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Strengthening the Murty-Simon conjecture

on diameter 2 critical graphs

Antoine Dailly∗† Florent Foucaud‡ Adriana Hansberg§¶

December 18, 2018

Abstract

A graph is diameter-2-critical if its diameter is 2 but the removal of any edge increases the
diameter. A well-studied conjecture, known as the Murty-Simon conjecture, states that any diameter-
2-critical graph of order n has at most bn2/4c edges, with equality if and only if G is a balanced
complete bipartite graph. Many partial results about this conjecture have been obtained, in particular
it is known to hold for all sufficiently large graphs, for all triangle-free graphs, and for all graphs with
a dominating edge. In this paper, we discuss ways in which this conjecture can be strengthened.
Extending previous conjectures in this direction, we conjecture that, when we exclude the class of
complete bipartite graphs and one particular graph, the maximum number of edges of a diameter-
2-critical graph is at most b(n − 1)2/4c + 1. The family of extremal examples is conjectured to
consist of certain twin-expansions of the 5-cycle (with the exception of a set of thirteen special small
graphs). Our main result is a step towards our conjecture: we show that the Murty-Simon bound is
not tight for non-bipartite diameter-2-critical graphs that have a dominating edge, as they have at
most bn2/4c−2 edges. Along the way, we give a shorter proof of the Murty-Simon conjecture for this
class of graphs, and stronger bounds for more specific cases. We also characterize diameter-2-critical
graphs of order n with maximum degree n − 2: they form an interesting family of graphs with a
dominating edge and 2n− 4 edges.

1 Introduction

A graph G is called diameter-d-critical if its diameter is d, and the deletion of any edge increases the
diameter. Diameter-d-critical graphs and their extremal properties have been studied since at least the
1960s, see for example the few selected references [4, 5, 7, 22, 25, 26, 27].

The case of diameter-2-critical graphs (D2C graphs for short), being the simplest nontrivial case, has
been the focus of much work. Many famous and beautiful graphs are D2C. Such examples are: complete
bipartite graphs; the 5-cycle (more generally, the set of Moore graphs of diameter 2, the others being the
Petersen graph, the Hoffman-Singleton graph, and a hypothetical graph of order 3250 [21]); the Wagner
graph; the Chvátal graph; the Grötzsch graph; the Clebsch graph... When the order is at least 3, D2C
graphs coincide with minimally triangle-saturated graphs, see [23].

In the 1960s and 1970s, Ore, Murty, Pleśnik and Simon independently stated the following conjecture,
generally known under the name of Murty-Simon conjecture (see [5, 25, 26]). A complete bipartite graph
is balanced if the sizes of the two parts differ by at most 1.

Conjecture 1. Any D2C graph of order n has at most
⌊
n2/4

⌋
edges, with equality if and only if G is a

balanced complete bipartite graph.

Many partial results towards Conjecture 1 have been obtained. The best general upper bound is due
to Fan [8], who showed that any D2C graph of order n has less than 0.2532n2 edges. In the same paper,
Fan also proved the conjecture for graphs of order at most 24 and 26. On the other hand, using the
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Regularity Lemma, Füredi [9] proved Conjecture 1 for graphs with order n > n0, where n0 is a gigantic
number: roughly a tower of 2’s of height 1014.

It is not difficult to observe that any bipartite graph of diameter 2 must be a complete bipartite graph.
Thus, Conjecture 1 restricted to bipartite graphs is well-understood; when studying D2C graphs, we can
consider only non-bipartite graphs.

Hanson and Wang observed in [11] that a non-bipartite graph is D2C if and only if its complement
is 3-total domination critical. This launched a fruitful research path that led to many results around
Conjecture 1: see the papers [1, 12, 13, 14, 16, 17, 18, 19] and the survey [15].

Conjecture 1 holds for triangle-free graphs: this is exactly Mantel’s theorem [24], which states that
a triangle-free graph of order n has at most bn2/4c edges, with equality if and only if G is a balanced
complete bipartite graph. It is not difficult to observe that a graph is both D2C and triangle-free if
and only if it is maximal triangle-free [3] (and equivalently, triangle-free with diameter 2). Maximal
triangle-free graphs are widely studied, see for example [2, 6, 10, 23].

It is known that no triangle-free non-bipartite D2C graph has a dominating edge [1] (a dominating
edge is a pair of adjacent vertices that have no common non-neighbour). Thus, another case of interest
is the set of D2C graphs with a dominating edge.1 A non-bipartite D2C graph has a dominating edge if
and only if its complement has diameter 3 [11] (note that the complement of a non-bipartite D2C graph
has diameter either 2 or 3 [19]). Conjecture 1 was proved for D2C graphs with a dominating edge in the
series of papers [11, 13, 16, 28].

It has been observed that the bound of Conjecture 1 might be strengthened. Such a claim was made
by Füredi in the article [9] containing his proof of the conjecture for very large graphs. In the conclusion
of [9] (Theorem 7.1), he claimed, without proof, that his method can be extended to show the following:
any sufficiently large non-bipartite D2C graph of order n has at most b(n−1)2/4c+1 edges, with equality
if and only if the graph is obtained from an even-order balanced complete bipartite graph by subdividing
an edge once. Such a graph is also obtained from a 5-cycle by replacing two adjacent vertices by two
same-size independent sets of twins (vertices with the same open neighbourhood). Nevertheless, one
might perhaps need to consider Füredi’s claim with caution, as it appears to be partly false. Indeed, it
was observed in [1] that one can also obtain a D2C graph with the same number of edges by replacing
three vertices x1, x2, x3 of a 5-cycle by three independent sets X1, X2, X3 of twins, under the following
conditions: (1) x1, x2 and x3 are consecutive on the 5-cycle; (2) |X2| ∈ {bn−3

2 c, d
n−3

2 e}, where n is the

number of vertices of the obtained graph. Let us call C+
5 , the family of these “expanded 5-cycles” that

satisfy (1) and (2): the construction is depicted in Figure 1.

X2

X1X3

Figure 1: The infinite family C+
5 of expanded 5-cycles: we have |X2| ∈ {bn−3

2 c, d
n−3

2 e}.

The authors of [1], unaware of Füredi’s claim, focused their attention on the case of non-bipartite
D2C graphs without a dominating edge (recall that this class includes all non-bipartite D2C triangle-free
graphs).2 They conjectured that, for this class, the corrected version of Füredi’s claim is true:

Conjecture 2 (Balbuena, Hansberg, Haynes, Henning [1]). Let G be a non-bipartite D2C graph without
a dominating edge. Then, G has at most

⌊
(n− 1)2/4

⌋
+ 1 edges. For sufficiently large n, equality holds

if and only if G belongs to C+
5 .

Conjecture 2 was proved in [1] for triangle-free graphs without the restriction on the order (the first
part of the statement was also proved independently for triangle-free graphs in [3]).

One non-bipartite D2C graph that does not satisfy the bound b(n − 1)2/4c + 1 is known: it is the
graph H5 of Figure 2 (which has six vertices, eight edges, and a dominating edge). This fact was observed
in [3, 12]; the authors of [3] asked whether this graph is the only exception to the bound.

1Equivalently, the set of D2C graphs with total domination number 2.
2Note that the terminology used in [1] is the equivalent one of total domination criticality for the complement of the
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Figure 2: The graph H5, a D2C graph with a dominating edge (in bold).

We have performed a computer search on all graphs of order up to 11. This search has found
exactly thirteen non-bipartite D2C graphs that are not members of C+

5 but nevertheless reach the bound
b(n − 1)2/4c + 1 (see Figure 3).3 These graphs have order 7, 8 or 9: there are no examples of order 10
and 11. Only three of these graphs have no dominating edge.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j) (k)

(l) (m)

Figure 3: The thirteen non-bipartite D2C graphs of order n ≤ 11 with b(n − 1)2/4c + 1 edges that are
not in the family C+

5 . Bold edges are dominating. Only the graphs (d), (e) and (f) have no dominating
edge.

Closer scrutiny and the aforemetioned computer search suggest that H5 could well be the only small
non-bipartite D2C exception to the bound of Conjecture 2 (this was also suggested in [3]). Moreover, it
seems likely that only the thirteen graphs not in C+

5 from Figure 3 reach this bound. This leads us to
propose a stronger version of Conjecture 2, as follows.

graphs.
3Note that the complete list of D2C graphs of order at most 7 was given in [23]; Graph (m) is studied in [27] as a planar

D2C graph with every edge in a triangle.
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Conjecture 3. Let G be a non-bipartite D2C graph of order n. If G is not H5, then G has at most⌊
(n− 1)2/4

⌋
+ 1 edges, with equality if and only if G belongs to C+

5 or is one of the thirteen graphs from
Figure 3.

In this paper, we focus on the case of non-bipartite D2C graphs with a dominating edge. Note that
the graphs in C+

5 do not have a dominating edge. As a piece of evidence towards Conjecture 3, our main
theorem shows that the bound of Conjecture 1 is not tight for this case:

Theorem 4. Let G be a non-bipartite D2C graph with n vertices having a dominating edge. If G is not
H5, then G has at most

⌊
n2/4

⌋
− 2 edges.

Along the way, we will also give some stronger bounds for special cases. Our proof technique is an
extension of the technique introduced by Hanson and Wang in [11], where the bound of Conjecture 1 was
proved for graphs with a dominating edge. The full statement of Conjecture 1 was later proved for this
case in the papers [13, 16, 28] using a different method, but the proof is quite involved. As a side result,
our new approach also gives a simpler and shorter proof of Conjecture 1 for graphs with a dominating
edge.

We also study non-bipartite D2C graphs with maximum degree n−2 (note that the only D2C graphs
with maximum degree n − 1 are stars). It turns out that these graphs can be described precisely, and
they all have a dominating edge.

We prove Theorem 4 (and a stronger version for special cases) in Section 2 and obtain, in passing, a
shorter proof of Conjecture 1 for graphs with a dominating edge. We then characterize D2C graphs with
maximum degree n− 2 in Section 3. Finally, we conclude in Section 4.

2 Conjecture 1 and beyond for graphs with a dominating edge

In this section, we further develop a proof technique of Hanson and Wang [11], who showed the bound
of Conjecture 1 for D2C graphs having a dominating edge. Their result was extended (using a different
technique) by Haynes et al. and Wang (see the series of papers [13, 16, 28]) to prove the full conjecture
for this class. Nevertheless, it turns out that when excluding bipartite graphs, the Murty-Simon bound
is not tight for this class of graphs. To show this, we use the original idea of Hanson and Wang [11] and
extend it by a finer analysis. To demonstrate the potential strength of this technique, we give, along the
way, a shorter proof of Conjecture 1 for graphs with a dominating edge.

In order to have a smoother presentaion, we split this section into several parts. We start with
establishing the general setting of the proof technique in Section 2.1. Then, we prove some general
lemmas in Sections 2.2 and 2.3. We use some of these lemmas to give our new proof of Conjecture 1 for
graphs with a dominating edge in Section 2.4. Then, in Section 2.5, we prove a stronger bound than the
one of Theorem 4 for some special cases. Finally, in Section 2.6, we conlclude the proof of Theorem 4.

2.1 Preliminaries: notations and setting for the proofs

Let us first fix our notation. Given a vertex x from a graph G, we denote by N(x) and N [x] the open
and closed neighbourhoods of x, respectively. An edge between vertices x and y is denoted xy, while a
non-edge between x and y is denoted xy. An oriented graph is a graph where edges have been given an
orientation; oriented edges are called arcs. If x is oriented towards y, we denote the arc from x to y by
−→xy. In an oriented graph, we denote by N+(x), N+[x], N−(x) and N−[x] the out-neighbourhood, closed
out-neighbourhood, in-neighbourhood, and closed in-neighbourhood of vertex x. In an oriented graph, a
directed cycle is a cycle such that all arcs are oriented in the same cyclic direction. We say that a source
is a vertex s with N−(s) = ∅ and N+(s) 6= ∅ while a sink is a vertex t with N+(t) = ∅ and N−(t) 6= ∅
(we consider that an isolated vertex is neither a source nor a sink). A triangle on an oriented graph is
transitive if it induces a subgraph with a source and a sink.

We start with the following definition, which is fundamental to our study.

Definition 5. Let G be a D2C graph. An edge uv ∈ E(G) is critical for a pair of vertices {x, y} if the
only path of length 1 or 2 from x to y uses the edge uv.

The following observation is easy but important.
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Observation 6. An edge xy in a D2C graph is critical for a pair {x, z} with z ∈ N [y] \ {x} or {y, z}
with z ∈ N [x] \ {y}.

We are ready to describe the setting for the proofs of this section. Let G(V,E) be a D2C graph with
n vertices and m edges, and let uv be a dominating edge of G. We split the other vertices of G into four
sets (see Figure 4 for an illustration):

1. Puv = {x | uv is critical for the pair {x, v} or {x, u}}

2. Suv = {x | x ∈ N(u) and x ∈ N(v)}

3. Su = {x | x ∈ N(u) \ (Puv ∪ Suv)}

4. Sv = {x | x ∈ N(v) \ (Puv ∪ Suv)}

u v
Puv

Suv

Su Sv

Figure 4: The structure of a D2C graph with the dominating edge uv (the only edges that are depicted
are those incident with u or v). Lemma 7 allows us to represent all vertices in Puv as adjacent to u.

We have the following fact.

Lemma 7. Either Puv ∩N(u) = ∅, or Puv ∩N(v) = ∅ (or both).

Proof. Let x ∈ Puv ∩N(u), and assume by contradiction that there is y ∈ Puv ∩N(v). We have xy 6∈ E
since uv is critical for the pairs (u, y) and (v, x). Thus, x and y have a common neighbour z. However,
since uv is a dominating edge, z ∈ N(u) ∪N(v). Suppose without loss of generality that z ∈ N(u), then
there are two paths of length 2 between u and y: one going through v and one going through z. Thus,
the edge uv is not critical for the pair {u, y}, a contradiction.

Because of Lemma 7, in the whole section, without loss of generality, we will always assume that
Puv ∩N(v) = ∅. We next prove the following lemma.

Lemma 8. The following properties hold.

(a) There is no edge between Puv and N(v) \ {u}.

(b) If Puv = ∅, then Suv = ∅.

(c) If Suv = ∅, then every vertex in Su (resp. Sv) has a neighbour in Sv (resp. Su).

(d) If Puv = ∅, then every vertex in Su (resp. Sv) that has at least one neighbour in Su (resp. Sv) has
a non-neighbour in Sv (resp. Su).

Proof. (a) Let x ∈ Puv and assume by contradiction that there is y ∈ N(v)\{u} such that xy ∈ E. Then
there are two paths of length 2 between x and v: one going through u and one going through y. Thus,
the edge uv is not critical for the pair {v, x}, a contradiction.

(b) If Puv = ∅, then the edge uv can only be critical for the pair {u, v}. This implies that u and v
have no common neighbour, that is, Suv = ∅.

(c) Assume by contradiction that there is a vertex x ∈ Su (without loss of generality) such that
N(x) ∩ Sv = ∅. Then N(x) ∩N(v) = {u} since Suv = ∅. This implies that the edge uv is critical for the
pair {x, v}, and thus x ∈ Puv, a contradiction.

(d) Assume by contradiction that there is a vertex x ∈ Su (without loss of generality) such that
Sv ⊂ N(x). Then, the edge ux is not critical. Indeed, it cannot be critical for the pair {u, x} since x has

5



a neighbour in Su. It cannot be critical for a pair {x, y} with y ∈ Su: since Puv = ∅ we have Suv = ∅ by
(b), and by (c), y has a neighbour in Sv. So, there is a path of length 2 from x to y going through Sv.
Finally, it cannot be critical for a pair {u, y} with y ∈ N(x) since every neighbour of x is either in Su

(thus, a neighbour of u) or in Sv (and a neighbour of v). Observation 6 ensures that we considered all
the cases, and reached a contradiction which proves the claim.

Following the proof of Hanson and Wang [11], we will next partition the vertices of G into two parts
X and Y , and prove that every edge within X or within Y can be assigned injectively to a non-edge
between X and Y . This will prove that G has at most as many edges as the complete bipartite graph
with parts X and Y .

We define the partition as follows:

1. X := {v} ∪ Su ∪ Puv ∪ Suv

2. Y := {u} ∪ Sv

Lemma 9. For every edge ab ∈ E(X) (resp. E(Y )), there exists c ∈ Y (resp. X) such that ab is critical
for either the pair {a, c} or the pair {b, c}.

Proof. Assume without loss of generality that a, b ∈ X. This implies that both a and b are neighbours of
u. Then, the edge ab cannot be critical for the pair {a, b}. Without loss of generality, we assume ab it is
critical for {b, c}, where c ∈ N(a) \N(b). However, if c ∈ X, then b and c are neighbours of u, and then
the edge ab is not critical for this pair. Hence, c ∈ Y .

We use Lemma 9 to define a function f assigning the edges of E(X) and E(Y ) to non-edges between
X and Y , as follows. For every edge e ∈ E(X) (resp. E(Y )), we select one vertex c ∈ Y (resp. X) such
that e is critical for the pair {b, c}, where b ∈ e (such vertex c exists by Lemma 9). We let f(e) = bc.
Note that f is well-defined, since e is critical for the pair {b, c} and thus bc 6∈ E. This construction is
depicted in Figure 5.

e

b

a c

X Y

Figure 5: The construction of the function f . The edge e = ab is critical for the pair {b, c}, thus f(e) = bc.

Lemma 10. The function f is injective.

Proof. Assume by contradiction that f is not injective. Without loss of generality, let bc be the non-edge
between X and Y such that there are two edges e and e′ in E(X) ∪ E(Y ) verifying f(e) = f(e′) = bc.

By definition of f , both e and e′ are critical for the pair {b, c}. This implies that e and e′ form the
unique path of length 2 from b to c. Thus, one of e or e′ is in X × Y , a contradiction.

We saw in Lemma 10 that f is injective. Moreover, we will show later that, if G is not bipartite, then
f is not surjective. We call any non-edge in X × Y that has no preimage by f , an f -free non-edge. We
also let free(f) be the number of f -free non-edges.

Lemma 11. We have m =
⌊
n2−||X|−|Y ||2

4

⌋
− free(f) ≤

⌊
n2/4

⌋
− free(f).

Proof. By the injectivity of f (Lemma 10) and the definition of free(f), there are exactly free(f) more
non-edges between X and Y than edges inside X and inside Y . Thus, G has exactly |X||Y | − free(f)
edges.

Without loss of generality, we assume that |X| ≤ |Y | and we pose ∆ = ||X| − |Y ||. By the above
paragraph, we have m = |X||Y | − free(f) = |X|(n− |X|)− free(f). Since |X|+ ∆ = |Y | = n− |X|, this
implies that |X| = n−∆

2 . In particular, we now have:
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m = |X|(n− |X|)− free(f)

=
n−∆

2

(
n− n−∆

2

)
− free(f)

=
(n−∆)(n + ∆)

4
− free(f)

=
n2 −∆2

4
− free(f)

Because m and free(f) are integers, we have m =
⌊
n2−∆2

4

⌋
− free(f). Moreover, since ∆ ≥ 0, we

obtain that m ≤
⌊
n2/4

⌋
− free(f).

Lemma 11 implies that G has at most
⌊
n2/4

⌋
edges: this is the result of Hanson and Wang [11]. It

will require some more effort to prove the whole Conjecture 1: our aim will be to show that free(f) has
at least a certain size. First, we will prove some general lemmas.

2.2 Preliminaries for the case Puv 6= ∅
We now prove a useful lemma about Puv, which is illustrated in Figure 6.

Lemma 12. Let p be a vertex in Puv, and let Sv(p) be the set of vertices x ∈ Sv such that the non-
edge px is not f -free. Then, for each vertex x ∈ Sv(p), there is a vertex m(x) in Su ∩ N(p) such that
f(pm(x)) = px. Denote by Su(p) the set of vertices y of Su such that y = m(x) for some vertex x of
Sv(p). Then, the following holds.

(a) We have |Su(p)| = |Sv(p)| (that is, m is injective).

(b) The only edges in Su(p)× Sv(p) are those of the form xm(x).

(c) For any two vertices x, y of Sv(p), if one of the edges xy or m(x)m(y) exists, then one of the
non-edges xm(y) and ym(x) is f -free. If both edges xy and m(x)m(y) exist, then both non-edges
xm(y) and ym(x) are f -free.

(d) We have |Su| ≥ |Sv| − free(f).

Proof. Let x ∈ Sv(p). By Lemma 8(a), p has no neighbour neither in Sv nor in Suv. Thus, p and x have
a common neighbour, q, in Su, and f(pq) = px. We let q = m(x). Now, if for some pair x, y of distinct
vertices of Sv(p), we had m(x) = m(y), then one of the non-edges px and py would be f -free (since both
can only be assigned to pq by f), a contradicton. Thus, |Su(p)| = |Sv(p)| and (a) is true.

Moreover, there is no edge xm(y) for two distinct vertices x, y in Sv(p), since otherwise p and x
would have two common neighbours (m(x) and m(y)), contradicting the fact that f(pm(x)) = px. Thus,
(b) holds.

Finally, assume that there is an edge xy in Sv(p) (the proof is the same for the edge m(x)m(y)).
Then, both non-edges xm(y) and ym(x) can only be assigned to the edge xy, so one of them is f -free.
If we have both edges xy and m(x)m(y), then both endpoints of xm(y) and ym(x) have two common
neighbours, so both are f -free, and (c) is true.

To prove (d), we let free(Puv, f) be the number of f -free non-edges incident with a vertex of Puv. Let
p be some vertex p of Puv. By the previous parts of the lemma, we have:

|Su| ≥ |Su(p)| = |Sv(p)| ≥ |Sv| − free(Puv, f) ≥ |Sv| − free(f),

which completes the proof of (d).
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m(y)

m(x) x

y

p

Su(p) Sv(p)

m(y)

m(x) x

y

p

Su(p) Sv(p)

m(y)

m(x) x

y

p

Su(p) Sv(p)

Figure 6: Illustration of Lemma 12. We have f(pm(x)) = px and f(pm(y)) = py. Each edge in Su(p)
and Sv(p) induces an f -free non-edge between the two sets (f -free non-edges are depicted in bold).

2.3 Preliminaries for the case Puv = ∅: the f-orientation and related lemmas

In this section, we gather some lemmas about the structure of G and f when Puv = ∅. They will be
useful to our proofs but we feel that they could perhaps be used again. So we assume from here on in
this in this section that G is a D2C graph with Puv = ∅. Observe that, by Lemma 8, Suv = ∅.

We will use f to define an orientation, called f -orientation, of the edges induced by Su and by Sv,
as follows. Let ab be an edge within Su or within Sv with f(ab) = bc. Then, we orient a towards b

and we denote the resulting arc by
−→
ab. This construction is shown in Figure 7. Since f is injective

(Lemma 10), each edge of Su and Sv receives exactly one orientation. From now on, all arcs considered
are those of this f -orientation. We denote by N+(x), N+[x], N−(x) and N−[x] the out-neighbourhood,
closed out-neighbourhood, in-neighbourhood, and closed in-neighbourhood of vertex x with respect to
the f -orientation, while N(x) and N [x] continue to denote the neighbourhood and closed neighbourhood
of x in G.

b

a c

Su Sv

Figure 7: The f -orientation is constructed from the function f : we orient all edges within Su and Sv,
and an edge ab is oriented from a to b if f(ab) = bc.

We will now study the properties of the f -orientation. The first important lemma is the following
(see Figure 8 for an illustration).

Lemma 13. Let x, y ∈ Su (resp. Sv) be two vertices such that −→xy is an arc of the f -orientation. If
neither x nor y is incident with an f -free non-edge, then there exists a vertex t ∈ Sv (resp. Su) such that
N(x) ∩ Sv = (N(y) ∩ Sv) ∪ {t} (resp. N(x) ∩ Su = (N(y) ∩ Su) ∪ {t}).

Proof. Assume without loss of generality that x, y ∈ Su. First, if there exists a vertex z of N(y)∩Sv that
is not adjacent to x, then z and x have y as a common neighbour and thus the non-edge xz could only be
assigned by f to xy, contradicting the f -orientation of xy. Thus, we have N(y) ∩ Sv ⊆ N(x) ∩ Sv. Now,
by the f -orientation of xy, there exists a vertex t of Sv with f(xy) = ty. Assume now, for a contradiction,
that there exists another vertex t′ in Sv that is adjacent to x but not to y. Then, t′ and y have x as
a common neighbour, so the non-edge t′y can only be assigned by f to xy. This is a contradiction and
proves the claim.

The next lemma states that directed cycles in G yield many f -free non-edges.

Lemma 14. Let
−→
C be a cycle of G that is directed with respect to the f -orientation. Then, there are at

least |
−→
C | f -free non-edges incident with the vertices of

−→
C .

8



x

y

t

Su Sv

•
•
•

Figure 8: Illustration of Lemma 13: if x and y are two vertices in Su (resp. Sv) such that −→xy is an arc of
the f -orientation and neither x nor y is incident with an f -free non-edge, then the neighbourhood of x
in Sv (resp. Su) is exactly the neighbourhood of y in Sv (resp. Su) plus one vertex.

Proof. Let
−→
C = x0, x1, . . . , xk−1 be a cycle of G that is directed with respect to the f -orientation (with

the arc −−−−→xixi+1 for each i in {0, . . . , k − 1}). Without loss of generality,
−→
C is in X. In this proof, we

consider the addition modulo k.
By definition of the f -orientation, for all i ∈ {0, . . . , k − 1}, there exists a vertex yi ∈ Y such that

f(xixi+1) = xi+1yi. Note that we may have yi = yj for some i 6= j.

Let i ∈ {0, . . . , k−1}, and let xj be the first predecessor of xi in the cyclic order of
−→
C such that xjyi 6∈

E. This clearly happens at some point since xi+2yi /∈ E. Note that we have j 6= i + 1, since otherwise
xi+1 and y would have two common neighbours: xi and xi+2, a contradiction since f(xixi+1) = xi+1yi
implies that xi is the unique common neighbour of yi and xi+1.

We now prove that xjyi is f -free. Assume by contradiction that it is not f -free. Then, there exists
an edge e such that f(e) = xjyi. However, since xj and yi have a common neighbour which is xj+1,

we necessarily have e = xjxj+1. But by definition of
−→
C , we already have the vertex yj ∈ Y such that

f(xjxj+1) = xj+1yj , and thus yi 6= yj . This is a contradiction, which implies that xjyi is f -free. This is
illustrated in Figure 9.

Finally, we prove that any two f -free non-edges found with this method are distinct. Assume by

contradiction that there are two vertices xi1 , xi2 in
−→
C with i1 < i2 which lead to the same f -free

non-edge xjy (with y = yi1 = yi2). Then, this means that xj is the first predecessor of xi2 such that
xjy 6∈ E. In particular, since i1 < i2, this implies that xi1+1y ∈ E, which contradicts the fact that
f(xi1xi1+1) = xi1+1y.

Thus, there are at least k f -free non-edges incident with the vertices of
−→
C .

xi

xi+1

xj

xj+1

•
•
•

yi

yj

Su Sv

Figure 9: Illustration of the proof of Lemma 14: xj is the first predecessor of xi in the cycle such that
xjyi /∈ E. The non-edge xjyi is then f -free.

We now show that transitive triangles also induce f -free non-edges.

Lemma 15. Let x, y, z ∈ Su (resp. Sv) be three pairwise adjacent vertices such that −→xy, −→xz and −→yz are
oriented edges. Then there is an f -free non-edge incident with x.
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Proof. Without loss of generality, assume that x, y, z ∈ Su. Assume by contradiction that there is no
f -free non-edge incident with x. By Lemma 8(c), x has a neighbour w1 in Sv, and by definition of the
f -orientation, we can assume that f(xy) = yw1. Similarly, there is a vertex w2 of Sv adjacent to y with
f(yz) = zw2 (clearly w1 6= w2). Then neither z nor w2 is adjacent to w1 since x is the unique common
neighbour of y and w1. Now similarly, x and w2 cannot be adjacent, the only common neighbour of z
and w2 is y. But then the non-edge xw2 is assigned to xy by f , which contradicts the injectivity of f .
This is illustrated in Figure 10.

x

y

z

w1

w2

Su Sv

Figure 10: Illustration of the proof of Lemma 15: there is an f -free non-edge incident with the ancestor
in a transitive triangle.

The next two lemmas state that each source and each sink of G has an f -free non-edge in its closed
neighbourhood. Recall that we do not consider isolated vertices as sources or sinks.

Lemma 16. Let x be a sink of the f -orientation. Then, there is at least one f -free non-edge incident
with the vertices of N−[x].

Proof. Let x ∈ Su (without loss of generality) be a sink of the f -orientation, and let a1, . . . , ak be the
in-neighbours of x (recall that they all belong to Su).

By Lemma 8(c), x has a neighbour y ∈ Sv. Let ai be an in-neighbour of x. If ai is not adjacent

to y, then the non-edge aiy is f -free, since otherwise we should have f(xai) = aiy and the arc
−→
tai, a

contradiction since x is a sink. Thus, from now on we may assume that all in-neighbours of x are adjacent
to y, for otherwise the statement of the claim holds.

Like every edge, the edge xy is critical. It cannot be critical for the pair {x, y}, since (by the previous
paragraph) these two vertices have all vertices in N−(x) as common neighbours. It also cannot be
critical for a pair consisting of y and a neighbour z of x: if z ∈ Su then z is an ai; and if z ∈ Sv ∪ {u}
then v ∈ N(y) ∩ N(z). Hence, xy must be critical for a pair {x, t} with t a neighbour of y. Since
N(x) ∩ N(t) = {y}, we necessarily have t ∈ Sv, and tai /∈ E for every ai. However, among all the
non-edges ait and the non-edge xt, all but one are f -free: their only possible preimage by the function
f if yt. This is depicted in Figure 11. Since at least one ai exists, there is at least one f -free non-edge
incident with N−[x], and the claim follows.

x

a1

ak

y

t

•
•
•

Su Sv

Figure 11: If x is a sink, then its closed in-neighbourhood is incident with f -free non-edges: among all
the bolded non-edges, only one can have a preimage by the function f , this preimage being yt.
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Lemma 17. Let x be a source of the f -orientation. Then, there is at least one f -free non-edge incident
with the vertices of N+[x].

Proof. Let x ∈ Su (without loss of generality) be a source of the f -orientation, and let b1, . . . , bk be the
out-neighbours of x (recall that they all belong to Su). Assume by contradiction that no f -free non-edge
is incident with N+[x].

By Lemma 8(d), x has a non-neighbour y ∈ Sv. Lemma 13 ensures that no bi is adjacent to y. The
non-edge xy has a preimage by the function f , and this preimage is necessarily an arc −→zy with z ∈ Sv,
since the bi are the only neighbours of x in Su and none of those are adjacent to y.

Let i ∈ {1, . . . , k}. If biz ∈ E, then z ∈ N(y)∩N(bi), and since no non-edge incident with a bi is f -free
we necessarily have f(zy) = biy, a contradiction to the fact that f(zy) = xy. Thus, biz is a non-edge
incident with N+[x], thus it has a preimage by the function f . This preimage is necessarily the edge xbi.

Furthermore, by Lemma 8(c), bi has a neighbour w ∈ Sv. Lemma 13 ensures that xw ∈ E. Now, the
edge xw is critical. It cannot be critical for the pair {x,w} since those vertices share bi as a common
neighbour. It cannot be critical for a pair {x, t} with t ∈ Sv since by definition of critical edges we would
have bit /∈ E, and one of the two non-edges xt, bit would be f -free, a contradiction. Thus, there is a
bj ∈ N+(x) such that f(xbj) = bjw. However, Lemma 13 ensures that N(bj) ∩ Sv = (N(x) ∩ Sv) \ {z},
which implies that bjw ∈ E. This is a contradiction, which proves the claim.

2.4 Proof of Conjecture 1 for graphs with a dominating edge

We are now ready to re-prove Conjecture 1 for graphs with a dominating edge. The proof only uses the
content of Sections 2.1 and 2.2 and Lemma 13. More specifically, we will prove the following lemma.
Observe that, to prove Conjecture 1, we may assume that G is non-bipartite (for otherwise the conjecture
is true for G by Lemma 11). We use the f -orientation that was defined in Section 2.3.

Lemma 18. If G is a non-bipartite D2C graph with a dominating edge, then free(f) ≥ 1.

Proof. We assume by contradiction that free(f) = 0. We distinguish two cases.

Case 1: Puv is nonempty. Note that Su 6= ∅, for otherwise G must be a star. Since free(f) = 0, by
the definition of Sv(p) (see Lemma 12) we have Sv = Sv(p) for each vertex p of Puv, and |Su| ≥ |Sv| by
Lemma 12(d). By Lemma 11, if ||X| − |Y || ≥ 3, G has at most

⌊
(n2 − 1)/4

⌋
− 2 edges, and we are done.

Thus, we may assume that ||X| − |Y || ≤ 2. This leaves several possibilities depending on the structure
of G:

1. First, if Suv is nonempty, then |Suv| = 1, Puv = {p}, and |Su| = |Sv|. Thus, Su = Su(p), Sv = Sv(p)
and the only edges between Su and Sv are of the form xm(x). This implies that p is adjacent to
all vertices of Su and that the vertex in Suv cannot be adjacent to any vertex x ∈ Su (otherwise
the edge ux would not be critical). It follows that the endpoints of any non-edge in Su(p)× Sv(p)
have no common neighbour, which is not possible. Thus, there is no such non-edge, which implies
by Lemma 12 that |Su| = |Sv| = 1; but then the graph is H5 which has exactly

⌊
n2/4

⌋
− 1 edges,

a contradiction. Thus, we can assume that Suv is empty.

2. Now, if |Su| = |Sv| (that is, Su = Su(p) for every p ∈ Puv), then for any x ∈ Su, the edge ux is not
critical, a contradiction.

3. Thus, there exists exactly one vertex z in Su \ Su(p) and exactly one vertex p in Puv. Since
free(f) = 0, by Lemma 12(c) and Lemma 12(d), Su(p) and Sv(p) are independent sets. If |Su| = 2
(which implies |Sv| = 1), then by Lemma 8(c) z is adjacent to the vertex in Sv. But then, the edge
between u and the vertex of Su(p) is not critical, a contradiction. Thus, |Su(p)| ≥ 2. Let x, y be
two distinct vertices of Sv(p). If zm(x) /∈ E, then the non-edge m(x)y has no preimage by f , and
thus it is f -free, a contradiction. Hence, zm(x) ∈ E and f(zm(x)) = m(x)y, which implies that z
is adjacent to every vertex in Su(p) and in Sv(p). However, the edges between u and Su(p) are not
critical, a contradiction.

This study covers all possible cases, and we always reach a contradiction. This finsihes the proof of
Case 1.
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Case 2: Puv is empty. Note that Suv = ∅ by Lemma 8(b). Furthermore, there is at least one edge
in Su (without loss of generality) since otherwise the graph is bipartite, a contradiction. We prove the
following statement:

Claim: Let −→xy be an arc in Su. For every vertex t ∈ N(y) ∩ Sv, the edge yt is critical for a pair {z, t}
with z an out-neighbour of y.

To prove the claim, observe first that the edge yt cannot be critical for the pair {y, t}, since by Lemma 13
(which we can apply since we assume that free(f) = 0) we have N(y) ∩ Sv ⊂ N(x) ∩ Sv, and so y and t
have x as a common neighbour.

Assume by contradiction that the edge yt is critical for a pair {y, w} with w ∈ Sv (note that w is an
out-neighbour of t). We have xw /∈ E since otherwise y and w would have two common neighbours, a
contradiction. Thus, we have the non-edge xw. This non-edge has a preimage by the function f , but this
preimage can only be tw since t ∈ N(w) ∩N(x). This implies that one of the two non-edges xw, yw is
f -free, a contradiction.

Thus, the edge yt is critical for a pair {z, t}, and since free(f) = 0 we necessarily have f(yz) = zt and
so z is an out-neighbour of y by definition of the f -orientation. Hence, the claim follows. �

Now, take a maximal directed path −−−−−−→x1, . . . , xk of vertices in Su. By Lemma 8, xk has a neighbour
t ∈ Sv. By the above claim, the edge xkt is critical for a pair {y, t} with y an out-neighbour of xk. We
cannot have y = xi for i ∈ {1, . . . , k−2} since otherwise we would have a directed cycle, and by Lemma 14
we would have k − i + 1 f -free non-edges incident with vertices in the cycle, a contradiction. Thus, the
directed path −−−−−−−→x1, . . . , xky is a directed path in Su with more vertices than −−−−−−→x1, . . . , xk, a contradiction.

Hence, we have proved that if free(f) = 0 then we reach a contradiction, and the statement of the
lemma follows.

Hence, Lemma 18 confirms Conjecture 1 for D2C graphs with a dominating edge, i.e. we obtain a
new proof of the following theorem.

Theorem 19 ([11, 13, 16, 28]). Any D2C graph G of order n with a dominating edge has at most bn2/4c
edges, with equality if and only if G is a balanced complete bipartite graph.

2.5 A stronger theorem when Puv = ∅
In this section, we use the lemmas of Section 2.3 to prove the following.

Theorem 20. Let G be a non-bipartite D2C graph with a dominating edge uv such that Puv = ∅, and

let f be the associated injective function. Let
−→
D be the graph induced by Sx (x ∈ {u, v}) and oriented

with respect to the f -orientation. Let C ∪ S be a collection of vertex-disjoint subgraphs of
−→
D satisfying

the following conditions:

1. C consists of directed cycles;

2. S consists of transitive triangles and graphs with a universal vertex that is either a sink or a source

in
−→
D .

Then, G has at most
⌊
n2/4

⌋
−
∑

C∈C |C| − |S| edges.

Proof. By Lemmas 14, 15, 16 and 17, we have free(f) ≥
∑

C∈C |C|+ |S|. Thus, the bound follows from
Lemma 11.

Observe that each connected component of
−→
D contains either a directed cycle, or a source. Thus, by

Lemmas 14 and 17, we have free(f) ≥ c, where c is the number of nontrivial connected components of
−→
D . This implies, by Lemma 11, that G has at most

⌊
n2/4

⌋
− c edges. But in fact, we can prove the

following stronger result, which is crucial for the proof of Theorem 4.

Theorem 21. Let G be a non-bipartite D2C graph with a dominating edge uv such that Puv = ∅, and

let f be the associated injective function. Let
−→
D be the graph induced by Sx (x ∈ {u, v}) and oriented

with respect to the f -orientation, and let c1 (resp. c2) be the number of nontrivial connected components

of diameter 2 (resp. at least 3) in
−→
D . Then, G has at most

⌊
n2/4

⌋
− c1 − 2c2 edges.
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Proof. Without loss of generality, we assume that
−→
D is the oriented graph induced by Su. Note that

every nontrivial component in
−→
D contains either a directed cycle or a source and a sink. Thus, there is

at least one f -free non-edge with one endpoint in C, which proves that there are at most
⌊
n2/4

⌋
− c1− c2

edges in G. We now assume that C has diameter at least 3 in
−→
D . We must show that G contains at least

two f -free non-edges with one endpoint in C, which will prove the theorem.

If there is a directed cycle in C, we are done by Lemma 14. Thus, we assume that
−→
D [C] is acyclic.

This implies that there is at least one source and at least one sink in C. Let S and T be the sets of
sources and sinks of C, respectively. We assume by contradiction that there is at most one f -free non-edge
incident with C.

We recall that C is acyclic and thus both S and T are nonempty. By Lemmas 16 and 17, each source
and each sink are at distance at most 1 from a vertex r of C incident with an f -free non-edge (this implies
that there is exactly one f -free non-edge incident with C). Thus each vertex of S ∪ T ) \ {r} is adjacent
to r; if r ∈ S then S = {r}; if r ∈ T then T = {r}. By Lemma 15, if r /∈ (S ∪ T ), there is no arc from
any source to any sink.

We now prove a more constrained structure on r and T .

Claim 1: Either r ∈ T , or N−(t) = {r} for all t ∈ T .

By contradiction, assume that r /∈ T but that some sink t ∈ T has two in-neighbours r and x. By
Lemma 15, r /∈ N+(x), otherwise we have two f -free non-edges incident with C (in particular, x /∈ S).
By definition of the f -orientation, there is a vertex y ∈ Sv such that f(xt) = yt. Furthermore, by
Lemma 8(c), t has a neighbour in Sv, which we will call p. We have py /∈ E and xp ∈ E by Lemma 13.

Assume first that r ∈ N−(x). Then ry /∈ E, since N(t) ∩ N(y) = {x}. If ry had a preimage by
the function f , it would be the edge xr and we would have the arc −→xr, a contradiction. Thus, ry is the
only f -free non-edge in G. This is depicted in Figure 12. Now, the edge tp is critical. It is not critical
for the pair {t, p} since x ∈ N(t) ∩ N(p). It is not critical for a pair {p, z} with z ∈ Su since otherwise

we would have the arc
−→
zt (since t is a sink) and thus the non-edge zp would be f -free, a contradiction.

It is not critical for a pair {t, z} with z ∈ Sv, since this would imply that xz /∈ E and thus one of the
two non-edges tz, xz would be f -free (their only possible preimage by the function f would be pz), a
contradiction. Thus, tp is not critical; this contradiction implies that r /∈ N(x).

x

r

t p

y

Su Sv

Figure 12: If r ∈ N−(x), then the non-edge ry (depicted in bold), is the only f -free non-edge in G. By
studying all possibilities for the criticality of the edge tp, we then reach a contradiction.

The edge xp is critical. It is not critical for the pair {x, p} since t ∈ N(x)∩N(p). It is not critical for
a pair {x, z} with z ∈ Sv since otherwise we would have tz /∈ E and thus one of the two non-edges xz,
tz would be f -free, a contradiction. Thus, it is critical for a pair {w, p} with w ∈ N+(x). In particular,
we necessarily have wy ∈ E (since otherwise the non-edge wy would be f -free since its only possible
preimage by the function would be xw which is already assigned, a contradiction).

Now, let us reexamine the edge tp, which is critical. By the same reasoning that the one we held
just above, it is critical for a pair {p, z} with z ∈ Su. Since t is a sink, the non-edge zp is f -free (since

otherwise we would have an arc
−→
tz , a contradiction with the fact that t is a sink), and thus z = r and zr is

the only f -free non-edge in G. Note that if N(t)∩Sv contains more than one vertex, then we can repeat
the argument and find other f -free non-edges, a contradiction. Thus, N(t)∩Sv = {p}. The construction
we obtain is depicted in Figure 13.

The edge wy is critical. It is not critical for the pair {w, y} since x ∈ N(w) ∩N(y). It is not critical
for a pair {w, z} with z ∈ Sv since otherwise we would have xz /∈ E and thus one of the two non-edges
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x

r
w

t p

y

Su Sv

Figure 13: If r /∈ N(x), then the non-edge rp (depicted in bold), is the only f -free non-edge in G. By
studying all possibilities for the criticality of the edge wy, we then reach a contradiction.

xz, wz would be f -free, a contradiction. Thus, it is critical for a pair {y, z} with z ∈ Su. If z ∈ N−(w)
then zy is f -free, which implies that z = r, but since y 6= p we have two f -free non-edges incident with
C, a contradiction. Thus, z ∈ N+(w) and zp /∈ E (since otherwise this would contradict the fact that
f(xw) = wp). By Lemma 8(c), z has a neighbour y′ ∈ Sv. Recall that N(t) ∩ Sv = {p} and thus
ty′ /∈ E. Furthermore, by Lemma 13, x has exactly one neighbour in Sv that is not a neighbour of t.
This neighbour is y, which implies that xy′ /∈ E. By applying the same argument, we also get wy′ /∈ E.
But, since we have the arc −→wz, the non-edge wy′ is f -free, a contradiction.

Thus, such an x does not exist, which proves the claim. �

We can now prove that there is exactly one source in C.

Claim 2: |S| = 1.

Assume by contradiction that there are two sources s1, s2 ∈ S. By Lemma 17, if the vertex r is not in
N+(s1)∩N+(s2) then there is an f -free non-edge incident with one vertex that is not r, a contradiction.
Thus, s1 and s2 are both in-neighbours of r. By definition, there are two distinct vertices y1, y2 ∈ Sv

such that f(s1r) = ry1 and f(s2r) = ry2. Furthermore, s1y2 and s2y1 cannot be edges, and since r is not
a source, these non-edges have to be assigned by f . The non-edge s1y2 cannot be assigned to an edge
s1x with x a neighbour of s1 in Su since s1 is a source and x would be an in-neighbour of s1.

First, assume that we have two distinct vertices z1, z2 ∈ Sv such that f(y1z1) = s2y1 and f(y2z2) =
s1y2. The vertices z1 and z2 cannot be adjacent to r since they are neighbours with respectively y1 and
y2. But since s1 is adjacent to z2 and s2 to z1, both non-edges rz1, rz2 are f -free, a contradiction.

Thus, there is a vertex z ∈ Sv such that f(y1z) = s2y1 and f(y2z) = s1y2. By the same argument, z
cannot be adjacent to r, and the non-edge rz is f -free. This construction is depicted in Figure 14.

s1

s2

r

y1

y2

z

Su Sv

Figure 14: The vertices s1 and s2 are sources, and rz is the only f -free non-edge in G.

Now, by Lemma 8(c), r has a neighbour y3 in Sv. The vertex y3 is adjacent to s1 and s2 since
otherwise the non-edges would be f -free. Now, the edge ry3 is critical (note that it is not critical for the
pair {r, y3} since they share s1 and s2 as common neighbours). Assume it is critical for a pair {r, y4}
with y4 ∈ Sv. The vertex y4 cannot be z since r and z already have two common neighbours, and it
cannot be y1 or y2 since this would contradict f(s1r) = ry1 and f(s2r) = ry2. However, this implies that
y4 is not adjacent to both s1 and s2, and the non-edges s1y4 and s2y4 are f -free, a contradiction.

Thus, the edge ry3 is critical for a pair {t, y3} with t ∈ Su. Moreover, t ∈ T since t is an out-neighbour

14



of r. By Claim 1, r is the unique in-neighbour of t. Now, by Lemma 8(c), t has a neighbour in Sv. It
cannot be y1 or y2 since s1 and s2 are the unique common neighbours of those and r. It cannot be z since
this would imply f(y1z) = y1t and f(y2z) = y2t, a contradiction with f(y1z) = s2y1 and f(y2z) = s1y2.

Now, the non-edge ty1 has a preimage by the function f . This preimage cannot be an edge xt with
x ∈ Su since t only has r as an in-neighbour, and ry1 /∈ E. So there exists a vertex y4 ∈ Sv such
that f(y1y4) = ty1. By our previous discussion, y4 /∈ {y2, y3, z}. But now r and y4 cannot be adjacent
since r and y1 have s1 as unique common neighbour, which implies that the non-edge ry4 is f -free, a
contradiction that completes this proof. The construction is depicted in Figure 15. �

s1

s2

r

t

y1

y2

z

y3

y4

Su Sv

Figure 15: If there are two sources in C, then G has at least two f -free non-edges incident with C. Here,
these two f -free non-edges are rz and ry4.

Now, by Claim 2, there is a unique source s in C. By Claim 1, s 6= r, and furthermore, since C has
diameter at least 3, s has an out-neighbour x that is not r.

By Lemma 8(d), s has a non-neighbour y1 in Sv. Since s 6= r, the non-edge sy1 has a preimage by
the function f . This preimage cannot be an edge sz with z a neighbour of s in Su: indeed, since s is a
source, z would be an out-neighbour of s, but then sy1 would be f -free. Thus, we have sy1 = f(y1y2),
for some in-neighbour of y1 in Sv. Note that, by Lemma 13, we have N(x)∩ Sv = (N(s)∩ Sv) \ {y2}. In
particular, xy1, xy2 /∈ E.

Now, the non-edge xy1 has a preimage by the function f . This preimage cannot be an edge y1z with
z ∈ Sv, since otherwise we would have sz ∈ E and thus sy1 would be f -free, a contradiction. Thus, there
exists z ∈ Su an in-neighbour of x such that f(zx) = xy1. In particular, we have z 6= r (since otherwise
s, r and x induce a transitive triangle, and Lemma 15 implies that an f -free non-edge is incident with s,
a contradiction). This construction is depicted in Figure 16.

Su Sv

s

r x

y1

y2

z

Figure 16: The structure of C is very constrained: there is a unique source s, which has an out-neighbour
x distinct from r. The snake-like arcs represent a directed path of any length: z is an in-neighbour of r
and an out-neighbour of s due to the fact that C is acyclic.
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However, Lemma 13 implies that no successor of s and predecessor of r can be adjacent to y1.4 But
since s is the only source in C (by Claim 2) and r is the only in-neighbour of all sinks in C (by Claim 1,
z is a successor of s and a predecessor of r. Since zy1 ∈ E, we reach a contradiction.

Thus, there are at least two f -free non-edges incident with vertices of C, which completes the proof.

2.6 Proof of Theorem 4

We are now ready to prove Theorem 4, which we recall here.

Theorem 4. Let G be a non-bipartite D2C graph with n vertices having a dominating edge. If G is not
H5, then G has at most

⌊
n2/4

⌋
− 2 edges.

Proof. Consider the function f defined previously. We have seen in Section 2.4 that free(f) ≥ 1. We
need to prove that free(f) ≥ 2. Thus, by contradiction, let us assume that free(f) = 1.

Case 1: Puv is empty. By Lemma 8(b), Suv = ∅. Since G is non-bipartite, there must be at least

one edge inside Su or Sv. Without loss of generality, assume it is in Su. Let
−→
D be the graph induced by

Su and oriented with respect to the f -orientation; it has at least one nontrivial connected component. If
there are more than one nontrivial components, then the desired bound follows from Theorem 20. Hence,

we assume that there is exactly one nontrivial component C in
−→
D . If C has diameter at least 3, then the

desired bound follows from Theorem 21. Thus, we assume that C has diameter at most 2.
Since C is nontrivial, there is at least an arc −−→x1x2 in C. Let f(x1x2) = x2y1 for some vertex

y1 ∈ N(x1) ∩ Sv. By Lemma 8(c), the vertex x2 has also a neighbour y2 ∈ Sv. Now, the edge ux1 is
critical. It cannot be critical for the pair {u, x1} since u and x1 have x2 as a common neighbour, or for
a pair {u, x} for x ∈ Su since ux ∈ E, or for a pair {u, y} for y ∈ Sv since u and y have v as a common
neighbour, or for a pair {x, y} with y ∈ Sv because uy /∈ E. So there is a vertex x3 ∈ Su such that ux1

is critical for the pair {x1, x3}. Furthermore, we have x3 6∈ C since otherwise x1 and x3 would be at
distance at most 2, which is not possible by the criticality of ux1. So x3 is independent in Su. Applying
the same reasoning, we get a vertex x4 ∈ Su, independent in Su, such that N(x2) ∩N(x4) = {u} (note
that we can have x3 = x4).

Since N(x1) ∩ N(x3) = {u} and x3 is independent in X, x3y1 /∈ E and x3 and y1 have a common
neighbour y3 ∈ Sv. But now at least one of the two non-edges x1y3 and x3y1 is f -free. Indeed, otherwise
we would have two distinct edges e and e′ such that f(e) = x1y3 and f(e′) = x3y1, which would imply
that e = y1y3 = e′, a contradiction. This construction is depicted in Figure 17. Applying the same
reasoning, we get a vertex y4 ∈ Sv as common neighbour of x4 and y2 (note that we can have y3 = y4),
and at least one f -free non-edge among x2y4 and x4y2. Since all four non-edges are distinct (this is
because x1 6= x2, x1 6= x4, x2 6= x3, y1 6= y2, y1 6= y3 and y2 6= y4), we have two f -free non-edges in G, a
contradiction.

x1

x2

x3

y1

y2

y3

Su Sv

Figure 17: If the only nontrivial component in Su has diameter at most 2, one of the two bolded non-edges
is f -free. Applying the same construction for x2 gives us again one of two non-edges which are f -free.

4A predecessor of a vertex a is a vertex b such that there is a directed path from b to a. Similarly, a successor of a is a
vertex b such that there is a directed path from a to b.
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Case 2: Puv is nonempty. Since free(f) = 1, by Lemma 12(d), |Su| ≥ |Sv| − 1. As in the proof
of Lemma 12, we let free(Puv, f) be the number of f -free non-edges incident with a vertex of Puv (here
free(Puv, f) ∈ {0, 1}). We consider the following subcases.

Case 2.1: Suppose first that the unique f -free non-edge is incident with a vertex p of Puv, say it is pt for
some vertex t ∈ Sv. Consider the sets Su(p) and Sv(p) and the function m as defined in Lemma 12; by
Lemma 12(c), Su(p) and Sv(p) are independent sets. By Lemma 11, if ||X|−|Y || ≥ 2, then G has at most⌊
n2/4

⌋
− 2 edges, and we are done. Thus, we assume that ||X| − |Y || ≤ 1. Recall that by Lemma 12(d),

we have |Su| ≥ |Sv| − 1. Then

|X| = |Su|+ |Suv|+ |Puv|+ 1 ≥ |Sv|+ |Suv|+ |Puv| = |Y | − 1 + |Suv|+ |Puv|.

Since ||X| − |Y || ≤ 1, it follows that |Suv|+ |Puv| ∈ {1, 2}, and thus either |Suv| = |Puv| = 1 or Suv = ∅
and |Puv| ∈ {1, 2}. We distinguish between these cases.

1. Suppose that |Suv| = |Puv| = 1. Then Puv = {p} and |Su| = |Sv|−1. The latter implies Su = Su(p),
and again (as in the case free(f) = 0) the vertex in Suv cannot be adjacent to any vertex in Su.
Thus, for any non-edge xy in Su(p) × Sv(p), the only possible common neighbour of x and y is t.
Thus, if |Su(p)| = |Sv(p)| ≥ 2, t must be adjacent to all vertices in Su(p) and Sv(p). Observe that,
if vt is critical for the pair {s, t} with Suv = {s}, then s has no neighbour in Sv (since t is adjacent
to every other vertex in Sv), and thus all but one of the non-edges between s and Sv are f -free
(their only possible preimage by f is sv). But this is the only pair for which the edge vt can be
critical, thus we reach a contradiction. Furthermore, if |Su(p)| = |Sv(p)| = 1, then the vertices in
Sv cannot be adjacent to the vertex in Suv since otherwise the edges between v and Sv would not
be critical, and the graph has at least two free non-edges (pt and one of the non-edges between Sv

and Suv, which can both only be assigned to the unique edge between v and Suv), a contradiction.
Since Su(p) = Su 6= ∅, we have finished this case.

2. Suppose that Suv = ∅. If Su = Su(p), then, as in the case free(f) = 0, for any x ∈ Su, the edge ux
would not be critical, a contradiction. Thus, we can assume that there is a vertex w ∈ Su \ Su(p).
Then Puv = {p} and |Su| = |Sv|. If |Su| = 2, then the vertex in Su(p) is adjacent to t (since p and t
are at distance 2 and pt is f -free). However, by Lemma 8(c), w has a neighbour in Sv. Thus, w and
the vertex in Su(p) have two common neighbours (u and a vertex in Sv), and thus the edge between
u and the vertex in Su(p) is not critical, a contradiction. This implies that there are at least two
vertices in Su(p). Furthermore, pw /∈ E (since otherwise this edge would not be critical). Since
pt is f -free, there is a vertex m(x) ∈ Su(p) (for a certain x ∈ Sv(p)) such that m(x)t ∈ E (since
otherwise, either G would have diameter 3, or N(t) ∩ N(p) = {w}, two contradictions). Assume
first that there exists a vertex m(y) ∈ Su(p) (for a certain y ∈ Sv(p)) such that m(y)t /∈ E. Then
the non-edge m(y)t must have a preimage by the function f , and there are two possibilities. First,
if either f(yt) = m(y)t or f(m(x)m(y)) = m(y)t, then by Lemma 12(c) the non-edge m(x)y is
f -free, a contradiction. Now, if f(m(y)w) = m(y)t then wy ∈ E (since otherwise it would be an
f -free non-edge) and yt /∈ E. This implies that the non-edge m(x)y, which is not f -free, can only
have m(x)w as a preimage by f (since Su(p) and Sv(p) are independent sets), and thus wx ∈ E
(since otherwise it would be an f -free non-edge). However, all this implies that the non-edge m(y)x
is f -free, a contradiction. Thus, t is adjacent to all vertices in Su(p). However, t is adjacent to
no vertex in Sv(p) (since otherwise the edge vt would not be critical), and thus we necessarily
have f(m(x)w) = m(x)y for all non-edges m(x)y ∈ Su(p)× Sv(p), which in turn implies that w is
adjacent to all vertices in Su(p) and Sv(p). Furthermore, wt ∈ E (since otherwise it would be an
f -free non-edge: Su(p) ⊆ N(w)∩N(t) and |Su(p)| ≥ 2). However, wt is not critical, a contradiction.

Hence, we have shown that the f -free non-edge is not incident with p.

Case 2.2: Suppose that the unique f -free non-edge is incident with a vertex of Suv. Then, Suv 6= ∅ and
free(Puv, f) = 0. Thus, by Lemma 12(d), we have |Su| ≥ |Sv|. But then, ||X| − |Y || = (|Su| + |Puv| +
|Suv|)− |Sv| ≥ 2, and by Lemma 11, we deduce that G has at most bn2/4c − 2 edges, a contradiction.

Case 2.3: Finally, assume that the unique f -free non-edge is in Su × Sv. Then, since free(Puv, f) = 0,
by Lemma 12(d), we deduce that Sv = Sv(p), and |Su| ≥ |Sv|. By Lemma 12(c), Sv = Sv(p) is an
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independent set. Once again, if ||X| − |Y || ≥ 2, by Lemma 11, G has at most bn2/4c − 2 edges, and we
are done. Thus, there is no vertex in Su \ Su(p), Puv = {p}, and Suv = ∅. Since the f -free non-edge is
in Su × Sv, we know that |Su(p)|, |Sv(p)| ≥ 2. But now all the edges ux with x ∈ Su(p) are not critical,
since any two vertices of Su have both u and p as common neighbours. This is a contradiction.

The above study covers all possible cases, and we always reach a contradiction. Thus, if Puv 6= ∅, then
there are at least two f -free non-edges, a contradiction which completes the proof of Theorem 4.

3 Characterizing D2C graphs of order n with maximum degree
n− 2

It is not difficult to observe that the only D2C graphs of order n with maximum degree n− 1 (likewise,
with minimum degree 1) are stars. The D2C graphs with maximum degree n−2 turn out to be interesting,
as they form a precise family of graphs; they all have 2n − 4 edges and a dominating edge. We will see
that the graph H5 from Figure 2 is the smallest member of this family (indeed it has six vertices and a
vertex of degree 4).

We first describe a family T of twin-free D2C graphs with order n ≥ 6 and maximum degree n − 2.
(Recall that twins are non-adjacent vertices with the same neighbours.) When n = 2k + 2 is an even
integer (k ≥ 2), we let V (Tn) = A ∪B ∪ {u, v}, where A = {a1, . . . , ak} and B = {b1 . . . , bk}. The edges
of Tn are defined as follows: for every i with i ≤ 1 ≤ k, we have the edge aibi, the edges uai, ubi and vbi.
For odd n (n = 2k + 3 and k ≥ 2), Tn is obtained from Tn−1 by adding a vertex w adjacent to u and v.
See Figure 18 for an illustration.

u

v

a1 a2 ak−1 ak

b1 b2 bk−1 bk· · ·

· · ·A

B

(a) T2k+2

u

v w

a1 a2 ak−1 ak

b1 b2 bk−1 bk· · ·

· · ·A

B

(b) T2k+3

Figure 18: The two D2C graphs T2k+2 and T2k+3; A and B are independent sets, and the bold edges are
dominating.

We will extend the family T to graphs that have twins. But first, we will need the following theorem
of MacDougall and Eggleton [23].

Theorem 22 (MacDougall and Eggleton [23, Theorem 2]). Let G be a D2C graph with a vertex v of G.
The graph G′ obtained from G by adding a twin of v is D2C if and only if for every vertex w 6= v such that
v and w are in a common triangle, there exists a non-neighbour x of v in G such that N(x)∩N(v) = {w}.

We observe the following.

Observation 23. In the graph Tn, the only vertices satisfying the conditions of Theorem 22 are the ones
of A ∪ {v, w}.

Nevertheless, adding a twin to v would result in a graph of order n with maximum degree at most
n− 3. Thus, we define the family of graphs T ′ extending T in the following way. T ′ contains all graphs
obtained from a graph in T by replacing an arbitrary (possibly empty) subset of vertices of A ∪ {w}
by any number of twins. Note that for any graph G in T ′, the edge ubi is dominating for every i with
1 ≤ i ≤ k. If w exists in G, then also the edge uw is dominating.
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Next, we show that the graphs in T ′ are D2C. Note that T6 is isomorphic to the graph H5 of Figure 2.
The graph obtained from T6 by adding a twin to any vertex of A is isomorphic to the graph of Figure 3(a).5

The graph T7 is isomorphic to the graph of Figure 3(c).

Proposition 24. Any graph of order n in T ′ is D2C and has 2n− 4 edges.

Proof. Rceall that G is obtained from T2k+2 or T2k+3 (k ≥ 2) by expanding any (possibly empty) subset
of vertices of A ∪ {w} into twins.

It is clear that T2k+2 has 4k = 2n− 4 edges. When we add w to obtain T ′2k+3, we add one vertex and
two edges. Similarly, when adding a twin of a vertex of A ∪ {w} to T2k+2 or T2k+3, we always add one
vertex and two edges, thus the resulting number of edges is always 2n− 4.

It remains to show that G is D2C. It is clear that G has diameter 2. Assume first that G has no twins.
Let 1 ≤ i, j ≤ k such that i 6= j. The edges uai and ubi are critical for all the pairs {ai, bj} and {bi, aj},
respectively. The edge aibi is critical for {ai, v}. Each edge vbi is critical for the pair {v, bi}. The edges
wu and wv are critical for the pairs {w, ai} and {w, v}, respectively.

When G has twins, we apply Observation 23 and Theorem 22.

We now show that the graphs of T ′ are the only non-bipartite D2C graphs with maximum degree
n− 2.

Theorem 25. Any non-bipartite D2C graph on n vertices and maximum degree n− 2 belongs to T ′.

Proof. Let G be a non-bipartite D2C graph on n vertices and maximum degree n−2. By Observation 23
and Theorem 22, we may assume that G is twin-free; thus we need to prove that G belongs to T .

Let u be a vertex of degree n− 2 in G, and let v be its unique non-neighbour. First of all, we claim
that N(v) forms an independent set. Indeed, if x, y are two adjacent vertices of N(v), the edge xy cannot
be critical, a contradiction.

Next, we claim that every vertex x of N(u) \N(v) has exactly one neighbour in N(v). First, if x has
no neighbour in N(v), then x and v would be at distance 3, a contradiction. Second, if x had two distinct
neighbours y and z in N(v), then the edges xy and xz could not be critical, a contradiction. Denote by
f(x) the unique neighbour of x in N(v).

We now show that N(u) \N(v) is an independent set. Indeed, if we had two adjacent vertices x1 and
x2 in N(u) \N(v), since both x1 and x2 have a neighbour in N(v), the edge x1x2 cannot be critical, a
contradiction.

We now show that if x1, x2 are two distinct vertices of N(u) \ N(v), then f(x1) 6= f(x2). Indeed, if
we had f(x1) = f(x2), then x1 and x2 would be twins, a contradiction.

Thus, the subgraph induced by N(u) is a collection of disjoint edges. Hence, there can be at most
one vertex in N(v) that has no neighbour in N(u) (if there are two they would be twins).

Thus, we let A = N(u) \N(v), B = {y ∈ N(v) | y = f(x) and x ∈ A}, and if (B \N(v)) 6= ∅, we let
w be the only vertex of B \N(v). It is now clear that G is isomorphic to Tn.

4 Conclusion

Conjecture 3 postulates that there is a linear gap in the set of possible numbers of edges of D2C graphs
of order n when we exclude the well-understood class of complete bipartite graphs: from bn2/4c to
b(n−1)2/4c+ 1. The bound of Theorem 4 only shows a constant gap for graphs with a dominating edge,
which leaves room for further improvements. We hope that our method can be further used to improve
the gap by a function of n (ideally linear), towards Conjecture 3. As witnessed by Theorems 20 and 21,
in order to do so, one should first focus on the case when Puv is nonempty. When Puv is empty, the
first case to improve is the one considered in Theorem 21, especially when there is a unique connected
component in both Su and Sv, and the f -orientation is acyclic.

Recall that the infinite family C+
5 of extremal graphs for Conjecture 3 contains only graphs with no

dominating edge. Moreover, among graphs of order at most 11, there are only ten non-bipartite D2C
graphs with a dominating edge (all of order at most 9) and b(n−1)2/4c+ 1 edges. Thus we suspect that,
for this class of D2C graphs, the bound of Conjecture 3 is actually not tight, and ask the following.

5Similarly, the graph obtained from T6 by adding a twin to v is isomorphic to the graph of Figure 3(b), but it has
maximum degree n− 3 and thus does not belong to T ′.
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Question. What is the largest possible number of edges of a non-bipartite D2C graph of order n and with
a dominating edge?

Towards this question, one possibility to obtain a D2C graph with a dominating edge is to start with
the graph T7 defined in Section 3 and depicted in Figure 3(c), and expand the vertices v and w into two

equal-size sets of twins. The resulting graph is D2C, has (n−2)2+15
4 edges, and the edge uw is dominating.
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[7] P. Erdős, A. Rényi and V. T. Sós. On a problem of graph theory. Studia Scientiarum Mathematicarum
Hungarica 1:215–235, 1966.

[8] G. Fan. On diameter 2-critical graphs. Discrete Mathematics 67(3):235–240, 1987.
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