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Abstract. Nonlinear responses to changing external pressures are increasingly studied in real-world
ecosystems. However, as many of the changes observed by ecologists extend beyond the monitoring
record, the occurrence of critical transitions, where the system is pushed from one equilibrium state to
another, remains difficult to detect. Paleo-ecological records thus represent a unique opportunity to expand
our temporal perspective to consider regime shifts and critical transitions, and whether such events are the
exception rather than the rule. Yet, sediment core records can be affected by their own biases, such as sedi-
ment mixing or compression, with unknown consequences for the statistics commonly used to assess
regime shifts, resilience, or critical transitions. To address this shortcoming, we developed a protocol to
simulate paleolimnological records undergoing regime shifts or critical transitions to alternate states and
tested, using both simulated and real core records, how mixing and compression affected our ability to
detect past abrupt shifts. The smoothing that is built into paleolimnological data sets apparently interfered
with the signal of rolling window indicators, especially autocorrelation. We thus turned to time-varying
autoregressions (online dynamic linear models, DLMs; and time-varying autoregressive state-space mod-
els, TVARSS) to evaluate the possibility of detecting regime shifts and critical transitions in simulated and
real core records. For the real cores, we examined both varved (annually laminated sediments) and non-
varved cores, as the former have limited mixing issues. Our results show that state-space models can be
used to detect regime shifts and critical transitions in some paleolimnological data, especially when the sig-
nal-to-noise ratio is strong. However, if the records are noisy, the online DLM and TVARSS have limitations
for detecting critical transitions in sediment records.
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INTRODUCTION

The observation that ecosystems can respond
discontinuously to changing external pressures
has shed some light on their complex nonlinear
dynamics. The concepts of critical transitions,
thresholds, and alternative stable states spread
throughout the ecological and environmental
management literature, from the initial proposal
by Holling (1973) to field evidence for ecosystem
regime shifts (Scheffer et al. 2001, Carpenter
2003). Most recently, however, reviews have
raised some skepticism about whether nonlinear
ecosystem responses to an environmental press
are the exception rather than the rule (Capon
et al. 2015). The use of resilience indicators as
tools for detecting the possible onset of critical
transitions has also been questioned (K�efi et al.
2013, Burthe et al. 2015, Gsell et al. 2016).

Although a regime shift, defined as a large
change with prolonged consequences, is often
obvious when it occurs, whether it qualifies as a
catastrophic transition that pushes the system
from one equilibrium state to another is usually
difficult to prove (Carpenter 2003). A critical
transition occurs when the system operates a
bifurcation leading to loss or gain of a new
attractor (Scheffer 2009). Most methods used to
detect critical transitions depend on demonstrat-
ing that the dominant eigenvalue (i.e., recovery
rate) of the variance–covariance matrix of a plau-
sible dynamical model crosses from inside to out-
side the unit circle (in discrete time) or passes
through zero from below (in continuous time).
That is, mathematically, a critical transition is
defined as an unstable equilibrium point where
the rate with which the system returns to this
equilibrium (dominant eigenvalue) approaches
zero, with the consequence that the system
becomes increasingly slow in recovering from
small perturbations (loss in resilience) and thus
vulnerable to major changes caused by small per-
turbations. When approaching a critical transi-
tion, the system’s intrinsic rates will differ less
from previous time points (increase memory or
autocorrelation; Ives et al. 2003) while its behav-
ior becomes more like a random walk (rise in
variance; Scheffer et al. 2015).

In general, a deeper understanding of the
causes of regime shifts and whether these are criti-
cal transitions requires high-resolution and

lengthy times series; often monitoring records do
not meet these requirements. Paleo-ecological
records thus represent a valuable opportunity to
extend our temporal perspective and enhance our
ability to detect critical transitions retrospectively
(Dakos et al. 2008, Lenton et al. 2012, Spanbauer
et al. 2014, Belle et al. 2017, Beck et al. 2018).
However, to the exception of varved sediments
which provide annual integration, sediment core
records have their own biases and shortcomings,
such as sediment focusing and irregular temporal
integration (Carstensen et al. 2013, Frossard et al.
2015). As such, sediment core time series are not
strictly analogous to instrumental data sets, and
there is a growing need for the development of
quantitative methods to identify regime shifts and
critical transitions in paleolimnological records
(Spears et al. 2016).
In this work, we examined three sediment core

archives displaying either a gradual change in
trophic state, an abrupt state change, or plausible
flickering between two alternate states, to (1)
show that regime shifts are discernible in real
sediment cores and (2) evaluate whether we
could use these cores to test for evidence of criti-
cal transitions between alternate states. To
address the latter, we built a model of core for-
mation (simulated core records) to help define
the conditions under which resilience indicators
of critical transitions can be detected with pale-
olimnological data. Our simulations showed that
factors encountered in core records (integration
of core intervals, sediment compaction with time
or uneven degradation) weaken our ability to
detect past critical transitions using generic
statistics (i.e., rise in rolling window variance
and lag-1 autocorrelation). In particular, mixing
among core intervals increased the autocorrela-
tion at lag-1, whereas greater compaction of sedi-
ment layers with time eroded the temporal
autocorrelation signal. This suggests that the
ability to detect transition using generic resili-
ence indicators will depend on the core sampling
resolution (e.g., different results are expected if
using high-resolution varved cores derived from
micro-XRF scanning vs. low-resolution acquisi-
tion from extruding cores at 1-cm intervals). In
light of the shortfall of the rolling window
approach in paleo-records, we employed time-
varying autoregressions (Ives and Dakos 2012)
computed using dynamic linear models (DLMs,
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Pole et al. 1994) and time-varying autoregressive
state-space models (TVARSS; Ives and Dakos
2012) to evaluate the possibility of detecting criti-
cal transitions in simulated and real sediment
core records. Our results showed that regime
shifts and indicators of past critical transitions in
core records can be detected in paleolimnological
data if noise is moderate compared to the magni-
tude of change.

METHODS

Observed lake sediment records
To provide a range of regime shift time series,

we cross-examined the published literature and
identified core records with (1) an abrupt onset
of a eutrophic state (Roxton Pond; echinenone
pigment used as a proxy of total cyanobacteria
abundance; Vermaire et al. 2017); (2) a noisier
eutrophication signal (Lake Anarry; myxoxan-
thophyll pigment used as a proxy of colonial
cyanobacteria abundance; Stevenson et al. 2016);
and (3) possible flickering between alternate
states (Lake Geneva; a composite proxy recon-
structed from multiple intercorrelated varved
cores tracking the inferred volume of hypolim-
netic hypoxia; Jenny et al. 2014). Cyanobacterial
dominance and hypolimnetic hypoxia are well-
established symptoms of anthropogenic distur-
bances and increased nutrient loading to lakes
(Edmondson 1961, Reckhow 1977); thus, both
paleolimnological proxies are used here as indi-
cators of a shift from oligotrophic to eutrophic
conditions (Taranu et al. 2015, Jenny et al. 2016).
All proxies were standardized (z-scores) prior to
analysis, though we refrain from comparing the
magnitude of change among these three example
cores as we used three very different lake types
(i.e., shallow vs. very deep) which we would
expect to behave and respond in different ways
to the same forcing.

Roxton Pond is a eutrophic, shallow lake (max-
imum depth 6.2 m) in the Eastern Townships of
Quebec, Canada, that experienced a pronounced
increase in nutrient loading during the 1970s as a
result of agricultural activities (Vermaire et al.
2017). According to the paleolimnological record,
this was followed by a change in the zooplankton
and phytoplankton community and an increase
in cyanobacterial pigment concentrations in the
1990s. Lake Anarry is an upland, shallow lake

(maximum depth 7.8 m) situated in northwest
Ireland, whose catchment was afforested in the
1960s (Stevenson et al. 2016). Forest plantations
accounted for >50% of the lake’s catchment area.
Increases in cyanobacteria abundance reflect a
combination of mineral and nutrient enrichment
associated with the forest fertilization and
organic matter influx. In particular, there was a
twofold increase in cyanobacterial pigment con-
centrations following the 1963 forest planting.
Lake Geneva is a subalpine, deep lake (maxi-
mum depth 310 m) at the Swiss-France border,
in the foothills of the western European Alps that
shifted from oligotrophy to eutrophy in the
1960–1980s and then restored gradually. Geo-
chemical and visual analyses of this high-resolu-
tion archive (temporal resolution on the order of
�2 yr) indicate that bottom-water hypoxia
appeared in the 1950s with further changes in
the volume of hypoxic waters (Jenny et al. 2014).

Simulating the eutrophication process
To simulate sediment core archives (see Fig. 1

for flowchart of our protocol), we first generated
a time series of lake dynamics using a one-
dimensional version of the phosphorus load and
lake eutrophication model presented by Carpen-
ter and Brock (2006). The dynamics of phospho-
rus in the lake water follow

dx ¼ ½Lt � sxt � hxt þ f ðxtÞ�dtþ rxtdW

f ðxÞ ¼ rMxq

mq þ xq
(1)

In Eq. 1, x is phosphorus in the lake water
(mass/area), L is the loading rate (mass/(area 9

time)), s and h are the sedimentation and hydrau-
lic washout coefficients, respectively (1/time), f(x)
is the recycling function (mass/(area 9 time)), r is
a recycling coefficient (dimensioned so that f(x)
has units of mass/(area 9 time)), M is mass/area
of phosphorus in sediments vulnerable to recy-
cling, m is the half-maximum coefficient for phos-
phorus recycling (mass/area), and q is an
exponent that determines the rate of recycling at
the half-maximum point (dimensionless). The
standard deviation of environmental noise is r
(i.e., coefficient of variation of environmental
noise multiplied by the mean to obtain a standard
deviation), and dW is a Wiener stochastic process.
Using the Euler-Maruyama method (Higham
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2001), we numerically solved Eq. 1 over short
finite time increments dt as

xtþ1¼xtþ½Lt�sxt�hxtþ f ðxtÞ�dtþrxtzt
ffiffiffiffi
dt

p
(2)

In Eq. 2, zt is a series of independent normally
distributed random numbers with mean 0 and
unit standard deviation. Simulations presented
here used the following parameter values:
s = 0.71, h = 0.29, r = 0.019, m = 4, q = 4. These
values are within the range of uncertainty for
Lake Mendota, Wisconsin, USA (Carpenter and
Lathrop 2008). Values of r and M were set appro-
priately for the numerical experiments described
below. Time series of load Lt were gradually
increased through each model run to simulate
eutrophication. We used a time step of dt = 0.1 yr.

Modifying simulations to mimic sediment core
records

The next step of our protocol consisted in mod-
ifying the ecosystem simulations to more accu-
rately reflect sediment core archives. Since Eq. 2
simulates ecosystem dynamics but fails to
account for additional sources of variance that
occur in the sediment record (e.g., variance in
sedimentation, decay, and preservation pro-
cesses), we included an additional source of vari-
ance Eq. 3 that affects sediment dynamics but
does not affect ecosystem dynamics:

xs;t ¼ xt þ vtzs;t (3)

The concentration of tracer that is included in
the simulated core, xs,t, is equal to the sum of xt
plus a standard deviation for core formation, vt,
times a series of independent normally dis-
tributed random numbers with mean 0 and unit
standard deviation, zs,t. The series zt (Eq. 2) and
zs,t are also uncorrelated.
Using Eqs. 2, 3 with selected r, v, and M val-

ues (see Numerical experiments section), we gener-
ated high-frequency time series of deposition
(10,000 time steps of length 0.1, corresponding to
1000 yr) over a range of loading rates, L, from
very low phosphorus to highly eutrophic phos-
phorus levels. Since we were interested in the
concentration of a tracer per unit mass of this
deposited material for the pigment stratigra-
phies, we assumed that each sediment layer con-
tained the annually deposited mass of total
organic plus inorganic material per unit of lake
bottom (i.e., that the sediment marker of
eutrophication was directly proportional to phos-
phorus density [mass/area] in the lake). The same
assumption would apply to other paleolimnolog-
ical proxies (e.g., isotope of an element, frustules
of a diatom species, and carapaces of a zooplank-
ton species). For the varved stratigraphies, we
assumed that the increase in the yearly volume

Fig. 1. Flowchart of simulations and analyses conducted in this study.
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of hypolimnetic hypoxia, reconstructed from the
multiple cores, was directly related to the
eutrophication process

To represent a 400-yr paleo-archive of a lake
that was eutrophied ~100 yr ago, we used the Self
Exciting Threshold Autoregressive model
(SETAR; package tsDyn in R; Stigler 2010, Di
Narzo, Aznarte and Stigler 2014) to estimate the
time point when the system shifted to a eutrophic
regime in the 1000-yr time series and selected a
window of 300 yr prior to and 100 yr post this
SETAR estimate of the switchpoint. All SETARs
were modeled with only one threshold, which
was estimated by a search over a reasonable grid.

The last step in converting the simulated time
series to realistic sediment core archives was to
include temporal averaging (annual resolution is
rarely available in paleolimnology), changes in
temporal resolution (resulting from changes in
sedimentation rates due to eutrophication and
core compression), and sediment mixing (due to
bioturbation). To do so, we converted the 400-yr
time series to archives of consecutive 1-cm slices
(determined from an age–depth model) by
mixing (average of localized time steps) and
compressing (making the averaging window
increasingly large as we move downcore) the
time series.

Core mixing
We assumed that mixing occurs among proxi-

mate layers of the sediment core over a window
of length �2υ to +2υ centered at the midpoint of
a given layer t, where υ is the standard deviation
of mixing in units of annually deposited layers.
We then computed a vector of weights as areas
of the unit normal distribution centered on t for a
sequence of small intervals from t � 2υ to t + 2υ.
The weights were relativized so that they sum to
one to deal with rounding error and the fact that
the normal integral between �2υ is <1. The
weights were then multiplied by the tracer con-
centrations in the annually deposited layers
around the target layer. This step was then
repeated for all possible target layers t. To assess
the effect of mixed vs. unmixed cores over a wide
range of kernels, we tested scenarios of no mix-
ing (which represented a varved core), medium
mixing (normal kernel with a standard deviation
of υ = 2.5), and high mixing (normal kernel with
a standard deviation of υ = 5.5).

Empirical model for core compression
To model core compression, we cross-exam-

ined cores from Taranu et al. (2015) and related
the years per centimeter of core (y) to the age at
the midpoint of a core section between two age
measurements (x). In most cases, y and x were
related approximately linearly (i.e., y = a0 + a1x)
by the coefficients a0 and a1. We fit the inverse of
this relationship (which was necessary for mod-
eling core compression) by a nonlinear regres-
sion, providing us centimeters per year of core
(1/y) as a function of age:

1
y
¼ 1

a0 þ a1x
(4)

Comparison of the linear and nonlinear fits
showed that estimates of a0 and a1 were compa-
rable between the two methods.
Fitting the nonlinear regression (Eq. 4) to the

suite of real core archives indicated that sedimen-
tation rates were quite variable among lakes and
regions (Appendix S1: Fig. S1a, b). Although this
variability was related to lake eutrophication
(i.e., sedimentation rates increased with concen-
trations of total phosphorus in the water col-
umn), over longer time scales, the contribution of
terrigenous supplies to the sedimentation rates
may be equal to or higher than eutrophication.
We therefore used this data set to define parame-
ter estimates of low (a0 = 1.28, a1 = 0.015), inter-
mediate (a0 = 2.24, a1 = 0.034), and high (a0 =
4.35, a1 = 0.088) compression in natural lakes
within the context of paleo-studies conducted
over the past 200 yr. In the case of no compres-
sion, the a1 slope was 0 (i.e., age and depth are
linearly related, and the plot of y vs. x has no
slope that is statistically significant).
Once we obtained a realistic range of a0 and a1

values, the next step was to use these estimates
to parametrize simulated cores with low, inter-
mediate, and high compression. That is using the
vector of annual layers (indexed 0 to T, either
with or without mixing applied), we created a
core of 1 cm thick slices (indexed 1 to S, where S
is the length of the core) by integrating Eq. 4 over
time (from T = 0–400 yr). Although the thickness
at which cores are extruded varies among pale-
olimnological studies, and many do sample
sequences at <1 cm resolution, for the present
exercise we assumed that only complete 1-cm
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slices were analyzed and set the integral of Eq. 4
from t0 to t1 to be equal to 1 cm throughout the
core. Solving the integral of Eq. 4 from the time
at the top of the core, t0 = 0, to the time at the
bottom of the first slice, t1, with the left side of
the equation equal to 1, gives:

1 ¼ 1
a1

½lnða1t1 þ a0Þ � lnða1t0 þ a0Þ�

¼ 1
a1

ln
a1t1 þ a0
a1t0 þ a0

� �

ea1 ¼ a1t1 þ a0
a1t0 þ a0

t1 ¼ 1
a1

½ða1t0 þ a0Þea1 � a0�

(5)

The compression protocol thus starts with the
top of the core (t0 = 0) and solves for the time at
the bottom of the first 1-cm slice, t1. The tracer
concentrations are then averaged over the annual
layers between t0 and t1 to get the tracer concen-
tration in the first slice. Any fractions of annual
layers are weighted by the fraction in computing
the average tracer concentration. Then, t1 from
the first slice becomes t0 for the second slice. The
t1 for the second slice is then computed using the
above equation, and the average tracer concen-
tration is computed in the second slice. These
steps are repeated for deeper slices until the core
is completed.

Numerical experiments
To test under which condition we could expect

to detect resilience indicators in sediment
archives, we simulated series with different com-
binations of environmental and sediment noise
(r and v) and sediment P mass values (M; i.e.,
series with or without deterministic regime shifts
and critical transitions) and tested how well we
could retrieve the known signals.

Reasonable estimates of environmental noise,
r, for real eutrophication indicators were deter-
mined by cross-examining sedimentary cyano-
bacterial pigment profiles synthesized in Taranu
et al. (2015), which provided a range of coeffi-
cients of variation (CV) in oligotrophic to hyper-
eutrophic lakes. Lakes where the concentration
of cyanobacterial pigments remained at 0
throughout the time series (CV = 0) were
removed. The baseline CV was based on time
series that did not undergo a substantial change

in pigment concentrations over the last ~200 yr.
In general, the CV in these cores was well below
0.5 (Appendix S1: Fig. S2a). Similarly, the range
of sedimentation noise, v, was determined by
comparing our simulated series to the same set
of pigment profiles.
To determine the critical P mass, we explored a

suite of different M values (Appendix S1:
Fig. S2b). For the values of s, h, r, m, and q stated
above, the simulation with M = 50 had no
regime shift and no critical transition, though the
system became more eutrophic. An increase to
M = 200 produced a regime shift that was non-
critical (i.e., the lake suddenly became eutrophic,
but the shift did not imply any bifurcation and
thereby hysteresis). Finally, transitions were criti-
cal for M > 210.5.
Based on the above, we simulated five types of

sediment core records: (1) a control with low
noise and a non-critical eutrophication signal
(M = 125, r = 0.05, and v = 0) for which the
regime shift is not reached over the range of the
time series; (2) a record with a regime shift that is
not a critical transition (M = 200, r = 0.05, and
v = 0); (3) a record with a regime shift that is a
critical transition (M = 225, r = 0.15, and v =
0.15) which represents a critical slowing down
scenario for which resilience indicators are
expected to be clear and occur in a rather narrow
bifurcation window; (4) a core record with large
ecosystem noise (r = 0.45, keeping M = 225 and
v = 0.15) that flickered between two alternate
states before settling into the alternate, eutrophic
state at the bifurcation point; and (5) a record with
both large environmental (r = 0.45) and sedimen-
tation (v = 0.25) noise (keepingM equal to 225).
For the non-critical simulations (scenarios 1 and

2), we expected a gradual increase in the P mass
with eutrophic conditions. For the critical slowing
down simulation (scenario 3), a transition was
expected midway through the series, where the
time series would show a shift in the mean as well
as a rise in variance and autocorrelation. With
flickering (scenarios 4 and 5), we expected the
ecosystem to reach the eutrophic state for brief
periods of time before P loading reached a level
where the system remained in the eutrophic state.
Thus, to obtain an index of the time of regime
shift in systems that flickered, we used SETAR to
estimate the first time when the ecosystem spent a
significant amount of time in the eutrophic state.
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The cumulative number of crossings of the SETAR
threshold was calculated and plotted against time.
To construct cumulative plots, we subtracted the
state value at the SETAR threshold from the data,
creating positive or negative values in the time
series depending on whether the state is above or
below the threshold. Positive values were
assigned a value of 1, and negative values were
assigned a value of 0. The scores were then tallied
cumulatively for each year. If the cumulative sum
followed a sigmoidal shape, the steepest part of
the curve should represent the time window of
frequent flickering between oligotrophic and
eutrophic states. In addition, we plotted the num-
ber of times that the sign (difference between
value and SETAR threshold) changed between
time t and time t + 1. Specifically, a 0 is assigned
(i.e., remained in same state) if the sign is the
same, whereas if the sign changes (i.e., change in
state), a value of 1 is assigned. It is expected that,
at the start and end of the series, more 0s will be
assigned (same state), whereas during flickers
more 1s will be assigned (switching back and
forth). We compared both cumulative plots to the
deterministic critical point to evaluate SETAR as
an indicator of the time of transition to eutrophy.

Rolling window resilience indicators in
paleo-records

Critical transitions in monitoring records have
typically been quantified using generic resilience
indicators (e.g., rolling window variance and lag-
1 autocorrelation); however, with core records
factors such as sediment mixing and compaction
with time may hinder the use of such statistics.
Using the above scenarios, we thus tested
whether mixing or compaction resulted in false-
positive signals of critical transition and/or
eroded the signals of true-positive transitions.
For the former, if core compression increases
with depth, the number of years per centimeter
will increase toward the bottom of the core. This
effect could mask the lower deposition rates in
the older, more oligotrophic phases of the core
(i.e., lower nutrient concentrations during olig-
otrophic phase would result in relatively reduced
sediment accumulation). In contrast, the years
per cm would decrease in more recent eutrophic
years (greater primary production, decomposi-
tion, and sedimentation) resulting in much
less averaging to dampen the variance. High

compression alone may thus produce a gradual
increase in variance toward the top of the core
and a false-positive detection of a critical transi-
tion in recent years.

Test for false positive
Making use of simulations with no critical

transition (scenarios 1 and 2), we examined the
effect of mixing and compression alone on the
rolling window variance statistics (using the rol-
lapply function from the zoo package in R; Zeileis
and Grothendieck 2005, with a window width
that was half the length of the time series, and a
window that moved by one time step; Dakos
et al. 2008). We crossed no mixing (mimicking a
varved core), medium mixing, and high mixing
with low, medium, and high core compression
and, for each combination, tested whether the
rolling window variance and autocorrelation
increased over time.

Test for true positive
Conversely, to determine how mixing and

compression jointly affected the signals of a criti-
cal transition (scenarios 3–5), we crossed no mix-
ing to high mixing with low to high compression
and examined their effect on the rolling window
variance and temporal autocorrelation prior to
the deterministic switchpoints.

State-space modeling of paleo-records
Simulation studies show that the rolling win-

dow method often works, despite its obvious
shortcomings: It cannot account for higher order
AR(p) processes, the choice of window length is
arbitrary, and it may not account for rapid
changes in stability close to critical points. To
provide an alternate approach in light of these
factors, Ives and Dakos (2012) introduced the
idea of time-varying autoregressions to evaluate
changes in stability of observed time series.
By definition, a critical transition in discrete time

occurs if the dominant eigenvalue of the Jacobian
matrix passes from inside to outside the unit circle
on the complex plane (i.e., the modulus passes
above 1 from below; Biggs et al. 2009, Scheffer
et al. 2015). When working with observed time
series, it is common to approximate the eigenvalue
by fitting a stationary AR(1) model to sequential
rolling windows of observations as described
above (Dakos et al. 2012). In that case, an AR(1)
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coefficient near zero implies that the state variable
returns rapidly toward the mean, but as the AR(1)
coefficient reaches 1, this tendency to return
toward the mean disappears and we thus have
evidence of a critical transition (Ives et al. 2003).

In the case of our simulated time series, we
started with a eutrophication model for which the
rolling window AR(1) method is known to be a
reliable indicator of the critical transition. How-
ever, sediment mixing and compression within
paleo-records causes complications that could
cause the linear rolling window AR(1) approxi-
mation to fail. We thus turned to the time-varying
autoregressions to fit higher order and time-vary-
ing parameters of AR(p) (Ives and Dakos 2012) to
allow greater complexity in approximating the
underlying processes that create paleo-records.

We fitted time-varying autoregressions in the
form of DLMs (Pole et al. 1994). The AR(p)
model in DLM form is as follows:

yt ¼F0t�1/t�1 þ et
/t ¼I/t�1 þ xt

(6)

The first equation of (6) relates the observation
at time t (yt) to previous observations Ft and cur-
rent values of the coefficients /t (intercept and
autoregressive coefficients) and error et (assumed
to be normally distributed with mean zero and
variance R). For an AR(p) process, Ft and /t are
defined as follows:

Ft ¼½1yt�1. . .yt�p�0
/t ¼½/0;t/1;t. . ./p;t�0

(7)

The time-varying intercept /0,t tracks the base-
line of the time series, and the other coefficients
estimate the autoregressive process. The second
equation of (6) allows the autoregression coeffi-
cients to evolve through a random walk with
shocks xt (distributed as a multivariate normal
with means 0 and covariance matrix Q). These
shocks xt are independent of the autoregression
process errors et.

We used an online method to estimate the coef-
ficients /t, error variance R, and covariances Q.
The method uses sequential Bayesian updating to
compute estimates of the parameters at each time
step (Pole et al. 1994). The user specifies a dis-
count parameter d (0 < d < 1) used to adjust the
variability of the random walk. The weight of past
data points is multiplied by d at each time step.

Thus, the influence of past data declines over time
as dk where k is the number of time steps between
two observations. As the total number of time
steps approaches infinity, the total weight of all
data points contributing to the estimates at any
particular time step approaches 1/(1 � d). Lower
values of d thus assign lower weight to past data
points and thereby allow more rapid adaptation
of the DLM to shifts in the data.
The adaptability of the online method to non-

stationary data is advantageous, but the arbitrary
choice of d is a disadvantage of the online
method. In addition, the DLM does not account
for errors in the observations (elements of the
vector F). Therefore, we also estimated the AR
parameters in time-varying autoregressive state-
space form by maximum likelihood estimation
using TVARSS (Ives and Dakos 2012).
The TVARSS method estimates the time-varying

autoregression coefficients by fitting the model

yt ¼F0t�1/t�1 þ et
/t ¼I/t�1 þ xt

xt ¼yt þ vt

(8)

by maximum likelihood. The first two equations
of (8) are analogous to equations (6) for the
DLM. The third equation models the errors in
the observations, assumed to be normally dis-
tributed with individual errors υt having mean 0
and standard deviation P. Thus, TVARSS
accounts for the dynamics of the estimated sys-
tem, changes in the autoregression parameters,
and observation errors in the data. The advan-
tages and disadvantages of the online DLM and
TVARSS methods are complementary in some
ways, and therefore, we used both methods.
For both the online DLM and TVARSS, we

chose the optimal AR order p using Akaike’s infor-
mation criterion (AIC). We calculated eigenvalues
from the AR parameters according to Box et al.
(2008). R functions for the online DLM, example
data sets, and R programs demonstrating calcula-
tions are downloadable from https://github.com/
SRCarpen/Demo_DynamicLinearModels.

RESULTS

Core simulations
The simulations showed that annualizing alone

(averaging 10,000 step time series by blocks of 10
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to produce a 1000-yr time series) decreased the
variability in the simulated time series (Appendix
S1: Fig. S3a; example shown for critical slowing
down, scenario 3). Once the series were annual-
ized, SETAR was used to estimate the switchpoint
between the two states. For the selected simula-
tions with low to moderate environmental noise
(scenarios 1–3), this occurred at time steps 782,
802, and 635, respectively. The records were thus
clipped to 400 annual data points (300 time steps
before the SETAR estimate of the switchpoint, one
time step during the switch, and 99 time steps
after the switch; e.g., Appendix S1: Fig. S3b).
When a critical transition occurred (critical slow-
ing down, scenario 3), our simulations showed
that annualizing the record did not bias the resili-
ence indicators and a discernible rise in rolling
window variance was detected near the switch-
point (Appendix S1: Fig. S3c). The autocorrelation
signal was also discernible close to the SETAR
switchpoint (Appendix S1: Fig. S3d). Nonetheless,
both indicators peaked after the SETAR switch-
point.

For the flickering simulations with either high
environmental noise (scenario 4: M = 225, r =
0.45, v = 0.15) or both high environmental and
sediment noise (scenario 5: M = 225, r = 0.45,
v = 0.2), we expected the first state switch to occur
before the threshold had been reached (Appen-
dix S1: Fig. S4a; example shown for flickering with
high environmental noise, scenario 4). Indeed, the
first SETAR switchpoints of the annualized time
series occurred well before the deterministic
switchpoints (Appendix S1: Fig. S4b). If the
ecosystem reaches the alternate stable state (e.g.,
eutrophic at all times), then the center of the distri-
bution of critical transition points should occur
between the first flicker and the time of staying in
the alternate state. The cumulative plots suggested
that the peak of the distribution of critical thresh-
olds is close to the time step when approximately
half of the maximum number of crossings has
occurred (Appendix S1: Fig. S4c, d). Note that
detection of this pattern requires a sufficiently
large sample size. As with the low to moderate
environmental noise simulations (scenarios 1–3),
we clipped the flickering records to 400 annual
time points and rescaled the x-axes so that the crit-
ical switchpoint was at year 300.

Once the 400-yr core series were obtained for
all five scenarios, the last step in our simulation

protocol was to apply intermediate mixing and
compression to all simulated series to mimic sed-
iment cores extruded at 1-cm intervals (Fig. 2a;
example shown for critical slowing, scenario 3).

Rolling window resilience indicators
To examine whether generic resilience statistics

could be applied to paleolimnological records
where mixing and/or core compression occur, we
tested for false- vs. true-positive detection of crit-
ical transitions using the simulated scenarios
described above.

Test for false positive
To evaluate whether core compression alone

caused an increase in variance during the more
recent, eutrophic years (less dampening when
sediment accumulation is high), we tested for
false-positive transition indicators using the
control scenario with low to high compression
combined with medium mixing (υ = 2.5; Appen-
dix S1: Fig. S5a). Our simulations showed that
core compression did not amplify the variance
signal (Appendix S1: Fig. S5b, c). Instead, the roll-
ing window variance decreased slightly toward
the eutrophic years. The false-positive test for the
slightly higher P load scenario with a possible
regime shift but no criticality (scenario 2) was
comparable to the control scenario (not shown).

Test for true positive
To test the effect of core mixing and compres-

sion on the detection of a true deterministic
critical transition, we examined the resilience indi-
cators for the critical slowing down scenario with
low compression combined with either no mixing
(varved core), medium mixing (υ = 2.5) or high
mixing (υ = 5.5), or combining intermediate mix-
ing (υ = 2.5) with low to high compression
(Fig. 2b–e). Although mixing and compression
did not affect the rise in variance as a resilience
indicator (Fig. 2b, c), the effect on the rise in auto-
correlation was more noticeable (Fig. 2d, e).
Mixing among neighboring core intervals effec-
tively increased the AR(1) autocorrelation signal,
whereas core compression eroded the autocorre-
lation signal, creating an AR process that was
higher order than 1 (Fig. 2e). In addition, the peak
in autocorrelation often occurred after the SETAR
switchpoint, illustrating that choosing the peak as
the endpoint, which is customary in many field
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applications, biases the Kendall tau trend coeffi-
cient toward a significant outcome. To test this
result further, we ran 100 simulations of the criti-
cal slowing down scenario with intermediate mix-
ing and core compression, retaining the Kendall
tau statistic for the rolling window autocorrela-
tion and variance leading up to the SETAR
switchpoint each time (Appendix S1: Fig. S6). The
exercise showed that the Kendal tau trend test on
rolling window autocorrelation and variance did
not consistently increase prior to a critical transi-
tion. The selected example shown (Fig. 2) fell
close to the median of the simulated runs
(Appendix S1: Fig. S6). Even with low core com-
pression where the autocorrelation signal should
be stronger (Fig. 2e), we failed to identify a consis-
tent rise in the autocorrelation across 100 runs
(Appendix S1: Fig. S7).

With the flickering simulations (scenarios 4
and 5), the rolling window resilience indicators
showed a discernible rise in variance prior to the
switchpoints, but the autocorrelation signal was
once again largely eroded (not shown).
Our simulations illustrate the limitations of the

rolling window approach to detect indicators of
a critical transition in sediment core records. We
thus turned to time-varying regressions as an
alternate approach to rolling window statistics
and compared the fit of models with higher
order AR processes using AIC.

State-space modeling
For the state-space model simulations pre-

sented, we used intermediate mixing and core
compression throughout. For the control (scenario
1; Appendix S1: Fig. S8a–f) and regime shift only

Fig. 2. Effect of mixing and compression on the annualized critical slowing down time series (scenario 3:
M = 225, r = 0.15, v = 0.15). (a) Annualized time series overlaid with intermediate mixing and compression.
Effect of mixing: rolling window (n/2 time steps) (b) variance and (d) autocorrelation for low compression com-
bined with no (dotted line), medium (dashed line), and high (solid line) mixing (n = 115 for all three scenarios).
Effect of compression: rolling window (c) variance and (e) autocorrelation for low (dotted line; n = 115), interme-
diate (dashed line; n = 57), and high (solid line; n = 25) compression combined with intermediate mixing. Given
the short time series of these rolling window statistics, we reversed the time series and ran the rolling window
statistics in reverse to provide information about baseline values.
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(scenario 2; Appendix S1: Fig. S8g–l), simulations
were as expected, where a sharp increase in the
intercept (regime shift) was only detected in the
latter and eigenvalues of both series hovered near
one, without a distinctive transition.

For the critical slowing down simulation (sce-
nario 3; Fig. 3a–c), the online DLM with an AR
(1) process fit the data, eigenvalue, and process
variance well, except for slightly over-predicting
the response values immediately after the switch-
point. The change in the intercept tracked the
shift in the mean (Fig. 3b) and thus acted as an
indicator of the regime shift. The change in the
eigenvalue correctly located the switchpoint
(crossing of unit circle) and was thus indicative
of critical slowing down at a critical transition
(Fig. 3c). When using the TVARSS model, we
detected the regime shift (i.e., the time-varying
intercept tracked the change in the mean) and
the eigenvalue crossed the unit circle at the
regime shift (Appendix S1: Fig. S9a–c; best-fit AR
(2) process shown). The TVARSS model also
detected a small increase in the eigenvalue above
1 early on in the series (near time step 75). To

further examine these results, we ran 100 simula-
tions of this critical slowing down scenario with
intermediate mixing and core compression,
which showed that in general the TVARSS model
was more sensitive than the online DLM,
whereby the eigenvalue crossed 1 long before the
deterministic critical transition on numerous
runs (Fig. 4a, b). However, as seen in the selected
example (Appendix S1: Fig. S9c), this first cross-
ing rarely coincided with the local maxima and
the maximum eigenvalue tended to be close to
the deterministic SETAR switchpoint for both the
online DLM and TVARSS (Fig. 4c, d).
With higher environmental noise (flickering

between alternate states, scenario 4; Fig. 3d–f,
Appendix S1: Fig. S4), the best-fit online DLM was
the AR(1) model and detected both the regime shift
(change in intercept; Fig. 3e) and evidence of a crit-
ical transition, although the latter was inaccurate
(i.e., the eigenvalue peaked and crossed 1 after the
deterministic critical transition; Fig. 3f). The best-fit
TVARSS (AR(2) process) detected the regime shift
but lacked precision in detecting the deterministic
switchpoint (Appendix S1: Fig. S9d–f).

Fig. 3. Online dynamic linear model (DLM) results for the (a–c) critical slowing down (scenario 3: M = 225,
r = 0.15, v = 0.15) and (d–f) flickering (M = 225, r = 0.45, v = 0.15) sediment core simulations with intermediate
mixing and compression (n = 57). The 400-yr time series (dark red points), online DLM goodness of fit (light red
line), intercept (green line), and eigenvalue (blue line) are shown for each scenario.
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For fifth scenario, with both high environmen-
tal and sediment noise, the eigenvalue of the
best-fit online DLM (AR(3)) always exceeded 1,
with a peak near the regime shift (not shown).
Although sub-optimal (DAIC = 13), the AR(1)
online DLM behaved as expected, with the eigen-
value crossing the unit circle at the regime shift.
The best-fit TVARSS was of order 3, and the
eigenvalue peaked shortly after the year 300.

Overall, for the simulation with low to moder-
ate environmental and sediment noise (scenarios
1–3), the online DLM and TVARSS correctly
identified whether regime shifts and critical tran-
sitions were absent or present at the onset. As
environmental noise increased (scenarios 4–5),
both approaches had greater difficulty in provid-
ing the precise and accurate timing of the critical
transitions.

Lake data analysis
To compare the simulations to observed lake

data, we applied the online DLM in lakes where
sedimentary proxies indicated either an abrupt
change (the shallow Roxton Pond), a more grad-
ual, noisier change to the eutrophic state (the
shallow, upland Lake Anarry), or possible flick-
ering between states prior to switching to the
eutrophic state (the deep, subalpine Lake Gen-
eva) over the past ~200 yr.
For the Roxton Pond pigment record (Fig. 5a–

c), the AR(1) process provided the optimal fit for
the online DLM. The intercept detected the
recent regime shift (~1990; Fig. 5b), at which
point the eigenvalue approached 1 (Fig. 5c), sug-
gesting a nearby critical transition. The Lake
Anarry pigment record was much noisier, but it
did not behave like flickering (Fig. 5d). Instead,

Fig. 4. Summary histograms of the online dynamic linear model (DLM) and time-varying autoregressive state-
space (TVARSS) for 100 runs of the critical slowing down scenario (M = 225, r = 0.15, v = 0.15). (a, b) Distance
(in years) between the Self Exciting Threshold Autoregressive (SETAR) switchpoint and the first time the eigen-
value exceeds 1. (c, d) Distance (in years) between the SETAR switchpoint and the peak eigenvalue. AR(1) fit is
shown for both the online DLM and TVARSS.
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the eutrophic state seemed to have a higher vari-
ance and to display a high-order AR process that
was not well constrained by the data. The AR(2),
AR(3), and AR(4) fit the pigment time series
equally well; the results for AR(3) are shown
here. The intercept indicated a regime shift ca.
1950 (Fig. 5e) and the eigenvalue hovered near 1
(Fig. 5f), suggesting instability throughout most
of the record. The Anarry core is consistent with
an unstable, noise-dominated system. For the
Lake Geneva record (Fig. 5g), we found that an
AR(1) process was optimal and that the regime
shift was picked by the intercept (Fig. 5h). The
eigenvalue indicated instability consistent with
critical transition around 1970 (Fig. 5i).

The best-fitting TVARSS detected the criti-
cal transitions in the time series with moderate
environmental noise and indication of critical
slowing down (Roxton Pond; Appendix S1:
Fig. S10a–c), and the time series with flickering
(Lake Geneva; Appendix S1: Fig. S10g–i). For the
noisier Lake Anarry time series (Appendix S1:
Fig. S10d), the best-fit AR(1) model did not detect
the critical transition. However, the higher order
AR(3) TVARSS did and is presented here
(Appendix S1: Fig. S10e, f). As with the simula-
tions, these results suggest that a lack of

consistency among modeling approaches may
arise when the time series are noisier.

DISCUSSION

Resilience indicators of critical transitions,
such as rising variance and autocorrelation,
have been shown to perform well in theoretical
models (Scheffer et al. 2015), laboratory experi-
ments (Drake and Griffen 2010, Dai et al. 2012,
Veraart et al. 2012), as well as field experiments
(Carpenter et al. 2011, Wilkinson et al. 2018).
When using observational time series data, the
detection of impending, abrupt shifts to an alter-
native state has been more difficult to detect,
even in systems with long monitoring programs
of response metrics and drivers (Spears et al.
2016). In such cases, generic resilience indicators
either fail to consistently forewarn a catastrophic
shift (Gsell et al. 2016) or provide false positives
(i.e., increasing variance and autocorrelation in
systems experiencing a continuous transition
without bistability; K�efi et al. 2013, Burthe et al.
2015). A better understanding of why certain
resilience indicators failed to detect critical tran-
sition is needed, as are methods specific to the
system and indicators under study (K�efi et al.

Fig. 5. Summary of online dynamic linear model (DLM) results for (a–c) Roxton Pond (n = 73), (d–f) Lake
Anarry (n = 60), and (g–i) Lake Geneva (n = 77). The time series (dark red points), goodness of fit (light red line),
intercept (green line), and eigenvalue (blue line) are shown for each lake.
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2013). Here, we used paleolimnological records
to extend the temporal scale under which
regime shifts and critical transitions could be
evaluated in aquatic ecosystems. We developed
a protocol to mimic paleolimnological records
undergoing critical transitions (Fig. 1) to test
how certain features of these time series may
bias the results of generic resilience indicators
(Carstensen et al. 2013). Further, we tested
whether our new application of time-varying
regressions was better equipped at detecting
shifts in this specific field.

Rolling window statistics and paleo-records
Rolling window variance and AR(1) are com-

mon methods used to indicate critical transitions.
However, our analysis of simulated and real
cores showed that rolling window AR(1) was not
a reliable indicator for paleolimnological archives
(Fig. 2). Rolling window variance was more con-
sistent, but typically both indicators must be
used in tandem in rolling window analyses (Sch-
effer et al. 2015). Instead, we noted rising vari-
ance with inconsistent AR(1) responses, even in
simulations where we knew the underlying
dynamics. These findings are consistent with
prior work examining the effect of different
ranges of temporal aggregation (from 1 to 10
time units, typical of high-resolution paleolimno-
logical data) on rolling window indicators (Fros-
sard et al. 2015). Similarly, Ditlevsen and
Johnsen (2010) found inconsistent signals from
autocorrelation and variance in paleo-climate
interpretations, while Thomas (2016) found using
a simple bifurcation model to mimic paleo-cli-
mate data that autocorrelation displayed a better
performance for detecting critical slowing down
than variance, possibly due to increased sensitiv-
ity to additional processes and mechanisms
affecting this parameter (Verbesselt et al. 2016).
However, degrading the data length, data resolu-
tion and data density diminished both the auto-
correlation and variance signals (Thomas 2016).
Bruel et al. (2018) recently noted an increased
variance and autocorrelation preceding non-criti-
cal transitions from paleo-records, but that the
values and significance of resilience indicators
strongly depend on the rolling window size.
Lastly, an analysis of forest–grassland transitions
using a simple model as well as observed paleo-
records found that rolling window variance, but

not autocorrelation, could reliably detect the
transition (M. Stegner et al., unpublished manu-
script). Together, these findings suggest that roll-
ing window analyses are questionable for paleo-
data. Therefore, alternatives such as the time-
varying regressions with DLM or other methods
as introduced by Ives and Dakos (2012) should
be sought.

Time-varying regression as a new approach
Our simulations showed that both the online

DLM and TVARSS could detect regime shifts
and critical transitions in sediment core records
even when severe core compression and higher
order lags affected the AR process. We noted
some differences, however, between the online
DLM and the TVARSS methods in their sensitiv-
ity to detect critical transitions in time series
experiencing a one-way transition (critical slow-
ing down). Similarly, with flickering dynamics
the precision and accuracy of the critical transi-
tion differed between methods. Although the
detection of regime shifts is fairly reliable, critical
transitions impose the additional criterion that
the eigenvalue approaches one. This did not
always occur at the deterministic switchpoint for
TVARSS (Fig. 4b), and consequently, our simula-
tions showed that regime shifts were more accu-
rately detected than critical transitions. Nonethe-
less, the peak in the eigenvalue tended to be
more accurate than the first-time crossing of the
unit circle (Fig. 4d). If we can extrapolate from
the simulations to the real core records, we sug-
gest that both the time of the regime shift (inter-
cept) and the time of pronounced increase in the
eigenvalue be used to identify when a critical
transition occurs.

Core vs. time domain
It is important to note that our study was con-

ducted in the core domain, such that events that
took place in the time domain were transformed
to a record in the core domain by the processes
of core formation and paleolimnological sam-
pling. The core domain is thus a transformed
representation of events in the time domain.
Here, we tested whether regime shifts and criti-
cal transitions that occur in the time domain can
be detected in the core domain without back-
transforming to the time domain. We learned
that (1) regime shifts and critical transitions can
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be detected in the core domain if mixing and
compression are sufficiently small. (2) Some
cores show evidence of regime shifts, and some
of these cores also show evidence of critical tran-
sition. Working in the core domain may also pro-
vide an opportunity to improve the way we
sample sediment cores, by re-sampling according
to the age models close to the transition and test-
ing whether this improved detections.

A follow-up question to study is whether we
can transform back to the time domain. For
instance, given mixing and compression parame-
ters, can we estimate regime shifts and critical
transition indicators in the time domain? This
follow-up question has at least three parts: (1)
Given the core data (time, depth, and indicator,
such as pigment concentrations), can we recon-
struct the time domain series? (2) Given the time
domain series, what are the regime shift and crit-
ical transition measures? and (3) How do recon-
structed time domain estimates of regimes shifts
and critical transitions compare to core domain
estimates and to the original (true) time domain
measures? Weighing by number of years per core
interval, where models would be altered to
include missing values to control the influence of
data points when there is a large time gap, could
be one solution (Einarsson et al. 2016). We tested
the effect of pre-processing the simulated and
real cores (weighed by time gaps) on the resili-
ence indicators and state-space model results
and found that in some instances (e.g., low envi-
ronmental noise) time-gap weighting created
strong trends that could be corrected by detrend-
ing (not shown). With higher environmental
noise, however, the effect of time-gap weighing,
detrending, or both was not consistent and
would need to be explored further with a large
population of paleo-records (not shown). That
said, our test of false positives suggests that
working in the core domain did not bias the roll-
ing window variance statistic. Had the rise in
variance in the control been large enough to
interfere with the inference of whether a core
experienced a state shift, the appropriate adjust-
ment would be to weight each core sample by
the number of years it represents. This would
inflate the deeper, low-nutrient variances and
have little effect on the core surface resulting in a
flatter (and more accurate) trend of variance vs.
core depth.

CONCLUSIONS

The case studies selected here showed that,
across different proxies, regime shifts and critical
transitions could be detected in sediment core
archives experiencing both critical slowing down
(Roxton Pond and Lake Anarry) and possible
flickering (Lake Geneva). We worked both with
indicators that are very integrative of the overall
functioning of the lake (hypolimnetic hypoxia)
and slightly less integrative (algal community),
each contributing a complementarity to the
eutrophication diagnosis. However, future broad-
scale syntheses of sediment core archives are
needed to better understand the conditions under
which time-varying regressions provide consis-
tent findings, how the model outcomes of critical
slowing down and flickering time series vary
among lake types (i.e., deep vs. shallow lakes),
and if certain proxies are better indicators of criti-
cal transitions. Different proxies correspond to
species with different life cycles, where one year
would cover many generations for some and
would thus present inherently different temporal
mixing effects. Degradation is also likely to vary
among proxies (e.g., diatom frustules vs. genetic
markers) or lake types (deep, oligotrophic vs.
shallow, eutrophic with slow vs. fast sedimenta-
tion rate; Kyle et al. 2015) and can be a limitation
for the detection of regime shifts. Although arti-
facts due to degradation are not considered in this
paper, this merits further evaluation. To better
capture and explain the degradation effect, some
significant additional work is needed, namely a
synthesis of many studies where multiple proxies
are examined in the same lake, that these study
lakes be situated along a gradient of environmen-
tal factors, and that new simulations (modeling
lake depth, eutrophication, light attenuation,
anoxia, etc.) be conducted. Multi-proxy studies
would also be fruitful as examining changes in
the functional composition of the community as a
whole may provide better diagnostic information
of an approaching critical transition than any one
proxy (Doncaster et al. 2016, Beck et al. 2018).
This would also allow to test whether regime
shifts and critical transitions could be upscaled to
the whole aquatic ecosystem, that is, whether resi-
lience indicators at one trophic level are detectable
in other components of a food web (Carpenter
et al. 2008). Lastly, the drivers, whether extrinsic
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or intrinsic, varied among study locations and the
links between proxy and drivers would likewise
need to be evaluated (sensu Seddon et al. 2014,
Randsalu-Wendrup et al. 2016). Indeed, there is
relatively little work on how ecosystems respond
to different or multiple interacting drivers (Ander-
sen et al. 2009). Interestingly, this could be exam-
ined further with TVARSS which can handle
covariates and potentially help tease apart the role
of each driver.

In general, with field data, the inference of criti-
cal transitions depends on convergence of several
sources of information. For example: Is there a
sensible ecosystem model that can generate criti-
cal transitions? Is this model consistent with
diverse kinds of data (mechanistic field studies,
experiments, comparative studies, etc.)? Does the
model generate data that resemble the observed
time series using various statistical diagnostics?
Does the observed time series exhibit characteris-
tics consistent with critical transitions? In the case
of lakes, are there other, similar, lakes that seem to
exhibit the same critical transitions and do their
time series have similar characteristics? For pale-
olimnological studies, we offer the following
advice: (1) More samples (closer-interval sam-
pling) are better, and (2) time series with high sig-
nal to noise is especially valuable for identifying a
threshold. Most importantly, this study indicates
that paleolimnological data are sometimes cap-
able of discerning critical transitions, despite the
problems with mixing, compression, and various
kinds of noise that may occur in these archives.
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