with the definition (A.2) of the determinant of the triad we

have that

1

6
εµνρεijke

i
µe
j
νe
k
ρ = −|e|. (E.3)
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For the term in λ1, we can use again (A.2) to write that

1

2
εµνρεijkω

i
µe
j
νe
k
ρ =

1

2
εµνρεijkM

ileµle
j
νe
k
ρ =
|e|
2
εijkεl

jkM il = −|e|M i
i = −|e|tr(M). (E.4)

Using the same manipulation, we then get for the term in λ2 that

1

2
εµνρεijkω

i
µω

j
νe
k
ρ =

1

2
εµνρεijkM

ilM jmeµleνme
k
ρ =
|e|
2
εijkεlm

kM ilM jm, (E.5)

and expanding the product of Levi-Civita symbols using (A.1b) then leads to

1

2
εµνρεijkω

i
µω

j
νe
k
ρ =
|e|
2

(M i
jM

j
i −M i

iM
j
j) =

|e|
2

[
tr(M2)− tr2(M)

]
, (E.6)

with an obvious notation for the product of traces and the trace of a matrix product.

Finally, using the definition of the matrix determinant as

det(M) = −1

6
εijkε

lmnM i
lM

j
mM

k
n, (E.7)

we have

1

6
εµνρεijkω

i
µω

j
νω

k
ρ =

1

6
εµνρεijkM

ilM jmMkneµleνmeρn = −|e| det(M), (E.8)

and using formula (A.1a) then enables us to write

det(M) =
1

6

(
M i

iM
j
jM

k
k −M i

iM
j
kM

k
j +M i

kM
j
iM

k
j

−M i
jM

j
iM

k
k +M i

jM
j
kM

k
i −M i

kM
j
jM

k
i

)
=

1

6

[
tr3(M) + 2tr(M3)− 3tr(M)tr(M2)

]
. (E.9)

Putting these ingredients together gives the form (3.10) of the action.

F Solution for the connection

In this appendix we give the various equivalent expressions for the solution of the equations

of motion (3.1b) giving ω as a function of e in the case λ3 = 0. With the matrix notation,

we have obtained the solution (3.14) for M in terms of Ω. Using the fact that ωiµ = M ijeµj
together with formula (A.2) leads to the explicit expression

ωiµ =
1

λ2|e|

(
1

2
Ωj

je
i
µ − Ωijeµj

)
− λ1

2λ2
eiµ =

1

2λ2

(
eiµεj

kl − 2εikleµj
)
∂νe

j
ρê
ν
k ê
ρ
l −

λ1

2λ2
eiµ.

(F.1)

As a consistency check, one can verify that this is in agreement with the “usual” way of

solving the equations of motion (3.1b) for ω. This requires using the explicit inversion

formula which gives ω in terms of W and e whenever [ω ∧ e] = W for some Lie algebra-

valued two-form W , namely

εijk
(
ωjµe

k
ν − ωjνekµ

)
= W i

µν ⇔ ωiµ =
1

4
eiµεj

klW j
νρê

ν
k ê
ρ
l + εijkW

j
µν ê

νk. (F.2)
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Noting that the equations of motion (3.1b) with λ3 = 0 take the explicit form

εijk
(
ωjµe

k
ν − ωjνekµ

)
= − 1

λ2

(
∂µe

i
ν − ∂νeiµ + λ1ε

i
jke

j
µe
k
ρ

)
, (F.3)

we get the solution

ωiµ = − 1

2λ2

(
eiµεj

kl∂νe
j
ρê
ν
k ê
ρ
l + 2εijk

(
∂µeνj − ∂νeµj

)
êνk

)
− λ1

2λ2
eiµ. (F.4)

Although this looks actually different from (F.1), these two expressions can be shown to

be identical upon computing a double anti-symmetrization of the internal indices, and in

turn equal to

ωiµ = − 1

2
εijkεjklω

l
µ

=
1

2λ2
εijkê

νj
(
∂µe

k
ν − ∂νekµ − êρkelµ∂νeρl

)
− λ1

2λ2
eiµ

= − 1

2λ2
εijkΓ

jk
µ −

λ1

2λ2
eiµ, (F.5)

where we can now recognize when λ1 = 0 and λ2 = 1 the more familiar expression for

the torsion-free connection ω in terms of the Levi-Civita connection Γjkµ = −êνj∇µekν =

−êνj(∂µekν − Γρµνekρ).

G Triad formulation for small λ3

In this appendix we study how the pure triad action (3.17) is modified when we include a

small but non-vanishing value of the coupling constant λ3. For this, let us go back to the

matrix form (3.10) of the action, and write the equations of motion for M when λ3 6= 0.

These are given by

Ω− |e|
(
λ1η + λ2

[
tr(M)η −M

]
+ λ3 det′(M)

)
= 0, (G.1)

where

det′(M) =
1

2

[
tr(M2)− tr2(M)

]
η +M

[
tr(M)η −M

]
. (G.2)

Denoting by M0 the solution (3.14) obtained for λ3 = 0, i.e. the matrix such that

Ω− |e|
(
λ1η + λ2

[
tr(M0)η −M0

])
= 0, (G.3)

we look for first order corrections of the form M = M0 + λ3M1. Plugging this ansatz in

the equations of motion, using (G.3) and then keeping only the terms of order λ3 leaves us

with the equation

λ2

[
tr(M1)η −M1

]
+ det′(M0) = 0. (G.4)

This equation can then obviously be solved to find M1 in terms of M0, which is therefore

an expression for M1 in terms of Ω. This explicit solution is however rather lengthy and

in fact not necessary for our purposes.

– 26 –



J
H
E
P
0
4
(
2
0
1
9
)
0
9
1

Indeed, to see how we can completely bypass this more complicated calculation, let us

simply plug the ansatz M = M0 + λ3M1 in the action (3.10). Keeping only the terms of

order λ3 leads to

S(e) = S0(e) + λ3S1(e), (G.5)

where S0(e) has been computed in (3.17) and the first order correction is

S1(e) = mp

∫
d3x

{
tr(ΩM1)−|e|

(
λ1tr(M1)+λ2

[
tr(M0)tr(M1)−tr(M0M1)

]
+det(M0)

)}
.

(G.6)

Now, multiplying (G.3) by M1 and taking the trace of the resulting equation leads to

the identity

tr(ΩM1)− |e|
(
λ1tr(M1) + λ2

[
tr(M0)tr(M1)− tr(M0M1)

])
= 0. (G.7)

This then dramatically simplifies the expression for the first order correction to the action,

which can be expressed solely in terms of M0 and becomes

S1(e) = −mp

∫
d3x |e| det(M0) = −mp

6

∫
d3x |e|

[
tr3(M0) + 2tr(M3

0 )− 3tr(M0)tr(M2
0 )
]
.

(G.8)

Using the solution (3.14) for M0, we can then compute the explicit expression

S1(e) =
mp

2λ2

∫
d3x

{
λ1

4λ2
2|e|

[
tr2(Ω)− 2tr(Ω2)

]
+

λ3
1

4λ2
2

|e| − λ2
1

4λ2
2

tr(Ω)

+
1

12λ2
2|e|2

[
tr3(Ω)− 6tr(Ω)tr(Ω2) + 8tr(Ω3)

]}
. (G.9)

Putting the two contributions (3.17) and (G.9) together, we finally get that the triad action

to first order in λ3 takes the form

S(e) =
mp

2λ2

∫
d3x

{
µ2

2|e|
[
tr2(Ω)− 2tr(Ω2)

]
+
µ0

2
|e| − µ1tr(Ω)

+
µ3

|e|2
[
tr3(Ω)− 6tr(Ω)tr(Ω2) + 8tr(Ω3)

]}
, (G.10)

with

µ0 ≡ 3λ2
1 − 4λ0λ2 +

λ3
1λ3

2λ2
2

, µ1 ≡ λ1 +
λ2

1λ3

4λ2
2

, µ2 ≡ 1 +
λ1λ3

2λ2
2

, µ3 ≡
λ3

12λ2
2

.

(G.11)

The triad action at first order in λ3 is therefore given by the Einstein-Hilbert action with

a cosmological constant (these are the terms in µ2 and µ0), augmented by two “massive

modifications”, which are the terms in µ1 and µ3. The first of these modifications is of

course already present in (3.17), while the term in µ3 appears because λ3 6= 0.
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Finally, we can now proceed to a consistency check and show that the action (G.10),

when perturbed around a Minkowski background, reproduces a graviton mass consistent

with the general result of section (3.4). From the expressions (3.22), one can see that the

term in µ3 in (G.10) will not contribute to the action for the perturbations since it will

be cubic in f . Therefore, the calculation reduces to that of section (3.3) where we simply

replace λ1 → µ1/µ2 and λ2 → λ2/µ2. In particular, this means that starting from (G.10)

the graviton mass will be given by

µ1

µ2
' λ1 −

λ2
1λ3

4λ2
2

, (G.12)

where we have kept the lowest order in λ3. One can then see that this result is indeed

consistent with the generic graviton mass (3.44) when it is approximated at lowest order

in λ3, i.e.

mg ' λ1 +

(
λ0 −

λ2
1

λ2

)
λ3

λ2
' λ1 −

λ2
1λ3

4λ2
2

, (G.13)

where for the second equality we have used the condition µ0 = 0. This condition is simply

the fact that the cosmological constant has to vanish in order for the Minkowski background

to be a solution of the triad action at first order in λ3.
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