
HAL Id: hal-01959570
https://hal.science/hal-01959570

Submitted on 14 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IMLS-SLAM: scan-to-model matching based on 3D data
Jean-Emmanuel Deschaud

To cite this version:
Jean-Emmanuel Deschaud. IMLS-SLAM: scan-to-model matching based on 3D data. ICRA - Inter-
national Conference on Robotics and Automation, May 2018, Brisbane, Australia. �hal-01959570�

https://hal.science/hal-01959570
https://hal.archives-ouvertes.fr

IMLS-SLAM: scan-to-model matching based on 3D data

Jean-Emmanuel Deschaud1

1MINES ParisTech, PSL Research University, Centre for Robotics, 60 Bd St Michel 75006 Paris, France

Abstract— The Simultaneous Localization And Mapping
(SLAM) problem has been well studied in the robotics commu-
nity, especially using mono, stereo cameras or depth sensors.
3D depth sensors, such as Velodyne LiDAR, have proved in the
last 10 years to be very useful to perceive the environment in
autonomous driving, but few methods exist that directly use
these 3D data for odometry. We present a new low-drift SLAM
algorithm based only on 3D LiDAR data. Our method relies on
a scan-to-model matching framework. We first have a specific
sampling strategy based on the LiDAR scans. We then define
our model as the previous localized LiDAR sweeps and use the
Implicit Moving Least Squares (IMLS) surface representation.
We show experiments with the Velodyne HDL32 with only
0.40% drift over a 4 km acquisition without any loop closure
(i.e., 16 m drift after 4 km). We tested our solution on the
KITTI benchmark with a Velodyne HDL64 and ranked among
the best methods (against mono, stereo and LiDAR methods)
with a global drift of only 0.69%.

I. INTRODUCTION

The localization of a vehicle is an important task in the
field of autonomous driving. The current trend in research
is to find solutions using accurate maps. However, when
such maps are not available (an area is not mapped or
there have been big changes since the last update), we need
Simultaneous Localization And Mapping (SLAM) solutions.
There are many such solutions based on different sensors,
such as cameras (mono or stereovision), odometers and depth
sensors or a combination of these sensors.

The advantage of LiDARs with respect to cameras is
that the noise associated with each distance measurement
is independent of the distance and the lighting conditions.
However, the amount of data to process and the sparse
density of collected range images are still challenging. In
this paper, we present a new scan-to-model framework using
an implicit surface representation of the map inspired by
previous RGB-D methods to better handle the large amount
and sparsity of acquired data. The result is low-drift LiDAR
odometry and an improvement in the quality of the mapping.

II. RELATED WORK

There are hundreds of works on SLAM in the literature.
Here, we only present the recent advances in six degrees of
freedom (6-DOF) SLAM LiDAR with 3D mapping. Most
LiDAR approaches are variations of the traditionnal iterative
closest point (ICP) scan matching. ICP is a well-known scan-
to-scan registration method. [1] and more recently [2] have
surveyed efficient variants of ICP, such as the point-to-plane
matching.

Fig. 1: Trajectory in red of our IMLS SLAM with a vertical
Velodyne HDL32 on top of a car (two loops of 2 km length)
in the city of Paris. We can see the good superposition of
the two loops. In black is the trajectory of the classical scan-
to-scan matching. The starting point of both methods is the
same green circle. The end point of the IMLS SLAM and the
end point of the scan-to-scan matching are inside the blue
circles.

[3] give a good review of different 6-DOF LiDAR
methods based on 2D or 3D depth sensors, but their solution
uses only a stop-scan-go strategy. [4] studies a continuous
spinning 2D laser. They build a voxel grid from laser points
and in each voxel compute shapes to keep only cylindrical
and planar areas for matching. Using a 3D laser (Velodyne
HDL64), [5] presents a SLAM taking into account the
spinning effect of the Velodyne to de-skew the range image
along the trajectory. They build a map as a 3D grid structure
containing small surfaces, and the de-skewed LiDAR scan is
localized with respect to that map. Using a 3D laser, [6] uses
a 6-DOF SLAM based on a sparse voxelized representation
of the map and a generalization of ICP to find the trajectory.

More recently, LiDAR Odometry And Mapping (LOAM)
by [7] has become considered state-of-the-art in 6-DOF
LiDAR SLAM. They focus on edges and planar features in
the LiDAR sweep and keep them in a map for edge-line and
planar-planar surface matching.

Different to 2D or 3D spinning LiDAR, RGB-D sensors,
such as Kinect, are able to produce dense range images at
high frequency. Kinect Fusion [8] presents 3D mapping and
localization algorithms using these sensors. They track the
6-DOF position of the Kinect relying on a voxel map storing
truncated signed distances to the surface. Such methods are
fast and accurate but limited in the volume explored.

Our method relies only on 3D LiDAR sensors, such as
those produced by Velodyne, and the continuous spinning
effects of such sensors. We do not use any data from other
sensors, such as IMU, GPS, or cameras. Our algorithm is
decomposed in three parts. First, we compute a local de-
skewed point cloud from one rotation of the 3D LiDAR.
Second, we select specific samples from that point cloud to
minimize the distance to the model cloud in the third part.
The main contributions of our work are twofold and concern
the point selection in each laser scan and the definition of
the model map as a point set surface.

III. SCAN EGOMOTION AND DYNAMIC OBJECT REMOVAL

We define a scan S as the data coming from one rotation of
the LiDAR sensor. During the rotation, the vehicle has moved
and we need to create a point cloud taking into account that
displacement (its egomotion, defined as the movement of
the vehicle during the acquisition time of a scan). For that
purpose, we assume that the egomotion is relatively similar
between two consecutive scans; therfore, we compute the
actual egomotion using the previous relative displacement.

We define at any time t the transformation of the vehicle
pose as τ(t) relative to its first position. We only look for
discrete solutions for the vehicle positions: τ(tk) as the
position of the vehicle at the end of the current scan (at time
tk for scan k). For any LiDAR measurement at time t, the
vehicle pose is computed as a linear interpolation between
the end of the previous scan τ(tk−1) and the end of the
current scan τ(tk).

At time tk, we already know all τ(ti) for i ≤ k − 1 and
look for the discrete position τ(tk). To build a local de-
skewed point cloud from the current sweep measurements,
we must have an estimate τ̃(tk) of the vehicle position at
time tk. We use only previous odometry and define τ̃(tk) =
τ(tk−1) ∗ τ(tk−2)−1 ∗ τ(tk−1).

We build the point cloud scan Sk using a linear interpola-
tion of positions between τ(tk−1) and τ̃(tk). That egomotion
is a good approximation if we assume that the angular and
linear velocities of the LiDAR are smooth and continuous
over time. Next, we do a rigid registration of that point cloud
scan to our map to find τ(tk).

Before matching the scan to the model map, we need
to remove all dynamic objects from the scan. This is a
very complicated task, requiring a high level of semantic
information about the scene to be exact. We perform a
small object removal instead of a dynamic object removal
and discard from the scene all objects whose size makes it
possible to assume that they could be dynamic objects. To
begin, we detect the ground points in the scan point cloud

using a voxel growing similar to that in [9]. We remove these
ground points and cluster the remaining points (clusters are
points with a distance to the nearest point less than 0.5 m in
our case). We discard from the scan small group of points;
they can represent pedestrians, cars, buses, or trucks. We
remove groups of points whose bounding box is less than
14 m in Xv , less than 14 m in Yv , and less than 4 m
in Zv . ((Xv, Yv, Zv) are the axes of a vehicle frame with
Xv pointing right, Yv pointing forward, and Zv pointing
upward). Even removing all these data, we keep enough
information about large infrastructure, such as walls, fences,
facades, and trees (those with a height of more than 4 m).
Finally, we add back the ground points to the scan point
cloud.

IV. SCAN SAMPLING STRATEGY

Once the unwarped point cloud from a scan has been
created, we need to select sampling points to do the match-
ing. The classical ICP strategy is to select random samples
like in [1]. [10] gives a more interesting strategy using the
covariance matrix of the scan point cloud to find geometric
stable sampling. They show that if they select suitable
samples, convergence of ICP is possible in cases where it was
not possible with random samples. However, their strategy
can be slow for the matching part because they may select
a large number of samples.

We propose a different sampling inspired by [10]. Instead
of using principal axes of the point cloud from the covariance
matrix, we keep the axes of the vehicle frame. We define
the LiDAR scan point cloud in the vehicle frame with axes
((Xv, Yv, Zv)). By doing so, most of the planar areas of
the scan point cloud (if they are present) are aligned to
the (Xv, Yv, Zv) axes. For example, ground points provide
observability of the translation along Zv . Facades give ob-
servability of the translation along Xv and Yv .

First, we need to compute the normals at every point.
To do that quickly, we can compute an approximate nor-
mal using the spherical range image of the sensor, similar
to [11]. For every point we keep the planar scalar a2D of
its neighborhood, as defined by [12]: a2D = (σ2 − σ3)/σ1
where σi =

√
λi and λi are eigenvalues of the PCA for the

normal computation (see [12] for more details). Second, we
compute the nine values for every point xi in the scan cloud
Sk:
• a22D(xi × ~ni) ·Xv

• −a22D(xi × ~ni) ·Xv

• a22D(xi × ~ni) · Yv
• −a22D(xi × ~ni) · Yv
• a22D(xi × ~ni) · Zv

• −a22D(xi × ~ni) · Zv

• a22D|~ni ·Xv|
• a22D|~ni · Yv|
• a22D|~ni · Zv|
It is not mandatory in our method to have planar zones

in the environment, but such zones allow us to improve the
quality of matching compared to non-planar zones; that is
why we have a2D in the formulation of choice of samples.

The first 6 values give the contribution of the point xi of
the scan to the observability of the different unknown angles
(roll, pitch, yaw) of the vehicle (we see that we provide more
important contribution to points far from the sensor center).
The 3 last values give the contribution of the point xi to the
observability of the unknown translations (same importance
for points far or close to the sensor center). We sort the nine
lists in descending order so that the first points of every list
are points with more observability in relation to the unknown
parameters. During the matching part, we select from each
list a sample x starting from the beginning of the list. We
find the closest point pc of x in the model cloud. We keep
sample x only if ‖x − pc‖ ≤ r. The parameter r remove
outliers between the scan and model cloud. We do this until
we find s samples from each list. We may have the same
point with a good score in different lists, so we will use it
multiple times as sample during the matching process. In any
case, we have in total 9s samples (we choose the parameter
s to keep fewer points than the size of the scan Sk).

Figure 2 shows an example of s = 100 points taken from
each list for a scan composed of 13683 points. For our
experiments, we used only 900 points as samples (around
7% of the scan) to do the matching. It is important to have
the minimum number of sampling points (the speed of the
matching process depends mainly on that number), but at the
same time, we need enough points to have good observability
of all parameters of the transformation τ(tk). We define
as S̃k the subset of points in Sk chosen by our sampling
strategy.

Fig. 2: Our sampling strategy on a scan point cloud. The
points in red are selected samples to do the scan matching.
We can see there are points far from the sensor center to
better lock the rotations and points on the most planar zones
for better matching.

V. SCAN-TO-MODEL MATCHING WITH IMPLICIT MOVING
LEAST SQUARES (IMLS) SURFACE REPRESENTATION

KinectFusion [8] is a well-known SLAM based on the
Kinect depth sensor. They do scan-to-model matching using
an implicit surface from [13] as a model. The implicit

surface is defined by a Truncated Signed Distance Function
(TSDF) and is coded in a voxel map. [8] show great results
of scan-to-model matching compared to classical scan-to-
scan matching. The problem of TSDF is that the surface is
defined by a voxel grid (empty, SDF, unknown) and then is
usable only in a small volume space. That is why that TSDF
representation cannot be used in large outdoor environments
for autonomous driving. In our SLAM, we use the same
scan-to-model strategy, but we chose a different surface
representation. We take the Implicit Moving Least Square
(IMLS) representation computed directly on the map point
cloud of the last n localized scans.

Point set surfaces are implicit definitions of surfaces
directly on point clouds. In [14], Levin is the first to define a
Moving Least Square (MLS) surface, the set of stable points
of a projection operator. It generates a C∞ smooth surface
from a raw noisy point cloud. Later, [15] defined the IMLS
surface: the set of zeros of a function I(x). That function
I(x) also behaves as a distance function close to the surface.

We define our point cloud map Pk as the accumulation
of n previous localized scans. That point cloud Pk contains
noise because of the LiDAR measurements but also errors
in localization of the previous scans.

Using the IMLS framework by [15], we define the function
IPk(x) using equation 1 as an approximate distance of any
point x in R3 to the implicit surface defined by the point
cloud Pk:

IPk(x) =

∑
pi∈Pk

Wi(x)((x− pi) · ~ni)∑
pj∈Pk

Wj(x)
, (1)

where pi are points of the point cloud Pk and ~ni normals at
point pi.

The weights Wi(x) are defined as Wi(x) = e−‖x−pi‖2/h2

for x in R3. Because the function Wi(x) decreases quickly
when points pi in Pk are far from x, we keep only points of
Pk inside a ball B(x, r) of radius r (when r = 3h and points
pi further than r to x, Wi(x) ≤ 0.0002). The parameter r
is the maximum distance for neighbor search and rejected
outliers are seen as having no correspondence between the
scan and the map (as described in the previous section). h
is a parameter for defining the IMLS surface, has been well
studied in previous papers [15] and depends on the sampling
density and noise of the point cloud Pk.

We want to localize the current scan Sk in point cloud
Pk. To do so, we want to find the transformation R
and t that minimizes the sum of squared IMLS distances:∑

xj∈S̃k
|IPk(Rxj + t)|2. Due to exponential weights, we

cannot approximate that nonlinear least-square optimization
problem by a linear least-square one, as in ICP point to plane.
Instead of minimizing that sum, we project every point xj of
S̃k on the IMLS surface defined by Pk: yj = xj−IPk(xj) ~nj

where ~nj is the normal of the closest point pc to xj and is
a good approximation of the surface normal at the projected
point yj .

Now, we have a point cloud Yk, the set of projected points
yj and we look for the transformation R and t that minimizes

the sum
∑

xj∈S̃k
| ~nj · (Rxj + t− yj)|2. Like in ICP point-

to-plane, we can now make the small angle assumption on R
to get a linear least-square optimization problem that can be
solved efficiently (more details in the technical report [16]).
We compute R and t and move the scan Sk using that
transformation. The process is then started again: project
the points xj of the scan on the IMLS surface to form
Yk, find the new transformation R and t between the scan
Sk and point cloud Yk and move the scan with the found
transformation R and t. We iterate until a maximum number
of iterations has been made. The final transformation τ(tk)
is the composition of the transformation between the first
and last iteration of the scan during the matching process
and the estimate position τ̃(tk). Now, we can compute a
new point cloud from raw data of the current scan by linear
interpolation of vehicle position between τ(tk−1) and τ(tk).
We add that point cloud to the map point cloud and remove
the oldest point cloud scan to always keep n scans in the
map.

With IMLS formulation, we need to compute normal ~nj

from the point cloud Pk for every query point xj of scan Sk.
This is done at every iteration during the neighbor search
but only for the selected samples using the same normal
for neighbors points (so 9s normals are calculated at each
iteration).

Figure 3 is a schematic example of the difference between
our IMLS scan-to-model matching and a classical ICP scan-
to-point cloud matching. The advantage of this formulation
is to move the scan converge towards the implicit surface
and improve the quality of matching.

Fig. 3: Schematic example of classical ICP scan matching
compared to our IMLS scan-to-model framework. The blue
points are the noisy point cloud Pk from the n previous
localized scans. The red points are points from the new
scan. The first row shows an example of the first and last
iteration of ICP point-to-plane matching. At each iteration,
we minimize the distance to the closest point. The second
row shows an example of the first and last iteration of our
IMLS point-to-model distance. The dashed black line is the
IMLS surface. At each iteration, we minimize the sum of the
distance to the IMLS surface (for simplification purposes, we
removed the normal formulation from the schema).

VI. EXPERIMENTS

Our IMLS SLAM has been implemented in C++ using
only the FLANN library (for nearest neighbor research with

k-d tree) and Eigen. We have done tests on a real outdoor
dataset from LiDAR Velodyne HDL32 and Velodyne HDL64
spinning at 10 Hz (each scan has been acquired during
100 ms). The method runs on one CPU core at 4 GHz and
uses less than 1 Go of RAM. Velodyne HDL32 and HDL64
are rotating 3D LiDAR sensors with 32 and 64 laser beams.

For all experiments, we used s = 100 for the number of
sampling points in each list, h = 0.06 m (for the IMLS
surface definition), r = 0.20 m (maximum distance for
neighbors search), 20 is the number of matching iterations (to
keep a constant timing process instead of using convergence
criteria), and n = 100 is the number of scans we have in the
model point cloud.

A. Tests on our Velodyne HDL32 dataset

To test the SLAM, we made a 4 km acquisition in the
center of Paris with a Velodyne HDL32 sensor in a vertical
position on the roof of a vehicle (total of 12951 scans). This
is a 2 km loop we did two times and came back exactly
at the same place (less than a meter difference). We then
measured the distance between the first and last localized
scan as an error metric. Figure 1 shows the trajectory of our
IMLS SLAM and the trajectory of a classical ICP scan-to-
scan matching (equivalent to n = 1). We can see the good
superposition of the two loops with our SLAM. Figure 4
shows a small portion of the point cloud generated from the
SLAM. We can see fine details like the fence. This means
we have good egomotion of the vehicle during each scan.
The distance error between the first and last scan with our
IMLS SLAM is 16 m, a drift of only 0.40%.

Fig. 4: Small portion of the point cloud generated by our
IMLS SLAM (red rectangle in Fig. 1). The visible details of
the fence show we get a good assumption on the egomotion
for each laser scan.

We tested our SLAM with the Velodyne HDL32 in a
different orientation. The Velodyne is still on the roof of
a vehicle but is tilted 60 degrees in pitch. The acquisition
has been made in a square of the city of Lille with many
turns to test the robustness of the matching (total of 1500
scans). Figure 5 shows in red the trajectory of the vehicle
computed by our SLAM and the generated point cloud. We
can see that there are no duplicate objects despite having
done many turns in the square. The point cloud provides a
qualitative evaluation of the mapping.

Fig. 5: Trajectory in red and point cloud of our IMLS SLAM
in the city of Lille. We can see the quality of the map with
no duplicate objects despite numerous turns.

B. Tests on the public dataset KITTI with Velodyne HDL64

We tested our SLAM method on the public dataset KITTI.
The odometry evaluation dataset has 22 sequences with
stereo and LiDAR data (results of 86 methods are available
online). The LiDAR is a vertical Velodyne HDL64 on the
roof of a car. Eleven sequences are provided with ground
truth (GPS+IMU navigation) and 11 sequences are given
without ground truth for odometry evaluation. The dataset
is composed of a wide variety of environments (urban city,
rural road, highways, roads with a lot of vegetation, low or
high traffic, etc.). More details are available at 1 or in [17]
regarding the metric used for evaluation. The LiDAR scans
are de-skewed with an external odometry, so we did not apply
our egomotion algorithm to this dataset.

In the training dataset, we get 0.55% drift in translation
and 0.0015 deg/m error in rotation. We can compare the
results to [6], who had around 1.5% drift error in translation
and 0.01 deg/m error in rotation. Table I compares our results
for the training dataset to LOAM [7]. We see we outperfom
previously published results.

Sequence Environment LOAM [7] Our SLAM
0 Urban 0.78% 0.50%
1 Highway 1.43% 0.82%
2 Urban+Country 0.92% 0.53%
3 Country 0.86% 0.68%
4 Country 0.71% 0.33%
5 Urban 0.57% 0.32%
6 Urban 0.65% 0.33%
7 Urban 0.63% 0.33%
8 Urban+Country 1.12% 0.80%
9 Urban+Country 0.77% 0.55%

10 Urban+Country 0.79% 0.53%

TABLE I: Comparison of drift KITTI training dataset be-
tween our SLAM and LOAM state-of-the-art odometry
(LOAM results are taken from paper [7]). We can see we
outperform on every type of environment.

In the test dataset, we have 0.69% drift in translation
and 0.0018 deg/m error in rotation (visible on the KITTI

1http://www.cvlibs.net/datasets/kitti/eval_
odometry.php

website). It is better than the state-of-the-art published results
of LOAM in [7] where they had 0.88% drift. On the KITTI
website, LOAM improved their results, which were a little
better than ours with 0.64% drift.

The drift we get on the KITTI benchmark is not as good
as the results we obtained with the Velodyne HDL32. This
is due to three facts. First, we found a distortion of the scan
point clouds because of a bad intrinsic calibration (we did a
calibration of the intrinsic vertical angle of all laser beams of
0.22 degrees using the training data). Second, we found big
errors in GPS data (used as ground truth) with, for example,
more than 5 m in the beginning of sequence 8. Third, the
environment has more variety (vegetation, highways, etc.)
than the urban environment for the Velodyne HDL32 test.

We measure the contributions of the different parts of
the algorithm to the KITTI training dataset. Table II shows
the importance of dynamic object removal. Table III shows
the contribution of our sampling strategy compared to ran-
dom sampling and geometric stable sampling (from [10]).
Table IV shows the importance of parameter n. We keep
improving the results by taking n = 100 instead of only
n = 10 scans of the map. We also tried to keep more than
n = 100 scans, but this does not change the results because
then the oldest scans are too far from the current scan to
have an influence. We also tested changing the parameter
s of the number of samples in Table V. When the number
of samples is too small (s = 10), we do not have enough
points to have good observability for matching the scan to
the map point cloud. But when the number of samples is too
big (s = 1000), the results are worse because we keep too
many points from the scan (as explained in [10], keeping too
many points can alter the constraints to find the final pose).

Object Removal Drift on KITTI training dataset
Without 0.58%

With 0.55%

TABLE II: Importance of dynamic object removal of a scan
on the KITTI training dataset

Sampling strategy Drift on KITTI training dataset
Random sampling 0.64%

Geometric stable sampling [10] 0.57%
Our sampling 0.55%

TABLE III: Importance of sampling strategy of a scan on
the KITTI training dataset

Parameter n Drift on KITTI training dataset
n = 1 scan 1.41%
n = 5 scans 0.58%
n = 10 scans 0.56%
n = 100 scans 0.55%

TABLE IV: Importance of the parameter n, last scans kept
as model on the KITTI training dataset

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php

Parameter s Drift on KITTI training dataset
s = 10 samples/list 0.79%
s = 100 samples/list 0.55%
s = 1000 samples/list 0.57%

TABLE V: Importance of the parameter s, the number of
samples for the matching part on the KITTI training dataset

Figure 6 shows two point clouds produced by our LiDAR
odometry in the KITTI dataset. We can see the details of the
environment (cars, poles) and the large number of outliers
(for which we are robust).

Fig. 6: Point clouds generated from sequence 0 (top) and
6 (bottom) of the KITTI training dataset with our LiDAR
odometry. We can see the details of the different objects
even with multiple passages, like in sequence 6 (bottom).

C. Discussion of the processing time

Our IMLS SLAM implementation is not in real time.
First, we compute the normal at every scan using the 3D
point cloud of the scan instead of using the fast normal
computation of [11] in the spherical range image (being 17
times faster). This is because the KITTI dataset provides only
3D point cloud and not the raw LiDAR data. It takes 0.2 s per
scan to do our normal computation. Second, at every scan,
we compute a new k-d tree from the whole point cloud Pk to
find the nearest neighbors in the IMLS formulation. It takes
time, depending on the number n of last scans stored. When
n = 100, it takes 1 s per sweep. One solution would be to
build a specific k-d tree (keeping the k-d tree between scans
by only removing points from the oldest scan and adding
points from the previous scan). The matching iterations are
very fast (thanks to the limited number of queries with our
sampling strategy) and takes 0.05 s per scan. So, because

of the KITTI dataset and our implementation, our SLAM
runs at 1.25 s per scan. We think it could be improved with
better normal computation and a specific k-d tree to run in
real time. For comparison, as explained in [7], LOAM runs
at 1 s per scan on the KITTI dataset.

VII. CONCLUSION

We presented a new 3D LiDAR SLAM based on a
specific sampling strategy and new scan-to-model matching.
Experiments showed low drift results on Velodyne HDL32
dataset and among best results on KITTI benchmark. We
think that our method could be improved to run in real time
in future work.

REFERENCES

[1] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algo-
rithm,” in Third International Conference on 3D Digital Imaging and
Modeling (3DIM), 2001.

[2] F. Pomerleau, F. Colas, and R. Siegwart, “A Review of Point Cloud
Registration Algorithms for Mobile Robotics,” Foundations and Trends
in Robotics, vol. 4, no. 1, pp. 1–104, 2015.

[3] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6d
slam—3d mapping outdoor environments: Research articles,”
J. Field Robot., vol. 24, no. 8-9, pp. 699–722, Aug. 2007.

[4] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning
2d laser,” in 2009 IEEE International Conference on Robotics and
Automation, May 2009, pp. 4312–4319.

[5] F. Moosmann and C. Stiller, “Velodyne slam,” in 2011 IEEE Intelligent
Vehicles Symposium (IV), 2011, pp. 393–398.

[6] S. Ceriani, C. Snchez, P. Taddei, E. Wolfart, and V. Sequeira, “Pose
interpolation slam for large maps using moving 3d sensors,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015, pp. 750–757.

[7] J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and
mapping,” Autonomous Robots, vol. 41, no. 2, pp. 401–416, Feb 2017.

[8] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
2011 10th IEEE International Symposium on Mixed and Augmented
Reality, 2011, pp. 127–136.

[9] J.-E. Deschaud and F. Goulette, “A fast and accurate plane detection
algorithm for large noisy point clouds using filtered normals and voxel
growing,” in 3DPVT, 2010.

[10] N. Gelfand, L. Ikemoto, S. Rusinkiewicz, and M. Levoy, “Geometri-
cally stable sampling for the ICP algorithm,” in Fourth International
Conference on 3D Digital Imaging and Modeling (3DIM), 2003.

[11] H. Badino, D. Huber, Y. Park, and T. Kanade, “Fast and accurate
computation of surface normals from range images,” in 2011 IEEE
International Conference on Robotics and Automation, 2011, pp.
3084–3091.

[12] J. Demantké, C. Mallet, N. David, and B. Vallet, “Dimensionality
Based Scale Selection in 3d LIDAR Point Clouds,” ISPRS - Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 3812, pp. 97–102, Sep. 2011.

[13] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’96, New York, NY, USA, 1996, pp. 303–312.

[14] D. Levin, Mesh-Independent Surface Interpolation. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004, pp. 37–49.

[15] R. Kolluri, “Provably good moving least squares,” ACM Trans. Algo-
rithms, vol. 4, no. 2, pp. 18:1–18:25, May 2008.

[16] K. lim Low, “Linear least-squares optimization for point-toplane icp
surface registration,” Tech. Rep., 2004.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

	Introduction
	Related Work
	Scan egomotion and dynamic object removal
	Scan sampling strategy
	Scan-to-Model matching with Implicit Moving Least Squares (IMLS) surface representation
	Experiments
	Tests on our Velodyne HDL32 dataset
	Tests on the public dataset KITTI with Velodyne HDL64
	Discussion of the processing time

	Conclusion
	References

