
HAL Id: hal-01959680
https://hal.science/hal-01959680

Preprint submitted on 18 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local existence of strong solutions of a fluid-structure
interaction model

Sourav Mitra

To cite this version:
Sourav Mitra. Local existence of strong solutions of a fluid-structure interaction model. 2018. �hal-
01959680�

https://hal.science/hal-01959680
https://hal.archives-ouvertes.fr


Local existence of strong solutions of a fluid-
structure interaction model

Sourav Mitra
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Abstract. We are interested in studying a system coupling the com-
pressible Navier-Stokes equations with an elastic structure located at
the boundary of the fluid domain. Initially the fluid domain is rectan-
gular and the beam is located on the upper side of the rectangle. The
elastic structure is modeled by an Euler-Bernoulli damped beam equa-
tion. We prove the local in time existence of strong solutions for that
coupled system.
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1. Introduction

1.1. Statement of the problem

Our objective is to study a fluid structure interaction problem in a 2d channel.
The fluid flow here is modeled by the compressible Navier-Stokes equations.
Concerning the structure we will consider an Euler-Bernoulli damped beam
located on a portion of the boundary. As remarked in [3], such dynamical
models arise in the study of many engineering systems (e.g., aircraft, bridges
etc). In the present article we establish a result on the local in time existence
of strong solutions of such a fluid structure interaction problem. To the best
of our knowledge, this is the first article dealing with the existence of local
in time strong solutions for the complete non-linear model considered here.
We consider data and solutions which are periodic in the ‘channel direction’
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(with period L, where L > 0 is a constant). Here L-periodicity of a function
f (defined on R) means that f(x+ L) = f(x) for all x ∈ R.
We now define a few notations. Let Ω be the domain TL × (0, 1) ⊂ R2,
where TL is the one dimensional torus identified with (0, L) with periodic
conditions. The boundary of Ω is denoted by Γ. We set

Γs = TL × {1}, Γ` = TL × {0}, Γ = Γs ∪ Γ`.

Now for a given function η : Γs × (0,∞) → (−1,∞), which will correspond
to the displacement of the one dimensional beam, let us denote by Ωt and
Γs,t the following sets

Ωt = {(x, y) | x ∈ (0, L), 0 < y < 1 + η(x, t)} = domain of the fluid
at time t,

Γs,t = {(x, y) | x ∈ (0, L), y = 1 + η(x, t)} = the beam at time t.

The reference configuration of the beam is Γs, and we set

ΣT = Γ× (0, T ), ΣsT = Γs × (0, T ),

Σ̃sT = ∪t∈(0,T )Γs,t × {t}, Σ`T = Γ` × (0, T ),

QT = Ω× (0, T ), Q̃T = ∪t∈(0,T )Ωt × {t}.
(1.1)

Γ`0 L

1
η(x, t)

Γs

Figure 1. Domain Ωt.

We consider a fluid with density ρ and velocity u. The fluid structure interac-
tion system coupling the compressible Navier-Stokes and the Euler-Bernoulli
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damped beam equation is modeled by

ρt + div(ρu) = 0 in Q̃T ,

(ρut + ρ(u.∇)u)− (2µdiv(D(u)) + µ′∇divu) +∇p(ρ) = 0 in Q̃T ,

u(·, t) = (0, ηt) on Σ̃sT ,

u(·, t) = (0, 0) on Σ`T ,

u(·, 0) = u0 in Ω,

ρ(·, 0) = ρ0 in Ω,

ηtt − βηxx − δηtxx + αηxxxx = (Tf )2 on ΣsT ,

η(·, 0) = 0 and ηt(·, 0) = η1 in Γs,
(1.2)

where Ω = Ωη(0). The initial condition for the density is assumed to be
positive and bounded. We fix the positive constants m and M such that

0 < m = min
Ω
ρ0(x, y), M = max

Ω
ρ0(x, y). (1.3)

In our model the fluid adheres to the plate and is viscous. This implies that
the velocities corresponding to the fluid and the structure coincide at the
interface and hence the condition (1.2)3 holds. In the system (1.2), D(u) =
1
2 (∇u +∇Tu) is the symmetric part of the gradient and the real constants
µ, µ′ are the Lamé coefficients which are supposed to satisfy

µ > 0, µ′ > 0.

In our case the fluid is isentropic i.e. the pressure p(ρ) is only a function of
the fluid density ρ and is given by

p(ρ) = aργ ,

where a > 0 and γ > 1 are positive constants.
We assume that there exists a constant external force pext > 0 which acts on
the beam. The external force pext can be written as follows

pext = aργ ,

for some positive constant ρ.
To incorporate this external forcing term pext into the system of equations
(1.2), we introduce the following

P (ρ) = p(ρ)− pext = aργ − aργ . (1.4)

Since ∇p(ρ) = ∇P (ρ), from now onwards we will use ∇P (ρ) instead of ∇p(ρ)
in the equation (1.2)2.
In the beam equation the constants, α > 0, β > 0 and δ > 0 are respectively
the adimensional rigidity, stretching and friction coefficients of the beam. The
non-homogeneous source term of the beam equation (Tf )2 is the net surface
force on the structure which is the resultant of force exerted by the fluid
on the structure and the external force pext and it is assumed to be of the
following form

(Tf )2 = ([−2µD(u)−µ′(divu)Id]·nt+Pnt) |Γs,t

√
1 + η2

x·~e2 on ΣsT , (1.5)
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where Id is the identity matrix, nt is the outward unit normal to Γs,t given
by

nt = − ηx√
1 + η2

x

~e1 +
1√

1 + η2
x

~e2

(~e1 = (1, 0) and ~e2 = (0, 1)).
Observe that (ρ,u, η) = (ρ, 0, 0) is a stationary solution to (1.2)-(1.4)-(1.5).

Remark 1.1. Now we can formally derive a priori estimates for the system
(1.2)-(1.4)-(1.5) and show the following energy equality

1

2

d

dt

∫
Ωt

ρ|u|2 dx

+
d

dt

∫
Ωt

a

(γ − 1)
ργ dx

+
1

2

d

dt

 L∫
0

|ηt|2 dx


+
β

2

d

dt

 L∫
0

|ηx|2 dx

+
α

2

d

dt

 L∫
0

|ηxx|2 dx

+ 2µ

∫
Ωt

|Du|2 dx

+ µ′
∫
Ωt

|divu|2 dx+ δ

L∫
0

|ηtx|2 dx = −pext
∫
Γs

ηt.

(1.6)

The equality (1.6) underlines the physical interpretation of each coefficient
and in particular of the viscosity coefficients, µ, µ′ and δ.

Remark 1.2. Observe that in (1.2) we have considered the initial displacement
η(0) of the beam to be zero. This is because we prove the local existence of
strong solution of the system (1.2) with the beam displacement η close to
the steady state zero. There are several examples in the literature where the
authors consider the initial displacement of the structure (in a fluid-structure
interaction problem) to be equal to zero. For instance the readers can look
into the articles [26] and [9]. We also refer to the article [4] where the initial
displacement of the structure is non zero but is considered to be suitably small.
The issues involving the existence of strong solution for the model (1.2) but
with a non zero initial displacement η(0) of the beam is open. The case of
a system coupling the incompressible Navier-Stokes equations and an Euler-
Bernoulli damped beam with a non zero initial beam displacement is addressed
in [12].

Our interest is to prove the local in time existence of a strong solution
to system (1.2)-(1.4)-(1.5) i.e we prove that given a prescribed initial datum
(ρ0,u0, η1), there exists a solution of system (1.2)-(1.4)-(1.5) with a certain
Sobolev regularity in some time interval (0, T ), provided that the time T is
small enough.
We study the system (1.2)-(1.4)-(1.5) by transforming it into the reference
cylindrical domain QT . This is done by defining a diffeomorphism from Ωt
onto Ω. We adapt the diffeomorphism used in [4] in the study of an incom-
pressible fluid-structure interaction model. The reader can also look at [34],
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[24] where the authors use a similar map in the context of a coupled fluid-
structure model comprising an incompressible fluid.

1.2. Transformation of the problem to a fixed domain

To transform the system (1.2)-(1.4)-(1.5) in the reference configuration, for
η satisfying 1 + η(x, t) > 0 for all (x, t) ∈ ΣsT , we introduce the following
change of variables

Φη(t) : Ωt −→ Ω defined by Φη(t)(x, y) = (x, z)

=

(
x,

y

1 + η(x, t)

)
,

Φη : Q̃T −→ QT defined by Φη(x, y, t) = (x, z, t)

=

(
x,

y

1 + η(x, t)
, t

)
.

(1.7)

Remark 1.3. It is easy to prove that for each t ∈ [0, T ), the map Φη(t) is a

C1− diffeomophism from Ωt onto Ω provided that (1 + η(x, t)) > 0 for all
x ∈ TL and that η(·, t) ∈ C1(Γs).

Notice that since η(·, 0) = 0, Φη(0) is just the identity map. We set the
following notations

ρ̂(x, z, t) = ρ(Φ−1
η (x, z, t)), û(x, z, t) = (û1, û2) = u(Φ−1

η (x, z, t)). (1.8)

After transformation and using the fact that û1,x = 0 on ΣsT (since û = ηt ~e2

on ΣsT ) the nonlinear system (1.2)-(1.4)-(1.5) is rewritten in the following
form



ρ̂t +

[
û1

1
(1+η) (û2 − ηtz − û1zηx)

]
· ∇ρ̂+ ρ̂divû = F1(ρ̂, û, η) in QT ,

ρ̂ût − µ∆û− (µ′ + µ)∇(divû) +∇P (ρ̂) = F2(ρ̂, û, η) in QT ,

û = ηt ~e2 on ΣsT ,

û(·, t) = 0 on Σ`T ,

û(·, 0) = u0 in Ω,

ρ̂(·, 0) = ρ0 in Ω,

ηtt − βηxx − δηtxx + αηxxxx = F3(ρ̂, û, η) on ΣsT ,

η(0) = 0 and ηt(0) = η1 in Γs,
(1.9)
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where

F1(ρ̂, û, η) =
1

(1 + η)
(û1,zzηxρ̂+ ηρ̂û2,z),

F2(ρ̂, û, η) =− ηρ̂ût + zρ̂ûzηt − ηρ̂û1ûx + û1ûzηxρ̂z + µ
(
ηûxx

− ηûzz
(1 + η)

− 2ηxzûzx +
ûzzz

2η2
x

(1 + η)

− ûz
( (1 + η)zηxx − 2η2

xz

(1 + η)

))
− ρ̂(û.∇)û + (µ+ µ′)

·



ηû1,xx − û1,xzzηx − ηxz
(
û1,zx −

û1,zzzηx
(1 + η)

)
+û1,z

( (1 + η)zηxx − 2η2
xz

(1 + η)

)
− ηxû2,z

(1 + η)
− ηxzû2,zz

(1 + η)

− ηxû1,z

(1 + η)
− ηxzû1,zz

(1 + η)
− ηû2,zz

(1 + η)


− (ηPx(ρ̂)− Pz(ρ̂)zηx)~e1,

F3(ρ̂, û, η) =− µ
(
− û2,z + ηxû2,x +

û2,z

(1 + η)
η2
xz −

2ηû2,z

(1 + η)

− ηxû1,z

(1 + η)

)
− µ′

(
− 2û2,z +

û1,z

(1 + η)
ηxz −

ηû2,z

(1 + η)

)
+ P (ρ̂).

(1.10)

The transport equation for density (1.9)1-(1.9)6 is of the form ρ̂t +

[
û1

1
(1+η) (û2 − ηtz − û1zηx)

]
· ∇ρ̂+ ρ̂divû = F1 in QT ,

ρ̂(·, 0) = ρ0 in Ω.

(1.11)

Due to the interface condition, û = ηt ~e2 on ΣsT , we get that the velocity field
(û1,

1
(1+η) (û2 − ηtz − û1zηx)) satisfies[

û1
1

(1+η) (û2 − ηtz − û1zηx)

]
· n = 0 on ΣsT ,

where n is the unit outward normal to Ω. Hence we shall not prescribe any
boundary condition on the density for the system (1.11) to be well posed.
To avoid working in domains which deform when time evolves, the meaning
of solutions for (1.2)-(1.4)-(1.5) will be understood as follows: The triplet
(ρ,u, η) solves (1.2)-(1.4)-(1.5) if and only if (ρ̂, û, η) solves (1.9). This notion
will be detailed in the next section.

1.3. Functional settings and the main result

In the fixed domain Ω we have the following spaces of functions with values
in R2,

Hs(Ω) = Hs(Ω;R2) for all s > 0.
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We also introduce the following spaces of vector valued functions

H1
0(Ω) = {z ∈ H1(Ω) | z = 0 on Γ},

H2,1(QT ) = L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)),

H2,1
ΣT

(QT ) = {z ∈ H2,1(QT ) | z = 0 on ΣT }.
(1.12)

Similarly for s > 0, we can define Hs(Ω), the Sobolev space for the scalar
valued functions defined on Ω. Now for θ, τ > 0, we introduce the following
spaces which we use to analyze the beam equation

Hθ,τ (ΣsT ) = L2(0, T ;Hθ(Γs)) ∩Hτ (0, T ;L2(Γs)).

Remark 1.4. Since Ω = TL × (0, 1) and Γs = TL × {1}, the above definitions
of the functional spaces implicitly assert that the functions are L− periodic
in the x variable.

Proposition 1.5. Let T > 0. If η is regular enough in the space variable, say
η(·, t) ∈ Hm(Γs) for m > 2 and the following holds

1 + η(x, t) > δ0 > 0 on ΣsT , (1.13)

for some constant δ0, the map g 7→ ĝ = g(Φ−1
η(t)(x, z)) is a homeomorphism

from Hs(Ωt) to Hs(Ω) for any s 6 m.

The proposition stated above can be proved in the same spirit of [24,
Proposition 2, Section 3].
Now in view of Proposition 1.5, we define the notion of strong solution of the
system (1.2)-(1.4)-(1.5) in terms of the strong solution of the system (1.9).

Definition 1.6. The triplet (ρ,u, η) is a strong solution of the system (1.2)-
(1.4)-(1.5) if

η ∈ C0
(
[0, T ];H9/2(Γs)

)
, ηt ∈ L2

(
0, T ;H4(Γs)

)
∩C0

(
[0, T ];H3(Γs)

)
,

ηtt ∈ L2(0, T ;H2(Γs)), ηttt ∈ L2
(
0, T ;L2(Γs)

)
,

∩C0
(
[0, T ];H1(Γs)

) (1.14)

(1.13) holds for every (x, t) ∈ ΣsT and the triplet (ρ̂, û, η) = (ρ◦Φ−1
η ,u◦Φ−1

η , η)
solves (1.9) in the following Sobolev spaces

ρ̂ ∈ C0
(
[0, T ];H2(Ω)

)
, ρ̂t ∈ C0

(
[0, T ];H1(Ω)

)
,

û ∈ L2
(
0, T ;H3(Ω)

)
∩ C0

(
[0, T ];H5/2(Ω)

)
,

ût ∈ L2
(
0, T ;H2(Ω)

)
∩ C0

(
[0, T ];H1(Ω)

)
,

ûtt ∈ L2
(
0, T ;L2(Ω)

)
.

(1.15)

(η is in the space mentioned in (1.14)). Note that (ρ,u) can then be obtained
from (ρ̂, û) by (ρ,u) = (ρ̂ ◦ Φη, û ◦ Φη).
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In relation with Definition 1.6, we introduce the following functional
spaces

Y T1 ={ρ ∈ C0([0, T ];H2(Ω)) | ρt ∈ C0([0, T ];H1(Ω))},

Y T2 ={u ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H5/2(Ω)) | ut ∈ L2(0, T ;H2(Ω))

∩ C0([0, T ];H1(Ω)),utt ∈ L2(0, T ;L2(Ω))},

Y T3 ={η ∈ C0([0, T ];H9/2(Γs)), η(x, 0) = 0 | ηt ∈ L2(0, T ;H4(Γs))

∩ C0([0, T ];H3(Γs)), ηtt ∈ L2(0, T ;H2(Γs)) ∩ C0([0, T ];H1(Γs)),

ηttt ∈ L2(0, T ;L2(Γs))}. (1.16)

The spaces Y T1 , Y
T
2 and Y T3 correspond to the spaces in which the unknowns

ρ̂, û and η respectively.
Now we precisely state the main result of the article.

Theorem 1.7. Assume that

(i) (a) Regularity of initial conditions :
ρ0 ∈ H2(Ω), η1 ∈ H3(Γs),u0 ∈ H3(Ω).

(b) Compatibility between initial and boundary
conditions :

(b)1

(
u0 −

[
0
zη1

])
= 0 on Γ,

(b)2 − P ′(ρ0)∇ρ0 − (δη1,xx − (µ+ 2µ′)(u0)2,z

+P (ρ0))zρ0~e2 + zρ0(u0)zη1 − ρ0(u0 · ∇)u0

−(−µ∆− (µ+ µ′)∇div)u0 = 0 on Γ,
(ii) (1.3) holds,

(1.17)

where we use the notations P ′(ρ0) = ∇P (ρ0), P (ρ0) = (aργ0 − aργ) and
u0 = ((u0)1, (u0)2). Then there exists T > 0 such that the system (1.9)
admits a solution (ρ̂, û, η) ∈ Y T1 × Y T2 × Y T3 . Consequently in the sense of
Definition 1.6 the system (1.2)-(1.4)-(1.5) admits a strong solution (ρ,u, η).

Remark 1.8. Our analysis throughout the article can be suitably adapted to
consider any pressure law p(·) ∈ C2(R+) (in this article we present the proofs
with the pressure law given by p(ρ) = aργ , with γ > 1) such that there exists
a positive constant ρ satisfying p(ρ) = pext, where pext(> 0) is the external
force acting on the beam. The adaptation is possible since we only consider
the case where the fluid density ρ has a positive lower and upper bound.

Now let us sketch the strategy towards the proof of Theorem 1.7.

1.4. Strategy

(i) Changing (1.9) to a homogeneous boundary value problem: Recall that
(see Remark 1.2) we will prove the existence of local in time strong solution
of the system (1.2)-(1.4)-(1.5) only when the beam displacement η is close to
zero. Again observe that (ρ̂ = ρ, û = 0, η̂ = 0) is a steady state solution of
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the system (1.2)-(1.4)-(1.5) and hence of the system (1.9). So to work in a
neighborhood of η = 0, we make the following change of unknowns in (1.9),

σ = ρ̂− ρ, v = (v1, v2) = û− 0, η = η − 0. (1.18)

In view of the change of unknowns (1.18) one obtains

σt +

[
v1

1
(1+η) (v2 − ηtz − v1zηx)

]
· ∇σ + (σ + ρ)div(v)

= F1(σ + ρ,v, η) in QT ,

(σ + ρ)vt − µ∆v − (µ+ µ′)∇divv
= −P ′(σ + ρ)∇σ + F2(σ + ρ,v, η) in QT ,

v = ηt ~e2 on ΣsT ,

v = 0 on Σ`T ,

v(·, 0) = u0 in Ω,

σ(·, 0) = σ0 = ρ0 − ρ in Ω,

ηtt − βηxx − δηtxx + αηxxxx = F3(σ + ρ,v, η) on ΣsT ,

η(0) = 0 and ηt(0) = η1 in Γs.

(1.19)

We transform the system (1.19) into a homogeneous Dirichlet boundary value
problem by performing further the following change of unknown

w = (w1, w2) = v − zηt ~e2. (1.20)

Since v and ηt both are L-periodic in the x−direction, the new unknown w
is also L-periodic in the x−direction. With the new unknown w, we write
the transformed system in the following form

σt +

[
w1

1
(1+η) (w2 − w1zηx)

]
· ∇σ = G1(σ,w, η) in QT ,

(σ + ρ)wt − µ∆w − (µ+ µ′)∇divw = G2(σ,w, η) in QT ,

w = 0 on ΣT ,

w(·, 0) = w0 = u0 − zη1~e2 in Ω,

σ(·, 0) = σ0 = ρ0 − ρ in Ω,

ηtt − βηxx − δηtxx + αηxxxx = G3(σ,w, η) on ΣsT ,

η(0) = 0 and ηt(0) = η1 in Γs,

(1.21)

where

G1(σ,w, η) = −(σ + ρ)div(w + zηt ~e2) + F1(σ + ρ,w + zηt ~e2, η),

G2(σ,w, η) = −P ′(σ + ρ)∇σ − zηtt(σ + ρ)~e2

− (−µ∆− (µ+ µ′)∇div)(zηt ~e2) + F2(σ + ρ,w + zηt ~e2, η),

G3(σ,w, η) = F3(σ + ρ,w + ηt ~e2, η). (1.22)

(ii) Study of some decoupled linear problems: Observe that in the new system
(1.21) the coupling between the velocity of the fluid and the elastic structure
appears only as source terms. In order to solve the system (1.21) we first
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study some linear equations in Section 2. In order to analyze the local in time
existence of strong solution the difficulty is to track the dependence of the
constants (appearing in the inequalities) with respect to the time parameter
‘T’. In this direction we first obtain a priori estimates for the linear density
and velocity equations with non homogeneous source terms in the spirit of
[39]. Then we prove the existence of strong solutions for a linear beam equa-
tion. The proof strongly relies on the analyticity of the corresponding beam
semigroup (see [14] for details). At this point we refer the readers to the arti-
cles [19] (maximal Lp−Lq regularity of structurally damped beam equation),
[20] (analyticity and exponential stability of beam semigroup), [34] (study of
beam equation in the context of an incompressible fluid structure interaction
problem) and the references therein for the existence and regularity issues of
the damped beam equation. In our case to obtain estimates with the con-
stants independent of ‘T’ for the beam equation we first fix a constant T > 0
and restrict ourselves to work in the time interval (0, T ) where

T < T . (1.23)

This technique is inspired from [35].
(iii) Fixed point argument : In Section 3 we prove the existence of a strong
solution of (1.21) by using the Schauder’s fixed point theorem based on (1.21)-
(1.22).

Remark 1.9. Since η(0) = 0 the regularity (1.14) of η guarantees that

‖η‖L∞(Σs
T ) 6 CT‖ηt‖L∞(0,T ;H3(Γs)), (1.24)

for a constant C independent of T. For small enough time T, (1.24) furnishes
η ≈ 0 and hence during small times, the beam stays close to the steady state
zero.

1.5. Comments on initial and compatibility conditions

(i) Recall from (1.17)(i)(a) that we assume u0 ∈ H3(Ω). Also observe that
in our solution (see (1.15)) the vector field û ∈ C0([0, T ];H5/2(Ω)) i.e for the
velocity field there is a loss of 1

2 space regularity as the time evolves. One
can find such instances of a loss of space regularity in many other articles in
the literature, for instance we refer the readers to [8], [26] (for the coupling
of fluid-elastic structure comprising a compressible fluid) and [15], [16], [35]
(for incompressible fluid structure interaction models).

(ii) We use (1.22)3 to obtain the following expression of G3 |t=0 (the value of
G3(σ,w, η) at time t = 0)

G3 |t=0= −(µ+ 2µ′)(u0)2,z + P (ρ0). (1.25)

Using ρ0 ∈ H2(Ω), u0 ∈ H3(Ω) (see (1.17)(i)(a)) and standard trace theo-
rems one easily checks that

G3 |t=0∈ H3/2(Γs). (1.26)

We will use the regularity of G3 |t=0 (in fact we will only use G3 |t=0∈
H1(Γs)) to prove the regularity of η. This will be detailed in Theorem 2.7.
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(iii) We use (1.25) and the equation (1.21)6 to check that

ηtt(·, 0) = δη1,xx − (µ+ 2µ′)(u0)2,z + P (ρ0).

Hence using (1.22)2 one obtains the following expression of G2 |t=0 (the
value of G2(σ,w, η) at time t = 0)

G2 |t=0 = −P ′(ρ0)∇ρ0 − (δη1,xx − (µ+ 2µ′)(u0)2,z + P (ρ0))zρ0~e2 (1.27)

+ zρ0(u0)zη1 − ρ0(u0 · ∇)u0 − (−µ∆− (µ+ µ′)∇div)(zη1 ~e2).

This gives

G2 |t=0 − (−µ∆− (µ+ µ′)∇div)

(
u0 −

[
0
zη1

])
= −P ′(ρ0)∇ρ0

− (δη1,xx − (µ+ 2µ′)(u0)2,z + P (ρ0))zρ0~e2 + zρ0(u0)zη1

− ρ0(u0 · ∇)u0 − (−µ∆− (µ+ µ′)∇div)u0.

(1.28)

The regularity assumptions (1.17)(i)(a) and (1.28) furnish the following

G2 |t=0 −(−µ∆− (µ+ µ′)∇div)

(
u0 −

[
0
zη1

])
∈ H1(Ω). (1.29)

Hence one obtains (recalling that w0 = u0 − zη1~e2)

the assumption (1.17)(i)(a) and (1.17)(i)(b)2

=⇒ G2 |t=0 −(−µ∆w0 − (µ+ µ′)∇divw0) ∈ H1
0(Ω). (1.30)

We need this to prove some regularity of w and hence of û. This will be
detailed in Theorem 2.1.

1.6. Bibliographical comments

Here we mainly focus on the existing literature devoted to the study of fluid
structure interaction problems.
To begin with we quote a few articles dedicated to the mathematical study of
compressible Navier-Stokes equations. The existence of local in time classical
solutions for the compressible Navier-Stokes equations in a time independent
domain was first proved in [32] and the uniqueness was established in [36].
The global existence of strong solutions for a small perturbation of a stable
constant state was established in the celebrated work [30]. In the article [39]
the authors established the local in time existence of strong solutions in the
presence of inflow and outflow of the fluid through the boundary. In the same
article they also present the proof of global in time existence for small data
in the absence of the inflow. P.-L. Lions proved (in [29]) the global existence
of renormalized weak solution with bounded energy for an isentropic fluid
(i.e p(ρ) = ργ) with the adiabatic constant γ > 3d/(d + 2), where d is the
space dimension. E. Feireisl et al . generalized the approach to cover the range
γ > 3/2 in dimension 3 and γ > 1, in dimension 2 in [21]. The well-posedness
issues of the compressible Navier-Stokes equations for critical regularity data
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can be found in [17], [18]. For further references and a very detailed devel-
opment of the mathematical theory of compressible flow we refer the reader
into the books [33] and [11].
In the last decades the fluid-structure interaction problems have been an
area of active research. There is a rich literature concerning the motion of
a structure inside or at the boundary of a domain containing a viscous in-
compressible Newtonian fluid, whose behavior is described by Navier-Stokes
equations. For instance local existence and uniqueness of strong solutions of
incompressible fluid-structure models with the structure immersed inside the
fluid are studied in [15] (the elastic structure is modeled by linear Kirchhoff
equations) and [16] (the elastic structure is governed by quasilinear elastody-
namics). There also exist articles dealing with incompressible fluid-structure
interaction problems where the structure appears on the fluid boundary and
is modeled by Euler-Bernoulli damped beam equations (1.2)7-(1.2)8. For ex-
ample we refer the readers to [4] (local in time existence of strong solutions),
[13] (existence of weak solutions), [34] (feedback stabilization), [24] (global
in time existence) and the references therein for a very detailed discussion of
such problems.
Despite of the growing literature on incompressible fluids the number of ar-
ticles addressing the compressible fluid-structure interaction problems is rel-
atively limited and the literature has been rather recently developed. One
of the fundamental differences between the incompressible and compressible
Navier-Stokes equations is that the pressure of the fluid in incompressible
Navier-Stokes equations is interpreted as the Lagrange multiplier whereas in
the case of compressible Navier-Stokes equations the pressure is given as a
function of density with the density modeled by a transport equation of hy-
perbolic nature. The strong coupling between the parabolic and hyperbolic
dynamics is one of the intricacies in dealing with the compressible Navier-
Stokes equations and this results in the regularity incompatibilities between
the fluid and the solid structure. However in the past few years there have
been works exploring the fluid-structure interaction problems comprising the
compressible Navier-Stokes equations with an elastic body immersed in the
fluid domain. For instance in the article [7] the authors prove the existence
and uniqueness of strong solutions of a fluid structure interaction problem
for a compressible fluid and a rigid structure immersed in a regular bounded
domain in dimension 3. The result is proved in any time interval (0, T ), where
T > 0 and for a small perturbation of a stable constant state provided there
is no collision between the rigid body and the boundary ∂Ω of the fluid do-
main. In [6] the existence of weak solution is obtained in three dimension for
an elastic structure immersed in a compressible fluid. The structure equation
considered in [6] is strongly regularized in order to obtain suitable estimates
on the elastic deformations. In a very recent article [25], the authors prove
both local and global existence (for small initial data) of a strong solution in
Lp − Lq regularity framework for a compressible fluid structure interaction
problem where the rigid structure is immersed inside the fluid and follows
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Newton’s law. A result concerning the local in time existence and uniqueness
of strong solutions for a problem coupling compressible fluid and an elastic
structure (immersed inside the fluid) can be found in [8]. In the article [8]
the equation of the structure does not contain any extra regularizing term.
The flow corresponding to a Lagrangian velocity is used in [8] in order to
transform the fluid structure interaction problem in a reference fluid domain
ΩF (0), whereas in the present article we use the non physical change of vari-
ables (1.7) for the similar purpose of writing the entire system in a reference
configuration. A similar Navier-Stokes-Lamé system as that of [8] is analyzed
in [26] to prove the existence of local in time strong solutions but in a different
Sobolev regularity framework. In the article [26] the authors deal with less
regular initial data. We also quote a very recent work [9] where the authors
prove the local in time existence of a unique strong solution of a compress-
ible fluid structure interaction model where the structure immersed inside
the fluid is governed by the Saint-Venant Kirchhoff equations.
On the other hand there is a very limited number of works on the compress-
ible fluid-structure interaction problems with the structure appearing on the
boundary of the fluid domain. The article [22] deals with a 1-D structure
governed by plate equations coupled with a bi-dimensional compressible fluid
where the structure is located at a part of the boundary. Here the authors
consider the velocity field as a potential and in their case the non linear-
ity occurs only in the equation modeling the density. Instead of writing the
system in a reference configuration in [22] the authors proved the existence
and uniqueness of solution in Sobolev-like spaces defined on time dependent
domains. The existence of weak solution for a different compressible fluid
structure interaction model (with the structure appearing on the boundary)
is studied in dimension three by the same authors in [23]. In the model con-
sidered in [23], the fluid velocity v satisfies curlv ∧ n = 0 on the entire fluid
boundary and the plate is clamped everywhere on the structural boundary.
In a recent article [3] the authors prove the Hadamard well posedness of
a linear compressible fluid structure interaction problem (three dimensional
compressible fluid interacting with a bi-dimensional elastic structure) defined
in a fixed domain and considering the Navier-slip boundary condition at the
interactive boundary. They write the coupled system in the form

d

dt


ρ
u
η
ηt

 = A


ρ
u
η
ηt

 in (0, T ), and


ρ(0)
u(0)
η(0)
ηt(0)

 =


ρ0

u0

η1

η2

 ,

and prove the existence of mild solution (ρ,u, η, ηt) in the space
C0([0, T ];D(A)) where D(A) is the domain of the operator A. Their approach
is based on using the Lumer-Phillips theorem to prove that A generates a
strongly continuous semigroup. In yet another recent article [10] the authors
consider a three dimensional compressible fluid structure interaction model
where the structure located at the boundary is a shell of Koiter-type with
some prescribed thickness. In the spirit of [29] and [21] the authors prove the
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existence of a weak solution for their model with the adiabatic constant re-
stricted to γ > 12

7 . They show that a weak solution exists until the structure
touches the boundary of the fluid domain.
To the best of our knowledge there is no existing work (neither in dimension
2 nor in 3) proving the existence of strong solutions for the non-linear com-
pressible fluid-structure interaction problems (defined in a time dependent
domain) considering the structure at the boundary of the fluid domain. In
the present article we address this problem in the case of a fluid contained
in a 2d channel and interacting with a 1d structure at the boundary. Our
approach is different from that of [3] and [10]. In [3], since the problem itself
is linearized in a fixed domain, the authors can directly use a semigroup for-
mulation to study the existence of mild solution, whereas [10] considers weak
solutions and a 4 level approximation process (using artificial pressure, artifi-
cial viscosity, regularization of the boundary and Galerkin approximation for
the momentum equation). In the study of weak solutions (in [29], [21], [10])
one of the major difficulties is to pass to the limit in the non-linear pressure
term which is handled by introducing a new unknown called the effective
viscous flux. In our case of strong regularity framework we do not need to
introduce the effective viscous flux and for small enough time T, the term
∇P (σ+ ρ) can be treated as a non homogeneous source term. Our approach
is based on studying the regularity properties of a decoupled parabolic equa-
tion, continuity equation and a beam equation. This is done by obtaining
some apriori estimates and exploiting the analyticity of the semigroup corre-
sponding to the beam equation. Then the existence result for the non-linear
coupled problem is proved by using the Schauder’s fixed point argument. We
prove the existence of the fixed point in a suitable convex set, which is con-
structed very carefully based on the estimates of the decoupled problems and
the estimates of the non-homogeneous source terms. This led us to choose
this convex set as a product of balls (in various functional spaces) of differ-
ent radius. In the present article we prove a local in time existence result of
strong solutions whose incompressible counterpart was proved in [4].
Let us also mention the very recent article [37] where the global existence for
the compressible viscous fluids (without any structure on the boundary) in
a bounded domain is proved in the maximal Lp −Lq regularity class. In this
article the authors consider a slip type boundary condition. More precisely
the fluid velocity u satisfies the following on the boundary

D(u)n− 〈D(u)n,n〉n = 0, and u · n = 0 on ∂Ω× (0, T ).

In a similar note one can consider a fluid structure interaction problem with
slip type boundary condition. In that case the velocity field u solves the
following

D(u)n− 〈D(u)n,n〉n = 0, and u · n = ηt on Γs × (0, T ), (1.31)

where ηt is the structural velocity at the interactive boundary Γs × (0, T ).
To the best of our knowledge for a compressible fluid structure interaction
problem the condition (1.31) is treated only in [3], proving the existence of
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mild solution. Of course the boundary condition (1.31) is different from the
one we consider in the present article since in our case we do not allow the
fluid to slip tangentially through the fluid structure interface (i.e recall in our
case u1 = 0 on ΣsT ).
A more generalized slip boundary condition is considered in [31] in the con-
text of an incompressible fluid structure interaction problem. In the model
examined in [31] the structural displacement has both tangential and normal
components with respect to the reference configuration. At the interface the
fluid and the structural velocities are coupled via a kinematic coupling condi-
tion and a dynamic coupling condition (stating that the structural dynamics
is governed by the jump of the normal stress at the interface). The kinematic
coupling conditions at the interface treated in [31] consists of continuity of
the normal velocities and a second condition stating that the slip between the
tangential components of the fluid and structural velocities is proportional
to the fluid normal stress. The authors in [31] prove the existence of a weak
solution for their model.

1.7. Outline

Section 2 contains results involving the existence and uniqueness of some
decoupled linear equations. We state the existence and uniqueness result for
a parabolic equation in Section 2.1, continuity equation in Section 2.2, linear
beam equation in Section 2.3. In Section 3 we prove Theorem 1.7 by using
the Schauder fixed point theorem.

2. Analysis of some linear equations

We will prove the existence and uniqueness of strong solutions of a parabolic
equation, a continuity equation and a damped beam equation with prescribed
initial data and source terms in appropriate Sobolev spaces.
From now onwards all the constants appearing in the inequalities will be
independent of the final time T, unless specified. We also comment that we
will denote many of the constants in the inequalities using the same notation
although they might vary from line to line.

2.1. Study of a parabolic equation

At first we consider the following linear problem
σwt − µ∆w − (µ+ µ′)∇divw = G2 in QT ,

w = 0 on ΣT ,

w(0) = w0 in Ω,

(2.1)

where σ, w0 and G2 are known functions which are L-periodic in the x
direction.
Let m and M be positive constants such that m < M. We are going to study
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(2.1) where σ, w0 and G2 satisfy the following{
σ ∈ L∞(QT ), 0 < m/2 6 σ 6 2M in QT , 0 < m 6 σ(·, 0) 6M in Ω,
∇σ ∈ L2(0, T ;L3(Ω)), σt ∈ L2(0, T ;L3(Ω)),

(2.2)
and  G2 ∈ L2(0, T ;H1(Ω)), G2,t ∈ L2(0, T ;L2(Ω)),

w0 ∈ H1
0(Ω),

(G2 |t=0 −(−µ∆w0 − (µ+ µ′)∇divw0)) ∈ H1
0(Ω).

(2.3)

The following theorem corresponds to the existence and the regularity prop-
erties of the solution w of the system (2.1).

Theorem 2.1. Let m, M be positive constants such that m < M. Then for all
σ, G2 and w0 satisfying (2.2) and (2.3), there exists a unique solution w of
(2.1) which satisfies the following

w ∈ L2(0, T ;H3(Ω)) ∩ C0([0, T ];H5/2(Ω)), (2.4)

wt ∈ L2(0, T ;H2(Ω)) ∩ C0([0, T ];H1(Ω)), wtt ∈ L2(0, T ;L2(Ω)).

Besides, there exists a constant c1 (depending on m and M but independent
of T, σ, G2 and w0) such that w satisfies the following inequality

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+ ‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω))

6 c1{‖G2‖L2(0,T ;H1(Ω)) + ‖G2‖L∞(0,T ;L2(Ω)) (2.5)

+

(
‖G2,t‖L2(0,T ;L2(Ω)) +

∥∥∥∥G2 |t=0 −(−µ∆w0 − (µ+ µ′)∇divw0)

σ(0)

∥∥∥∥
H1(Ω)

)
· (1 + ‖σt‖L2(0,T ;L3(Ω)) + ‖∇σ‖L2(0,T ;L3(Ω))) · exp(c1‖σt‖2L2(0,T ;L3(Ω)))}.

Remark 2.2. Observe from (2.4) that w ∈ C0([0, T ];H5/2(Ω)) but in (2.5) we
only include the estimate of ‖w‖L∞(0,T ;H2(Ω)) and not of ‖w‖L∞(0,T ;H5/2(Ω)).

Using interpolation one can recover an estimate of ‖w‖L∞(0,T ;H5/2(Ω)) from

the estimates of ‖w‖L2(0,T ;H3(Ω)) and ‖wt‖L2(0,T ;H2(Ω)) where the constant
of interpolation may depend on the final time T.

Remark 2.3. Using (2.3) let us observe that G2 ∈ L2(0, T ;H1(Ω))
∩ H1(0, T ;L2(Ω)) and hence by interpolation G2 |t=0∈ H1/2(Ω). Now from
(2.3)3 one gets that

(−µ∆w0 − (µ+ µ′)∇divw0) ∈ H1/2(Ω).

The elliptic regularity result furnishes that w0 ∈ H5/2(Ω). Since w ∈
C0([0, T ];H5/2(Ω)), for the linear equation (2.1) we do not loose any regu-
larity as time evolves.

Proof of Theorem 2.1. In the context of a smooth domain and with homoge-
neous Dirichlet boundary condition Theorem 2.1 is proved in the article [39].
There is no particular difficulty to adapt the same proof in Ω with L-periodic
(in the x direction) boundary condition. Hence we refer the readers to the
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proofs of [39, Lemma 2.1]. For a related result we also refer the reader to [38,
Lemma 2.2]. �

2.2. Study of a continuity equation

In this section we consider the following linear problem{
σt + w · ∇σ = G1 in QT ,

σ(0) = σ0 in Ω,
(2.6)

where the functions w, G1 and σ0 are L-periodic (in the x direction) func-
tions. The following theorem asserts the existence and regularity of the solu-
tion σ of the density equation (2.6).

Theorem 2.4. Let w ∈ L1(0, T ;H3(Ω)), w ·n = 0 on ΣT , σ0 ∈ H2(Ω) and G1

∈ L1(0, T ;H2(Ω)). Then there exists a unique solution σ of (2.6) such that
σ ∈ C0([0, T ];H2(Ω)) and

‖σ‖L∞(0,T ;H2(Ω)) 6 (‖σ0‖H2(Ω) + c2‖G1‖L1(0,T ;H2(Ω)))
·exp(c2‖w‖L1(0,T ;H3(Ω))).

(2.7)

If in addition G1 ∈ L∞(0, T ;H1(Ω)) and w ∈ L∞(0, T ;H2(Ω)) then σt ∈
L∞(0, T ;H1(Ω)) and

‖σt‖L∞(0,T ;H1(Ω)) 6c3‖w‖L∞(0,T ;H2(Ω))(‖σ0‖H2(Ω) + c2‖G1‖L1(0,T ;H2(Ω)))

· exp(c2‖w‖L1(0,T ;H3(Ω))) + ‖G1‖L∞(0,T ;H1(Ω)). (2.8)

The constants c2 and c3 appearing respectively in (2.7) and (2.8) are inde-
pendent of T, w, σ0 and G1.

Proof. The theorem is proved in [39, Lemma 2.4] with a particular expression
of the function G1. In our case we adapt the same proof with minor changes.
The existence of solution of (2.6) follows from the method of characteristics.
The representation formula for the solution σ is

σ(x, t) = σ0(U(x, 0, t)) +

t∫
0

G1(U(x, s, t), s)ds, (2.9)

where U(x, t, s) solves the following ODE
d

dt
U(x, t, s) = w(U(x, t, s), t) in QT ,

U(x, s, s) = x in Ω.
(2.10)

Observe

U(·, ·, ·) ∈ C0([0, T ]× [0, T ];H3(Ω))

and consequently

σ(·, ·) ∈ C0([0, T ];H2(Ω)).

Now to prove the estimate (2.7), we multiply (2.6)1 by σ and integrate in Ω.

Integrating by parts the term

∫
Ω

w · ∇σσ and using the fact that w · n = 0
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we obtain

1

2

d

dt
‖σ‖2L2(Ω) 6

1

2

∫
Ω

divwσ2 + ‖G1‖L2(Ω)‖σ‖L2(Ω).

Due to the embedding H3(Ω) ↪→ C1(Ω) one has

d

dt
‖σ‖2L2(Ω) 6 c(‖w‖H3(Ω)‖σ‖2L2(Ω) + ‖G1‖L2(Ω)‖σ‖L2(Ω)). (2.11)

Before going into the next estimate let us observe that∫
Ω

[(w · ∇)∇σ] · ∇σ = −1

2

∫
Ω

(divw)|∇σ|2. (2.12)

Now take the gradient of (2.6)1, multiply by ∇σ and integrate in Ω. Using
(2.12) one obtains

d

dt

∫
Ω

|∇σ|2 6 c(‖w‖H3(Ω)‖∇σ‖2L2(Ω) + ‖∇G1‖L2(Ω)‖∇σ‖L2(Ω)). (2.13)

In a similar way for the second derivative we have

d

dt

∫
Ω

|D2σ|2 6 c
(
‖w‖H3(Ω)‖D2σ‖2L2(Ω) +

∫
Ω

|D2w||∇σ||D2σ|

+‖D2G1‖L2(Ω)‖D2σ‖L2(Ω)

)
.

(2.14)

One has the following estimate∫
Ω

|D2w||∇σ||D2σ| 6 ‖D2w‖L3(Ω)‖∇σ‖L6(Ω)‖D2σ‖L2(Ω)

6 c‖D2w‖L3(Ω)‖∇σ‖H1(Ω)‖D2σ‖L2(Ω).

(2.15)

The estimates (2.11) and (2.13)-(2.14)-(2.15) furnish the following

1

2

d

dt
‖σ‖2H2(Ω) 6 c(‖w‖H3(Ω)‖σ‖2H2(Ω) + ‖G1‖H2(Ω)‖σ‖H2(Ω)). (2.16)

Now (2.7) is a consequence of (2.16) and Gronwall lemma. Finally the esti-
mate (2.8) is a direct consequence of (2.6)1 and (2.7). �

The following corollary directly follows from (2.6)1 and the regularity
σ ∈ C0([0, T ];H2(Ω)) which we have obtained in Theorem 2.4.

Corollary 2.5. In addition to the assumptions of Theorem 2.4 if G1 ∈
C0([0, T ];H1(Ω)) and w ∈ C0([0, T ];H2(Ω)) then σt ∈ C0([0, T ];H1(Ω)).

2.3. Study of a linear beam equation

The linearized beam equation with a non homogeneous source term is the
following {

ηtt − βηxx − δηtxx + αηxxxx = G3 in ΣsT ,

η(0) = 0 and ηt(0) = η1 in Γs,
(2.17)
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where G2 and η1 are known L-periodic (in the x direction) functions. Let us
denote

A =

[
0 I

−α∆2 + β∆ δ∆

]
. (2.18)

The unbounded operator (A, D(A)) is defined in

Hs = H2(Γs)× L2(Γs), (2.19)

with domain

D(A) = H4(Γs)×H2(Γs).

Hence with the notations

Y(t) =

[
η(t)

ηt(t)

]
, Y0 =

[
0

η1

]
and G̃3 =

[
0

G3

]
, (2.20)

we can equivalently write (2.17) as{
Yt(t) = AY(t) + G̃3 on (0, T ),

Y(0) = Y0.
(2.21)

Lemma 2.6. Let

G̃3 ∈ L2(0, T ;H2(Γs)× L2(Γs)) and Y0 ∈ H3(Γs)×H1(Γs). (2.22)

Then the equation (2.21) admits a unique solution Y which satisfies

Y ∈ L2(0, T ;H4(Γs)×H2(Γs)) ∩H1(0, T ;H2(Γs)× L2(Γs))
∩C0([0, T ];H3(Γs)×H1(Γs)).

(2.23)

In addition if

G̃3,t ∈ L2(0, T ;H2(Γs)× L2(Γs))

and AY0 + G̃3 |t=0∈ H3(Γs)×H1(Γs),
(2.24)

the solution Y of the problem (2.21) has the following additional regularities

Yt ∈ L2(0, T ;H4(Γs)×H2(Γs)) ∩ C0([0, T ];H3(Γs)×H1(Γs)),

Ytt ∈ L2(0, T ;H2(Γs)× L2(Γs)).
(2.25)

Proof. To prove this result we will use the maximal parabolic regularity re-
sults from [5]. Recall the definition of Hs in (2.19). The unbounded operator
(A, D(A)) is the infinitesimal generator of an analytic semigroup on Hs (for
the proof see [14]). Hence using the isomorphism theorem [5, Theorem 3.1,

p. 143] and the assumption (2.22), which can be read as G̃3 ∈ L2(0, T ;Hs)
and Y0 ∈ D(A1/2), we get that the equation (2.21) admits a unique solution
Y satisfying the following:

Y ∈ L2(0, T ;H4(Γs)×H2(Γs)) ∩H1(0, T ;H2(Γs)× L2(ΓS)).

Using interpolation (see [28]) one also obtains that

Y ∈ C0([0, T ];H3(Γs)×H1(Γs)).
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This proves (2.23).
Now we assume that (2.24) holds. In order to obtain the time regularity of
Y let us differentiate (2.21) with respect to t and write Z = Yt,{

Zt(t) = AZ(t) + G̃3,t on (0, T ),

Z(0) = Z0 = AY0 + G̃3 |t=0 .
(2.26)

Due to the assumptions (2.24), G̃3,t ∈ L2(0, T ;Hs) and AY0 + G̃3 |t=0∈
D(A1/2) (= H3(Γs) × H1(Γs)). We can use the isomorphism theorem [5,
Theorem 3.1, p. 143] again to conclude

Z = Yt ∈ L2(0, T ;H4(Γs)×H2(Γs)) ∩H1(0, T ;H2(Γs)× L2(Γs)).

Once again using interpolation we verify that

Yt ∈ C0([0, T ];H3(Γs)×H1(Γs)).

This completes the proof of Lemma 2.6. �

We are going to use the representation (2.21) of (2.17) to state the
existence and regularity result for the problem (2.17).

Theorem 2.7. Assume that T < T (recall that T was fixed in (1.23)), G3 ∈
L∞(0, T ;H1/2(Γs)) and G3,t ∈ L2(0, T ;L2(Γs)). Also suppose that η1 ∈
H3(Γs) and G3 |t=0∈ H1(Γs). Then the equation (2.17) admits a unique
solution η which satisfies

η ∈ L∞(0, T ;H9/2(Γs)),

ηt ∈ L2(0, T ;H4(Γs)) ∩ C0([0, T ];H3(Γs)),

ηtt ∈ L2(0, T ;H2(Γs)) ∩ C0([0, T ];H1(Γs)),

ηttt ∈ L2(0, T ;L2(Γs)),

(2.27)

and for some positive constant c4 independent of T, G3 and η1 we have the
following estimate

‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs))

+ ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L∞(0,T ;H1(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

6 c4
(
‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3‖L∞(0,T ;H1/2(Γs))

+ ‖G3,t‖L2(0,T ;L2(Γs))

)
.

(2.28)

Proof. We first consider

G3 ∈ L2(0, T ;L2(Γs)) and η1 ∈ H1(Γs). (2.29)

In view of the notations (2.20), (2.29) corresponds to the case (2.22) of Lemma
2.6. Hence we can use (2.23) to obtain

‖η‖L2(0,T ;H4(Γs)) + ‖ηt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L2(0,T ;L2(Γs))

6 c
(
‖η1‖H1(Γs) + ‖G3‖L2(0,T ;L2(Γs))

)
,

(2.30)

where the constant c might depend on the final time T. We want to show
that there exists a constant c independent of T such that the inequality (2.30)
is true. For that we extend G3 by defining it zero in (T, T ) and denote the
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extended function also by G3. Observe that G3 ∈ L2(0, T ;L2(Γs)). We can
solve (2.17) in the time interval (0, T ) and consequently

‖η‖L2(0,T ;H4(Γs)) + ‖ηt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L2(0,T ;L2(Γs))

6 ‖η‖L2(0,T ;H4(Γs)) + ‖ηt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L2(0,T ;L2(Γs))

6 c(T )
(
‖η1‖H1(Γs) + ‖G3‖L2(0,T ;L2(Γs))

)
= c(T )

(
‖η1‖H1(Γs) + ‖G3‖L2(0,T ;L2(Γs))

)
.

(2.31)

So we are able to get a constant c(T ) which is independent of T.
To prove the regularity estimates of ηt, we will use

G3,t ∈ L2(0, T ;L2(Γs)), η1 ∈ H3(Γs) and G3 |t=0∈ H1(Γs). (2.32)

Indeed, observe that (2.32) implies δ∆η1+G3 |t=0∈ H1(Γs). Now differentiate
the equation (2.17) with respect to t,{

(ηt)tt − β(ηt)xx − δ(ηt)txx + α(ηt)xxxx = G3,t on ΣsT ,

ηt(0) = η1 and ηtt(0) = δ∆η1 +G3 |t=0 in Γs.
(2.33)

In view of the notations (2.20), (2.32) and (2.33) correspond respectively
to (2.24) and (2.26) in Lemma 2.6. Hence we can use (2.25) to furnish the
following

‖ηt‖L2(0,T ;H4(Γs)) + ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

6 c
(
‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3,t‖L2(0,T ;L2(Γs))

)
,

(2.34)

where the constant c might depend on the final time T. Since we are interested
in proving (2.34) with a constant c independent of T, we extend the function
G3,t by defining it zero in the interval (T, T ) and denote the extended function
also by G3,t. In a similar spirit of the computation (2.31) one can prove

‖ηt‖L2(0,T ;H4(Γs)) + ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

6 c(T )
(
‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3,t‖L2(0,T ;L2(Γs))

) (2.35)

for some constant c(T ) independent on T. In order to get explicit bounds
on the L∞(0, T ) norms of η, ηt and ηtt we first multiply (2.17)1 by ηtxx and
integrate over Γs. We use the L-periodicity (in the x direction) of η and
integrate the terms by parts to obtain

1

2

d

dt

∫
Γs

η2
txdx+

β

2

d

dt

∫
Γs

η2
xxdx+ δ

∫
Γs

η2
txxdx+

α

2

d

dt

∫
Γs

η2
xxxdx

6
δ

8
‖ηtxx(t)‖2L2(Γs) +

2

δ
‖G3‖2L2(Γs).

(2.36)

Now integrating (2.36) with respect to t,

‖ηtx‖2L∞(0,T ;L2(Γs)) + ‖ηxx‖2L∞(0,T ;L2(Γs)) + ‖ηtxx‖2L2(0,T ;L2(Γs))

+ ‖ηxxx‖2L∞(0,T ;L2(Γs)) 6 c
(
‖ηtx(0)‖2L2(Γs) + ‖G3‖2L2(0,T ;L2(Γs))

)
.

(2.37)
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From (2.37) we get in particular

‖η‖2L∞(0,T ;H3(Γs)) 6 c
(
‖η1‖2H1(Γs) + ‖G3‖2L2(0,T ;L2(Γs))

)
. (2.38)

Now consider the equations (2.33). One imitates the analysis used to obtain
(2.37) to find

‖ηttx‖2L∞(0,T ;L2(Γs)) + ‖ηtxx‖2L∞(0,T ;L2(Γs)) + ‖ηttxx‖2L2(0,T ;L2(Γs))

+ ‖ηtxxx‖2L∞(0,T ;L2(Γs)) 6 c
(
‖η1‖2H3(Γs) + ‖G3 |t=0 ‖2H1(Γs)

+ ‖G3,t‖2L2(0,T ;L2(Γs))

)
.

(2.39)

Hence in particular

‖ηt‖2L∞(0,T ;H3(Γs)) + ‖ηtt‖2L∞(0,T ;H1(Γs)) 6c
(
‖η1‖2H3(Γs) + ‖G3 |t=0 ‖2H1(Γs)

+ ‖G3,t‖2L2(0,T ;L2(Γs))

)
. (2.40)

Now we will use that

G3 ∈ L∞(0, T ;H1/2(Γs)). (2.41)

Write (2.17)1 as

ηxxxx = 1
α

(
G3 + δηtxx + βηxx − ηtt

)
. (2.42)

In view of (2.41) one observes that all the terms appearing in the right hand
side of (2.42) belongs to L∞(0, T ;H1/2(Γs)). As the beam in our problem is
one dimensional, η ∈ L∞(0, T ;H9/2(Γs)) and the estimates (2.38) and (2.40)
furnish the following

‖η‖L∞(0,T ;H9/2(Γs)) 6 c
(
‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3,t‖L2(0,T ;L2(Γs))

+ ‖G3‖L∞(0,T ;H1/2(Γs))

)
. (2.43)

Hence combining all the above estimates we here conclude the proof of The-
orem 2.7. �

The following corollary follows directly by using the regularities (2.27)
and the expression (2.42) of ηxxxx.

Corollary 2.8. In addition to the assumptions of Theorem 2.7 if G3 fur-
ther satisfies the regularity assumption G3 ∈ C0([0, T ];H1/2(Γs)) then η ∈
C0([0, T ];H9/2(Γs)).

3. Local existence of the non linear coupled system

From now on up to the end of this article, we fix the initial data (ρ0,u0, η1)
such that they satisfy the assumptions stated in (1.17). We also fix the con-
stant

δ0 ∈ (0, 1). (3.1)

The constant δ0 will be used to keep a positive distance between the beam
and the bottom Γ` of the domain Ω. Also recall that the positive constants
m and M were fixed in (1.3) and T was fixed in (1.23).
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Proof of Theorem 1.7. This section is devoted to the study of the non linear
system (1.21). We will prove here that the system (1.21) admits a strong
solution in a time interval (0, T ), for some T > 0 small enough and hence we
will conclude Theorem 1.7.
Now we sketch the steps towards the proof of Theorem 1.7:
(i) First in Section 3.1 we define a suitable map for which a fixed point gives
a solution of the system (1.21).
(ii) Next we design a suitable convex set such that the map defined in step
(i) maps this set into itself. This is done in Section 3.2.
(iii) In Section 3.3 we show that the convex set defined in step (ii) is compact
in some appropriate topology. We further prove that the fixed point map
from step (i), is continuous in that topology.
(iv) At the end in Section 3.4 we draw the final conclusion to prove Theorem
1.7.
In what follows all the constants appearing in the inequalities may vary from
line to line but will never depend on T.

3.1. Definition of the fixed point map

For (σ̃, w̃, η̃) satisfying

σ̃ ∈ L∞(0, T ;H2(Ω)) ∩W 1,∞(0, T ;H1(Ω)),
w̃ ∈ L∞(0, T ;H5/2(Ω)) ∩ L2(0, T ;H3(Ω)) ∩W 1,∞(0, T ;H1(Ω))
∩H1(0, T ;H2(Ω)) ∩H2(0, T ;L2(Ω)),

η̃ ∈ L∞(0, T ;H9/2(Γs)) ∩W 1,∞(0, T ;H3(Γs))
∩H1(0, T ;H4(Γs)) ∩W 2,∞(0, T ;H1(Γs))
∩H2(0, T ;H2(Γs)) ∩H3(0, T ;L2(Γs)),

(3.2)

we consider the following problem:

σt + W̃ (w̃, η̃) · ∇σ = G1(σ̃, w̃, η̃) in QT ,

(σ̃ + ρ)wt − µ∆w − (µ+ µ′)∇divw = G2(σ̃, w̃, η̃) in QT ,

w = 0 on ΣT ,

w(·, 0) = w0 = u0 − zη1~e2 in Ω,

σ(·, 0) = σ0 = ρ0 − ρ in Ω,

ηtt − βηxx − δηtxx + αηxxxx = G3(σ̃, w̃, η̃) on ΣsT ,

η(0) = 0 and ηt(0) = η1 in Γs,
(3.3)

where G1, G2, G3 are as defined in (1.22) and W̃ (w̃, η̃) is defined as follows

W̃ (w̃, η̃) =

[
w̃1

1
(1+η̃) (w̃2 − w̃1zη̃x)

]
,

(
w̃ =

(
w̃1

w̃2

))
. (3.4)

It turns out that it will be important for us to check that G2(σ̃, w̃, η̃)
and G3(σ̃, w̃, η̃) respectively coincide at time t = 0 with the values G0

2 and
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G0
3 computed in (1.27) and (1.25), and given as follows:

G0
2 = −P ′(ρ0)∇ρ0 − (δη1,xx − (µ+ 2µ′)(u0)2,z + P (ρ0))zρ0~e2 + zρ0(u0)zη1

− ρ0(u0 · ∇)u0 − (−µ∆− (µ+ µ′)∇div)(zη1 ~e2), (3.5)

G0
3 = −(µ+ 2µ′)(u0)2,z + P (ρ0). (3.6)

This will be imposed by assuming (σ̃, w̃, η̃, η̃t)(·, 0) = (σ0,w0, 0, η1) and

η̃tt(·, 0) = δη1,xx − (µ+ 2µ′)(u0)2,z + P (ρ0) in Ω,

w̃t(·, 0) =
1

ρ0

(
G0

2 − (−µ∆− (µ+ µ′)∇div)(u0 − zη1 ~e2)
)

in Ω,
(3.7)

Indeed, under the above conditions, one can check from the expressions of
G2(σ̃, w̃, η̃) and G3(σ̃, w̃, η̃) that G2(σ̃, w̃, η̃) |t=0= G0

2 and G3(σ̃, w̃, η̃) |t=0=
G0

3.

Lemma 3.1. Let the constant δ0 be fixed by (3.1). For T < T , let us assume
the following

(σ̃, w̃, η̃) satisfies (3.2), (3.8)

w̃ = 0 on ΣT , (3.9)

(σ̃(·, 0), w̃(·, 0), η̃(·, 0), η̃t(·, 0)) = (ρ0 − ρ,u0 − zη1~e2, 0, η1) in Ω, (3.10)

(3.7) holds, (3.11)

1 + η̃(x, t) > δ0 > 0 on ΣsT , (3.12)

0 <
m

2
6 σ̃ + ρ 6 2M in QT , (3.13)

where m and M were fixed in (1.3).
Then G1(σ̃, w̃, η̃), G2(σ̃, w̃, η̃) and G3(σ̃, w̃, η̃) satisfy the following

G1(σ̃, w̃, η̃) ∈ L1(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)),

G2(σ̃, w̃, η̃) ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω)),

G3(σ̃, w̃, η̃) ∈ L∞(0, T ;H1/2(Γs)) ∩H1(0, T ;L2(Γs)), (3.14)

W̃ (w̃, η̃) ∈ L1(0, T ;H3(Ω)) ∩ L∞(0, T ;H2(Ω)),

G2(σ̃, w̃, η̃) |t=0= G0
2 and G3(σ̃, w̃, η̃) |t=0= G0

3.

Proof. The detailed computations to verify (3.14) follows from Lemma 3.8
(for estimates of G1), Lemma 3.10 (for estimates of G2), Lemma 3.12 (for

estimates of G3) and Lemma 3.14 (for estimates of W̃ ) in the Section 3.2.2.
�

Observe that the condition (3.9) implies that W̃ (w̃, η̃) ·n = 0 (where W̃
is as defined in (3.4)) on ΣT . Hence in view of Lemma 3.1, for all (σ̃, w̃, η̃)
satisfying the conditions (3.8)-(3.9)-(3.10)-(3.11)-(3.12) -(3.13), the system
(3.3) admits a unique solution as a consequence of Theorem 2.1, Theorem
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2.4 and Theorem 2.7 in the space ZT1 × Y T2 × ZT3 , where Y T2 is defined in
(1.16), ZT1 and ZT3 are defined as follows

ZT1 = {ρ ∈ C0([0, T ];H2(Ω)) | ρt ∈ L∞(0, T ;H1(Ω))},

ZT3 = {η ∈ L∞(0, T ;H9/2(Γs)), η(x, 0) = 0 | ηt ∈ L2(0, T ;H4(Γs)) (3.15)

∩ C0([0, T ];H3(Γs)), ηtt ∈ L2(0, T ;H2(Γs)) ∩ C0([0, T ];H1(Γs)),

ηttt ∈ L2(0, T ;L2(Γs))}.

Observe that the only difference between Y T1 (defined in (1.16)) and ZT1 is
that the elements of Y T1 belongs to C1([0, T ];H1(Ω)) while the elements of
ZT1 are in W 1,∞(0, T ;H1(Ω)). Also one observes that the elements of Y T3
(defined in (1.16)) are in C0([0, T ];H9/2(Γs)) while ZT3 is only a subset of
L∞(0, T ;H9/2(Γs)).
Before defining a suitable fixed point map (in order to solve the non-linear
problem (1.21)), we will introduce a convex set CT (where we will show
the existence of a fixed point). The set CT will be defined as a subset of
L2(0, T ;L2(Ω)) × L2(0, T ;L2(Ω)) × L2(0, T ;L2(Γs)) such that the elements
of CT satisfy some norm bounds and some conditions at initial time t = 0.
Let us make precise the assumptions which will be used to define the set CT .
Regularity assumptions and norm bounds of (σ̃, w̃, η̃):

‖σ̃‖L∞(0,T ;H2(Ω)) 6 B1, ‖σ̃t‖L∞(0,T ;H1(Ω)) 6 B2, (3.16a)

‖w̃‖L∞(0,T ;H2(Ω)) + ‖w̃‖L2(0,T ;H3(Ω)) + ‖w̃t‖L∞(0,T ;H1(Ω))

+ ‖w̃t‖L2(0,T ;H2(Ω)) + ‖w̃tt‖L2(0,T ;L2(Ω)) 6 B3,
(3.16b)

‖η̃‖L∞(0,T ;H9/2(Γs)) + ‖η̃t‖L∞(0,T ;H3(Γs)) + ‖η̃t‖L2(0,T ;H4(Γs)) (3.16c)

+ ‖η̃tt‖L∞(0,T ;H1(Γs)) + ‖η̃tt‖L2(0,T ;H2(Γs)) + ‖η̃ttt‖L2(0,T ;L2(Γs)) 6 B4,

1 + η̃(x, t) > δ0 > 0 on ΣsT , (3.16d)

0 <
m

2
6 σ̃ + ρ 6 2M in QT , (3.16e)

where Bi’s (1 6 i 6 4) are positive constants and will be chosen in the
sequel. The norm bound (3.16b) implicitly asserts (by interpolation) that w̃
is in C0([0, T ];H5/2(Ω)).
Assumptions on initial and boundary conditions:

w̃ = 0 on ΣT , (3.17a)

(σ̃(·, 0), w̃(·, 0), η̃(·, 0), η̃t(·, 0)) = (ρ0 − ρ,u0 − zη1~e2, 0, η1) in Ω, (3.17b)

η̃tt(·, 0) = δη1,xx − (µ+ 2µ′)(u0)2,z + P (ρ0) in Ω, (3.17c)

w̃t(·, 0) =
1

ρ0

(
G0

2 − (−µ∆− (µ+ µ′)∇div)(u0 − zη1 ~e2)
)

in Ω. (3.17d)
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For T < T , let us define the following set

CT (B1, B2, B3, B4)

= {(σ̃, w̃, η̃) ∈ L2(0, T ;L2(Ω))× L2(0, T ;L2(Ω))× L2(0, T ;L2(Γs)) |
the relations (3.16)− (3.17) are true}. (3.18)

Now for (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4), let (σ,w, η) ∈ ZT1 × Y T2 ×ZT3 (recall
the definition of Y T2 , from (1.16) and ZT1 , Z

T
3 are defined in (3.15)) be the

solution of the problem (3.3) corresponding to (σ̃, w̃, η̃). This defines the map

L : CT (B1, B2, B3, B4) −→ ZT1 × Y T2 × ZT3
(σ̃, w̃, η̃) 7→ (σ,w, η).

(3.19)

Now observe that if the map L admits a fixed point (σf ,wf , ηf ) on the set
CT (B1, B2, B3, B4), then the triplet (σf ,wf , ηf ) is a solution to the system
(1.21). Thus, our goal from now is to prove the existence of a fixed point to
the map L. In that direction we first show that for suitable parameters Bi
(1 6 i 6 4) and T, the set CT (B1, B2, B3, B4) is non-empty.

Lemma 3.2. There exists a constant B∗0 > 0 such that for all Bi > B∗0
(1 6 i 6 4) there exists T ∗0 (B1, B2, B3, B4) ∈ (0,min{1, T}) such that for all
0 < T 6 T ∗0 (B1, B2, B3, B4) the set CT (B1, B2, B3, B4) is non empty.

Proof. The choice of the constant B∗0 will be done based on the calculations
performed in the following steps.
Step 1. In this step we will prove the existence of a function w∗ which satisfies
the norm bound (3.16b) and the condition (3.17d) at time t = 0. We begin by
recalling that (ρ0,u0, η1) satisfies (1.17) and hence one observes that (u0 −
zη1~e2) ∈ H3(Ω). As G0

2 is given by the expression (3.5), using (1.29) one
has G0

2 ∈ H1(Ω). We can thus find a lifting h ∈ L2(R+;H1(Ω)) and ht ∈
L2(R+;L2(Ω)) (see e.g. [27, Theorem 3.2, p. 21]) such that h(0) = G0

2 in Ω.
(In fact, we only need G0

2 ∈ H1/2(Ω) in this step.)
Let w∗ be the solution of the following system

ρ0w
∗
t − µ∆w∗ − (µ+ µ′)∇divw∗ = h in Q∞,

w∗ = 0 on Σ∞,

w∗(0) = w0 = (u0 − zη1 ~e2) in Ω.

(3.20)

In view of (1.30) one can uniquely solve (3.20) such that the function w∗

satisfies the following estimate

‖w∗‖L∞(0,∞;H2(Ω)) + ‖w∗‖L2(0,∞;H3(Ω)) + ‖w∗t ‖L∞(0,∞;H1(Ω))

+‖w∗t ‖L2(0,∞;H2(Ω)) + ‖w∗tt‖L2(0,∞;L2(Ω))

6 c(‖h‖L2(0,∞;H1(Ω)) + ‖ht‖L2(0,∞;L2(Ω)) + ‖G2 |t=0 ‖H1(Ω)

+‖u0 − zη1 ~e2‖H3(Ω))
6 c5(‖G2 |t=0 ‖H1(Ω) + ‖u0 − zη1 ~e2‖H3(Ω)).

(3.21)

Using (3.20) one also observes the following

w∗t (·, 0) =
1

ρ0

(
G0

2 − (−µ∆− (µ+ µ′)∇div)(u0 − zη1 ~e2)
)
. (3.22)
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In view of (3.21) and (3.22) one observes that w∗ satisfies (3.16b) and (3.17d)
respectively.
Step 2. In this step we will prove the existence of a function η∗ which sat-
isfies the norm bound (3.16c), (3.16d) and the condition (3.17c) at time
t = 0. In that direction first recall that G0

3 ∈ H1(Γs). We use in partic-
ular the regularity G0

3 ∈ H1/2(Γs) to obtain a lifting h1 of G0
3 such that

h1 ∈ L2(R+;H1(Γs))∩H1(R+;L2(Γs))∩L∞(R+;H1/2(Γs)) and h1(0) = G0
3

in Γs. Let η∗ be the solution of equation (2.17) with G3 replaced by h1. From
Theorem 2.7 and inequality (2.28) one obtains

‖η∗‖L∞(0,T ;H9/2(Γs)) + ‖η∗t ‖L2(0,T ;H4(Γs)) + ‖η∗t ‖L∞(0,T ;H3(Γs))

+ ‖η∗tt‖L2(0,T ;H2(Γs)) + ‖η∗tt‖L∞([0,T ];H1(Γs)) + ‖η∗ttt‖L2(0,T ;L2(Γs))

6 c(‖(h1)t‖L2(0,∞;L2(Γs)) + ‖h1‖L∞(0,∞;H1/2(Γs)) + ‖G0
3‖H1(Γs)

+ ‖η1‖H3(Γs)) 6 c4(‖G0
3‖H1(Γs) + ‖η1‖H3(Γs)), (3.23)

where the constant c4 is independent of T. One further uses (3.6) to check
that

η∗tt(·, 0) = δη1,xx − (µ+ 2µ′)(u0)2,z + P (ρ0). (3.24)

In view of (3.23) and (3.24) we get that η∗ satisfies (3.16c) and (3.17c).
Since η∗(., 0) = 0, we observe the following by interpolation

‖η∗‖C0(Σ
s
T ) 6 c‖η

∗‖1/3L∞(0,T ;H1(Γs))‖η
∗‖2/3L∞(0,T ;H2(Γs)) (3.25)

6 cT 1/3
(
‖η∗t ‖L∞(0,T ;H1(Γs))

)1/3 · (‖η∗‖L∞(0,T ;H2(Γs))

)2/3
.

At this point we set

B∗0 = max{c5(‖G0
2‖H1(Ω) + ‖u0 − zη1 ~e2‖H3(Ω)), ‖ρ0 − ρ‖H2(Ω),

c4(‖G0
3‖H1(Γs) + ‖η1‖H3(Γs))}

(3.26)

and for all 1 6 i 6 4, Bi > B∗0 .
Hence in view of (3.25), there exists T ∗0 (B1, B2, B3, B4) ∈ (0,min{1, T}) such
that for all 0 < T 6 T ∗0 (B1, B2, B3, B4) we verify that

1 + η∗ > δ0 > 0 on ΣsT ,

i.e η∗ satisfies (3.16d).
Step 3. One easily checks that σ∗ = ρ0 − ρ verifies (3.16a) and (3.16e).
We further observe that (σ∗,w∗, η∗) satisfies (3.17a) and (3.17b) automati-
cally by construction.
So we have shown that if we choose B∗0 (and hence Bi > B∗0 , for all 1 6 i 6 4)
as in (3.26) and 0 < T 6 T ∗0 (B1, B2, B3, B4) then (σ∗ = ρ0 − ρ,w∗, η∗) ∈
CT (B1, B2, B3, B4), i.e.

CT (B1, B2, B3, B4) 6= ∅.
�

Remark 3.3. Observe from the proof of Lemma 3.2, the constant
T ∗0 (B1, B2, B3, B4) depends on δ0 ∈ (0, 1). Since δ0 is fixed (see (3.1)) we do
not write explicitly the dependence of T ∗0 (B1, B2, B3, B4) on δ0.
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3.2. For small enough T, L maps CT (B1, B2, B3, B4) into itself

To prove that the map L admits a fixed point we first show that for T
small enough and a suitable choice of parameters (B1, B2, B3, B4), the set
CT (B1, B2, B3, B4) is mapped into itself by L.
Provided (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4), we have to estimate the terms

G1(σ̃, w̃, η̃), G2(σ̃, w̃, η̃), G3(σ̃, w̃, η̃) and W̃ (w̃, η̃) (recall the definition of G1,

G2, G3 and W̃ from (1.22) and (3.4) respectively). For this purpose we will
require some results which we collect in the following section.

3.2.1. Useful lemmas. The following lemma concerning the Sobolev regular-
ity of the product of two functions is standard in the literature.

Lemma 3.4. Consider a bounded domain Ω0 in Rd (for d = 1, 2). Let r > d
2 ,

0 6 s 6 r. If v ∈ Hr(Ω0) and w ∈ Hs(Ω0) then vw ∈ Hs(Ω0) with

‖vw‖Hs(Ω0) 6 K(Ω0)‖v‖Hr(Ω0)‖w‖Hs(Ω0).

Similar estimates hold when v and w are vector valued functions i.e for v ∈
Hr(Ω0) and w ∈ Hs(Ω0).

Lemma 3.5. Let T < T (recall that we have fixed T in (1.23)). We assume

that f ∈ H2,1
ΣT

(QT ). As usual we use the notation fz to denote the directional
derivative ∂zf of f with respect to z. Also suppose that Γs is a smooth subset of
Γ. Then the trace fz |ΣT

on Γs (i.e the normal derivative of f on Γs) belongs
to H1/6(0, T ;L2(Γs)). In particular there exists a constant K > 0 such that

for all f ∈ H2,1
ΣT

(QT ) we have the following

‖fz |ΣT
‖L2(0,T ;L2(Γs)) 6 T 1/6K(‖f(0)‖H1

0(Ω) + ‖f‖H2,1
ΣT

(QT )), (3.27)

where f(0) denotes the function f at time t = 0. We specify that in our case

the space H2,1
ΣT

(QT ) is endowed with the following norm

‖f‖H2,1
ΣT

(QT ) = ‖f‖L2(0,T ;H2(Ω)) + ‖ft‖L2(0,T ;L2(Ω)).

Remark 3.6. The appearance of f(0) in the inequality (3.27) might seem re-

dundant since for all, f ∈ H2,1
ΣT

(QT )

‖f(0)‖H1
0(Ω) 6 KT ‖f‖H2,1

ΣT
(QT ).

But the constant KT there may depend on T while the constant K in (3.27)
is independent of T. This is the reason why we prefer working with (3.27).

Proof of Lemma 3.5. We have to estimate ‖fz |ΣT
‖L2(0,T ;L2(Γs)). Using

Hölder’s inequality we get the following T∫
0

‖fz |ΣT
‖2L2(Γs)

1/2

6

 T∫
0

‖fz |ΣT
‖3L2(Γs)

1/3

T 1/6

6 K(Ω)

 T∫
0

‖f‖3H5/3(Ω)

1/3

T 1/6.

(3.28)
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To prove (3.27), in view of (3.28) it is enough to show the following inequality

‖f‖L3(0,T ;H5/3(Ω)) 6 K(Ω, T )(‖f‖H2,1
ΣT

(QT ) + ‖f(0)‖H1
0(Ω)). (3.29)

In order to prove (3.29), first let us consider the solution f∗ of
f∗t −∆f∗ = 0 in QT ,

f∗ = 0 on ΣT ,

f∗(., 0) = f(0) in Ω.

(3.30)

As f(0) ∈ H1
0(Ω), f∗ ∈ H2,1

ΣT
(QT ). It is also well known that there exists a

constant K(Ω) such that f∗ satisfies the following inequalities

(i) ‖f∗‖H2,1
ΣT

(QT ) 6 K(Ω)‖f(0)‖H1
0(Ω),

(ii) ‖f∗‖L∞(0,T ;H1
0(Ω)) + ‖f∗‖L2(0,T ;H2(Ω)) 6 K(Ω)‖f(0)‖H1

0(Ω).
(3.31)

Now we will estimate the norm of f∗ in L3(0, T ;H5/3(Ω)). Using interpolation
we have for a.e t

‖f∗(t)‖H5/3(Ω) 6 K(Ω)‖f∗(t)‖2/3H2(Ω)‖f
∗(t)‖1/3

H1
0(Ω)

.

From the last inequality one obtains the following

‖f∗‖L3(0,T ;H5/3(Ω)) =

 T∫
0

‖f∗(t)‖3H5/3(Ω)

1/3

6 K(Ω)‖f∗‖1/3
L∞(0,T ;H1

0(Ω))
‖f∗‖2/3L2(0,T ;H2(Ω)).

(3.32)

Hence using inequality (ii) of (3.31) in (3.32) we obtain

‖f∗‖L3(0,T ;H5/3(Ω)) 6 K(Ω)‖f(0)‖H1
0(Ω). (3.33)

Now let us observe that (f − f∗)(0) = 0. Extend the function (f − f∗) by
defining it zero in the time interval (T − T , 0) (the extended function is also
denoted by (f − f∗)). In what follows we will use the notation

QT−T ,T = Ω× (T − T , T ).

We also introduce the space H2,1
ΣT

(QT−T ,T ) which is defined as in (1.12) with
QT replaced by QT−T ,T .

One can check that the extended function (f − f∗) ∈ H2,1
ΣT

(QT−T ,T ) and

‖(f − f∗)‖H2,1
ΣT

(QT−T,T ) = ‖(f − f∗)‖H2,1
ΣT

(QT ). (3.34)

Again due to the embedding H2,1
ΣT

(QT−T ,T ) ↪→ H1/6(T − T , T ;H5/3(Ω)) we
have the following

‖f − f∗‖H1/6(T−T ,T ;H5/3(Ω)) 6 K(T ,Ω)‖f − f∗‖H2,1
ΣT

(QT−T,T ). (3.35)

Since H1/6(T−T , T ) is continuously embedded into L3(T−T , T ), hence from
(3.35)

‖f − f∗‖L3(T−T ,T ;H5/3(Ω)) 6 K(T ,Ω)‖f − f∗‖H2,1
ΣT

(QT−T,T ). (3.36)
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Use of triangle inequality furnishes the following

‖f‖L3(0,T ;H5/3(Ω))

6 K(‖f − f∗‖L3(0,T ;H5/3(Ω)) + ‖f∗‖L3(0,T ;H5/3(Ω))).
(3.37)

Incorporate inequalities (3.33) and (3.36) in (3.37) in order to obtain

‖f‖L3(0,T ;H5/3(Ω))

6 K(Ω, T )(‖f − f∗‖H2,1
ΣT

(QT−T,T ) + ‖f(0)‖H1
0(Ω)).

(3.38)

In view of the equality (3.34) we can obtain the following from (3.38),

‖f‖L3(0,T ;H5/3(Ω)) 6 K(Ω, T )(‖f − f∗‖H2,1
ΣT

(QT ) + ‖f(0)‖H1
0(Ω)). (3.39)

Once again use triangle inequality and (3.31) (i), in order to prove (3.29).
Finally use (3.29) in (3.28) to show (3.27). This completes the proof. �

The following lemma is a simple consequence of the fundamental theo-
rem of calculus, whose proof is left to the reader.

Lemma 3.7. Fix i > 0 and a domain Ω0 in Rd (d is either 1 or 2). Then there
exists a constant K > 0 such that for all ψ ∈ H1(0, T ;Hi(Ω0)), the following
holds

‖ψ‖L∞(0,T ;Hi(Ω0)) 6 K(‖ψ(0)‖Hi(Ω0) + T 1/2‖ψt‖L2(0,T ;Hi(Ω0))), (3.40)

where ψ(0) denotes ψ at time t = 0. The inequality (3.40) is true even for a
vector valued function Ψ ∈ H1(0, T ;Hi(Ω0)).

3.2.2. Estimates of G1, G2, G3 and W̃ .

Lemma 3.8. Let B∗0 and T ∗0 are as in Lemma 3.2 and Bi > B∗0 (∀ 1 6 i 6 4).
Then there exist K1 = K1(B1, B2, B3, B4) > 0 and K2 > 0 such that for all
0 < T 6 T ∗0 (B1, B2, B3, B4) and (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4), G1(σ̃, w̃, η̃)
(defined in (1.22)) satisfies the following estimates

(i) ‖G1(σ̃, w̃, η̃)‖L1(0,T ;H2(Ω)) 6 K1(B1, B2, B3, B4)T 1/2,

(ii) ‖G1(σ̃, w̃, η̃)‖L∞(0,T ;H1(Ω)) 6 K2‖ρ0div(u0)‖H1(Ω)

+K1(B1, B2, B3, B4)T 1/2.

(3.41)

Remark 3.9. In (3.41), the constant K2 does not depend on any of the Bi
(1 6 i 6 4).

Proof of Lemma 3.8. (i) We will first prove (3.41)(i).
Estimate of (σ̃+ρ)div(w̃+zη̃t~e2) in L1(0, T ;H2(Ω)): From (3.8), we get that

(σ̃+ρ) ∈ L∞(0, T ;H2(Ω)) and (w̃+zη̃t~e2) ∈ L2(0, T ;H2(Ω)). Hence we have
the following inequality

‖(σ̃ + ρ)div(w̃ + zη̃t~e2)‖L1(0,T ;H2(Ω))

6 K(‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃ + zη̃t~e2)‖L1(0,T ;H3(Ω))) (using Lemma 3.4)

6 KT 1/2(‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃ + zη̃t~e2)‖L2(0,T ;H3(Ω))) (3.42)

6 K(B1, B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c)).
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Estimate of F1(σ̃+ρ, w̃+zη̃t~e2, η̃) (defined in (1.10)) in L1(0, T ;H2(Ω)): First
observe that, as η̃ ∈ L∞(0, T ;H9/2(Γs)) and (3.16d) holds, one can verify the
following

1

(1 + η̃)
∈ L∞(0, T ;H9/2(Γs)) (3.43)

and ∥∥∥∥ 1

(1 + η̃)

∥∥∥∥
L∞(0,T ;H9/2(Γs))

6 K‖η̃‖L∞(0,T ;H9/2(Γs)) 6 K(B4), (using (3.16c)).

(3.44)

Hence we get the following estimate of
zη̃x(σ̃ + ρ)(w̃1 + zη̃t ~e2)z

(1 + η̃)
,∥∥∥∥ η̃x(σ̃ + ρ)(w̃1 + zη̃t ~e2)z

(1 + η̃)

∥∥∥∥
L1(0,T ;H2(Ω))

6 K(‖η̃x‖L∞(0,T ;H7/2(Γs))

∥∥∥∥ 1

(1 + η̃)

∥∥∥∥
L∞(0,T ;H9/2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃1 + zη̃t ~e2)z‖L1(0,T ;H2(Ω))) (using Lemma 3.4)

6 K(B1, B3, B4)T 1/2, (3.45)

(using Hölder’s inequality and (3.16a), (3.16b), (3.16c) and (3.44)).

Rest of the terms in the expression of F1(σ̃+ρ, w̃+zη̃t~e2, η̃) can be estimated
in a similar way. Hence we can show the following

‖F1(σ̃ + ρ, w̃ + zη̃t~e2, η̃)‖L1(0,T ;H2(Ω)) 6 K(B1, B3, B4)T 1/2. (3.46)

We combine (3.42) and (3.46) to prove (3.41)(i).

(ii) We will now prove (3.41)(ii).
Estimate of (σ̃ + ρ)div(w̃ + zη̃t~e2) in L∞(0, T ;H1(Ω)): We observe the fol-
lowing

‖((σ̃ + ρ)div(w̃ + zη̃t~e2))t‖L2(0,T ;H1(Ω))

6 K(‖σ̃tdiv(w̃ + zη̃t~e2)‖L2(0,T ;H1(Ω))

+ ‖(σ̃ + ρ)div(w̃t + zη̃tt~e2)‖L2(0,T ;H1(Ω)))

6 K(‖σ̃t‖L∞(0,T ;H1(Ω))‖div(w̃ + zη̃t~e2)‖L2(0,T ;H2(Ω)) (3.47)

+ ‖σ̃ + ρ‖L∞(0,T ;H2(Ω))‖div(w̃t + zη̃tt~e2)‖L2(0,T ;H1(Ω))) (using Lemma 3.4)

6 K(B1, B2, B3, B4), (using (3.16a), (3.16b), (3.16c)).

Now apply the inequality (3.40) with ψ = (σ̃ + ρ)div(w̃ + zη̃t~e2). We obtain

‖(σ̃ + ρ)div(w̃ + zη̃t~e2)‖L∞(0,T ;H1(Ω))

6 K‖ρ0div(u0)‖H1(Ω) + T 1/2K(B1, B2, B3, B4), (using (3.47)).
(3.48)
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Estimate of F1(σ̃ + ρ, w̃ + zη̃t~e2, η̃) in L∞(0, T ;H1(Ω)): We can have the
following estimate∥∥∥∥ η̃x(σ̃ + ρ)(w̃1 + zη̃t ~e2)z

(1 + η̃)

∥∥∥∥
L∞(0,T ;H1(Ω))

6 K(‖η̃x‖L∞(0,T ;H2(Γs))

∥∥∥∥ 1

(1 + η̃)

∥∥∥∥
L∞(0,T ;H9/2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃1 + zη̃t ~e2)z‖L∞(0,T ;H1(Ω))) (using Lemma 3.4)

6 KT 1/2(‖η̃xt‖L2(0,T ;H2(Γs))

∥∥∥∥ 1

(1 + η̃)

∥∥∥∥
L∞(0,T ;H9/2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃1 + zη̃t ~e2)z‖L∞(0,T ;H1(Ω)))

(using (3.40) with ψ = η̃x and the fact that η̃x(0) = 0)

6 K(B1, B3, B4)T 1/2, (using (3.16a),(3.16b),(3.16c) and (3.44)). (3.49)

A similar analysis can be applied to estimate other summands of F1(σ̃ +
ρ, w̃ + zη̃t~e2, η̃). Hence we can now show that

‖F1(σ̃ + ρ, w̃ + zη̃t~e2, η̃)‖L∞(0,T ;H1(Ω)) 6 K(B1, B2, B4)T 1/2. (3.50)

Combine (3.48) with (3.50) to show (3.41)(ii). �

Lemma 3.10. Let B∗0 and T ∗0 are as in Lemma 3.2 and Bi > B∗0 (∀ 1 6 i 6 4).
Then there exist K3 = K3(B1, B2, B3, B4) > 0, K4 = K4(B1, B4) > 0
and K5 > 0 such that for all 0 < T 6 T ∗0 (B1, B2, B3, B4) and (σ̃, w̃, η̃) ∈
CT (B1, B2, B3, B4), G2(σ̃, w̃, η̃) (defined in (1.22)) satisfies the following es-
timates

(i) ‖G2(σ̃, w̃, η̃)‖L2(0,T ;H1(Ω)) 6 K3(B1, B2, B3, B4)T 1/2, (3.51)

(ii) ‖(G2(σ̃, w̃, η̃))t‖L2(0,T ;L2(Ω)) 6 K3(B1, B2, B3, B4)T 1/2 +K4(B1, B4),

(iii) ‖G2(σ̃, w̃, η̃)‖L∞(0,T ;L2(Ω)) 6 K5‖G0
2‖L2(Ω) +K3(B1, B2, B3, B4)T 1/2.

Remark 3.11. The estimates in (3.51) are inspired from the results stated in
[39, p. 269] which is done in absence of the beam unknown η but includes the
evolution of the temperature of the fluid.
We further emphasize that the constant K4 does not depend on (B2, B3) and
K5 does not depend on any of the Bi (1 6 i 6 4).

Proof of Lemma 3.10. One can use (3.16e) to show that for γ > 1,

(σ̃ + ρ)γ−1 ∈ C0([0, T ];H2(Ω)) and (σ̃ + ρ)γ−2 ∈ C0([0, T ];H2(Ω))

and

‖(σ̃ + ρ)γ−1‖L∞(0,T ;H2(Ω)) 6 K‖σ̃‖L∞(0,T ;H2(Ω)) 6 K(B1),
‖(σ̃ + ρ)γ−2‖L∞(0,T ;H2(Ω)) 6 K‖σ̃‖L∞(0,T ;H2(Ω)) 6 K(B1).

(3.52)

(i) We first estimate G2(σ̃, w̃, η̃) in L2(0, T ;H1(Ω)).
Estimate of P ′(σ̃ + ρ)∇σ̃ in L2(0, T ;H1(Ω)):
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‖P ′(σ̃ + ρ)∇σ̃‖L2(0,T ;H1(Ω))

6 T 1/2‖P ′(σ̃ + ρ)∇σ̃‖L∞(0,T ;H1(Ω))

6 T 1/2K(‖(σ̃ + ρ)γ−1‖L∞(0,T ;H2(Ω))‖∇σ̃‖L∞(0,T ;H1(Ω)))

(using the definition ofP and Lemma 3.4)

6 K(B1)T 1/2, (using (3.16a)). (3.53)

Estimate of zη̃tt(σ̃ + ρ)~e2 − (µ∆ + (µ+ µ′)∇div)(zη̃t~e2) in L2(0, T ;H1(Ω)):

‖zη̃tt(σ̃ + ρ)~e2 − (µ∆ + (µ+ µ′)∇div)(zη̃t~e2)‖L2(0,T ;H1(Ω))

6 T 1/2‖zη̃tt(σ̃ + ρ)~e2 − (µ∆ + (µ+ µ′)∇div)(zη̃t~e2)‖L∞(0,T ;H1(Ω))

6 T 1/2K(‖η̃tt‖L∞(0,T ;H1(Ω))‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω)) + ‖η̃t‖L∞(0,T ;H3(Ω)))

(using Lemma 3.4)

6 K(B1, B4)T 1/2, (using (3.16a), (3.16c)). (3.54)

Estimate of F2(σ̃+ρ, w̃+zη̃t~e2, η̃) (defined in (1.10)) in L2(0, T ;H1(Ω)): We
will only estimate the terms of F2(σ̃ + ρ, w̃ + zη̃t~e2, η̃) which are the most
intricate to deal with. The others are left to the reader.

(a) ‖η̃(σ̃ + ρ)(w̃t + zη̃tt ~e2)‖L2(0,T ;H1(Ω))

6 T 1/2‖η̃(σ̃ + ρ)(w̃t + zη̃tt ~e2)‖L∞(0,T ;H1(Ω))

6 T 1/2K(‖η̃‖L∞(0,T ;H2(Γs))‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃t + zη̃tt ~e2)‖L∞(0,T ;H1(Ω))) (using Lemma 3.4)

6 K(B1, B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c)).

(3.55)

(b) ‖z(σ̃ + ρ)(w̃z + η̃t ~e2)η̃t‖L2(0,T ;H1(Ω))

6 T 1/2‖z(σ̃ + ρ)(w̃z + η̃t ~e2)η̃t‖L∞(0,T ;H1(Ω))

6 T 1/2K(‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃z

+ η̃t ~e2)‖L∞(0,T ;H1(Ω))‖η̃t‖L∞(0,T ;H2(Γs))) (using Lemma 3.4)

6 K(B1, B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c)). (3.56)
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(c)

∥∥∥∥w̃zzz
2η2
x

(1 + η̃)

∥∥∥∥
L2(0,T ;H1(Ω))

6 K(‖w̃zz‖L2(0,T ;H1(Ω))‖η̃2
x‖L∞(0,T ;H2(Γs))

∥∥∥∥ 1

(1 + η̃)

∥∥∥∥
L∞(0,T ;H9/2(Γs))

)

(using Lemma 3.4)

6 T 1/2K(‖w̃zz‖L2(0,T ;H1(Ω))‖η̃2
xt‖L2(0,T ;H2(Γs))∥∥∥∥ 1

(1 + η̃)

∥∥∥∥
L∞(0,T ;H9/2(Γs))

)

(using (3.40) withψ = η̃2
x and the fact η̃x(, 0) = 0)

6 K(B3, B4)T 1/2, (using (3.16a), (3.16b), (3.16c) and (3.44)). (3.57)

(d) Using arguments similar to that in the computation (3.53) we show
the following

‖(η̃P ′σ̃x − P ′σ̃zzη̃x)~e1‖L2(0,T ;H1(Ω)) 6 K(B1, B4)T 1/2. (3.58)

Now the reader can deal with the other terms using similar arguments in
order to prove

‖F2(σ̃ + ρ, (w̃ + zη̃t ~e2), η̃)‖L2(0,T ;H1(Ω)) 6 K(B1, B3, B4)T 1/2. (3.59)

Combining the estimates (3.53), (3.54) and (3.59) we conclude the proof of
the inequality (3.51)(i).

(ii) We now estimate ‖(G2(σ̃, w̃, η̃))t‖L2(0,T ;L2(Ω)).

Estimate of (P ′(σ̃ + ρ)∇σ̃)t in L2(0, T ;L2(Ω)):

‖(P ′(σ̃ + ρ)∇σ̃)t‖L2(0,T ;L2(Ω))

6 T 1/2‖(P ′(σ̃ + ρ)∇σ̃)t‖L∞(0,T ;L2(Ω))

6 T 1/2K(‖(σ̃ + ρ)(γ−2)σ̃t∇σ̃‖L∞(0,T ;L2(Ω))

+ ‖(σ̃ + ρ)γ−1∇σ̃t‖L∞(0,T ;L2(Ω)))

6 T 1/2K(‖(σ̃ + ρ)γ−2‖L∞(0,T ;H2(Ω))‖σ̃t‖L∞(0,T ;H1(Ω))

‖∇σ̃‖L∞(0,T ;H1(Ω)) + ‖(σ̃ + ρ)γ−1‖L∞(0,T ;H2(Ω))

‖∇σ̃t‖L∞(0,T ;L2(Ω))) (using Lemma 3.4)

6 K(B1, B2)T 1/2, (using (3.16a) and (3.52)).

(3.60)

Estimate of (zη̃tt(σ̃ + ρ)~e2 − (µ∆ + (µ+ µ′)∇div)(zη̃t~e2))t in
L2(0, T ;L2(Ω)):
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‖(zη̃tt(σ̃ + ρ)~e2 − (µ∆ + (µ+ µ′)∇div)(zη̃t~e2))t‖L2(0,T ;L2(Ω))

6 T 1/2K(‖η̃tt‖L∞(0,T ;H1(Γs))‖σ̃t‖L∞(0,T ;H1(Ω))) +K(‖η̃ttt‖L2(0,T ;L2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω)) + ‖η̃tt‖L2(0,T ;H2(Γs))) (using Lemma 3.4)

6 K(B2, B4)T 1/2 +K(B1, B4). (3.61)

Estimate of (F2(σ̃ + ρ, (w̃ + zη̃t ~e2), η̃))t in L2(0, T ;L2(Ω)):

(a) ‖(η̃(σ̃ + ρ)(w̃t + zη̃tt ~e2))t‖L2(0,T ;L2(Ω))

6 K(‖(η̃t(σ̃ + ρ)(w̃t + zη̃tt ~e2))‖L2(0,T ;L2(Ω))

+‖η̃σ̃t(w̃t + zη̃tt ~e2)‖L2(0,T ;L2(Ω))

+‖(η̃(σ̃ + ρ)(w̃tt + zη̃ttt ~e2))‖L2(0,T ;L2(Ω)))

6 T 1/2K(‖η̃t‖L∞(0,T ;H2(Γs))‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃t + zη̃tt ~e2)‖L∞(0,T ;H1(Ω)) + ‖η̃‖L∞(0,T ;H2(Γs))

‖σ̃t‖L∞(0,T ;H1(Ω))‖(w̃t + zη̃tt ~e2)‖L∞(0,T ;H1(Ω)))

+‖η̃‖L∞(0,T ;H2(Γs))‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))

‖(w̃tt + zη̃ttt ~e2)‖L2(0,T ;L2(Ω))

6 T 1/2K(B1, B2, B3, B4) + T 1/2‖η̃t‖L2(0,T ;H2(Γs))

‖(σ̃ + ρ)‖L∞(0,T ;H2(Ω))‖(w̃tt + zη̃ttt ~e2)‖L2(0,T ;L2(Ω))

(using (3.40) withψ = η̃ and the fact η̃(, 0) = 0)

6 K(B1, B2, B3, B4)T 1/2.

(3.62)

(b) Using similar estimates we can have the following

‖(z(σ̃ + ρ)(w̃z + η̃t ~e2)ηt)t‖L2(0,T ;L2(Ω)) 6 K(B1, B2, B3, B4)T 1/2. (3.63)

(c) Now we estimate∥∥∥∥(w̃zzz
2η̃2
x

(1 + η̃)

)
t

∥∥∥∥
L2(0,T ;L2(Ω))

.

To start with, we have the following identity of distributional derivatives(
w̃zzz

2η̃2
x

(1 + η̃)

)
t

=
z2w̃tzz η̃

2
x

(1 + η̃)
+

2η̃xη̃xtw̃zz

(1 + η̃)
− w̃zzz

2η̃2
xη̃t

(1 + η̃)2
. (3.64)

We now estimate the first term of the summands. Using (3.44) one obtains∥∥∥∥z2w̃tzz η̃
2
x

(1 + η̃)

∥∥∥∥
L2(0,T ;L2(Ω))

6 K(B4)(‖w̃tzz‖L2(0,T ;L2(Ω))‖η̃x‖2L∞(Σs
T )).

(3.65)

Now we use inequality (3.40) and η̃x(·, 0) = 0 to get

‖η̃x‖L∞(Σs
T ) ≤ C‖η̃x‖L∞(0,T ;H2(Γs)) 6 K(B3)T 1/2. (3.66)

Hence we use (3.66) in (3.65) to obtain∥∥∥∥z2w̃tzz η̃
2
x

(1 + η̃)

∥∥∥∥
L2(0,T ;L2(Ω))

6 K(B3, B4)T. (3.67)
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For the second and third summands of (3.64), we similarly obtain:∥∥∥∥2η̃xη̃xtw̃zz

(1 + η̃)

∥∥∥∥
L2(0,T ;L2(Ω))

6 K(B3, B4)T 1/2,

and

∥∥∥∥−w̃zzz
2η̃2
xη̃t

(1 + η̃)2

∥∥∥∥
L2(0,T ;L2(Ω))

6 K(B3, B4)T.
(3.68)

So altogether we get∥∥∥∥(w̃zzz
2η̃2
x

(1 + η̃)

)
t

∥∥∥∥
L2(0,T ;L2(Ω))

6 K(B3, B4)T 1/2. (3.69)

The remaining terms in the expression of F2 are relatively easier to deal with
and hence we leave the details to the reader to show

‖(F2(σ̃ + ρ, w̃ + zη̃t ~e2, η̃))t‖L2(0,T ;L2(Ω)) 6 K(B1, B2, B3, B4)T 1/2.
(3.70)

Hence combining the estimates (3.60), (3.61) and (3.70) one gets (3.51)(ii).

(iii) In (3.40) replace ψ by G2(w̃, σ̃, η̃) and use the estimate (3.51)(ii) to
prove (3.51)(iii). �

Lemma 3.12. Let B∗0 and T ∗0 are as in Lemma 3.2 and Bi > B∗0 (∀ 1 6 i 6 4).
Then there exist K6 > 0 and K7 = K7(B1, B2, B3, B4) > 0 such that for all
0 < T 6 T ∗0 (B1, B2, B3, B4) and (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4), G3(σ̃, w̃, η̃)
(defined in (1.22)) satisfies the following estimates

(i) ‖G3(σ̃, w̃, η̃)‖L∞(0,T ;H1/2(Γs)) 6 K6‖(ρ0,u0)‖H2(Ω)×H2(Ω)

+K7(B1, B2, B3, B4)T 1/2,

(ii) ‖(G3(σ̃, w̃, η̃))t‖L2(0,T ;L2(Γs)) 6 T 1/6K7(B1, B2, B3, B4).

(3.71)

Remark 3.13. We emphasize that K6 does not depend on any of the Bi (1 6
i 6 4).

Proof. In this proof we will consider the function w̃ and (σ̃+ρ) on Γs, i.e we
take the trace of these functions and make use of well known trace theorem
without mentioning it explicitly.

(i) Estimate of F3(σ̃+ρ, w̃+η̃t~e2, η̃) (defined in (1.10)) in L∞(0, T ;H1/2(Γs)):
(a) First let us estimate (w̃2,z + η̃t) in L∞(0, T ;H1/2(Γs)):

‖(w̃2,z + η̃t)‖L∞(0,T ;H1/2(Γs))

6 K(‖u0‖H2(Ω) + T 1/2‖(w̃2,z + η̃t)t‖L2(0,T ;H1/2(Γs))) (using (3.40))

6 K(‖u0‖H2(Ω) + T 1/2K(B3, B4)), (using (3.16b) and (3.16c)). (3.72)

(b) Let us estimate P (σ̃ + ρ) in L∞(0, T ;H1/2(Γs)).

‖P (σ̃ + ρ)‖L∞(0,T ;H1/2(Γs))

6 K(‖ρ0‖H2(Ω) + T 1/2‖(σ̃ + ρ)γ−1σ̃t‖L2(0,T ;H1/2(Γs))ds) (using (3.40))

6 K(‖ρ0‖H2(Ω) + T 1/2K(B1, B2)), (using (3.16a)). (3.73)
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(c) Now we estimate
η̃xw̃1,z

(1 + η̃)
in L∞(0, T ;H1/2(Γs)),

‖ η̃xw̃1,z

(1 + η̃)
‖L∞(0,T ;H1/2(Γs))

6 K(B4)(‖η̃x‖L∞(0,T ;H2(Γs))‖w̃1,z‖L∞(0,T ;H1/2(Γs))) (using (3.44))

6 T 1/2K(B3, B4), (using (3.40) withψ = η̃x and η̃x(., 0) = 0). (3.74)

We use similar sort of arguments to show that

‖F3(σ̃ + ρ, w̃ + η̃t~e2, η̃)‖L∞(0,T ;H1/2(Γs))

6 K‖ρ0‖H2(Γs) +K(B1, B2, B3, B4)T 1/2.
(3.75)

Combine (3.72) with (3.75) to prove (3.71)(i).

(ii) Estimate of (F3(σ̃+ρ, w̃+η̃t~e2, η̃))t (defined in (1.10)) in L2(0, T ;L2(Γs)):
First let us estimate (w̃2,z + η̃t~e2)t in L2(0, T ;L2(Γs)):

‖(w̃2,z + η̃t)t‖L2(0,T ;L2(Γs))

6 ‖w̃2,tz‖L2(0,T ;L2(Γs)) + ‖η̃tt‖L2(0,T ;L2(Γs))

6 T 1/6K(‖w̃t(·, 0)‖H1
0(Ω) + ‖w̃t‖H2,1

ΣT
(QT )) + T 1/2K‖η̃tt‖L∞(0,T ;L2(Γs))

(using Lemma 3.5 with f replaced by w̃t)

6 T 1/6K(

∥∥∥∥ 1

ρ0

(
G2 |t=0 −(−µ∆− (µ+ µ′)∇div)(u0 − zη1 ~e2)

)∥∥∥∥
H1

0(Ω)

+K(B3)) + T 1/2K(B4). (3.76)

(using (3.17d) and the inequalities (3.16b) and (3.16c))

Using similar line of arguments one can prove that the trace of (F3(σ̃+ρ, w̃+
η̃t~e2, η̃))t on Γs belongs to L2(0, T ;L2(Γs)) and the following inequality is true
for T < 1,

‖(F3(σ̃ + ρ, w̃ + η̃t~e2, η̃))t‖L2(0,T ;L2(Γs)) 6 T
1/6K(B1, B2, B3, B4). (3.77)

Combining (3.76) and (3.77), we conclude (3.71)(ii). �

Lemma 3.14. Let B∗0 and T ∗0 are as in Lemma 3.2 and Bi > B∗0 (∀ 1 6 i 6 4).
Then there exist K8 = K8(B1, B2, B3, B4) > 0, and K9 = K9(B3, B4) > 0
such that for all 0 < T 6 T ∗0 (B1, B2, B3, B4) and (σ̃, w̃, η̃) ∈
CT (B1, B2, B3, B4), we have the following estimates (recall the notation W̃
from (3.4))

(i)‖W̃ (w̃, η̃)‖L1(0,T ;H3(Ω)) 6 K8(B1, B2, B3, B4)T 1/2, (3.78)

(ii)‖W̃ (w̃, η̃)‖L∞(0,T ;H2(Ω)) 6 K9(B3, B4) +K8(B1, B2, B3, B4)T 1/2,

(iii)‖σ̃t‖L2(0,T ;L3(Ω)) + ‖∇σ̃‖L2(0,T ;L3(Ω)) 6 K8(B1, B2, B3, B4)T 1/2.

Remark 3.15. We emphasize that K9 does not depend on B1 and B2.
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Proof. (i) One can use Lemma 3.4 to check that W̃ (w̃, η̃) ∈ L2(0, T ;H3(Ω)).
As a consequence, (3.78)(i) follows.

(ii) The following estimates follow from the regularity of w̃.

‖w̃1‖L∞(0,T ;H2(Ω)) 6 K(B3), (3.79)

∥∥∥∥ 1

(1 + η̃)
w̃2

∥∥∥∥
L∞(0,T ;H2(Ω))

6 K(B3, B4), (using (3.44)) (3.80)

and∥∥∥∥ 1

(1 + η̃)
w̃1zη̃x

∥∥∥∥
L∞(0,T ;H2(Ω))

6 K(B4)(‖w̃‖L∞(0,T ;H2(Ω))‖η̃x‖L∞(0,T ;H2(Γs)))

(using (3.44) and Lemma 3.4)

6 T 1/2K(B4)(‖w̃‖L∞(0,T ;H2(Ω))‖η̃xt‖L2(0,T ;H2(Γs)))

(using (3.40) withψ = η̃x and η̃x(., 0) = 0)

6 T 1/2K(B3, B4).

(3.81)

Combine (3.79), (3.80) and (3.81) to prove (3.78)(ii).

(iii) From the definition of CT (B1, B2, B3, B4) we know that σ̃t is in
L∞(0, T ;H1(Ω)) and ∇σ̃ belongs to L∞(0, T ;H1(Ω)). Hence one uses the
continuous embedding H1(Ω) ↪→ L3(Ω) to obtain that the embedding from

L∞(0, T ;H1(Ω)) ↪→ L2(0, T ;L3(Ω)) has a norm of size
√
T . We then easily

derive (3.78)(iii). �

3.2.3. Choices of B1, B2, B3 and B4. Now we will choose the constants Bi >
B∗0 (6 i 6 4) such that for a small enough time 0 < T 6 T ∗0 (B1, B2, B3, B4),
L maps CT (B1, B2, B3, B4) into itself.

Lemma 3.16. Let B∗0 and T ∗0 are as in Lemma 3.2. There exist constants
Bi > B∗0 (1 6 i 6 4) and a time T ∗(B1, B2, B3, B4) satisfying
0 < T ∗(B1, B2, B3, B4) 6 T ∗0 (B1, B2, B3, B4) such that for all 0 < T 6
T ∗(B1, B2, B3, B4), L maps CT (B1, B2, B3, B4) into itself.

Proof. In the following we will fix Bi (1 6 i 6 4) in a hierarchical order. We
use the constants B∗0 (Lemma 3.2), c4 (Theorem 2.7), K6 (Lemma 3.12), c1
(Theorem 2.1), K4 (Lemma 3.10), K5 (Lemma 3.10), c3 (Theorem 2.4), K9

(Lemma 3.14) and K2 (Lemma 3.8). First we set B1 and B4 as follows
B1 = max{2(‖σ0‖H2(Ω) + 1), B∗0},
B4 = max{c4(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs)

+K6‖(ρ0,u0)‖H2(Ω)×H2(Ω) + 1), B∗0}.
(3.82)
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Now using B1 and B4 we choose B2 and B3 in the following order.

B3 = max{c1(2 +K5‖G2 |t=0 ‖L2(Ω) + 4(1 +K4(B1, B4) (3.83)

+

∥∥∥∥G2 |t=0 −(−µ∆− (µ+ µ′)∇div)(u0 − zη1 ~e2)

ρ0

∥∥∥∥
H1(Ω)

)), B∗0},

and

B2 = max{2c3K9(B3, B4)‖σ0‖H2(Ω) +K2‖ρ0div(u0)‖H1(Ω) + 1, B∗0}.
(3.84)

In the rest of the proof we verify that with the choices (3.82), (3.83) and
(3.84) of Bi (∀ 1 6 i 6 4), there exists a time T ∗(B1, B2, B3, B4) such that
for all 0 < T 6 T ∗(B1, B2, B3, B4), L maps CT (B1, B2, B3, B4) into itself.
Let (σ̃, w̃, η̃) ∈ CT (B1, B2, B3, B4) and L(σ̃, w̃, η̃) = (σ,w, η). From Theo-
rem 2.1, Theorem 2.4 and Theorem 2.7 we know that (σ,w, η) satisfies the
following inequalities with

(G1, G2, G3) = (G1(σ̃, w̃, η̃), G2(σ̃, w̃, η̃), G3(σ̃, w̃, η̃)).



‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+ ‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω))

6 c1{‖G2‖L2(0,T ;H1(Ω)) + ‖G2‖L∞(0,T ;L2(Ω)) + (‖G2,t‖L2(0,T ;L2(Ω))

+

∥∥∥∥G2 |t=0 −(−µ∆− (µ+ µ′)∇div)(u0 − zη1 ~e2)

ρ0

∥∥∥∥
H1(Ω)

)

· (1 + ‖σ̃t‖L2(0,T ;L3(Ω)) + ‖∇σ̃‖L2(0,T ;L3(Ω)))exp(c1‖σ̃t‖2L2(0,T ;L3(Ω)))},
(3.85)



‖σ‖L∞(0,T ;H2(Ω))

6 (‖σ0‖H2(Ω) + c2‖G1‖L1(0,T ;H2(Ω)))exp(c2‖W̃‖L1(0,T ;H3(Ω))),

‖σt‖L∞(0,T ;H1(Ω))

6 c3‖W̃‖L∞(0,T ;H2(Ω))[(‖σ0‖H2(Ω) + c2‖G1‖L1(0,T ;H2(Ω)))

· exp(c2‖W̃‖L1(0,T ;H3(Ω)))] + ‖G1‖L∞(0,T ;H1(Ω)),

(3.86)

and
‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs))

+ ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L∞([0,T ];H1(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

6 c4
(
‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) + ‖G3‖L∞(0,T ;H1/2(Γs))

+ ‖G3,t‖L2(0,T ;L2(Γs))

)
.

(3.87)
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(i) Using the estimate (3.71) on G3(σ̃, w̃, η̃) in (3.87) we obtain:
‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs))

+ ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L∞([0,T ];H1(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

6 c4(‖η1‖H3(Γs) + ‖G3 |t=0 ‖H1(Γs) +K6‖(ρ0,u0)‖H2(Ω)×H2(Ω)

+K7(B1, B2, B3, B4)T 1/2 + T 1/6K7(B1, B2, B3, B4).

(3.88)

Now choose T ∗1 = T ∗1 (B1, B2, B3, B4)(6 T ∗0 (B1, B2, B3, B4)) small enough
positive such that

K7(B1, B2, B3, B4)(T ∗1 )1/2 +K7(B1, B2, B3, B4)(T ∗1 )1/6 < 1. (3.89)

In view of the choice of B4 (see (3.82)) and (3.89), for all 0 < T 6 T ∗1 one
verifies that
‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs))

+ ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηtt‖L∞([0,T ];H1(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs))

6 B4.

(3.90)

(ii) Using the estimates (3.41)(i) on G1(σ̃, w̃, η̃) and (3.78)(i) on W̃ (w̃, η̃) in

(3.86)1 furnish

‖σ‖L∞(0,T ;H2(Ω)) 6 (‖σ0‖H2(Ω) + c2K1(B1, B2, B3, B4)T 1/2)
exp(c2K8(B1, B2, B3, B4)T 1/2).

(3.91)

Choose T ∗2 = T ∗2 (B1, B2, B3, B4)(6 T ∗1 ) small enough positive such that

c2K1(B1, B2, B3, B4)(T ∗2 )1/2 < 1
and exp(c2K8(B1, B2, B3, B4)(T ∗2 )1/2) < 2.

(3.92)

In view of the choice of B1 (see (3.82)) and (3.92), for all 0 < T 6 T ∗2 the
following holds

‖σ‖L∞(0,T ;H2(Ω)) 6 B1. (3.93)

(iii) Using the estimates (3.51) on G2(σ̃, w̃, η̃) and (3.78)(iii) on σ̃ in (3.85)

to obtain

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+ ‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω))

6 c1{K5‖G2 |t=0 ‖L2(Ω) + 2K3(B1, B2, B3, B4)T 1/2

+ (K3(B1, B2, B3, B4)T 1/2 +K4(B1, B4)

+

∥∥∥∥G2 |t=0 −(−µ∆− (µ+ µ′)∇div)(u0 − zη1 ~e2)

ρ0

∥∥∥∥
H1(Ω)

)

· (1 +K8(B1, B2, B3, B4)T 1/2)exp(c1K
2
8 (B1, B2, B3, B4)T )}.

(3.94)
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Choose T ∗3 = T ∗3 (B1, B2, B3, B4)(6 T ∗2 (B1, B2, B3, B4)) small enough posi-
tive such that

K3(B1, B2, B3, B4)(T ∗3 )1/2 < 1, (3.95)

and (1 +K8(B1, B2, B3, B4)(T ∗3 )1/2)exp(c1K
2
8 (B1, B2, B3, B4)T ∗3 ) < 4.

In view of the choice of B3 (see (3.83)) and (3.95), for all 0 < T 6 T ∗3 we
have

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+ ‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω)) < B3.
(3.96)

(iv) Using the estimates (3.41) on G1(σ̃, w̃, η̃) and (3.78)(i)-(3.78)(ii) on

W̃ (w̃, η̃) in (3.86)2 furnish

‖σt‖L∞(0,T ;H1(Ω)) 6 c3(K9(B3, B4) +K8(B1, B2, B3, B4)T 1/2)

[(‖σ0‖H2(Ω) + c2K1(B1, B2, B3, B4)T 1/2) · exp(c2K8(B1, B2, B3, B4)T 1/2)]

+K2‖ρ0div(u0)‖H1(Ω) +K1(B1, B2, B3, B4)T 1/2. (3.97)

Choose T ∗4 = T ∗4 (B1, B2, B3, B4)(6 T ∗3 ) small enough positive such that

K1(B1, B2, B3, B4)(T ∗4 )1/2 + c2c3K9(B3, B4)K1(B1, B2, B3, B4)(T ∗4 )1/2

· exp(c2K8(B1, B2, B3, B4)(T ∗4 )1/2) +K8(B1, B2, B3, B4)(T ∗4 )1/2[(‖σ0‖H2(Ω)

+ c2K1(B1, B2, B3, B4)(T ∗4 )1/2) · exp(c2K8(B1, B2, B3, B4)(T ∗4 )1/2)] < 1.
(3.98)

In view of the choice of B2 (see (3.84)) and (3.98), we check that for all
0 < T 6 T ∗4 the following holds

‖σt‖L∞(0,T ;H1(Ω)) < B2. (3.99)

Hence with the choices (3.82), (3.83) and (3.84) of the constants Bi (1 6 i 6
4), (σ,w, η) satisfies the estimates (3.93), (3.99), (3.96) and (3.90) respec-
tively for all 0 < T 6 T ∗4 . We can also use similar kind of interpolation argu-
ments as used in (3.25) to show that there exists a T ∗5 = T ∗5 (B1, B2, B3, B4)
(6 T ∗4 ), positive, such that for all 0 < T 6 T ∗5 ,

1 + η(x, t) > δ0 > 0, on ΣsT
m

2
6 σ(x, z, t) + ρ 6 2M, in QT .

(3.100)

Again it follows from the equation (3.3)2 that wt(0) satisfies the condition
(3.17d). Similarly one uses (3.3)6 to show that ηtt(·, 0) satisfies (3.17c). Now
we set

T ∗ = T ∗(B1, B2, B3, B4) = T ∗5 .

Hence if Bi (∀ 1 6 i 6 4) is chosen as in (3.82), (3.83) and (3.84) and
0 < T 6 T ∗, (σ,w, η) satisfies all the conditions (3.16)-(3.17), guaranteeing
(σ,w, η) ∈ CT (B1, B2, B3, B4).
This concludes the proof of Lemma 3.16. �
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We fix the choice of Bi (∀ 1 6 i 6 4) and T = T ∗(B1, B2, B3, B4) as in
Lemma 3.16. Hence in the following we will simply use the notations

T = T ∗ and CT = CT (B1, B2, B3, B4). (3.101)

3.3. Compactness and continuity

Let us observe that CT is a convex, bounded subset of the space

X = {(σ,w, η) ∈ C0([0, T ], H1(Ω))× C0([0, T ];H1(Ω))× C1([0, T ];H1(Γs))

∩ C0([0, T ];H2(Γs))},
endowed with the topology induced by the norm

‖(σ,w, η)‖X = sup
t∈[0,T ]

(‖σ(t)‖H1(Ω)+‖w(t)‖H1(Ω)+‖η(t)‖H2(Γs)+‖ηt(t)‖H1(Γs)).

Lemma 3.17. Let CT be the set as introduced in (3.101). The set CT , when
endowed with the topology of X , is compact in X .

Proof. We claim that the set CT is closed in X .
Assume that a sequence (σ̃n, w̃n, η̃n) ∈ CT and that (σ̃n, w̃n, η̃n)→ (σ,w, η)
in X . Now η̃n → η in C1([0, T ];H1(Γs)) implies that η̃n,t → ηt in
C0([0, T ];H1(Γs)), η̃n,tt → ηtt and η̃n,ttt → ηttt in D′(0, T ;L2(Γs)) in partic-
ular, where D′(0, T ;L2(Γs)) denotes the space of distributions on (0, T ) with
values in L2(Γs).
We recall the norm bounds over η in the set CT . Hence we have up to a
subsequence (still denoted by η̃n) that η̃n → η weak* in L∞(0, T ;H9/2(Γs)),
η̃n,t → ηt weakly in L2(0, T ;H4(Γs)) and weak* in L∞(0, T ;H3(Γs)), η̃n,tt →
ηtt weakly in L2(0, T ;H2(Γs)) and weak* in L∞(0, T ;H1(Γs)), η̃n,ttt → ηttt
weakly in L2(0, T ;L2(Γs)). Also by the lower semi-continuity of the norms
with respect to the above weak type convergences we get

‖η‖L∞(0,T ;H9/2(Γs)) + ‖ηt‖L∞(0,T ;H3(Γs)) + ‖ηt‖L2(0,T ;H4(Γs)) (3.102)

+ ‖ηtt‖L∞(0,T ;H1(Γs)) + ‖ηtt‖L2(0,T ;H2(Γs)) + ‖ηttt‖L2(0,T ;L2(Γs)) 6 B4.

As η̃n → η in C1([0, T ];H1(Γs)) and η̃n,t → ηt in C0([0, T ];H1(Γs)), hence

η(·, 0) = 0 and ηt(0) = η1. (3.103)

The uniform bounds of ‖η̃n,tt‖L∞(0,T ;H1(Γs)) and ‖η̃n,ttt‖L2(0,T ;L2(Γs)) and
Aubin Lions lemma ([2]) furnish that up to a subsequence (still denoted by
η̃n), η̃n,tt strongly converges to ηtt in C0([0, T ];L2(Γs)). Hence

ηtt(·, 0) = δη1,xx − (µ+ 2µ′)(u0)2,z + P (ρ0). (3.104)

Similar arguments (used to show (3.102)) can be used to show that

‖w‖L∞(0,T ;H2(Ω)) + ‖w‖L2(0,T ;H3(Ω)) + ‖wt‖L∞(0,T ;H1(Ω))

+‖wt‖L2(0,T ;H2(Ω)) + ‖wtt‖L2(0,T ;L2(Ω)) 6 B3,
(3.105)

‖σ‖L∞(0,T ;H2(Ω)) 6 B1, ‖σt‖L∞(0,T ;H1(Ω)) 6 B2. (3.106)

Since η̃n converges to η in L∞(ΣsT ) (follows from the continuous embedding
H2(Γs) ↪→ L∞(Γs)), one has the following (as η̃n satisfies (3.16d))

1 + η(x, t) > δ0 > 0 on ΣsT . (3.107)
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Observe that the weak* convergence of σ̃n to σ in L∞(0, T ;L2(Ω)) is enough
to conclude that (since σ̃n satisfies (3.16e))

m

2
6 σ(x, z, t) + ρ 6 2M in QT . (3.108)

Using the strong convergence of (σ̃n, w̃n, η̃n) to (σ,w, η) in X furnishes

w(·, 0) = (u0 − zη1 ~e2) in Ω,
σ(·, 0) = σ0 in Ω.

(3.109)

Now we can use the uniform bounds of ‖w̃n,t‖L∞(0,T ;H1(Ω)) and
‖w̃n,tt‖L2(0,T ;L2(Ω)) and the Aubin Lions lemma to have the convergence

w̃n,t → wt in C0([0, T ];L2(Ω)). Consequently

wt(., 0) =
1

ρ0
(G0

2 − (−µ∆− (µ+ µ′)∇div)(u0 − zη1~e2)). (3.110)

So combining (3.102)-(3.103)-(3.104)-(3.105)-(3.106)-(3.107)-(3.108)-(3.109)-
(3.110) we conclude that the limit point (σ,w, η) ∈ CT and hence CT is closed
in X .
Once again using Aubin Lions lemma we get that CT is a compact subset of
X . �

Now to apply Schauder’s fixed point theorem one only needs to prove
that L is continuous on CT .

Lemma 3.18. Let CT be the set in (3.101). The map L is continuous from CT
into itself for the topology of X .

Proof. Suppose that (σ̃n, w̃n, η̃n) ∈ CT , converges to (σ̃, w̃, η̃) strongly in X .
Then, according to Lemma 3.17, (σ̃, w̃, η̃) ∈ CT . We thus set (σ̂n, ŵn, η̂n) =
L(σ̃n, w̃n, η̃n), (σ̂, ŵ, η̂) = L(σ̃, w̃, η̃). Our goal is to show that (σ̂n, ŵn, η̂n)
strongly converges to (σ̂, ŵ, η̂) in X . Using that (σ̂n, ŵn, η̂n) belongs to CT
(see Lemma 3.16) we get that there exists a triplet (σ,w, η) such that up to
a subsequence

σ̂n
∗
⇀ σ in L∞(0, T ;H2(Ω)) ∩W 1,∞(0, T ;H1(Ω)),

ŵn ⇀ w in L2(0, T ;H3(Ω)) ∩H1(0, T ;H2(Ω)) ∩H2(0, T ;L2(Ω)),

ŵn
∗
⇀ w in L∞(0, T ;H2(Ω)) ∩W 1,∞(0, T ;H1(Ω)),

η̂n ⇀ η in H1(0, T ;H4(Γs)) ∩H2(0, T ;H2(Γs)) ∩H3(0, T ;L2(Γs)),

η̂n
∗
⇀ η in L∞(0, T ;H9/2(Γs)) ∩W 1,∞(0, T ;H3(Γs))

∩W 2,∞(0, T ;H1(Γs)).
(3.111)

The compactness result proved in Lemma 3.17 provides the strong conver-
gence in X i.e, up to a subsequence, (σ̂n, ŵn, η̂n) converges strongly in X
to (σ,w, η). It is clear that in order to prove that the map L is continuous
it is enough to show that (σ,w, η) = (σ̂, ŵ, η̂). This will be verified in the
following steps.
(i) We first claim that G2(σ̃n, w̃n, η̃n) converges weakly to G2(σ̃, w̃, η̃) in
L2(0, T ;L2(Ω)).
Since (σ̃n, w̃n, η̃n) belongs to CT and we have fixed Bi (for all 1 6 i 6 4)
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and T, one can use Lemma 3.10 to show that ‖G2(σ̃n, w̃n, η̃n)‖L2(0,T ;L2(Ω))

is uniformly bounded. Hence, to prove our claim it is enough to show that
G2(σ̃n, w̃n, η̃n) converges to G2(σ̃, w̃, η̃) in D′(QT ) (D′(QT ) is the space of
distributions on QT ).

Let us consider the term
w̃n,zzz

2η̃2
n,x

(1 + η̃n)
. From the uniform norm bound over

‖w̃n,zz‖L2(0,T ;H1(Ω)) we get that w̃n,zz converges weakly in L2(0, T ;H1(Ω))

to w̃zz. Since η̃n strongly converges to η̃ in C0([0, T ];H2(Γs)) and both

η̃n and η̃ satisfy (3.16d),
1

(1 + η̃n)
and η̃n,x converge strongly to

1

(1 + η̃)
and η̃x respectively in the spaces C0([0, T ];H2(Γs)) and C0([0, T ];H1(Γs)).
Hence one gets in particular the strong convergence of η̃2

n,x to η̃2
x in the

space C0([0, T ];L2(Γs)). This implies that
w̃n,zzz

2η̃2
n,x

(1 + η̃n)
converges to

w̃zzz
2η̃2
x

(1 + η̃)
weakly in L2(0, T ;L1(Ω)) and hence particularly in the space D′(QT ).
Now we consider the term P ′σ̃n,zzη̃n,x~e1 = (σ̃n + ρ)γ−1σ̃n,zzη̃n,x~e1. Since
‖(σ̃n+ρ)‖C0(0,T ;H2(Ω)) is uniformly bounded so is ‖(σ̃n+ρ)γ−1‖C0(0,T ;H2(Ω))

and hence (σ̃n + ρ)γ−1 converges weakly to (σ̃ + ρ)γ−1 in L2(0, T ;H2(Ω)).
We also have that σ̃n,z converges strongly to σ̃z in C0([0, T ];L2(Ω)). Hence
(σ̃n + ρ)γ−1σ̃n,z converges weakly to (σ̃ + ρ)γ−1σ̃z in L2(0, T ;L2(Ω)). Now
the strong convergence of η̃n,x to η̃x in C0([0, T ];H1(Γs)) furnish that (σ̃n +
ρ)γ−1σ̃n,zzη̃n,x weakly converges to (σ̃+ρ)γ−1σ̃zzη̃x in L2(0, T ;L1(Ω)). Hence
(σ̃n + ρ)γ−1σ̃n,zzη̃n,x~e1 converges to (σ̃+ ρ)γ−1σ̃zzη̃x~e1 in the space D′(QT ).
We can apply similar line of arguments to prove that G2(σ̃n, w̃n, η̃n) con-
verges to G2(σ̃, w̃, η̃) in D′(QT ). Hence we have proved that G2(σ̃n, w̃n, η̃n)
converges to G2(σ̃, w̃, η̃) weakly in L2(0, T ;L2(Ω)).
Also observe that (σ̃n + ρ) converges strongly to (σ̃+ ρ) in C0([0, T ];H1(Ω))
and ŵn,t, (−µ∆−(µ′+µ)∇(div))ŵn converge up to a subsequence weakly to
wt and (−µ∆− (µ′+µ)∇(div))w respectively in the spaces L2(0, T ;H2(Ω))
and L2(0, T ;H1(Ω)). Hence up to a subsequence one obtains in particular
the following convergence

(σ̃n + ρ)ŵn,t − µ∆ŵn − (µ′ + µ)∇(divŵn)

⇀ (σ̃ + ρ)wt − µ∆w − (µ′ + µ)∇(divw) in L2(0, T ;L2(Ω)).

Now consider (3.3)2 with (σ̃, w̃, η̃) and w replaced respectively by (σ̃n, w̃n, η̃n)
and ŵn. The weak convergences discussed so far allow to pass to the limits
in both sides of this equation. So using the uniqueness of weak solution for
the linear problem (2.1) we conclude that w = ŵ.
(ii) Now we claim that G1(σ̃n, w̃n, η̃n) converges weakly to G1(σ̃, w̃, η̃) in
L2(0, T ;L2(Ω)).

Let us consider the term
1

(1 + η̃n)
(w̃n)1,zzη̃n,x(σ̃n + ρ). We already know

that
1

(1 + η̃n)
and η̃n,x converge strongly to

1

(1 + η̃)
and η̃x respectively

in the spaces C0([0, T ];H2(Γs) and C0([0, T ];H1(Γs)). One also observes
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that (w̃n)1,z weakly converges to w̃1,z in L2(0, T ;H2(Ω)) (since w̃n ⇀ w̃
in L2(0, T ;H3(Ω))). Finally the strong convergence of (σ̃n + ρ) to (σ̃ + ρ) in

C0([0, T ];H1(Ω)) furnish the weak convergence of
1

(1 + η̃n)
(w̃n)1,zzη̃n,x(σ̃n+

ρ) to
1

(1 + η̃)
(w̃)1,zzη̃x(σ̃+ ρ) in L2(0, T ;L2(Ω)). We can apply similar argu-

ments for other terms in the expression of G1(σ̃, w̃, η̃) in order to prove the
weak convergence of G1(σ̃n, w̃n, η̃n) to G1(σ̃, w̃, η̃) in L2(0, T ;L2(Ω)).
We further observe that ∇σ̂n strongly converges to ∇σ in C0([0, T ];L2(Ω)).
Since (w̃n)1 weakly converges to w̃1 in L2(0, T ;H3(Ω)), (η̃n)x strongly con-
verges to η̃x in L∞(ΣsT ) (because (η̃n)x strongly converges to η̃x in
C0([0, T ];H1(Γs)) and the embedding H1(Γs) ↪→ L∞(Γs) is continuous) and

1
(1+η̃n) strongly converges to 1

(1+η̃) in C0([0, T ];H2(Γs)), the term
1

(1+η̃n) (w̃n)1z(η̃n)x(σ̂n)z weakly converges to 1
(1+η̃) w̃1zη̃xσ̂z in L2(0, T ;L2(Ω)).

Besides, up to a subsequence (σ̂n)t weakly converges to σt in L2(0, T ;L2(Ω)).
Hence up to a subsequence we have

(σ̂n)t +

[
(w̃n)1

1
(1+η̃n) ((w̃n)2 − (w̃n)1z(η̃n)x)

]
· ∇σ̂n

⇀ σt +

[
w̃1

1
(1+η̃) (w̃2 − w̃1zη̃x)

]
· ∇σ in L2(0, T ;L2(Ω)).

Now consider (3.3)1 with (σ̃, w̃, η̃) and σ replaced respectively by (σ̃n, w̃n, η̃n)
and σ̂n. The weak type convergences discussed so far allow to pass to the lim-
its in both sides of this equation. Hence from uniqueness of weak solution of
the linear problem (2.6) we conclude that σ = σ̂.
(iii) One can use similar line of arguments as used so far to show that
G3(σ̃n, w̃n, η̃n) converges weakly to G3(σ̃, w̃, η̃) in L2(0, T ;L2(Γs)). Using
the norm bounds of η̂n (since (σ̂n, ŵn, η̂n) ∈ CT ) we can prove that up to
a subsequence the left hand side of (3.3)6 with η replaced by η̂n converges
weakly to

ηtt − βηxx − δηtxx + αηxxxx

in L2(0, T ;L2(Γs)). Now the uniqueness of weak solution to the problem
(2.17) furnishes η = η̂. Hence the proof of Lemma 3.18 is complete. �

3.4. Conclusion

The following properties hold
(i) The convex set CT is non-empty (Lemma 3.2) and is a compact subset of
X (Lemma 3.17).
(ii) The map L, defined in (3.19), is continuous on CT in the topology of X
(Lemma 3.18).
(iii) The map L maps CT to itself (Lemma 3.16).
Thus, all the assumptions of Schauder fixed point theorem are satisfied by
the map L on CT , endowed with the topology of X . Therefore, Schauder
fixed point theorem yields a fixed point (σf ,wf , ηf ) of the map L in CT .
From the definition of the map L, one has (σf ,wf , ηf ) ∈ ZT1 × Y T2 × ZT3 .
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Hence we have the following time continuities (since still now one only has
the regularities (3.41) of G1(σf ,wf , ηf ), (3.51) of G2(σf ,wf , ηf ) and (3.71)
of G3(σf ,wf , ηf ))

σf ∈ C0([0, T ];H2(Ω)),

wf ∈ C0([0, T ];H5/2(Ω)) ∩ C1([0, T ];H1(Ω)), (3.112)

ηf ∈ C0([0, T ];H4(Γs)) ∩ C1([0, T ];H3(Γs)) ∩ C2([0, T ];H1(Γs)).

The regularities (3.112) can be used to further check that G1(σf ,wf , ηf ) ∈
C0([0, T ];H1(Ω)) and G3(σf ,wf , ηf ) ∈ C0([0, T ];H1/2(Γs)). Hence we use
Corollary 2.5 and the Corollary 2.8 to obtain the following

(σf )t ∈ C0([0, T ];H1(Ω)) and ηf ∈ C0([0, T ];H9/2(Γs)).

Hence, (σf ,wf , ηf ) ∈ Y T1 × Y T2 × Y T3 . The trajectory (σf ,wf , ηf ) solves the
nonlinear problem (1.21) in Y T1 × Y T2 × Y T3 . Consequently the system (1.19)
admits a solution. This further implies that the original system (1.2)-(1.4)-
(1.5) admits a strong solution in sense of the Definition 1.6. Finally the proof
of Theorem 1.7 is complete. �
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[2] J-P. Aubin. Un théorème de compacité. C. R. Acad. Sci. Paris, 256:5042–5044,
1963.

[3] G. Avalos, P. G. Geredeli, and J. T. Webster. Semigroup Well-posedness of
A Linearized, Compressible Fluid with An Elastic Boundary. ArXiv e-prints,
March 2017.

[4] H. Beirão da Veiga. On the existence of strong solutions to a coupled fluid-
structure evolution problem. J. Math. Fluid Mech., 6(1):21–52, 2004.

[5] A. Bensoussan, G. Da Prato, M. C. Delfour, and S. K. Mitter. Representation
and control of infinite dimensional systems. Systems & Control: Foundations
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