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STABILIZATION OF THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS

IN A 2D CHANNEL

SOURAV MITRA

Abstract. In this article we study the local boundary stabilization of the non-homogeneous Navier-
Stokes equations in a 2d channel around Poiseuille flow which is a stationary solution for the system

under consideration. The feedback control operator we construct has finite dimensional range. The

homogeneous Navier-Stokes equations are of parabolic nature and the stabilization result for such system
is well studied in the literature. In the present article we prove a stabilization result for non-homogeneous

Navier-Stokes equations which involves coupled parabolic and hyperbolic dynamics by using only one

boundary control for the parabolic part.
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1. Introduction

1.1. Settings of the problem. We are interested in stabilizing the density dependent Navier-Stokes
equations around some stationary state (ρs, vs) (where (ρs, vs, ps) is a stationary solution) in a two
dimensional channel Ω. For that we will use an appropriate boundary control uc acting on the velocity
in the inflow part of the boundary ∂Ω.
Let d be a positive constant. Throughout this article we will use the following notations (see Figure 1.)

Ω = (0, d)× (0, 1), Γ = ∂Ω, QT = Ω× (0, T ), ΣT = Γ× (0, T ) for 0 < T 6∞. (1.1)

The unit outward normal to the boundary Γ is denoted by n. The velocity, density and pressure of the
fluid are denoted respectively by v, ρ and p. The viscosity ν > 0 of the fluid is a positive constant. We
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consider the following control system

∂ρ

∂t
+ div (ρv) = 0 in Q∞,

ρ = ρs on {(x, t) ∈ Σ∞ | (v(x, t) · n(x)) < 0},
ρ(x, 0) = ρs + σ0 in Ω,

ρ

(
∂v

∂t
+ (v · ∇)v

)
− ν∆v +∇p = 0 in Q∞,

div (v) = 0 in Q∞,

v = vs + ucχΓc on Σ∞,

v(x, 0) = vs + y0 in Ω,

(1.2)

where ucχΓc is a control function for the velocity v with χΓc denoting the characteristics function of a
set Γc which is compactly supported on Γ. The set Γc will be precisely defined shortly afterwards. The
equation (1.2)1 is the mass balance equation and (1.2)4 is the momentum balance equation. The triplet
(ρs, vs, ps) is the Poiseuille profile defined as follows

ρs is a positive constant, vs(x1, x2) =

[
αx2(1− x2)

0

]
, ps = −2ανx1, in Ω, (1.3)

where α > 0 is a constant. Observe that (ρs, vs, ps) (given by (1.3)) is a stationary solution of the
Navier-Stokes equations (1.2).
The aim of this article is to determine feedback boundary control uc (the control of the velocity) such
that the solution (ρ, v) of the controlled system is exponentially stable around the stationary solution
(ρs, vs) provided the perturbation (σ0, y0) of the steady state (ρs, vs) is sufficiently small (in some suitable
norm).
In view of the stationary profile (1.3), it is natural to control the inflow part of the boundary, i.e. we will
consider the control function uc supported on

Γin = {x ∈ Γ | (vs · n)(x) < 0} = {0} × (0, 1). (1.4)

In fact we do slightly better and control on some open subset Γc of Γin. We consider Γc of the following
form

Γc = {0} × (L, 1− L) ⊂ Γin, (1.5)

for some fixed 0 < L < 1
2 .

Remark 1.1. We consider the control zone of the form (1.5) to simplify the notations. In fact our
analysis allows to consider any subset {0} × (A,B) (0 < A < B < 1) of Γin as the control zone.

To state our results precisely, we introduce some appropriate functional spaces.

1.2. Functional framework for the Naviers-Stokes equations. Let Hs(Ω;RN ) andL2(Ω;RN ) de-
note the vector valued Sobolev spaces. If it is clear from the context, we may simply denote these spaces
by Hs(Ω) and L2(Ω) both for scalar and vector valued functions. The same notational conventions will
be used for the trace spaces. We now introduce different spaces of divergence free functions and some
suitable spaces of boundary data:

V s(Ω) = {y ∈ Hs(Ω;R2) | div y = 0 in Ω} for s > 0,

V sn (Ω) = {y ∈ Hs(Ω;R2) | div y = 0 in Ω, y · n = 0 on Γ} for s > 0,

V s0 (Ω) = {y ∈ Hs(Ω;R2) | div y = 0 in Ω, y = 0 on Γ} for s ∈ ( 1
2 ,

3
2 ),

V s(Γ) = {y ∈ Hs(Γ;R2) |
∫
Γ

y · ndx = 0} for s > 0.
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The spaces V s(Ω) and V s(Γ) are respectively equipped with the usual norms of Hs(Ω) and Hs(Γ), which
will be denoted by ‖ · ‖V s(Ω) and ‖ · ‖V s(Γ).

From now onwards we will identify the space V 0
n (Ω) with its dual.

For 0 < T 6 ∞ let us introduce the following functional spaces adapted to deal with functions of the
time and space variables.

V s,τ (QT ) = Hτ (0, T ;V 0(Ω)) ∩ L2(0, T ;V s(Ω)) for s, τ ≥ 0,

V s,τ (ΣT ) = Hτ (0, T ;V 0(Γ)) ∩ L2(0, T ;V s(Γ)) for s, τ ≥ 0.

We also fix the convention that for any two Banach spaces X and Y, the product space X ×Y is endowed
with the norm

∀ (x, y) ∈ X × Y, ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y ,
where ‖ · ‖X and ‖ · ‖Y denote the norms in the corresponding spaces.

1.3. The main result. We now precisely state our main result.

Theorem 1.2. Let β > 0, A1 ∈ (0, 1
2 ). There exist a constant δ > 0 and C > 0 such that for all

(σ0, y0) ∈ L∞(Ω)× V 1
0 (Ω) satisfying

supp(σ0) ⊂ [0, d]× (A1, 1−A1), (1.6)

and
‖(σ0, y0)‖L∞(Ω)×V 1

0 (Ω) 6 δ,

there exists a control uc ∈ H1(0,∞;C∞(Γc)), for which the system (1.2) admits a solution

(ρ, v) ∈ L∞(Q∞)× V 2,1(Q∞),

satisfying the following stabilization requirement

‖eβt(ρ− ρs, v − vs)‖L∞(Q∞)×V 2,1(Q∞) 6 C‖(σ0, y0)‖L∞(Ω)×V 1
0 (Ω). (1.7)

Moreover, ρ = ρs for t sufficiently large.

Remark 1.3. We do not prove the uniqueness of the stabilized trajectory (ρ, v) of the system (1.2). In
fact to deal with the non linear system (1.2) we use Schauder’s fixed point theorem which directly do not
infer the existence of a unique fixed point. We would also like to refer to the article [11, Chapter VI]
for the Cauchy theory of the inhomogeneous Navier-Stokes equations in the presence of inflow where the
authors prove only the existence and not the uniqueness of the solution.

We now make precise the structure of the control function uc we are going to construct. We will show
the existence of a natural number Nc, and a family

{gj | 1 6 j 6 Nc},
of smooth functions supported on Γc such that the control uc acting on the velocity is given as follows

uc(x, t) = e−βt
Nc∑
j=1

wj(t)gj(x), (1.8)

where wc(t) = (w1(t), ...., wNc(t)) is the control variable and is given in terms of a feedback operator K.
More precisely, wc = (w1, ..., wNc) satisfies the following ODE

w
′

c = K
(
P (v − vs)

wc

)
in (0,∞), wc(0) = 0,

where P is the Leray projector from L2(Ω) to V 0
n (Ω) ([38, Section 1.4]) and K ∈ L(V 0

n (Ω)× RNc ,RNc).
The boundary control (1.8) has a finite dimensional range and is constructed by using eigenvectors
of adjoint of Oseen operator relying on the construction of [5] (one can also consult [33] for similar
construction). We will not consider any control on the transport equation modeling the density and as
for the homogeneous Navier-Stokes equations, we show that considering a control uc of the velocity is
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enough to stabilize the whole system (1.2).
The stabilizability of the constant density (or homogeneous) incompressible Navier-Stokes equation (with
Dirichlet or mixed boundary condition) by a finite dimensional feedback Dirichlet boundary control has
already been studied in the literature. For instance in [37] it is proved that in a C4 domain the velocity
profile v, solution to system (1.2)4-(1.2)7 with constant density is locally stabilizable around a steady
state vs (vs ∈ H3(Ω;R2)) by a finite dimensional Dirichlet boundary control localized in a portion of the
boundary and moreover the control uc is given as a feedback of the velocity field. For general stabilization
results for parabolic problems and application to the homogeneous incompressible Navier-Stokes equations
one can consult [4].
Unlike the constant density incompressible Navier-Stokes equations (which is of parabolic nature), the
system (1.2) obeys a coupled parabolic-hyperbolic dynamics. Local exact controllability to trajectories
of the system (1.2) was studied in [3]. In the present article we answer the question posed in [3] on the
stabilizability of the system (1.2) around the Poiseuille profile. In proving the controllability results one
of the main geometric assumptions of [3] is that

Ω = ΩTout

where
ΩTout = {x ∈ Ω | ∃t ∈ (0, T ), s.tXs(t, 0, x) ∈ Rd \ Ω}, (1.9)

and Xs is the flow corresponding to the target velocity trajectory vs defined as

∀(x, t, τ) ∈ Rd × [0, T ]2, ∂tXs(x, t, τ) = vs(Xs(x, t, τ), t), Xs(x, τ, τ) = x.

In the article [3] the assumption (1.9) plays the key role in controlling the density of the fluid. In our
case since the target velocity trajectory is vs (defined in (1.3)) the assumption (1.9) is not satisfied
because vs vanishes at the lateral boundary of the domain Ω. Hence to control the density we make a
parallel assumption (1.6). Indeed, the assumption (1.6) implies that supp(ρ0) b ΩTout. The assumption
(1.6) exploits the hyperbolic nature of the continuity equation (1.2)1 in order to control the coupled
system (1.2). The condition (1.6) in fact guarantees that the density exactly equals ρs, after some time
T1 = TA1

> d
inf

x2∈[A1,1−A1]
vs

(will be detailed in Section 3) so that the non-homogeneous Navier-Stokes

equations become homogeneous after some finite time. In [3] the authors uses two control functions (one
for the density and one for velocity) for the purpose of controlling the non-homogeneous fluid. Contrary
to that we use only one control acting on the velocity to stabilize the coupled system (1.2).

1.4. Decomposition of the boundary Γ and comment on the support of control. Based on the
velocity profile vs (as defined in (1.3)) we can rewrite the boundary of Ω as follows

Γ = Γin ∪ Γout ∪ Γ0,

where
Γin is defined in (1.4),

Γout = {x ∈ Γ | (vs · n)(x) > 0} = {d} × (0, 1),

Γ0 = ((0, d)× {0}) ∪ ((0, d)× {1}) = Γb ∪ Γh (Figure 1).

(1.10)

Remark 1.4. From now onwards we will use the notation Γin to denote the inflow boundary of both the
vector fields vs and v. This is a slight abuse of notation but we will prove the existence of the controlled
trajectory v in a small neighborhood (in a suitable norm) of vs provided the perturbation y0 is small. This
will guarantee that Γin and the inflow boundary of the vector field vs are identical. For the details we
refer the reader to the Corollary 2.10.

We will look for a control function uc of the form (1.8) which is compactly supported in Γc. More
particularly we will construct the finite dimensional basis {gj | 1 6 j 6 Nc} of the control space in such
a way that gj (∀ 1 6 j 6 Nc) is smooth and supported in Γc.



STABILIZATION OF THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS IN A 2D CHANNEL 5

Γb0 d

1

Γout

1-L

L

Γh

ΓcΓin

Figure 1. Picture of the domain Ω.

1.5. Strategy. (i) As our goal is to stabilize the solution (ρ, v) of (1.2) around the stationary solution
(ρs, vs) with a rate e−βt we introduce

y = eβt(v − vs), σ = eβt(ρ− ρs), q = eβt(p− ps), u = eβtuc. (1.11)

As in our case the control (1.8) is supported in the inflow boundary, in view of the notations introduced
in (1.10) and the Remark 1.4 we use (1.8) to rewrite the system (1.2) in the following form



∂σ

∂t
+ ((vs + e−βty) · ∇)σ − βσ = 0 in Q∞,

σ(x, t) = 0 on Γin × (0,∞),

σ(x, 0) = σ0 in Ω,

∂y

∂t
− βy − ν

ρs
∆y + (vs · ∇)y + (y · ∇)vs +

1

ρs
∇q = F(y, σ) in Q∞,

div y = 0 in Q∞,

y = 0 on (Γ0 ∪ Γout)× (0,∞),

y =

Nc∑
j=1

wj(t)gj(x) on Γin × (0,∞),

y(x, 0) = y0 in Ω,

(1.12)

where

F(y, σ) =
1

ρs
(−e−βtσ∂y

∂t
− e−βtρs(y · ∇)y− e−βtσ(vs · ∇)y− e−βtσ(y · ∇)vs− e−2βtσ(y · ∇)y+ βe−βtσy).

To solve a nonlinear stabilization problem the usual method is to first solve the stabilization problem for
the linearized system and then use a fixed point method to conclude the stabilizability of the original
nonlinear problem (1.12). But contrary to the usual method we will not consider the non-linear term
(y · ∇)σ (nonlinear in (σ, y) but linear in σ) as a source term while dealing with (1.12)1. This is because
the transport equation has no regularizing effect on its solution. Instead, we only linearize the equation
(1.12)4 satisfied by y i.e. we replace the nonlinear terms appearing in the equation (1.12)4 by a non
homogeneous source term f and we leave the equation of the density (1.12)1 unchanged. Hence we start



6 STABILIZATION OF THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS IN A 2D CHANNEL

by analyzing the stabilizability of the system

∂σ

∂t
+ ((vs + e−βty) · ∇)σ − βσ = 0 in Q∞,

σ(x, t) = 0 on Γin × (0,∞),

σ(x, 0) = σ0 in Ω,

∂y

∂t
− βy − ν

ρs
∆y + (vs · ∇)y + (y · ∇)vs +

1

ρs
∇q = f in Q∞,

div y = 0 in Q∞,

y = 0 on (Γ0 ∪ Γout)× (0,∞),

y =
Nc∑
j=1

wj(t)gj(x) on Γin × (0,∞),

y(x, 0) = y0 in Ω.

(1.13)

(ii) Section 2 is devoted to stabilize the linearized Oseen equations (1.13)4-(1.13)8. Most of the contents
of this section are taken mainly from [4], [5] and [33] with minor modifications. Hence for the known
results we provide proper references without going into detailed proofs. First of all we look for a control
of the form (1.8). We will choose the functions {gj | 1 6 j 6 Nc}, supported on Γc, so that we can prove
some unique continuation property equivalent to the stabilizability of the system under consideration.
Next our aim is to find a boundary control which is given in terms of a feedback law. At the same time
we design the control such that the velocity y belongs to the space V 2,1(Q∞). In fact the V 2,1(Q∞)
regularity of y is used to deal with the non linear terms. For example y ∈ H1(0,∞;V 0(Ω)) along with

σ ∈ L∞(Q∞) furnish the L2(Q∞) regularity of the non linear term σ
∂y

∂t
. If y has less regularity in time

then
∂y

∂t
lies in some Sobolev space with negative exponent in time and thereby making the Cauchy theory

rather difficult. This creates another difficulty because to prove the V 2,1(Q∞) regularity of y solution of
(1.13)4-(1.13)8, one must have a compatibility between the initial velocity y0, assumed to be in V 1

0 (Ω) and
the boundary condition (i.e. the control u). To deal with this issue we search for a dynamical controller
by adding a system of ordinary differential equations satisfied by wc. The corresponding extended system
satisfied by (y, wc) reads as follows

∂y

∂t
− βy − ν

ρs
∆y + (vs · ∇)y + (y · ∇)vs +

1

ρs
∇q = f in Q∞,

div y = 0 in Q∞,

y = 0 on (Γ0 ∪ Γout)× (0,∞),

y =
Nc∑
j=1

wj(t)gj(x) on Γin × (0,∞),

y(x, 0) = y0 in Ω,

w
′

c = ϕc in (0,∞),

wc(0) = 0 in Ω,

(1.14)

where ϕc(∈ RNc) is a new control variable which will be determined later as a feedback of the pair (y, wc).
Since y(., 0) = 0, imposing wc(0) = 0 furnishes the desired compatibility between the initial and boundary
conditions of y which is necessary to obtain the V 2,1(Q∞) regularity of y.
The construction of the dynamical controller (Riccati type) ϕc is inspired from [5] and [4]. This controller
ϕc is able to stabilize the homogeneous (i.e. when f = 0) extended system (1.14). Then we show that
the same control stabilizes the entire non-homogeneous (i.e. with the non-homogeneous source term f)
extended system (1.14) by assuming that the non-homogeneous term f belongs to some appropriate
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space.

(iii) In Section 3, we study the stability of the continuity equation (1.13)1-(1.13)3. We assume the velocity
field in V 2,1(Q∞) and σ0 ∈ L∞(Ω) such that (1.6) holds. Since σ0 ∈ L∞(Ω) and the transport equation
has no regularizing effect we expect that σ ∈ L∞loc(Q∞). The Cauchy problem for the continuity equation
in the presence of an inflow boundary is rather delicate. In our case we use results from [11] for the
existence of a unique renormalized weak solution of the problem (1.13)1-(1.13)3 in the space L∞(Q∞).
Our proof of the stabilization of the transport equation satisfied by the density relies on the fact that
the characteristics equation corresponding to the velocity field is well posed. As we are dealing with
velocity fields in L2(0,∞, H2(Ω)), which is not embedded in L1

loc(0,∞,W 1,∞(Ω)) in dimension two,
our analysis relies on [42] (see also [6, Theorem 3.7]), stating the well-posedness of the equation of the
flow as a consequence of Osgood condition. Then considering the velocity field (vs + e−βty) as a small
perturbation of vs (see (1.3) for the definition) we prove that the characteristic curves corresponding to the
perturbed velocity field stay close to that of vs in a suitable norm. Using the fact that the characteristics
corresponding to the velocity fields vs and (vs+ e−βty) are close we show that the particles initially lying

in the support of σ0 are transported out of the domain in some finite time T > TA1
=

d

αA1(1−A1)
along the flow corresponding to the perturbed velocity field. Consequently, the solution ρ of the equation
(1.2)1-(1.2)3 reaches exactly the target density ρs after the time T.
(iv) Finally in Section 4, we will use Schauder’s fixed point theorem to conclude that the control designed
in step (iii) locally stabilizes the non linear coupled system (1.13) and consequently Theorem 1.2 follows.

1.6. Bibliographical comments. In the literature many works have been dedicated to the study of
incompressible Navier-Stokes equations. For the classical results concerning the existence-uniqueness and
regularity issues of the constant density incompressible Navier-Stokes equations we refer the reader to
[38]. The reader can also look into [25] for a thorough analysis of the subject. Intricate situations may
arise due to the lack of regularity when special geometric assumptions are imposed on the boundary ∂Ω.
For example, the domain can have corners or edges of prescribed geometric shape. For the analysis of
these situations the interested reader may look into [31] and [17]. In the present article the functional
settings for the incompressible Navier-Stokes equations is motivated from [36]. The results of [36] are
stated in a domain with smooth boundary. Thus to adapt the functional framework from [36] in the case
of a rectangular domain we have used some results from [26] and [27].
Regarding the Cauchy problem of the non-homogeneous Navier-Stokes equations, the existence of classical
solution for the non-homogeneous Navier-Stokes equations with homogeneous Dirichlet boundary condi-
tion for velocity in space dimension three is studied in [1]. Results concerning the existence-uniqueness of
global in time strong solution (with small initial data and small volume force) in space dimension three
can be found in [28]. In dimension two the existence and uniqueness of global in time solution (without
any smallness restriction on the data) is also proved in [28]. In both of these references the velocity field is
Lipschitz and the initial condition of the density is smooth enough, hence the transport equation satisfied
by the density can be classically solved using the method of characteristics. To deal with less regular ve-
locity field the concept of renormalized solution was initially developed in [18] and later suitably adapted
in several contexts. For instance, one can find an application of a suitable variation of the Di-Perna-Lions
theory to prove an existence and uniqueness result for the inhomogeneous Navier-Stokes equation in [16].
All of these articles assume that the velocity field satisfies v · n = 0. In the present article we are dealing
with the target velocity vs, which is inflow on a part of the boundary ∂Ω. For a velocity field with inflow,
one must assume a suitable boundary condition for the density so that the transport equation satisfied
by the density is well posed. This problem is analyzed in the articles [11, Chapter VI] and [9], where the
authors suitably define the trace for the weak solution of the transport equation. They also prove that
these traces enjoy the renormalization property. In the present article we use the existence, uniqueness
and stability results for the transport equation from [11] and [9]. For a more intricate case involving
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nonlinear outflow boundary condition, similar results can be found in [10].
There is a rich literature where the question of the feedback boundary stabilization of the constant den-
sity incompressible Navier-Stokes equation is investigated. For the feedback boundary stabilization of a
general semilinear parabolic equation one can look into the article [22]. The feedback stabilization of the
2D and 3D constant density Navier-Stokes equations can be found in the articles [23], [24] and [4] respec-
tively. Concerning the stabilization of homogeneous Navier-Stokes equations one can also consult [37] and
[35] where the feedback boundary controls are achieved by solving optimal control problems. We would
also like to mention the articles [32] and [7] where the authors prove the feedback stabilization of the same
model around the Poiseuille profile by using normal velocity controllers. The idea of constructing a finite
dimensional boundary feedback control to stabilize a linear parabolic equation dates back to the work
[39]. In our case we adapt the ideas from the articles [33], [37], [5] and [4] in order to construct a feedback
boundary control with finite dimensional range to stabilize the linear Oseen equations. Actually for con-
stant density fluids, the article [33] deals with a more intricate case involving mixed boundary conditions.
In the articles [40] and [41], backstepping method has been used to construct boundary controls acting
on the upper boundary of a 2D channel to stabilize homogeneous incompressible Navier-Stokes equations
with periodic boundary condition in the channel direction, around the Poiseuille flow. The approach of
[41] consists in generating an exact trajectory of the nonlinear system that approaches exponentially the
objective profile. We also refer to the article [3] where the authors prove the local exact controllability
to a smooth trajectory of the non-homogeneous incompressible Navier-Stokes equation.
The study of the controllability and stabilizability issues of a system coupling equations of parabolic
and hyperbolic nature is relatively new in the literature. We would like to quote a few articles in that
direction. Null-controllability of a system of linear thermoelasticity (coupling wave and heat equations)
in a n− dimensional, compact, connected C∞ Riemannain manifold is studied in [29]. Controllability and
stabilizability issues of compressible Navier-Stokes equations are investigated in [14], [13], [20] (in dim
1) and [19] (in dim 2 and 3). The compressible Navier-Stokes equations are also modeled by a coupled
system of momentum balance and mass balance equations but the coupling is different from the one we
consider in system (1.2).
Let us emphasize that in the system (1.2) the control acts only on the velocity of the fluid and not on the
density. In the literature there are articles dealing with controllability issues of a system of PDEs in which
the controls act only on some components of the system. We would like to quote a few of them. We refer
to [15] where the authors prove local null-controllability of the three dimensional incompressible Navier-
Stokes equations using distributed control with two vanishing components. A related result concerning
the stabilizability of 2−d incompressible Navier-Stokes equations using a control acting on the normal
component of the upper boundary is proved in [12]. In [29] to prove the null-controllability of a system
of linear thermoelasticity the authors consider the control on the wave equation i.e. on the hyperbolic
part and not on the parabolic equation modeling the temperature. On the other hand controllability
and stabilizability issues of one dimensional compressible Navier-Stokes equations have been studied in
[14] and [13] by using only a control acting on the velocity. In the present article we also consider the
control on the velocity and not on the density but our approach exploits more directly and in a more in-
tuitive manner the geometry of the flow of the target velocity in order to control the hyperbolic transport
equation modeling the density.

1.7. Outline. In section 2 we study the feedback stabilization of the velocity. Section 3 is devoted to
the stabilization of the density. In Section 4 we use a fixed point argument to prove the stabilizability of
the coupled system (1.2). Finally in Section 5 we briefly comment on how to adapt our analysis if one
wishes to control the outflow boundary Γout or the lateral boundary Γ0 of the channel Ω.
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2. Stabilization of the Oseen equations

The goal of this section is to discuss the stabilization of the Oseen equations (1.13)4-(1.13)8. We
will first design a localized boundary control with finite dimensional range to stabilize the linear Oseen
equation (1.13)4-(1.13)8. We will then construct the control as a feedback of (y, wc), where the pair (y, wc)
solves the extended system (1.14). The plan of this section is as follows
(i) In Section 2.1, we study the stabilization of the homogeneous linear system (with f = 0) (1.13)4-
(1.13)8, using a finite dimensional boundary control.
(ii) We will analyze the feedback stabilization of the extended system (1.14) in Section 2.2. Moreover
with this feedback control we will prove the V 2,1(Q∞) regularity of the solution of linear Oseen equations
(1.13)4-(1.13)8. Using a further regularity estimate (see (2.29)) of the control u we show that (e−βty+vs)
has the same inflow and outflow as that of vs, provided the initial condition y0 and the non-homogeneous
source term f (appearing in (1.13)4-(1.13)8) are suitably small (see Corollary 2.10 ).

2.1. Stabilization of the linear Oseen equations. In the following section we will define some op-
erators and present some of their properties which helps in studying the linearized Oseen equations
(1.13)4-(1.13)8.

2.1.1. Writing the equations with operators. The following results are taken from [36] where they are
stated in a C2 domain.
Let P be the orthogonal projection operator from L2(Ω) onto V 0

n (Ω) known as Helmholtz or Leray
projector (see [38, Section 1.4]).
We denote by (A,D(A)) (the Oseen operator) and (A∗,D(A∗)) the unbounded operators in V 0

n (Ω), defined
by

D(A) = V 2(Ω) ∩ V 1
0 (Ω), Ay = ν

ρs
P∆y + βy − P ((vs · ∇)y)− P ((y · ∇)vs),

D(A∗) = V 2(Ω) ∩ V 1
0 (Ω), A∗y = ν

ρs
P∆y + βy + P ((vs · ∇)y)− P ((∇vs)T )y.

(2.1)

For the H2(Ω) regularity of the solutions of the homogeneous Dirichlet boundary value problems corre-
sponding to the operators A and A∗ in a rectangular domain Ω, one can apply [26, Theorem 3.2.1.3]. The
H2(Ω) regularity of the solution to the Oseen equations allows us to directly use the following results
from [36], [23], [34] and [37] .

Lemma 2.1. [36, Lemma 4.1], [23, Lemma 3.1] The unbounded operator (A,D(A)) (respectively
(A∗,D(A∗))) is the infinitesimal generator of an analytic semi group on V 0

n (Ω). Moreover the resolvent
of A is compact.

Now we want to find a suitable operator B to write down the Oseen equation as a boundary control
system.
Let λ0 > β > 0 is in the resolvent set of A. Consider the following system of equations

λ0y − ν
ρs

∆y − βy + ((vs · ∇)y) + ((y · ∇)vs) + 1
ρs
∇q = 0 in Ω,

div y = 0 in Ω,

y = u on Γ.

(2.2)

Lemma 2.2. [36, Lemma B.1.] For u ∈ V 3/2(Γ), the system (2.2) admits a unique solution (y, q) ∈
V 2(Ω)×H1(Ω)/R.

Now for u ∈ V 3/2(Γ), we define the Dirichlet lifting operators DAu = y and Dpu = q, where (y, q) is
the solution of (2.2) with Dirichlet data u.
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Lemma 2.3. [36, Corollary B.1.] The operator DA can be extended as a bounded linear map from V 0(Γ)
to V 1/2(Ω). Moreover DA ∈ L(V s(Γ), V s+1/2(Ω)) for all 0 6 s 6 3/2.

In order to localize the control of the velocity on Γc (defined in (1.5)), we introduce the operator M,
which is defined as follows

Mg(x) = m(x)g(x)− m∫
Γ

m

∫
Γ

mg · n

n(x) for all x ∈ Γ.
(2.3)

In the expression (2.3) the weight function m ∈ C∞(Γ) takes values in [0, 1] and is supported in Γc ⊂ Γin.
Moreover, m equals 1 in some open connected component

Γ+
c b Γc. (2.4)

So the operator M localizes the support of the control on Γin and also guarantees that Mg ∈ V 0(Γ) for
any g ∈ L2(Γ). It is easy to verify that the operator M (defined in (2.3)) is symmetric.

We now define the operator

B = (λ0I −A)PDAM ∈ L(V 0(Γ), (D(A∗))′), (2.5)

where (D(A∗))′ denotes the dual of the space D(A∗) with V 0
n (Ω) as the pivot space.

Proposition 2.4. [34, Proposition 2.7] The adjoint of the operator B, computed for the duality structure
〈·, ·〉(D(A∗)′,D(A∗)), that we will denote by B∗ in the following, satisfies B∗ ∈ L(D(A∗), V 0(Γ)) and for all
Φ ∈ D(A∗),

B∗Φ = M

−ν ∂Φ

∂n
+

ψ − 1

|Γ|

∫
Γ

ψ

n

 (2.6)

where

∇ψ = (I − P )[ν∆Φ + (vs · ∇)Φ− (∇vs)TΦ].

Now following [36] the Oseen equations

∂y

∂t
− βy − ν

ρs
∆y + (vs · ∇)y + (y · ∇)vs +

1

ρs
∇q = 0 in Q∞,

div y = 0 in Q∞,

y = 0 on (Γ0 ∪ Γout)× (0,∞),

y = Mu on Γin × (0,∞),

y(x, 0) = y0 on Ω,

(2.7)

can be written in the following evolution equation form
Py′ = APy +Bu in (0,∞),

Py(0) = y0,

(I − P )y = (I − P )DAMu in (0,∞).

(2.8)

In the following section we discuss some spectral properties of the Oseen operator A and then we define
a suitable control space in order to construct a control function which stabilizes the Oseen equations.
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2.1.2. Spectral properties of A and Hautus test. Since the resolvent of A is compact (see Lemma 2.1), the
spectrum spec(A) of the operator A is discrete. Moreover since A is the generator of an analytic semi
group (see Lemma 2.1), spec(A) is contained in a sector. Also the eigenvalues are of finite multiplicity
and appear in conjugate pairs when they are not real.
We denote by (λk)k∈N the eigenvalues of A. Without loss of generality we can always assume that there
is no eigenvalue of A with zero real part by fixing a slightly larger β, if necessary. So we choose Nu ∈ N
such that

...ReλNu+1 < 0 < ReλNu 6 ... 6 Reλ1. (2.9)

Following [5, Remark 3.7] (one can also consult [33]), we now choose the control space as follows

U0 = vect⊕Nuk=1 (ReB∗ker(A∗ − λkI)⊕ ImB∗ker(A∗ − λkI)). (2.10)

The choice (2.10) of the control space plays an important role in proving a unique continuation property
which implies the stabilizability of the pair (A,B). Let us choose the functions gj in (1.8) such that

{gj | 1 6 j 6 Nc} is an orthonormal basis ofU0. (2.11)

For later use we now prove an additional regularity result for the elements of the control space U0. The
following regularity result is true only because the elements of U0 are supported on a smooth subset of Γ.

Lemma 2.5. The set U0, defined in (2.10), is a subspace of C∞(Γ).

Proof. The function m is supported on Γc, which is C∞. In view of the representation (2.6) of the
operator B∗, we observe that to prove Lemma 2.5 it is enough to show that for each 1 6 k 6 Nu, any
solution (φ, ψ) to the system (2.12) is C∞ in some open set ΩΓc (⊂ Ω) such that ∂ΩΓc contains Γc. Let
us consider k ∈ {1, ..., Nu} and (φ, ψ) solves the following

λkφ−
ν

ρs
∆φ− βφ− ((vs · ∇)φ) + (∇vs)Tφ+

1

ρs
∇ψ = 0 in Ω,

divφ = 0 in Ω,
φ = 0 on Γ.

(2.12)

We first apply the regularity result for the Stokes system in a convex polygonal domain from [27] to show
that

φ ∈ D(A∗) = V 2(Ω) ∩ V 1
0 (Ω) and ψ ∈ H1(Ω). (2.13)

One can easily avoid the corners (0, 0) and (0, 1) and construct an open set ΩΓc (⊂ Ω) such that ∂ΩΓc
contains Γc and ∂ΩΓc is C∞. In view of the smoothness of ΩΓc , one can use a standard bootstrap argument
to show the smoothness for the eigenfunctions of the Oseen problem, i.e (φ, ψ) ∈ C∞(ΩΓc). Hence we
finally have gj ∈ C∞(Γ), for all 1 6 j 6 Nc. �

We are looking for a control u taking values in U0. We write

u(x, t) =
Nc∑
j=1

wj(t)gj(x), (2.14)

where wc = (w1, ..., wNc) ∈ L2(0,∞;RNc) is the control variable. Again in view of [33] we define a new
control operator B ∈ L(RNc , (D(A∗))′) as

Bwc =
Nc∑
j=1

wjBgj =
Nc∑
j=1

wj(λ0I −A)PDAgj . (2.15)

Observe that B is defined by restricting the action of the operator B to U0.
Let us consider the controlled system

Py′ = APy +Bu in (0,∞), Py(0) = y0, (2.16)
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which we obtain from (2.8)1-(2.8)2. With the definition (2.15) and a control of the form (2.14), the system
(2.16) takes the form

Py′ = APy + Bwc in (0,∞), Py(0) = y0.

The following lemma follows from a classical application of a unique continuation result from [21] with
a classical extension of domain procedure. Hence we will skip the proof and just provide appropriate
references.
Lemma 2.6. Assume that the spectrum of A obeys the condition (2.9), we choose {gj | 1 6 j 6 Nc} as
(2.11) and the operator B is as defined in (2.15). Then the following Hautus criterion holds:

ker(λkI −A∗) ∩ ker(B∗) = {0}, for all 1 6 k 6 Nu. (2.17)

One can make use of the classical Fabre and Lebeau’s uniqueness result for the eigenvalue of Oseen
problem proved in [5, Appendix A.2, Theorem A.3] and follow step by step the strategy of the proof of
[33, Theorem 3.2] to prove Lemma 2.6. For a similar application of the unique continuation result but in
a more complicated case of micropolar fluid system, we refer the readers to [5, p. 949].
From Lemma 2.6 and [5, Theorem 3.5] we know that the pair (A,B) is stabilizable by a control wc ∈
L2(0,∞;RNc). Hence there exists a control u (of the form (2.14)) which belongs to the finite dimensional
space U0 (see (2.10)) and stabilizes the pair (A,B).
Now our aim is to construct wc such that it is given in terms of a feedback control law. For that we will
study the stabilization of the extended system (1.14) in the following section.

2.2. Stabilization of the extended system (1.14) by a feedback control.

2.2.1. Evolution equation associated with the extended system (1.14) and feedback control. We set

Z̃ = V 0
n (Ω)× RNc . (2.18)

Depending on the context the notation I denotes the identity operator for all of the spaces V 0
n (Ω), RNc

and Z̃. We equip the space Z̃ with the inner product

(ζ̃1, ζ̃2)Z̃ = (ζ1, ζ2)V 0
n (Ω) + (w1, w2)RNc ,

where ζ̃1 = (ζ1, w1) and ζ̃2 = (ζ2, w2).
Now let us recall the representation (2.8) of the system (2.7). In the same note it follows that ỹ = (Py,wc)
is a solution to equation (1.14) iff (Py,wc) solves the following set of equations

ỹ′ =

(
Py
wc

)′
=

(
A B
0 0

)(
Py
wc

)
+

(
0
I

)
ϕc + f̃ in (0,∞),

ỹ(0) = ỹ0 =

(
y0

0

)
,

(I − P )y =
Nc∑
j=1

wj(I − P )DAgj in (0,∞),

(2.19)

where f̃ = (Pf, 0) and recall the definition of B from (2.15). Now we define the operator (Ã,D(Ã)) in Z̃
as follows

D(Ã) = {(ζ, wc) ∈ Z̃ | Aζ + Bwc ∈ V 0
n (Ω)} and Ã =

(
A B
0 0

)
. (2.20)

We introduce the notation J̃ = (0, I). Let us notice that J̃ belongs to L(RNc , Z̃). This section is
devoted to the construction of a feedback control ϕc which is able to stabilize the linear equation

ỹ′ = Ãỹ + J̃ϕc in (0,∞), ỹ(0) = ỹ0, (2.21)
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which is obtained from (2.19)1-(2.19)2 after neglecting the non-homogeneous source term f̃ .

Proposition 2.7. The pair (Ã, J̃) is stabilizable. More precisely there exists a feedback operator K ∈
L(Z̃,RNc) such that the operator (Ã+ J̃K) with domain D(Ã) generates an exponentially stable analytic

semigroup on Z̃.

The proof of the Proposition 2.7 depends on the unique continuation result Lemma 2.6 and can be done
following the arguments used in [4, Section 4.2, Proposition 17]. Following [4] the feedback operator K
can be given in terms of solution of an algebraic Riccati equation. We will not use the explicit expression

of the feedback controller K, in fact we will only use that K ∈ L(Z̃,RNc) and D(Ã+ J̃K) = D(Ã).

2.2.2. Stabilization of the closed loop extended system with a non homogeneous source term. Using the
feedback control K, we write the equation (2.19)1-(2.19)2 as the following closed loop system{

ỹ′ = Ãỹ + J̃Kỹ + f̃ in (0,∞),
ỹ(0) = ỹ0.

(2.22)

From now on the constant K(> 0) appearing in the inequalities will denote a generic positive constant
which may change from line to line. If we want to specify a constant (to use it for later purpose) we will
denote it by Ki, for some natural number i.

Lemma 2.8. Let the following hold

f̃ ∈ L2(0,∞;V 0
n (Ω)× RNc) and ỹ0 ∈ V 1

0 (Ω)× {0}, (2.23)

where {0} denotes the zero element of RNc . Then the equation (2.22) admits a unique solution in

ỹ ∈ H1(0,∞; Z̃) ∩ L2(0,∞;D(Ã))

which obeys

‖ỹ‖H1(0,∞;Z̃)∩L2(0,∞;D(Ã)) 6 K(‖ỹ0‖V 1
0 (Ω)×RNc + ‖f̃‖L2(0,∞;L2(Ω)×RNc )), (2.24)

for some positive constant K.

Proof. Observe that

ỹ0 ∈ V 1
0 (Ω)× {0} = [D(A), V 0

n (Ω)]1/2 × {0} =
(i)

[D(A)× {0}, V 0
n (Ω)× {0}]1/2 ⊂

(ii)
[D(Ã), Z̃]1/2,

the steps (i) and (ii) in the calculation above directly follows by using the definition of interpolation
spaces provided by using [30, p. 92, Theorem 14.1] and [30, Remark 14.1].
Hence the proof follows by using the isomorphism theorem [8, Part II, Section 3.6.3, Theorem 3.1]. �

Corollary 2.9. Let the following hold

f ∈ L2(Q∞) and y0 ∈ V 1
0 (Ω). (2.25)
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Then the equation

∂y

∂t
− βy − ν

ρs
∆y + (vs · ∇)y + (y · ∇)vs +

1

ρs
∇q = f in Q∞,

div y = 0 in Q∞,

y = 0 on (Γ0 ∪ Γout)× (0,∞),

y =
Nc∑
j=1

wj(t)gj(x) on Γin × (0,∞),

y(x, 0) = y0 in Ω,

w
′

c −K(Py,wc) = 0 in (0,∞),

wc(0) = 0 in Ω,

(2.26)

wc = (w1, ..., wNc) and gj , for all 1 6 j 6 Nc are defined in (2.11), admits a unique solution (y, wc) in
V 2,1(Q∞)×H1(0,∞;RNc) and the pair (y, wc) obeys the following estimate

‖(y, wc)‖V 2,1(Q∞)×H1(0,∞;RNc ) 6 K1(‖y0‖V 1
0 (Ω) + ‖f‖L2(Q∞)), (2.27)

for some positive constant K1.
In addition, there exists a constant K2 > 0 such that

y|Σ∞ = u(x, t) =
Nc∑
j=1

wj(t)gj(x) ∈ H1(0,∞;C∞(Γ)), (2.28)

satisfies the following estimate

max{‖y|Σ∞‖H1(0,∞;H2(Γ)), ‖y|Σ∞‖L∞(Σ∞)} 6 K2(‖y0‖V 1
0 (Ω) + ‖f‖L2(Q∞)). (2.29)

Proof. It seems that it is not direct to recover (2.27) by using Lemma 2.8 and the definition (2.20) of the

domain of Ã. Further the Leray projector P has limited regularity issues in a rectangular domain and
hence we can not directly follow the arguments used in the proof of [4, Proposition 35]. We bypass this
difficulties by boot strapping the regularities and the proof relies on Lemma 2.5.
Using the notations used in (2.19), one can use Lemma 2.8 (particularly the estimate (2.24)) to obtain
the following

‖(Py,wc)‖H1(0,∞;V 0
n (Ω)×RNc )∩L2(0,∞;D(Ã)) 6 K(‖y0‖V 1

0 (Ω) + ‖Pf‖L2(Q∞)). (2.30)

Hence to recover an estimate over y, one only needs to obtain an estimate on (I − P )y. We have the
following

(I − P )y =

Nc∑
j=1

wj(I − P )DAgj .

We know that there exists a positive constant K such that for all 1 6 j 6 Nc
‖DAgj‖V 2(Ω) 6 K‖gj‖H3/2(Γ) 6 K. (2.31)

Estimates (2.31) and (2.30) yield

‖(I − P )y‖H1(0,∞;H2(Ω)) 6 K(‖y0‖V 1
0 (Ω) + ‖Pf‖L2(Q∞)). (2.32)

Once again using (2.30) and (2.32) one has

‖y‖H1(0,∞;L2(Ω)) 6 ‖Py‖H1(0,∞;V 0
n (Ω)) + ‖(I − P )y‖H1(0,∞;H2(Ω))

6 K(‖y0‖V 1
0 (Ω) + ‖Pf‖L2(Q∞)).

(2.33)

Further in view of Lemma 2.5 and the system (2.26) one can use standard boot strap arguments (which
is possible due to the regularity results of Stokes system in a rectangular domain, from [27]) to further
obtain that y ∈ L2(0,∞;V 2(Ω)) and the following

‖y‖L2(0,∞;V 2(Ω)) 6 K(‖f‖L2(Q∞) + ‖y0‖V 1
0 (Ω)). (2.34)
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Finally, (2.30), (2.33) and (2.34) provides the desired estimate (2.27).
Since gj ∈ C∞(Γ), the estimate (2.29) readily follows by using (2.27). �

The following result justifies our choice of denoting the inflow and outflow boundary of vs and a
perturbation of vs using the same notation.

Corollary 2.10. If we take

(‖y0‖V 1
0 (Ω) + ‖f‖L2(Q∞)) 6

αL(1− L)

2K2
, (2.35)

where K2 is the constant in (2.29), then

max{‖y‖H1(0,∞;H2(Γ)), ‖y|Σ∞‖L∞(Σ∞)} 6
αL(1− L)

2

and hence in particular for all t > 0,{
(e−βty(·, t) + vs) · n < 0 on Γin,
(e−βty(·, t) + vs) · n = 0 on Γ0,
(e−βty(·, t) + vs) · n > 0 on Γout,

(2.36)

where (y, wc) is the solution to (2.26). This means that for all time t > 0, Γin and Γout are still the
inflow and the outflow boundary for the perturbed vector field (vs + e−βty).

Proof. The proof is a direct consequence of Corollary 2.9, in particular the estimate (2.29). �

3. Stability of the continuity equation

This section is devoted to the study of the transport equation satisfied by density which is modeled by
(1.13)1 together with (1.13)2 and (1.13)3. This equation is linear in σ but nonlinear in (σ, y). First let us
briefly discuss the stabilization of the linearized transport equation modeling the density with zero inflow
boundary condition. This will give us an idea about how to obtain analogous results for its nonlinear
counterpart.

3.1. Comments on the linear transport equation at velocity vs. The linearized continuity equation
with the zero inflow boundary condition is given by

∂σ

∂t
+ (vs · ∇)σ − βσ = 0 in Q∞,

σ(x, t) = 0 on Γin × (0,∞),

σ(x, 0) = σ0 in Ω.

(3.1)

We can explicitly solve (3.1) to obtain

σ(x, t) =


eβtσ0(x1 − (x2(1− x2))t, x2) for t 6

1

α(x2(1− x2))
x1,

0 for t >
1

α(x2(1− x2))
x1,

(3.2)

for all (x1, x2) ∈ Ω. In particular if we assume that σ0 satisfies the condition (1.6), the solution σ to (3.1)

vanishes after some finite time TA1 =
d

αA1(1−A1)
.Hence we see that with zero inflow boundary condition

the solution of the linearized transport equation is automatically stabilized (in fact controlled) after some
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finite time. The equation (3.1) is just a prototype of the transport equation (1.13)1,2,3 exhibiting similar
property and we will discuss this in the following section.

3.2. Stability of the transport equation (1.13) satisfied by density. We consider the transport
equation satisfied by the density with the nonlinearity (y · ∇)σ (although this term is linear in σ, it is
nonlinear in the couple (σ, y)). We assume that ‖y‖V 2,1(Q∞) is small enough and the following holds for
all t > 0,

(e−βty + vs) · n < 0 on Γin, (e−βty + vs) · n = 0 on Γ0, and (e−βty + vs) · n > 0 on Γout. (3.3)

Recalling Corollary 2.10, the condition (3.3) is automatically satisfied when y solves (1.13)4-(1.13)8 and
(2.35) holds. Notice that the role of the condition (3.3) is only to guarantee that even if we perturb the
vector field vs by adding e−βty, the inflow boundary of the fluid remains unchanged.
Here the transport equation satisfied by the density is given by

∂σ

∂t
+ ((vs + e−βty) · ∇)σ − βσ = 0 in Q∞,

σ(x, t) = 0 on Γin × (0,∞),

σ(x, 0) = σ0 in Ω,

(3.4)

where y is in V 2,1(Q∞), (3.3) holds, σ0 ∈ L∞(Ω) and satisfies the condition (1.6). Provided y is suitably
small in the norm V 2,1(Q∞), (3.1) can be seen as an approximation of (3.4), and as we will see in Theorem
3.5, solutions of (3.1) and of (3.4) share some similar behavior.
We are in search of a unique solution of (3.4) in the space L∞(Q∞). In the following discussion we will
borrow several results from [11] on the existence, uniqueness and stability of the continuity equation. For
later use, we shall consider a general transport equation of the form

∂σ

∂t
+ (v · ∇)σ − βσ = 0 in Q∞,

σ(x, t) = 0 on Σin,v,∞,

σ(x, 0) = σ0 in Ω,

(3.5)

where v is a divergence free vector field in L2(0,∞;V 2(Ω)), and

Σin,v,T = {(x, t) ∈ Γ× (0, T ) | v(x, t) · n(x) < 0}.
First let us define the notion of weak solution for the transport equation (3.5)1.

Definition 3.1. Let T > 0 and v a divergence free vector field such that v ∈ L2((0, T );V 2(Ω)). A
function σ ∈ L∞(QT ) is said to be a weak solution of (3.5)1 if the following is true

T∫
0

∫
Ω

σ(∂tφ+ v · ∇φ+ βφ)dxdt = 0,

for any test function φ ∈ C∞(Ω̄× [0, T ]) with φ(·, T ) = 0 = φ(·, 0) in Ω and φ = 0 on ΣT .

One can interpret the boundary trace of a weak solution (as defined in Definition 3.1) of (3.5)1 in a
weak sense. Following [11] we introduce some notations which will be used to define the trace of a weak
solution of (3.5)1.
Let m denote the boundary Lebesgue measure on Γ. Now for any T > 0, associated to the vector field v,
we introduce the measure

dµv = (v · n)dmdt on ΣT

and denote by dµ+
v (respectively dµ−v ) its positive (resp. negative) part in such a way that |dµv| =

dµ+
v + dµ−v . The support of dµ+

v (resp. dµ−v ) is the outflow (resp. inflow) part of ΣT corresponding to
the vector field v.
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The following two theorems, Theorem 3.2 and Theorem 3.3, are stated in [11] for a weaker assumption on
the velocity field v. Here we state the results with v ∈ L2(0, T ;V 2(Ω)) for the particular equation (3.5).

Theorem 3.2. [11, Theorem VI.1.3] Let T > 0, v ∈ L2(0, T ;V 2(Ω)) and σ ∈ L∞(QT ) be a weak solution
of (3.5)1 in the sense of the Definition 3.1. Then the following hold:
(i) The function σ lies in C0([0, T ], Lp(Ω)) for all 1 6 p < +∞.
(ii) There exists a unique function γσ ∈ L∞(ΣT , |dµv|) such that for any test function φ ∈ C0,1(Q̄T ) and
for any [t0, t1] ⊂ [0, T ] we have

t1∫
t0

∫
Ω

σ

(
∂φ

∂t
+ v · ∇φ+ βφ

)
dxdt−

t1∫
t0

∫
Γ

γσφdµv

+

∫
Ω

σ(t0)φ(t0)dx−
∫
Ω

σ(t1)φ(t1)dx = 0.

(3.6)

(iii) The renormalization property: For any function ξ : R → R of class C1, for any φ ∈ C0,1(Q̄T ) and
for any [t0, t1] ⊂ [0, T ] we have

t1∫
t0

∫
Ω

ξ(σ)

(
∂φ

∂t
+ v · ∇φ

)
dxdt+

t1∫
t0

∫
Ω

βσξ′(σ)φ−
t1∫
t0

∫
Γ

ξ(γσ)φdµv

+

∫
Ω

ξ(σ(t0))φ(t0)dx−
∫
Ω

ξ(σ(t1))φ(t1)dx = 0. (3.7)

The following theorem states some results on the well posedness of the weak solution σ of the Cauchy-
Dirichlet transport problem (3.5).

Theorem 3.3. [11, Theorem VI.1.6] Let T > 0 and v ∈ L2(0, T ;V 2(Ω)). For any initial data σ0 ∈ L∞(Ω)
and zero inflow boundary data there exists a unique function σ ∈ L∞(QT ) such that
(i) The function σ is a weak solution of the problem (3.5)1 in QT in the sense of Definition 3.1.

(ii) The trace γσ of σ satisfies the inflow boundary condition, γσ = 0, dµ−v almost everywhere on Σin,v,T
and σ satisfies the initial condition σ(x, 0) = σ0 in Ω. Precisely the boundary condition γσ = 0, dµ−v

almost everywhere on Σin,v,T means that for all Σsub (⊂ Σin,v,T ) with

∫∫
Σsub

dµ−v =

∫∫
Σsub

(v·n)−dmdt >

0, γσ = 0 on Σsub.
In the following, we call this function σ satisfying (i) and (ii), the solution of (3.5).

(iii) Moreover for 0 < t < T, the solution σ of (3.5) satisfies

‖σ(·, t)‖L∞(Ω) 6 ‖σ0‖L∞(Ω)e
βt. (3.8)

Let us also recall, for later purpose, the following stability result for the transport equation with respect
to its velocity field:

Lemma 3.4. [11, Theorem VI.1.9] Let T > 0. Suppose that σ0 ∈ L∞(Ω) and let {vm}m be a sequence of
functions in L2(0, T ;V 2(Ω)) such that there exists v ∈ L2(0, T ;V 2(Ω)) such that

vm −−−−→
m→∞

v in L1(QT ), and vm · n −−−−→
m→∞

v · n in L1(ΣT ).
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Now suppose that σm ∈ L∞(QT ) is the unique weak solution (in sense of Definition 3.1.) of the following
initial and boundary value problem

∂σm
∂t

+ (vm · ∇)σm − βσm = 0 in QT ,

σm(x, t) = 0 on Σin,vm,T ,

σm(x, 0) = σ0 in Ω.

(3.9)

If we denote by σ the unique solution to the transport problem (3.5) in QT , then we have

σm −−−−→
m→∞

σ in C0([0, T ], Lp(Ω)), for any 1 6 p < +∞. (3.10)

Now we state the main theorem of this section:

Theorem 3.5. Let A1 ∈ (0, 1
2 ) and T1 > TA1

= d
αA1(1−A1) . There exists a constant K3 > 0 such that if

y ∈ V 2,1(Q∞) satisfies
‖y‖V 2,1(Q∞) < K3, (3.11)

(3.3) holds, σ0 ∈ L∞(Ω) and satisfies the condition (1.6), then the solution σ of equation (3.4) satisfies
the following

(i)∀t < T1, σ(·, t) satisfies the estimate (3.8),
(ii)∀t > T1, ‖σ(·, t)‖L∞(Ω) = 0. (3.12)

Proof of Theorem 3.5. Item (i) of (3.12) is automatically satisfied as a consequence of item (iii), Theorem
3.3.
We thus focus on the proof of item (ii) of Theorem 3.5. Let T1 > TA1

= d
αA1(1−A1) be fixed. Our

approach will be based on the flow X corresponding to the vector field vs + e−βty. In order to introduce
it in a more convenient manner, we first extend the domain into R2. Observe that the definition of vs
can be naturally extended to R2 into a Lipschitz function by setting vs(x1, x2) = vs(x2) if x2 ∈ (0, 1) and
0 if x2 ∈ R \ (0, 1). We denote this extension by vs itself. For the following analysis we use the functional
space

H2,1(R2 × (0,∞)) = L2(0,∞;H2(R2) ∩H1(0,∞;L2(R2))

(this is consistent with the notations defined in Section 1.2). Now we introduce an extension operator E
from Ω to R2.

E : L2(Ω) −→ L2(R2)

such that:

• for every y ∈ L2(Ω), Ey |Ω= y,
• the restriction of E to H2(Ω) defines a linear operator from H2(Ω) to H2(R2),
• the restriction of E to H2(Ω) ∩W 1,∞(Ω) defines a linear operator from H2(Ω) ∩W 1,∞(Ω) to
H2(R2) ∩W 1,∞(R2),

The existence of such an extension operator is a direct consequence of [30, Theorem 2.2].
We now introduce the flow X(x, t, s) defined for x ∈ R2 and (t, s) ∈ [0,∞)2, by the following differential
equation: 

∂X(x, t, s)

∂t
= (vs + e−βtEy)(X(x, t, s), t),

X(x, t, s) | t=s = x ∈ R2.
(3.13)

The integral formulation of (3.13) can be written as follows

∀(x, t, s) ∈ R2 × [0,∞)2, X(x, t, s) = x+

t∫
s

(vs + e−βtEy)(X(x, θ, s), θ)dθ. (3.14)
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As the vector field

(vs + e−βtEy) ∈ L2(0,∞;W 1,∞(R2)) +H2,1(R2 × (0,∞)),

due to the Osgood condition (see [42] and [6, Theorem 3.7]) we know that equation (3.14) has a unique
continuous solution. Similarly, we introduce the flow X0 corresponding to the vector field vs as the
solution of the following differential equation:

∂X0(x, t, s)

∂t
= vs(X0(x, t, s), t),

X0(x, t, s) | t=s = x ∈ R2.
(3.15)

As vs is Lipschitz, the flow, which can also be seen as the solution of

X0(x, t, s) = x+

t∫
s

vs(X0(x, θ, s), θ)dθ, (x, t, s) ∈ R2 × (0,∞)2, (3.16)

is well defined in classical sense.

Lemma 3.6. Let T > 0. There exists a constant K4 = K4(T ) > 0 such that for all y ∈ V 2,1(Q∞),
(t, s) ∈ [0, T ]2 and x ∈ R2, the solutions of (3.13) and (3.15) satisfy the following

| X(x, t, s)−X0(x, t, s) |< K4(T )‖y‖V 2,1(Q∞). (3.17)

Proof. The proof of Lemma 3.6 can be performed by using arguments which are very standard in the
literature. For the convenience of the reader we include the proof.
1. As H2(R2) is embedded in L∞(R2), using Hölder’s inequality we can at once obtain the following
estimate for all (t, s) ∈ [0, T ]2 and x ∈ R2,∣∣∣∣∣∣

t∫
s

e−βθEy(X(x, θ, s), θ)dθ

∣∣∣∣∣∣ 6 K‖Ey‖H2,1(R2×(0,∞)),

for some constant K > 0.
2. Subtracting (3.14) from (3.16), we get, for all (t, s) ∈ [0,∞)2 and x ∈ R2,

|X(x, t, s)−X0(x, t, s)| 6

∣∣∣∣∣∣
t∫
s

|vs(X(x, θ, s), θ)− vs(X0(x, θ, s), θ)|dθ

∣∣∣∣∣∣+

∣∣∣∣∣∣
t∫
s

e−βθ|Ey(X(x, θ, s), θ)|dθ

∣∣∣∣∣∣
6 ‖∇vs‖L∞(Ω)

∣∣∣∣∣∣
t∫
s

|X(x, θ, s)−X0(x, θ, s)|dθ

∣∣∣∣∣∣+K‖Ey‖H2,1(R2×(0,∞)).

Since E is a bounded operator from L2(Ω) to L2(R2) and from H2(Ω) to H2(R2), there exists a constant
K > 0 such that

|X(x, t, s)−X0(x, t, s)| 6 ‖∇vs‖L∞(Ω)

∣∣∣∣∣∣
t∫
s

|X(x, θ, s)−X0(x, θ, s)|dθ

∣∣∣∣∣∣+K‖y‖V 2,1(Q∞). (3.18)

Now we can use Grönwall’s inequality to obtain (3.17). �

Recall that the solution of (3.1) vanishes after some finite time TA1 = d
αA1(1−A1) . At the same time

Lemma 3.6 suggests that for any finite time T > 0, the flow X0(x, t, s) stays uniformly close to X(x, t, s)
in R2 × (0, T ) provided ‖y‖V 2,1(Q∞) is small enough. In view of these observations, in the following we
design a Lyapunov functional corresponding to a localized energy, to prove that σ vanishes after the time
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T1 > TA1
when ‖y‖V 2,1(Q∞) is small enough, which will prove Theorem 3.5.

Let ε be a fixed positive constant in (0, A1) such that

T1 =
d+ ε

α(A1 − ε)(1−A1 + ε)
. (3.19)

Our primary goal is to prove that, for a velocity field y satisfying (3.3) and such that ‖y‖V 2,1(QT1 ) is small

enough and an initial condition σ0 ∈ L∞(Ω) satisfying (1.6), the solution σ of (3.4) satisfies

σ(x, T1) = 0 for all x ∈ Ω. (3.20)

In fact, the condition (3.3) does not play any role. We shall thus prove a slightly more general result: there
exists K3 > 0, such that for any velocity field y such that ‖y‖V 2,1(QT1 ) ≤ K3 and any initial condition

σ0 ∈ L∞(Ω) satisfying (1.6), the solution σ of
∂σ

∂t
+ ((vs + e−βty) · ∇)σ − βσ = 0 in Q∞,

σ(x, t) = 0 on Σin,y,∞,

σ(x, 0) = σ0 in Ω,

(3.21)

where
Σin,y,∞ = {(x, t) ∈ Γ× (0, T ) | (vs(x) + y(x, t)e−βt) · n(x) < 0},

satisfies (3.20).

We will achieve this goal using two steps. In the first one, we shall consider smooth (∈ V 2,1(QT1
) ∩

L2(0, T1;W 1,∞(Ω))) vector field y. In the second one, we will explain how the same result can be obtained
for all vector fields y ∈ V 2,1(QT1

). Our strategy relies on defining an auxiliary transport equation (namely
(3.24)) whose solution Ψ plays the role of a test function in the weak formulation (3.7). The solution Ψ of
(3.24) for a vector field y ∈ V 2,1(QT1) has a priori only Hölder regularity (see in particular [6, Theorem
3.7]), and thus cannot be used directly as a test function in (3.7). For this reason we divide our proofs
into two cases.

Case y ∈ V 2,1(QT1
) ∩ L2(0, T1;W 1,∞(Ω)). Here we assume that

y ∈ V 2,1(QT1
) ∩ L2(0, T1;W 1,∞(Ω)). (3.22)

With ε > 0 given by (3.19), we then define a function ϑ ∈ C∞(R2) and ϑ(x1, x2) ∈ [0, 1] such that

ϑ(x1, x2) =

{
0 if (x1, x2) ∈ [0, d]× [A1, 1−A1],
1 if (x1, x2) ∈ R2 \ [− ε2 , d+ ε

2 ]× [A1 − ε
2 , 1−A1 + ε

2 ]. (3.23)

We consider the following auxiliary transport problem{
∂Ψ

∂t
+ ((vs + e−βtEy) · ∇)Ψ = 0 in R2 × (0, T1),

Ψ(·, 0) = ϑ in R2.
(3.24)

Since vs+e−βtEy belongs to L2(0, T1;W 1,∞(R2)) the system (3.24) can be solved using the characteristics
formula to obtain

Ψ(x, t) = ϑ(X(x, 0, t)) for all (x, t) ∈ R2 × [0, T1], (3.25)

where the flow X(·, ·, ·), defined by (3.13), is globally Lipschitz in R2 × [0, T1]. It follows that Ψ is also
globally Lipschitz in R2 × [0, T1]. Besides, this formula immediately provides the non-negativity of Ψ in
R2 × [0, T1].

We now introduce the following quantity:

Eloc(t) =
1

2

∫
Ω

Ψ(x, t)|σ(x, t)|2dx for all t ∈ [0, T1]. (3.26)
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The idea is that this quantity will measure the L2 norm of σ(·, t) localized in the support of Ψ(·, t).
In order to evaluate how the quantity Eloc evolves, we use the renormalization property (3.7) with
ξ(s) = s2 and we compute the time derivative of Eloc (in D′(0, T )):

d

dt
Eloc(t) =

1

2

∫
Ω

(
∂Ψ

∂t
+ (vs + e−βtEy) · ∇Ψ)|σ|2dx+ β

∫
Ω

Ψ|σ|2dx

−1

2

∫
Γ

Ψ|γσ|2((vs + e−βtEy) · n)dm

6 β
∫
Ω

Ψ|σ|2dx = 2βEloc(t).

(3.27)

In the above calculation we have used that Ψ solves the equation (3.24)1, γσ (the trace of σ, see Theorem
3.2, item (ii)) vanishes on Σin,y,T1 , and that Ψ stays non-negative in (0, T1)×R2. Now using Grönwall’s
inequality in (3.27), we get

1

2

∫
Ω

Ψ(x, T1)|σ(x, T1)|2dx = Eloc(T1) 6 e2βT1Eloc(0) = 0, (3.28)

where the last identity comes from the fact that σ0 ∈ L∞(Ω) satisfies the condition (1.6) and the choice
of Ψ in (3.23), (3.24).
We now prove that

∀x ∈ Ω, Ψ(x, T1) = 1. (3.29)

In order to prove (3.29), we will rely on the formula (3.25), and Lemma 3.6. Indeed, for x = (x1, x2) ∈ Ω,
we have

X0(x, 0, T1) =
(
x1 − T1(αx2(1− x2))

x2

)
.

Therefore, if x = (x1, x2) ∈ Ω satisfies x2 ∈ (A1 − ε, 1−A1 + ε), as one has αx2(1− x2) > α(A1 − ε)(1−
A1 + ε), (X0(x, 0, T1))1 ≤ d−T1α(A1− ε)(1−A1 + ε) ≤ −ε. Similarly, if x2 ∈ [0, 1] \ (A1− ε, 1−A1 + ε),
(X0(x, 0, T1))2 ∈ [0, 1] \ (A1 − ε, 1−A1 + ε). In particular, one obtains that for all x = (x1, x2) ∈ Ω

X0(x, 0, T1) ∈ R2 \ (−ε, d+ ε)× (A1 − ε, 1−A1 + ε). (3.30)

Now set K3 = K3(T1) =
ε

2K4(T1)
> 0, where K4(T1) is the constant appearing in Lemma 3.6, and

assume that
‖y‖V 2,1(QT1 ) < K3. (3.31)

The inequality (3.17), (3.30) and the assumption (3.31) furnish that for all x ∈ Ω,

X(x, 0, T1) ∈ R2 \ [−ε
2
, d+

ε

2
]× [A1 −

ε

2
, 1−A1 +

ε

2
]. (3.32)

Now using the representation (3.25) of Ψ, we immediately deduce (3.29). The estimate (3.28) then yields
that σ vanishes at time T1 in the whole set Ω, i.e. the identity (3.20).

The general case y ∈ V 2,1(QT1
). We now discuss the case in which y does not satisfy the regularity

(3.22) and y only belongs to V 2,1(Q∞) as stated in Theorem 3.5. In order to deal with this case, we
use the density of V 2,1(QT1

) ∩ L2(0, T1;W 1,∞(Ω)) in V 2,1(QT1
). In particular, if y belongs to V 2,1(Q∞)

and satisfies (3.31), we can find a sequence yn of functions of V 2,1(QT1
) ∩ L2(0, T1;W 1,∞(Ω)) such that

yn strongly converges to y in V 2,1(QT ) and for all n, ‖yn‖V 2,1(QT1 ) < K3. Using then the previous

arguments, we can show that for all n, σn(x, T1) = 0 for all x ∈ Ω, where σn denotes the solution of
(3.9) on the time interval (0, T1). The strong convergence of (yn) to y in V 2,1(QT1

), hence of yn to y in
L1(QT1

) and of yn · n to y · n in L1(ΣT1
), and Lemma 3.4 then imply (3.20).

End of the proof of Theorem 3.5. We shall then show that, when y ∈ V 2,1(Q∞) satisfies the condition
(3.31), the solution σ of (3.4) stays zero for times larger than T1. This is obvious, as one can replace
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(3.4)3 by σ(x, T1) = 0 on Ω and solve the Cauchy problem (3.4) in the time interval [T1,∞) to obtain
that σ is the trivial solution

σ(x, s) = 0 for all (x, s) ∈ Ω× [T1,∞).

This concludes the proof of Theorem 3.5. �

4. Stabilization of the two dimensional Navier-Stokes equations.

Proof of Theorem 1.2. We will prove Theorem 1.2 using the Schauder fixed point theorem. We now
discuss the strategy of the proof.

(i) First we define an appropriate fixed point map. This will be done in Section 4.1.
(ii) Then we fix a suitable ball which is stable by the map defined in step (i). This is done in the Section
4.2.
(iii) In Section 4.3 we show that the ball defined in step (ii), is compact in some appropriate topology.
We then prove that the fixed point map from step (i) in that topology is continuous.
(iv) At the end we draw the final conclusion to prove Theorem 1.2.

4.1. Definition of a fixed point map. Let us recall the fully non linear system (including the boundary
controls) under consideration:

∂σ

∂t
+ ((vs + e−βty) · ∇)σ − βσ = 0 in Q∞,

σ(x, t) = 0 on Γin × (0,∞),

σ(x, 0) = σ0 in Ω,

∂y

∂t
− βy − ν

ρs
∆y + (vs · ∇)y + (y · ∇)vs +

1

ρs
∇q = F(y, σ) in Q∞,

div y = 0 in Q∞,
y = 0 on (Γ0 ∪ Γout)× (0,∞),

y =
Nc∑
j=1

wj(t)gj(x) on Γin × (0,∞),

y(x, 0) = y0 in Ω,

w
′

c −K(Py,wc) = 0 in (0,∞),

wc(0) = 0 in Ω,

(4.1)

where

F(y, σ) =
1

ρs
(−e−βtσ∂y

∂t
− e−βtρs(y · ∇)y− e−βtσ(vs · ∇)y− e−βtσ(y · ∇)vs− e−2βtσ(y · ∇)y+ βe−βtσy),

and wc = (w1, ..., wNc). To prove the existence of a solution of the system (4.1) we are going to define a
suitable fixed point map.
Now assume that σ0 ∈ L∞(Ω) and satisfies (1.6). Recall the definition of gj ’s from (2.11). Let us suppose
that ŷ ∈ V 2,1(Q∞) satisfies (3.11) and on the boundary

max{‖ŷ|Σ∞‖H1(0,∞;H2(Γ)), ‖ŷ |Σ∞ ‖L∞(Σ∞)} 6
αL(1− L)

2
, (4.2)

where the constant L was fixed in (1.5). We further assume that y0 ∈ V 1
0 (Ω).

Remark 4.1. In the inequality (4.2) it is enough to have any bound on ‖ŷ|Σ∞‖H1(0,∞;H2(Γ)) and not nec-

essarily αL(1−L)
2 . The bound on ‖ŷ|Σ∞‖H1(0,∞;H2(Γ)) will be used specifically while proving the continuity

Lemma 4.6.
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We consider the following set of equations

∂σ̂

∂t
+ ((vs + e−βtŷ) · ∇)σ̂ − βσ̂ = 0 in Q∞,

σ̂(x, t) = 0 on Γin × (0,∞),

σ̂(x, 0) = σ0 in Ω,

∂y

∂t
− βy − ν

ρs
∆y + (vs · ∇)y + (y · ∇)vs +

1

ρs
∇q = F(ŷ, σ̂) in Q∞,

div y = 0 in Q∞,
y = 0 on (Γ0 ∪ Γout)× (0,∞),

y =
Nc∑
j=1

wj(t)gj(x) on Γin × (0,∞),

y(x, 0) = y0 in Ω,

w
′

c −K(Py,wc) = 0 in (0,∞),

wc(0) = 0 in Ω,

(4.3)

where

F(ŷ, σ̂) =
1

ρs
(−e−βtσ̂ ∂ŷ

∂t
− e−βtρs(ŷ · ∇)ŷ− e−βtσ̂(vs · ∇)ŷ− e−βtσ̂(ŷ · ∇)vs − e−2βtσ̂(ŷ · ∇)ŷ+ βe−βtσ̂ŷ)

and wc = (w1, ..., wNc). Since (4.2) holds, one can verify that ŷ satisfies (3.3). Hence we can solve (4.3)1-
(4.3)3 for σ̂ in L∞(Q∞) (see Section 3). Now using this σ̂ and ŷ one can solve (4.3)4-(4.3)10 (see Section
2) for (y, wc) provided F(ŷ, σ̂) ∈ L2(Q∞). This is indeed the case since we have ŷ ∈ V 2,1(Q∞) and
σ̂ ∈ L∞(Q∞) and the detailed estimates are done in Lemma 4.2.
At this point we fix T1 > TA1 = d

αA1(1−A1) in Theorem 3.5. We also fix the constant K3 appearing in

Theorem 3.5. Let 0 < µ < K3. We define a convex set Dµ as follows

Dµ =
{
ŷ ∈ V 2,1(Q∞)

∣∣ ‖ŷ‖V 2,1(Q∞) 6 µ and satisfies the condition (4.2)
}
. (4.4)

Notice that (0, 0) belongs to Dµ, hence Dµ is non-empty.
Let (σ̂, y, wc) ∈ L∞(Q∞)× V 2,1(Q∞)×H1(0,∞;RNc) be the solution of system (4.3) corresponding to
ŷ ∈ Dµ. We consider the following map

χ : Dµ −→ V 2,1(Q∞)
ŷ 7→ y.

(4.5)

In the sequel we will choose the constant µ ∈ (0,K3), small enough such that χ maps Dµ into itself for
sufficiently small initial data. We will then look for a fixed point of the map χ. Indeed if yf is a fixed
point of the map χ, by construction, there exists a function σf and wf,c such that the triplet (σf , yf , wf,c)
solves (4.1). Hence in order to prove Theorem 1.2 it is enough to show that the map χ has a fixed point
in Dµ.

4.2. χ maps Dµ into itself. In this section we will choose a suitable constant µ such that χ maps Dµ

into itself, provided the initial data are small enough.
Now given ŷ ∈ Dµ, we can use (3.12) in order to show that σ̂, the solution of (4.3)1-(4.3)3 satisfies the
following

‖σ̂‖L∞(Q∞) 6 eβT1‖σ0‖L∞(Ω). (4.6)

Lemma 4.2. If ŷ belongs to Dµ (defined in (4.4)) and σ̂ is the solution of the problem (4.3)1-(4.3)3 then
F(ŷ, σ̂) ∈ L2(Q∞). Besides there exist a constant K5 > 0, such that for all ŷ ∈ Dµ and for all (σ0, y0)
with σ0 satisfying (1.6) and eβT1‖σ0‖L∞(Ω) < 1, the following estimate is true:

‖F(ŷ, σ̂)‖L2(Q∞) 6 K5e
βT1‖σ0‖L∞(Ω) +K5‖ŷ‖2V 2,1(Q∞). (4.7)



24 STABILIZATION OF THE NON-HOMOGENEOUS NAVIER-STOKES EQUATIONS IN A 2D CHANNEL

Proof. First use (4.6) to show

‖σ̂ ∂ŷ
∂t
‖L2(Q∞) 6 e

βT1‖σ0‖L∞(Ω)‖ŷ‖V 2,1(Q∞). (4.8)

Recall that vs ∈ C∞(Ω̄). Hence we again apply (4.6) to get

‖σ̂(vs · ∇)ŷ‖L2(Q∞) 6 e
βT1‖σ0‖L∞(Ω)‖vs‖W 1,∞(Ω)‖ŷ‖V 2,1(Q∞). (4.9)

and
‖σ̂(ŷ · ∇)vs‖L2(Q∞) 6 e

βT1‖σ0‖L∞(Ω)‖vs‖W 1,∞(Ω)‖ŷ‖V 2,1(Q∞). (4.10)

Now we estimate (ŷ · ∇)ŷ in L2(Q∞). We know that V 2,1(Q∞) is continuously embedded in the space
L∞(0,∞;H1(Ω)). Hence ŷ ∈ L∞(0,∞;H1(Ω)), ∇ŷ ∈ L2(0,∞;H1(Ω)) and the following holds

‖(ŷ · ∇)ŷ‖L2(Q∞) 6 K‖ŷ‖L∞(0,∞;H1(Ω))‖∇ŷ‖L2(0,∞;H1(Ω)) 6 K‖ŷ‖2V 2,1(Q∞). (4.11)

Similarly
‖σ̂(ŷ · ∇)ŷ‖L2(Q∞) 6 KeβT1‖σ0‖L∞(Ω)‖ŷ‖2V 2,1(Q∞) (4.12)

and
‖βσ̂ŷ‖L2(Q∞) 6 |β|eβT1‖σ0‖L∞(Ω)‖ŷ‖V 2,1(Q∞). (4.13)

Now observe that

eβT1‖σ0‖L∞(Ω)‖ŷ‖V 2,1(Q∞) 6
1
2 (eβT1‖σ0‖L∞(Ω) + ‖ŷ‖2V 2,1(Q∞)). (4.14)

Hence we use estimates (4.9)-(4.13) and (4.14) to prove Lemma 4.2 and the estimate (4.7). �

Lemma 4.3. There exists a constant K6 > max{1,K5} > 0 such that for all ŷ ∈ Dµ (defined in (4.4)),
for all (σ0, y0) with σ0 satisfying (1.6), eβT1‖σ0‖L∞(Ω) < 1, and for σ̂ uniquely solving (4.3)1-(4.3)3,
(y, wc) solving (4.3)4-(4.3)10 satisfies the following inequality

‖(y, wc)‖V 2,1(Q∞)×H1(0,∞;RNc ) 6 K6max {eβT1‖σ0‖L∞(Ω), ‖y0‖V 1
0 (Ω)}+K6‖ŷ‖2V 2,1(Q∞). (4.15)

Proof. Corollary 2.9 shows that (y, wc) satisfy the following estimate

‖(y, wc)‖V 2,1(Q∞)×H1(0,∞;RNc ) 6 K1(‖y0‖V 1
0 (Ω) + ‖F(ŷ, σ̂)‖L2(Q∞)). (4.16)

Now using (4.7) in (4.16), we get the desired result. �

From now on we will consider the initial data σ0 ∈ L∞(Ω) and y0 ∈ V 1
0 (Ω) such that they satisfy σ0 satisfies (1.6),

max {eβT1‖σ0‖L∞(Ω), ‖y0‖V 1
0 (Ω)} < min

{
αL(1− L)

8K2K6
,
K3

2K6
,

1

4K2
6

, 1

}
, (4.17)

where K2 and K6 are the constants appearing respectively in (2.29) and (4.15).

Lemma 4.4. For all (σ0, y0) satisfying (4.17), setting

µ = 2K6max {eβT1‖σ0‖L∞(Ω), ‖y0‖V 1
0 (Ω)}, (4.18)

where K6 is the constant in (4.15), the map χ (defined in (4.5)) maps Dµ (defined in (4.4)) into itself.

Proof. In view of (4.17)2 and (4.18), one observes in particular that

0 < µ < min

{
αL(1− L)

4K2
,K3,

1

2K6

}
. (4.19)

Now we will verify that with the choice (4.18) of µ, the map χ maps Dµ into itself. Let ŷ ∈ Dµ, for
all (σ0, y0) obeying (4.17) and for σ̂ uniquely solving (4.3)1-(4.3)3, (y, wc) solves (4.3)4-(4.3)10. We claim
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that y ∈ Dµ.
First of all in view of (4.15), (4.17)2, (4.18) and (4.19) we observe that

‖(y, wc)‖V 2,1(Q∞)×H1(0,∞;RNc ) 6 K6max {eβT1‖σ0‖L∞(Ω), ‖y0‖V 1
0 (Ω)}+K6µ

2 6 µ.

Finally

‖y0‖V 1
0 (Ω) + ‖F(ŷ, σ̂)‖L2(Q∞) 6 (1 +K5)max {eβT1‖σ0‖L∞(Ω), ‖y0‖V 1

0 (Ω)}+K5µ
2

6
3

8

αL(1− L)

K2
6
αL(1− L)

2K2
,

(4.20)

where in (4.20)1 we have used (4.17)2, (4.7) and in (4.20)2 we have used (4.17)2, (4.19) and the fact that
K6 > max{1,K5} > 0, (which follows from the statement of Lemma 4.3). Now using Corollary 2.10 one
verifies (4.2) for y |Σ∞ .
Hence we have verified that y ∈ Dµ and the proof of Lemma 4.4 is finished. �

At this point we fix µ as in Lemma 4.4.

4.3. Compactness and continuity. To start with, let us define the weighted space

L2(0,∞, (1 + t)−1dt;L2(Ω))

=

z ∈ L2(Q∞)

∣∣∣∣∣∣
∞∫

0

(1 + t)−2‖z‖2L2(Ω)dt <∞

 .

We endow the set Dµ, defined in (4.4), with the norm induced from L2(0,∞, (1 + t)−1dt;L2(Ω)).

Lemma 4.5. (a) The set Dµ is compact in L2(0,∞, (1 + t)−1dt;L2(Ω)).
(b) The set Dµ is compact in L2(0,∞, e−βtdt;L2(Ω)).

Proof. (a) We divide the proof in two steps.
Step 1. We claim that Dµ is closed in the space L2(0,∞, (1 + t)−1dt;L2(Ω)). Consider a sequence {yn}n
in Dµ such that {yn}n converges to some y in the space L2(0,∞, (1 + t)−1dt;L2(Ω)). We will check that
y ∈ Dµ. Since for all n, yn ∈ Dµ, the definition of Dµ (see (4.4)) yields

‖yn‖V 2,1(Q∞) 6 µ. (4.21)

Using the lower semi-continuity of the norms one obtains that y ∈ V 2,1(Q∞) and

‖y‖V 2,1(Q∞) 6 µ. (4.22)

Now we will verify that

max{‖y|Σ∞‖H1(0,∞;H2(Γ)), ‖y|Σ∞‖L∞(Σ∞)} 6
αL(1− L)

2
. (4.23)

From (4.21) one has the following weak convergence up to a subsequence

yn ⇀ y in L2(0,∞;H2(Ω)).

As the trace operator is linear and bounded from H2(Ω) onto H3/2(Γ), yn|Σ∞ converges weakly to y|Σ∞
in L2(0,∞;H3/2(Γ)) and hence in the sense of distribution.
Further one obtains the following from the definition (4.4) of Dµ :

max{‖yn|Σ∞‖H1(0,∞;H2(Γ)), ‖yn|Σ∞‖L∞(Σ∞)} 6
αL(1− L)

2
.

Hence there exists y defined on Σ∞ such that{
yn|Σ∞ ⇀ y |Σ∞ in H1(0,∞;H2(Γ)),

yn|Σ∞
∗
⇀ y |Σ∞ in L∞(Σ∞).

(4.24)
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The lower semi continuity of norm gives

max{‖y|Σ∞‖H1(0,∞;H2(Γ)), ‖y |Σ∞ ‖L∞(Σ∞)} 6
αL(1− L)

2
.

Since the distributional limit and the weak limit coincide, one at once obtains that

y|Σ∞ = y|Σ∞
and consequently the inequality (4.23). This finishes the proof of y ∈ Dµ.

Step 2. Now to prove Lemma 4.5, it is enough to show that V 2,1(Q∞) is compactly embedded in
L2(0,∞, (1 + t)−1dt, L2(Ω)). Let {zn}n be a sequence in V 2,1(Q∞) such that

‖zn‖V 2,1(Q∞) 6 1.

This implies that for any T > 0
∞∫
T

(1 + t)−2‖zn‖2L2(Ω)dt 6
1

(1 + T )2
, (4.25)

for all n ∈ N. Let ε > 0. Choose Tε > 0 such that

1

(1 + Tε)2
6 ε.

So using (4.25) we have
‖zn − zm‖2L2(Tε,∞,(1+t)−1dt;L2(Ω)) 6 4ε, (4.26)

for all m,n ∈ N.
We know from Rellich’s compactness theorem and Aubin-Lions lemma ([2]) that the embedding of
V 2,1(QTε) into L2(0, Tε, L

2(Ω)) is compact. Hence up to a subsequence (denoted by the same nota-
tion) {zn}n is Cauchy in L2(0, Tε, L

2(Ω)).
So it follows that there exists N0 ∈ N such that for all natural numbers m,n > N0,

‖zn − zm‖2L2(0,Tε,(1+t)−1dt,L2(Ω)) 6 ε. (4.27)

Now combining (4.26), (4.27) and a diagonal extraction argument, we can construct a subsequence {zn}n
which is a Cauchy sequence in the Banach space L2(0,∞, (1 + t)−1dt;L2(Ω)).
The proof of Part (a) is complete.
(b) The proof of Part (b) follows from the arguments used in proving Part (a) and is left to the reader. �

Lemma 4.6. The map χ is continuous in Dµ, endowed with the norm L2(0,∞, (1 + t)−1dt;L2(Ω)).

Proof. Let {ŷn}n be a sequence in Dµ and assume that this sequence {ŷn}n strongly converges to ŷ in
the norm L2(0,∞, (1 + t)−1dt;L2(Ω)).
As for all n ∈ N, ‖ŷn‖V 2,1(Q∞) 6 µ, up to a subsequence we have the following weak convergence

{ŷn}n ⇀ ŷ in V 2,1(Q∞) as n→∞. (4.28)

Further using similar kind of arguments as used in Part (a), Step 1 of Lemma 4.5 we have that

{ŷn|Σ∞}n ⇀ ŷ|Σ∞ in L2(0,∞;H3/2(Γ)) as n→∞.
Now one can use the bound on ‖ŷn|Σ∞‖H1(0,∞;H2(Γ)) from the definition (4.4) of Dµ and the Aubin-Lions
lemma to furnish the following strong convergence up to a sub sequence

{ŷn|Σ∞}n −→ ŷ|Σ∞ in L2(ΣT ) as n→∞, (4.29)

for any T > 0.
Corresponding to the vector field ŷn, let us denote by σ̂n the solutions to (4.3)1-(4.3)3. Similarly σ̂ is the
solution to (4.3)1-(4.3)3 which corresponds to the vector field ŷ. As ŷn converges strongly to ŷ in the norm
L2(0,∞, (1 + t)−1dt, L2(Ω)), for any T > 0, ŷn converges to ŷ in particular in the norm L1(QT ). Besides,
the strong L1(ΣT ) convergence of ŷn · ~n towards ŷ · ~n is obvious from (4.29). Hence from Lemma 3.4,
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we obtain that σ̂n strongly converges to σ̂ in C0([0, T ], Lq(Ω)) for all 1 6 q < +∞. Due to the suitable
choice of µ in Lemma 4.4, we can conclude from Theorem 3.5 (in particular from (3.12)) that each of σ̂n
and σ̂ vanishes for t > T1. So

σ̂n −−−−→
n→∞

σ̂ strongly in L∞(0,∞;Lq(Ω)) ∀ 1 6 q < +∞,

∀n ∈ N, σ̂n(t) = σ̂(t) = 0 for all t > T1.
(4.30)

Also from (4.6) and (4.17) we know that the L∞(Q∞) norm of the sequence σ̂n is uniformly bounded.
We will now check that F(ŷn, σ̂n) converges weakly in L2(Q∞) to F(ŷ, σ̂). As ŷn ∈ Dµ, from the estimate
(4.7) we obtain a uniform bound for ‖F(ŷn, σ̂n)‖L2(Q∞). So there exists a subsequence of F(ŷn, σ̂n)

which weakly converges in L2(0,∞;L2(Ω)). This is therefore enough to show that the sequence F(ŷn, σ̂n)
converges to F(ŷ, σ̂) weakly in D′(Q∞) (i.e. in the sense of distribution).

Let us first check the weak convergence of the term −e−βtσ̂n ∂ŷn∂t . From (4.30) we know that σ̂n strongly

converges to σ̂ in L2(Q∞) and each of σ̂n and σ̂ vanishes for all t > T1 (see (4.30)). Also from (4.28) we

have that ∂ŷn
∂t converges weakly to ∂ŷn

∂t in L2(Q∞). Hence their product σ̂n
∂ŷn
∂t converges weakly to σ̂ ∂ŷ∂t

in L1(Q∞). So it is now easy to verify that e−βtσ̂n
∂ŷn
∂t converges to e−βtσ̂ ∂ŷ∂t weakly in L1(Q∞).

Now we consider e−2βt(ŷn · ∇)ŷn. As ŷn is bounded and weakly convergent to ŷ in V 2,1(Q∞), using
Lemma 4.5, we have

e−2βtŷn −−−−→
n→∞

e−2βtŷ strongly in L2(Q∞), (4.31)

and
∇ŷn ⇀ ∇ŷ in L2(Q∞) as n→∞. (4.32)

Therefore e−2βt(ŷn · ∇)ŷ converges to e−2βt(ŷ · ∇)ŷ weakly in L1(Q∞).
Since ŷn converges weakly to y in V 2,1(Q∞), one has the following

∇ŷn ⇀ ∇ŷ in L∞(0,∞;L2(Ω)) ∩ L2(0,∞;H1(Ω)) as n→∞.

We use the interpolation result [11, Theorem II.5.5] to obtain the following in particular

∇ŷn ⇀ ∇ŷ in L3(0,∞;L3(Ω)) as n→∞. (4.33)

Using (4.30), (4.31) and (4.33) one has the following weak convergence

e−2βtσ̂n(ŷn · ∇)ŷn ⇀ e−2βtσ̂(ŷ · ∇)ŷ in L1(Q∞) as n→∞.

The convergences of the remaining terms e−βtσ̂n(vs · ∇)ŷn, e
−βtσ̂n(ŷn · ∇)vs and βe−βtσ̂nŷn can be

analyzed similarly using the convergences (4.28) and (4.30)1. We thus conclude that F(ŷn, σ̂n) converges
weakly to F(ŷ, σ̂) in the space D′(Q∞). Hence this is also the L2(Q∞) weak limit.
From Corollary 2.9, we know that for the closed loop system (2.26), the map

L2(0,∞;L2(Ω))× V 1
0 (Ω) 7→ V 2,1(Q∞)×H1(0,∞;RNc)

(f, y0) 7→ (y, wc)

is linear and bounded. Hence we obtain that yn = χ(ŷn) weakly converges to y = χ(ŷ) in
(Dµ, ‖.‖V 2,1(Q∞)). Finally as Dµ is compact in L2(0,∞; (1 + t)−1dt, L2(Ω)) (see Lemma 4.5), yn strongly

converges to y in L2(0,∞; (1 + t)−1dt, L2(Ω)). The proof of Lemma 4.6 is complete. �

4.4. Conclusion. Let µ is as in Lemma 4.4. Then
(i) For an initial datum (σ0, y0) satisfying (4.17), the map χ defined in (4.5) maps Dµ defined in (4.4)
into itself.
(ii) The non-empty convex set Dµ is compact in the topology of L2(0,∞, (1 + t)−1dt;L2(Ω)) (see Lemma
4.5).
(iii) The map χ is continuous on Dµ, endowed with the norm L2(0,∞, (1 + t)−1dt;L2(Ω)) (Lemma 4.6).
One observes that all the assumptions of Schauder fixed point theorem are satisfied by the map χ on
Dµ, endowed with the norm L2(0,∞, (1 + t)−1dt;L2(Ω)). Therefore, Schauder fixed point theorem yields
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a fixed point yf , of the map χ in Dµ. Hence the trajectory (σf , yf , wf,c) solves the non linear problem
(4.1). Moreover, as a consequence of Theorem 3.5 the following holds

σf (., t) = 0 in Ω for t > T1. (4.34)

Using (4.18) in (4.15) and (4.19), one further obtains

‖(yf , wf,c)‖V 2,1(Q∞)×H1(0,∞;RNc ) 6 Cmax {eβT1‖σ0‖L∞(Ω), ‖y0‖V 1
0 (Ω)}, (4.35)

for some positive constant C. Once again using Theorem 3.5, (4.35) furnish the following continuous
dependence on initial data

‖(σf , yf )‖L∞(Q∞)×V 2,1(Q∞) 6 C‖(σ0, y0)‖L∞(Ω)×V 1
0 (Ω), (4.36)

for some positive constant C. Now in view of the change of unknowns (1.11), we obtain the existence of
a trajectory (ρ, v) ∈ L∞(Q∞)× V 2,1(Q∞) which solves (1.2) and satisfies the decay estimate (1.7). The
proof of Theorem 1.2 is complete. �

5. Further comments

Our result considers that the control uc is supported on Γc, which is an open subset of the inflow part
Γin (see (1.5)) of the boundary. This is in fact natural to control the inflow boundary of the channel. At
the same time we remark that our analysis applies if one wants to control the outflow boundary Γout or
the lateral boundary Γ0 of the channel Ω. In what follows we briefly discuss these cases.
(i) Controlling the outflow boundary. In this case the control zone Γc is an open subset of Γout. After
the change of unknowns (1.11), one can imitate the linearization procedure (as done while transforming
(1.12) into (1.13)). In this linearized system the transport equation modeling the density (1.13)1-(1.13)3

will remain unchanged but the boundary conditions on the velocity equations (1.13)4-(1.13)8 should be

replaced by y = 0 on (Γ0 ∪ Γin) × (0,∞) and y =
Nc∑
j=1

wj(t)gj(x) on Γout × (0,∞). Still the proof of

the boundary controllability of the Oseen equations can be carried in a similar way as done in Section
2 and in the same spirit of Corollary 2.10, one can prove that if the initial condition y0 and the non-
homogeneous term f are suitably small then the inflow and the outflow boundaries of the perturbed
vector field (vs + e−βty) coincide with that of vs. Since the transport equation (1.13)1-(1.13)3 remains
unchanged in this case, the analysis done in Section 3 applies without any change. The fixed point
argument done in Section 4 to prove the stabilization of the coupled system (1.2) also applies without
change.
(ii) Controlling the lateral boundary. In this case the control zone Γc is an open subset of Γ0. In
particular we assume that Γc ⊂ Γb (where Γb = (0, d)×{0} ⊂ Γ0). Now the inflow and outflow boundaries
of the velocity vector (e−βty+vs) cannot be characterized by using the notations Γin and Γout (as defined
in (1.10)), since Γc can contain an inflow part and an outflow part and one can not prove a result similar
to Corollary 2.10. More precisely here we can use the following notations for time t > 0,

{
Γ∗in,y(t) = Γin ∪ {x ∈ Γc | (vs(x) + e−βty(x, t) · n(x)) < 0} ⊂ Γin ∪ Γb,
Γh = (0, d)× {1}. (5.1)
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In a similar way as we have obtained (1.13) from (1.2), one gets the following system

∂σ

∂t
+ ((vs + e−βty) · ∇)σ − βσ = 0 in Q∞,

σ(x, t) = 0 on
⋃
t∈(0,∞)(Γ

∗
in,y(t)× {t}),

σ(x, 0) = σ0 in Ω,

∂y

∂t
− βy − ν∆y + (vs · ∇)y + (y · ∇)vs +

1

ρs
∇q = f in Q∞,

div y = 0 in Q∞,

y = 0 on (Γin ∪ Γh ∪ Γout)× (0,∞),

y =
Nc∑
j=1

wj(t)gj(x) on Γb × (0,∞),

y(x, 0) = y0 in Ω.

(5.2)

One can use arguments similar to the ones in Section 2 in order to stabilize y solving (5.2)4-(5.2)8. The
functions gj can be constructed with compact support in Γb (imitating the construction (2.11)), and we
can recover the C∞ regularity of the boundary control and V 2,1(Q∞) regularity of y. Hence the flow
corresponding to the vector field (e−βty + vs) is well defined in classical sense, consequently one can
adapt the arguments used in Section 3 to prove that σ, the solution of (5.2)1-(5.2)3 belongs to L∞(Q∞)
and vanishes after some finite time provided the initial condition σ0 is supported away from the lateral
boundaries and y is small enough. The use of a fixed point argument to prove the stabilizability of the
solution of (1.2) is again a straightforward adaptation of the arguments used in Section 4.
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