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Abstract. Research on deductive verification of probabilistic programs
has considered expectation-based logics, where pre- and post-conditions
are real-valued functions on states, and assertion-based logics, where
pre- and post-conditions are boolean predicates on state distributions.
Both approaches have developed over nearly four decades, but they have
different standings today. Expectation-based systems have managed to
formalize many sophisticated case studies, while assertion-based systems
today have more limited expressivity and have targeted simpler examples.
We present Ellora, a sound and relatively complete assertion-based
program logic, and demonstrate its expressivity by verifying several
classical examples of randomized algorithms using an implementation
in the EasyCrypt proof assistant. Ellora features new proof rules for
loops and adversarial code, and supports richer assertions than existing
program logics. We also show that Ellora allows convenient reasoning
about complex probabilistic concepts by developing a new program logic
for probabilistic independence and distribution law, and then smoothly
embedding it into Ellora. Our work demonstrates that the assertion-
based approach is not fundamentally limited and suggests that some
notions are potentially easier to reason about in assertion-based systems.

1 Introduction

The most mature systems for deductive verification of randomized algorithms
are expectation-based techniques; seminal examples include PPDL [28] and
pGCL [34]. These approaches reason about expectations, functions E from
states to real numbers,7 propagating them backwards through a program until
they are transformed into a mathematical function of the input. Expectation-
based systems are both theoretically elegant [24,16,35,23] and practically useful;
? This is the full version of the paper.
7 Treating a program as a function from input states s to output distributions µ(s),
the expected value of E on µ(s) is an expectation.



implementations have verified numerous randomized algorithms [19,21]. However,
properties involving multiple probabilities or expected values can be cumbersome
to verify—each expectation must be analyzed separately.

An alternative approach envisioned by Ramshaw [37] is to work with predicates
over distributions. A direct comparison with expectation-based techniques is
difficult, as the approaches are quite different. In broad strokes, assertion-based
systems can verify richer properties in one shot and have specifications that are
arguably more intuitive, especially for reasoning about loops, while expectation-
based approaches can transform expectations mechanically and can reason about
non-determinism. However, the comparison is not very meaningful for an even
simpler reason: existing assertion-based systems such as [8,18,38] are not as well
developed as their expectation-based counterparts.

Restrictive assertions. Existing probabilistic program logics do not support
reasoning about expected values, only probabilities. As a result, many prop-
erties about average-case behavior are not even expressible.

Inconvenient reasoning for loops. The Hoare logic rule for deterministic
loops does not directly generalize to probabilistic programs. Existing assertion-
based systems either forbid loops, or impose complex semantic side conditions
to control which assertions can be used as loop invariants. Such side conditions
are restrictive and difficult to establish.

No support for external or adversarial code. A strength of expectation-
based techniques is reasoning about programs combining probabilities and
non-determinism. In contrast, Morgan and McIver [30] argue that assertion-
based techniques cannot support compositional reasoning for such a combi-
nation. For many applications, including cryptography, we would still like to
reason about a commonly-encountered special case: programs using external
or adversarial code. Many security properties in cryptography boil down
to analyzing such programs, but existing program logics do not support
adversarial code.

Few concrete implementations. There are by now several independent imple-
mentations of expectation-based techniques, capable of verifying interesting
probabilistic programs. In contrast, there are only scattered implementations
of probabilistic program logics.

These limitations raise two points. Compared to expectation-based approaches:

1. Can assertion-based approaches achieve similar expressivity?
2. Are there situations where assertion-based approaches are more suitable?

In this paper, we give positive evidence for both of these points.8 Towards
the first point, we give a new assertion-based logic Ellora for probabilistic
programs, overcoming limitations in existing probabilistic program logics. Ellora
supports a rich set of assertions that can express concepts like expected values
8 Note that we do not give mathematically precise formulations of these points; as
we are interested in the practical verification of probabilistic programs, a purely
theoretical answer would not address our concerns.



and probabilistic independence, and novel proof rules for verifying loops and
adversarial code. We prove that Ellora is sound and relatively complete.

Towards the second point, we evaluate Ellora in two ways. First, we define a
new logic for proving probabilistic independence and distribution law properties—
which are difficult to capture with expectation-based approaches—and then
embed it into Ellora. This sub-logic is more narrowly focused than Ellora,
but supports more concise reasoning for the target assertions. Our embedding
demonstrates that the assertion-based approach can be flexibly integrated with
intuitive, special-purpose reasoning principles. To further support this claim, we
also provide an embedding of the Union Bound logic, a program logic for reasoning
about accuracy bounds [4]. Then, we develop a full-featured implementation of
Ellora in the EasyCrypt theorem prover and exercise the logic by mechanically
verifying a series of complex randomized algorithms. Our results suggest that
the assertion-based approach can indeed be practically viable.

Abstract logic. To ease the presentation, we present Ellora in two stages.
First, we consider an abstract version of the logic where assertions are general
predicates over distributions, with no compact syntax. Our abstract logic makes
two contributions: reasoning for loops, and for adversarial code.

Reasoning about Loops. Proving a property of a probabilistic loop typically
requires establishing a loop invariant, but the class of loop invariants that can
be soundly used depends on the termination behavior—stronger termination
assumptions allows richer loop invariants. We identify three classes of assertions
that can be used for reasoning about probabilistic loops, and provide a proof rule
for each one:

– arbitrary assertions for certainly terminating loops, i.e. loops that terminate
in a finite amount of iterations;

– topologically closed assertions for almost surely terminating loops, i.e. loops
terminating with probability 1;

– downwards closed assertions for arbitrary loops.

The definition of topologically closed assertion is reminiscent of Ramshaw [37];
the stronger notion of downwards closed assertion appears to be new.

Besides broadening the class of loops that can be analyzed, our rules often
enable simpler proofs. For instance, if the loop is certainly terminating, then
there is no need to prove semantic side-conditions. Likewise, there is no need to
consider the termination behavior of the loop when the invariant is downwards
and topologically closed. For example, in many applications in cryptography,
the target property is that a “bad” event has low probability: Pr [E] ≤ k. In our
framework this assertion is downwards and topologically closed, so it can be a
loop invariant regardless of the termination behavior.

Reasoning about Adversaries. Existing assertion-based logics cannot reason
about probabilistic programs with adversarial code. Adversaries are special
probabilistic procedures consisting of an interface listing the concrete procedures



that an adversary can call (oracles), along with restrictions like how many calls
an adversary may make. Adversaries are useful in cryptography, where security
notions are described using experiments in which adversaries interact with a
challenger, and in game theory and mechanism design, where adversaries can
represent strategic agents. Adversaries can also model inputs to online algorithms.

We provide proof rules for reasoning about adversary calls. Our rules are
significantly more general than previously considered rules for reasoning about
adversaries. For instance, the rule for adversary used by [4] is restricted to
adversaries that cannot make oracle calls.

Metatheory. We show soundness and relative completeness of the core abstract
logic, with mechanized proofs in the Coq proof assistant.9

Concrete logic. While the abstract logic is conceptually clean, it is inconvenient
for practical formal verification—the assertions are too general and the rules
involve semantic side-conditions. To address these issues, we flesh out a concrete
version of Ellora. Assertions are described by a grammar modeling a two-level
assertion language. The first level contains state predicates—deterministic as-
sertions about a single memory—while the second layer contains probabilistic
predicates constructed from probabilities and expected values over discrete distri-
butions. While the concrete assertions are theoretically less expressive than their
counterparts in the abstract logic, they can already encode common properties
and notions from existing proofs, like probabilities, expected values, distribution
laws and probabilistic independence. Our assertions can express theorems from
probability theory, enabling sophisticated reasoning about probabilistic concepts.

Furthermore, we leverage the concrete syntax to simplify verification.

– We develop an automated procedure for generating pre-conditions of non-
looping commands, inspired by expectation-based systems.

– We give syntactic conditions for the closedness and termination properties
required for soundness of the loop rules.

Implementation and case studies. We implement Ellora on top of Easy-
Crypt, a general-purpose proof assistant for reasoning about probabilistic pro-
grams, and we mechanically verify a diverse collection of examples including
textbook algorithms and a randomized routing procedure. We develop an Easy-
Crypt formalization of probability theory from the ground up, including tools
like concentration bounds (e.g., the Chernoff bound), Markov’s inequality, and
theorems about probabilistic independence.

Embeddings. We propose a simple program logic for proving probabilistic
independence. This logic is designed to reason about independence in a lightweight
way, as is common in paper proofs. We prove that the logic can be embedded
into Ellora, and is therefore sound. Furthermore, we prove an embedding of
the Union Bound logic [4].
9 The formalization is available at https://github.com/strub/xhl.

https://github.com/strub/xhl


2 Mathematical Preliminaries

As is standard, we will model randomized computations using sub-distributions.

Definition 1. A sub-distribution over a set A is defined by a mass function
µ : A→ [0, 1] that gives the probability of the unitary events a ∈ A. This mass
function must be s.t.

∑
a∈A µ(a) is well-defined and |µ| 4

=
∑
a∈A µ(a) ≤ 1. In

particular, the support supp(µ)
4
= {a ∈ A | µ(a) 6= 0} is discrete.10 The name

“sub-distribution” emphasizes that the total probability may be strictly less than
1. When the weight |µ| is equal to 1, we call µ a distribution. We let SDist(A)
denote the set of sub-distributions over A. The probability of an event E(x) w.r.t.
a sub-distribution µ, written Prx∼µ[E(x)], is defined as

∑
x∈A|E(x) µ(x).

Simple examples of sub-distributions include the null sub-distribution 0,
which maps each element of the underlying space to 0; and the Dirac distribution
centered on x, written δx, which maps x to 1 and all other elements to 0. The
following standard construction gives a monadic structure to sub-distributions.

Definition 2. Let µ ∈ SDist(A) and f : A → SDist(B). Then Ea∼µ[f ] ∈
SDist(B) is defined by

Ea∼µ[f ](b)
4
=
∑
a∈A

µ(a) · f(a)(b).

We use notation reminiscent of expected values, as the definition is quite similar.

We will need two constructions to model branching statements.

Definition 3. Let µ1, µ2 ∈ SDist(A) such that |µ1|+ |µ2| ≤ 1. Then µ1 + µ2 is
the sub-distribution µ such that µ(a) = µ1(a) + µ2(a) for every a ∈ A.

Definition 4. Let E ⊆ A and µ ∈ SDist(A). Then the restriction µ|E of µ to
E is the sub-distribution such that µ|E(a) = µ(a) if a ∈ E and 0 otherwise.

Sub-distributions are partially ordered under the pointwise order.

Definition 5. Let µ1, µ2 ∈ SDist(A). We say µ1 ≤ µ2 if µ1(a) ≤ µ2(a) for
every a ∈ A, and we say µ1 = µ2 if µ1(a) = µ2(a) for every a ∈ A.

We use the following lemma when reasoning about the semantics of loops.

Lemma 1. If µ1 ≤ µ2 and |µ1| = 1, then µ1 = µ2 and |µ2| = 1.

Sub-distributions are stable under pointwise-limits.

10 We work with discrete distributions to keep measure-theoretic technicalities to a
minimum, though we do not see obstacles to generalizing to the continuous setting.



Definition 6. A sequence (µn)n∈N ∈ SDist(A) sub-distributions converges if
for every a ∈ A, the sequence (µn(a))n∈N of real numbers converges. The limit
sub-distribution is defined as

µ∞(a)
4
= lim
n→∞

µn(a)

for every a ∈ A. We write limn→∞ µn for µ∞.

Lemma 2. Let (µn)n∈N be a convergent sequence of sub-distributions. Then for
any event E(x), we have:

∀n ∈ N. Pr
x∼µ∞

[E(x)] = lim
n→∞

Pr
x∼µn

[E(x)].

Any bounded increasing real sequence has a limit; the same is true of sub-
distributions.

Lemma 3. Let (µn)n∈N ∈ SDist(A) be an increasing sequence of sub-distributions.
Then, this sequence converges to µ∞ and µn ≤ µ∞ for every n ∈ N. In particular,
for any event E, we have Prx∼µn [E] ≤ Prx∼µ∞ [E] for every n ∈ N.

3 Programs and Assertions

Now, we introduce our core programming language and its denotational semantics.

Programs. We base our development on pWhile, a strongly-typed imperative
language with deterministic assignments, probabilistic assignments, conditionals,
loops, and an abort statement which halts the computation with no result.
Probabilistic assignments x $← g assign a value sampled from a distribution g to
a program variable x. The syntax of statements is defined by the grammar:

s ::= skip | abort | x← e | x $← g | s; s
| if e then s else s | while e do s | x← I(e) | x← A(e)

where x, e, and g range over typed variables in X , expressions in E and distribution
expressions in D respectively. The set E of well-typed expressions is defined
inductively from X and a set F of function symbols, while the set D of well-typed
distribution expressions is defined by combining a set of distribution symbols S
with expressions in E . Programs may call a set I of internal procedures as well as a
set A of external procedures. We assume that we have code for internal procedures
but not for external procedures—we only know indirect information, like which
internal procedures they may call. Borrowing a convention from cryptography,
we call internal procedures oracles and external procedures adversaries.



JskipKm = δm

JabortKm = 0

Jx← eKm = δm[x:=JeKm]

Jx $← gKm = Ev∼JgKm [δm[x:=v]]

Js1; s2Km = Em′∼Js1Km [Js2Km′ ]

Jif e then s1 else s2Km = if JeKm then Js1Km else Js2Km
Jwhile e do sKm = lim

n→∞
J(if e then s)n; if e then abortKm

Jx← I(e)Km = Jfarg ← e; fbody;x← fresKm
Jx← A(e)Km = Jaarg ← e; abody;x← aresKm

JsKµ = Em∼µ[JsKm]

Fig. 1. Denotational semantics of programs

Semantics. The denotational semantics of programs is adapted from the seminal
work of [27] and interprets programs as sub-distribution transformers. We view
states as type-preserving mappings from variables to values; we write State for
the set of states and SDist(State) for the set of probabilistic states. For each
procedure name f ∈ I ∪ A, we assume a set XL

f ⊆ X of local variables s.t. XL
f

are pairwise disjoint. The other variables X \
⋃
f XL

f are global variables.
To define the interpretation of expressions and distribution expressions, we let

JeKm denote the interpretation of expression e with respect to state m, and JeKµ
denote the interpretation of expression e with respect to an initial sub-distribution
µ over states defined by the clause JeKµ

4
= Em∼µ[JeKm]. Likewise, we define the

semantics of commands in two stages: first interpreted in a single input memory,
then interpreted in an input sub-distribution over memories.

Definition 7. The semantics of commands are given in Fig. 1.

– The semantics JsKm of a statement s in initial state m is a sub-distribution
over states.

– The (lifted) semantics JsKµ of a statement s in initial sub-distribution µ over
states is a sub-distribution over states.

We briefly comment on loops. The semantics of a loop while edo c is defined
as the limit of its lower approximations, where the n-th lower approximation
of Jwhile e do cKµ is J(if e then s)n; if e then abortKµ, where if e then s is
shorthand for if ethenselseskip and cn is the n-fold composition c; · · · ; c. Since
the sequence is increasing, the limit is well-defined by Lemma 3. In contrast,
the n-th approximation of Jwhile e do cKµ defined by J(if e then s)nKµ may not
converge, since they are not necessarily increasing. However, in the special case



where the output distribution has weight 1, the n-th lower approximations and
the n-th approximations have the same limit.

Lemma 4. If the sub-distribution Jwhile e do cKµ has weight 1, then the limit
of J(if e then s)nKµ is defined and

lim
n→∞

J(if e then s)n; if e then abortKµ = lim
n→∞

J(if e then s)nKµ.

This follows by Lemma 1, since lower approximations are below approxima-
tions so the limit of their weights (and the weight of their limit) is 1. It will be
useful to identify programs that terminate with probability 1.

Definition 8 (Lossless). A statement s is lossless if for every sub-distribution
µ, |JsKµ| = |µ|, where |µ| is the total probability of µ. Programs that are not
lossless are called lossy.

Informally, a program is lossless if all probabilistic assignments sample from
full distributions rather than sub-distributions, there are no abort instructions,
and the program is almost surely terminating, i.e. infinite traces have probability
zero. Note that if we restrict the language to sample from full distributions, then
losslessness coincides with almost sure termination.

Another important class of loops are loops with a uniform upper bound on
the number of iterations. Formally, we say that a loop while e do s is certainly
terminating if there exists k such that for every sub-distribution µ, we have
|Jwhile e do sKµ| = |J(if e then s)kKµ|. Note that certain termination of a loop
does not entail losslessness—the output distribution of the loop may not have
weight 1, for instance, if the loop samples from a sub-distribution or if the loop
aborts with positive probability.

Semantics of Procedure Calls and Adversaries. The semantics of internal pro-
cedure calls is straightforward. Associated to each procedure name f ∈ I, we
assume a designated input variable farg ∈ XL

f , a piece of code fbody that exe-
cutes the function call, and a result expression fres. A function call x ← I(e)
is then equivalent to farg ← e; fbody;x← fres. Procedures are subject to well-
formedness criteria: procedures should only use local variables in their scope and
after initializing them, and should not perform recursive calls.

External procedure calls, also known as adversary calls, are a bit more involved.
Each name a ∈ A is parametrized by a set aocl ⊆ I of internal procedures which
the adversary may call, a designated input variable aarg ∈ XL

a , a (unspecified)
piece of code abody that executes the function call, and a result expression ares.
We assume that adversarial code can only access its local variables in XL

a and can
only make calls to procedures in aocl. It is possible to impose more restrictions
on adversaries—say, that they are lossless—but for simplicity we do not impose
additional assumptions on adversaries here.



4 Proof System

In this section we introduce a program logic for proving properties of probabilistic
programs. The logic is abstract—assertions are arbitrary predicates on sub-
distributions—but the meta-theoretic properties are clearest in this setting. In
the following section, we will give a concrete version suitable for practical use.

Assertions and Closedness Conditions. We use predicates on state distribution.

Definition 9 (Assertions). The set Assn of assertions is defined as P(SDist(State)).
We write η(µ) for µ ∈ η.

Usual set operations are lifted to assertions using their logical counterparts,
e.g., η ∧ η′ 4

= η ∩ η′ and ¬η 4
= η. Our program logic uses a few additional

constructions. Given a predicate φ over states, we define

�φ(µ)
4
= ∀m.m ∈ supp(µ) =⇒ φ(m)

where supp(µ) is the set of all states with non-zero probability under µ. Intuitively,
φ holds deterministically on all states that we may sample from the distribution.
To reason about branching commands, given two assertions η1 and η2, we let

(η1 ⊕ η2)(µ)
4
= ∃µ1, µ2. µ = µ1 + µ2 ∧ η1(µ1) ∧ η2(µ2).

This assertion means that the sub-distribution is the sum of two sub-distributions
such that η1 holds on the first piece and η2 holds on the second piece.

Given an assertion η and an event E ⊆ State, we let η|E(µ)
4
= η(µ|E). This

assertion holds exactly when η is true on the portion of the sub-distribution
satisfying E. Finally, given an assertion η and a function F from SDist(State)

to SDist(State), we define η[F ] 4
= λµ. η(F (µ)). Intuitively, η[F ] is true in a

sub-distribution µ exactly when η holds on F (µ).
Now, we can define the closedness properties of assertions. These properties

will be critical to our rules for while loops.

Definition 10 (Closedness properties). A family of assertions (ηn)n∈N∞ is:

– u-closed if for every increasing sequence of sub-distributions (µn)n∈N such
that ηn(µn) for all n ∈ N then η∞(limn→∞ µn);

– t-closed if for every converging sequence of sub-distributions (µn)n∈N such
that ηn(µn) for all n ∈ N then η∞(limn→∞ µn);

– d-closed if it is t-closed and downward closed, that is for every sub-distributions
µ ≤ µ′, η∞(µ′) implies η∞(µ).

When (ηn)n is constant and equal to η, we say that η is u-/t-/d-closed.

Note that t-closedness implies u-closedness, but the converse does not hold.
Moreover, u-closed, t-closed and d-closed assertions are closed under arbitrary



intersections and finite unions, or in logical terms under finite boolean combina-
tions, universal quantification over arbitrary sets and existential quantification
over finite sets.

Finally, we introduce the necessary machinery for the frame rule. The set
mod(s) of modified variables of a statement s consists of all the variables on the
left of a deterministic or probabilistic assignment. In this setting, we say that
an assertion η is separated from a set of variables X, written separated(η,X), if
η(µ1) ⇐⇒ η(µ2) for any distributions µ1, µ2 s.t. |µ1| = |µ2| and µ1|X = µ2|X
where for a set of variables X, the restricted sub-distribution µ|X is

µ|X : m ∈ State|X 7→ Pr
m′∼µ

[m = m′|X ]

where State|X and m|X restrict State and m to the variables in X.
Intuitively, an assertion is separated from a set of variables X if every two

sub-distributions that agree on the variables outside X either both satisfy the
assertion, or both refute the assertion.

Judgments and Proof Rules. Judgments are of the form {η} s {η′}, where the
assertions η and η′ are drawn from Assn.

Definition 11. A judgment {η} s {η′} is valid, written |= {η} s {η′}, if η′(JsKµ)
for every interpretation of adversarial procedures and every probabilistic state µ
such that η(µ).

Figure 2 describes the structural and basic rules of the proof system. Valid-
ity of judgments is preserved under standard structural rules, like the rule of
consequence [Conseq]. As usual, the rule of consequence allows to weaken the
post-condition and to strengthen the post-condition; in our system, this rule
serves as the interface between the program logic and mathematical theorems
from probability theory. The [Exists] rule is helpful to deal with existentially
quantified pre-conditions.

The rules for skip, assignments, random samplings and sequences are all
straightforward. The rule for abort requires �⊥ to hold after execution; this
assertion uniquely characterizes the resulting null sub-distribution. The rules for
assignments and random samplings are semantical.

The rule [Cond] for conditionals requires that the post-condition must be of
the form η1⊕η2; this reflects the semantics of conditionals, which splits the initial
probabilistic state depending on the guard, runs both branches, and recombines
the resulting two probabilistic states.

The next two rules ([Split] and [Frame]) are useful for local reasoning. The
[Split] rule reflects the additivity of the semantics and combines the pre- and
post-conditions using the ⊕ operator. The [Frame] rule asserts that lossless
statements preserve assertions that are not influenced by modified variables.

The rule [Call] for internal procedures is as expected, replacing the procedure
call f with its definition.

Figure 3 presents the rules for loops. We consider four rules specialized to the
termination behavior. The [While] rule is the most general rule, as it deals with



η0 ⇒ η1 {η1} s {η2} η2 ⇒ η3

{η0} s {η3}
[Conseq]

∀x : T. {η} s {η′}
{∃x : T. η} s {η′}

[Exists]

{η} abort {�⊥}
[Abort]

η′
4
= η[Jx← eK]

{η′} x← e {η}
[Assgn]

{η} skip {η}
[Skip]

η′
4
= η[Jx $← gK]

{η′} x $← g {η}
[Sample]

{η0} s1 {η1} {η1} s2 {η2}
{η0} s1; s2 {η2}

[Seq]

{η1 ∧�e} s1 {η′1} {η2 ∧�¬e} s2 {η′2}
{(η1 ∧�e)⊕ (η2 ∧�¬e)} if e then s1 else s2 {η′1 ⊕ η′2}

[Cond]

{η1} s {η′1} {η2} s {η′2}
{η1 ⊕ η2} s {η′1 ⊕ η′2}

[Split]

separated(η,mod(s)) s is lossless
{η} s {η}

[Frame]

{η} farg ← e; fbody {η′[Jx← fresK]}
{η} x← f(e) {η′}

[Call]

Fig. 2. Structural and basic rules



arbitrary loops. For simplicity, we explain the rule in the special case where the
family of assertions is constant, i.e. we have ηn = η and η′n = η′. Informally, the
η is the loop invariant and η′ is an auxiliary assertion used to prove the invariant.
We require that η is u-closed, since the semantics of a loop is defined as the limit
of its lower approximations. Moreover, the first premise ensures that starting from
η, one guarded iteration of the loop establishes η′; the second premise ensures
that restricting to ¬e a probabilistic state µ′ satisfying η′ yields a probabilistic
state µ satisfying η. It is possible to give an alternative formulation where the
second premise is substituted by the logical constraint η′|¬e =⇒ η. As usual, the
post-condition of the loop is the conjunction of the invariant with the negation
of the guard (more precisely in our setting, that the guard has probability 0).

The [While-AST] rule deals with lossless loops. For simplicity, we explain
the rule in the special case where the family of assertions is constant, i.e. we have
ηn = η. In this case, we know that lower approximations and approximations
have the same limit, so we can directly prove an invariant that holds after one
guarded iteration of the loop. On the other hand, we must now require that the
η satisfies the stronger property of t-closedness.

The [While-D] rule handles arbitrary loops with a d-closed invariant; intu-
itively, restricting a sub-distribution that satisfies a downwards closed assertion
η yields a sub-distribution which also satisfies η.

The [While-CT] rule deals with certainly terminating loops. In this case,
there is no requirement on the assertions.

We briefly compare the rules from a verification perspective. If the assertion is
d-closed, then the rule [While-D] is easier to use, since there is no need to prove
any termination requirement. Alternatively, if we can prove certain termination of
the loop, then the rule [While-CT] is the best to use since it does not impose any
condition on assertions. When the loop is lossless, there is no need to introduce
an auxiliary assertion η′, which simplifies the proof goal. Note however that it
might still be beneficial to use the [While] rule, even for lossless loops, because
of the weaker requirement that the invariant is u-closed rather than t-closed.

Finally, Fig. 4 gives the adversary rule for general adversaries. It is highly
similar to the general rule [While-D] for loops since the adversary may make
an arbitrary sequence of calls to the oracles in aocl and may not be lossless.
Intuitively, η plays the role of the invariant: it must be d-closed and it must be
preserved by every oracle call with arbitrary arguments. If this holds, then η
is also preserved by the adversary call. Some framing conditions are required,
similar to the ones of the [Frame] rule: the invariant must not be influenced by
the state writable by the external procedures.

It is possible to give other variants of the adversary rule with more general
invariants by restricting the adversary, e.g., requiring losslessness or bounding the
number of calls the external procedure can make to oracles, leading to rules akin
to the almost surely terminating and certainly terminating loop rules, respectively.



uclosed((η′n)n∈N∞)
∀n. {ηn} if e then s {ηn+1} ∀n. {ηn} if e then abort {η′n}

{η0} while e do s {η′∞ ∧�¬e}
[While]

tclosed((ηn)n∈N∞) ∀n. {ηn} if e then s {ηn+1}
∀µ. η0(µ) =⇒ |J(while e do s)Kµ| = 1

{η0} while e do s {η∞ ∧�¬e}
[While-AST]

dclosed((ηn)n∈N∞) ∀n. {ηn} if e then s {ηn+1}
{η0} while e do s {η∞ ∧�¬e}

[While-D]

∀n. {ηn} if e then s {ηn+1}
∀µ. η0(µ) =⇒ J(if e then s)kKµ = J(while e do s)Kµ

{η0} while e do s {ηk ∧�¬e}
[While-CT]

Fig. 3. Rules for loops

∀n ∈ N∞. separated(ηn, {x, s}) dclosed((ηn)n∈N∞)

∀f ∈ aocl, x ∈ XL
a , e ∈ E , n ∈ N. {ηn} x← f(e) {ηn+1}
{η0} x← a(e) {η∞}

[Adv]

Fig. 4. Rules for adversaries



Soundness and Relative Completeness. Our proof system is sound and relatively
complete with respect to the semantics; these proofs have also been formalized
in the Coq proof assistant.

Theorem 1 (Soundness). Every judgment {η} s {η′} provable using the rules
of our logic is valid.

Completeness of the logic follows from the next lemma, whose proof makes
an essential use of the [While] rule. In the sequel, we use 1µ to denote the
characteristic function of a probabilistic state µ, an assertion stating that the
current state is equal to µ.

Lemma 5. For every probabilistic state µ, the following judgment is provable
using the rule of the logic:

{1µ} s {1JsKµ}.

Proof. By induction on the structure of s.

– s = abort, s = skip, x← e and s = x $← g are trivial;
– s = s1; s2, we have to prove

{1µ} s1; s2 {1Js2KJs1Kµ
}.

We apply the [Seq] rule with η1 = 1Js1Kµ premises can be directly proved
using the induction hypothesis;

– s = if e then s1 else s2, we have to prove

{1µ} if e then s1 else s2 {(1Js1Kµ|e
⊕ 1Js2Kµ|¬e )

}.

We apply the [Conseq] rule to be able to apply the the [Cond] rule with η1 =
1Js1Kµ|e

and η2 = 1Js2Kµ|¬e
Both premises can be proved by an application of

the [Conseq] rule followed by the application of the induction hypothesis.
– s = while e do s, we have to prove

{1µ} while e do s {1limn→∞ J(if e then s)n;if e then abortKµ}.

We first apply the [While] rule with η′n = 1J(if e then s)nKµ and

ηn = 1J(if e then s)n;if e then abortKµ .

For the first premise we apply the same process as for the conditional case: we
apply the [Conseq] and [Cond] rules and we conclude using the induction
hypothesis (and the [Skip] rule). For the second premise we follow the same
process but we conclude using the [Abort] rule instead of the induction
hypothesis. Finally we conclude since uclosed((ηn)n∈N∞).

The abstract logic is also relatively complete. This property will be less
important for our purposes, but it serves as a basic sanity check.

Theorem 2 (Relative completeness). Every valid judgment is derivable.



Proof. Consider a valid judgment {η} s {η′}. Let µ be a probabilistic state such
that η(µ). By the above proposition, {1µ} s {1JsKµ}. Using the validity of the
judgment and [Conseq], we have {1µ ∧ η(µ)} s {η′}. Using the [Exists] and
[Conseq] rules, we conclude {η} s {η′} as required.

The side-conditions in the loop rules (e.g., uclosed/tclosed/dclosed and the
weight conditions) are difficult to prove, since they are semantic properties. Next,
we present a concrete version of the logic with give easy-to-check, syntactic
sufficient conditions.

5 A Concrete Program Logic

To give a more practical version of the logic, we begin by setting a concrete
syntax for assertions

Assertions. We use a two-level assertion language, presented in Fig. 5. A proba-
bilistic assertion η is a formula built from comparison of probabilistic expressions,
using first-order quantifiers and connectives, and the special connective ⊕. A
probabilistic expression p can be a logical variable v, an operator applied to
probabilistic expressions o(p) (constants are 0-ary operators), or the expectation
E[ẽ] of a state expression ẽ. A state expression ẽ is either a program variable
x, the characteristic function 1φ of a state assertion φ, an operator applied to
state expressions o(ẽ), or the expectation Ev∼g[ẽ] of state expression ẽ in a given
distribution g. Finally, a state assertion φ is a first-order formula over program
variables. Note that the set of operators is left unspecified but we assume that
all the expressions in E and D can be encoded by operators.

ẽ ::= x | v | 1φ | Ev∼g[ẽ] | o(ẽ) (S-expr.)
φ ::= ẽ ./ ẽ | FO(φ) (S-assn.)
p ::= v | o(p) | E[ẽ] (P-expr.)
η ::= p ./ p | η ⊕ η | FO(η) (P-assn.)
./ ∈ {=, <,≤} o ∈ Ops (Ops.)

Fig. 5. Assertion syntax
The interpretation of the concrete syntax is as expected. The interpretation of

probabilistic assertions is relative to a valuation ρ which maps logical variables to
values, and is an element of Assn. The definition of the interpretation is straight-
forward; the only interesting case is JE[ẽ]Kρµ which is defined by Em∼µ[JẽKρm],
where JẽKρm is the interpretation of the state expression ẽ in the memory m and
valuation ρ. The interpretation of state expressions is a mapping from memories
to values, which can be lifted to a mapping from distributions over memories to
distributions over values. The definition of the interpretation is straightforward;
the most interesting case is for expectation JEv∼g[ẽ]Kρm

4
= Ew∼JgKρm [JẽK

ρ[v:=w]
m ].

We present the full interpretations in the supplemental materials.



Many standard concepts from probability theory have a natural representation
in our syntax. For example:

– the probability that φ holds in some probabilistic state is represented by the
probabilistic expression Pr[φ]

4
= E[1φ];

– probabilistic independence of state expressions ẽ1, . . . , ẽn is modeled by the
probabilistic assertion #{ẽ1, . . . , ẽn}, defined by the clause11

∀v1 . . . vn, Pr[>]n−1 Pr[
∧

i=1...n

ẽi = vi] =
∏

i=1...n

Pr[ẽi = vi];

– the fact that a distribution is proper is modeled by the probabilistic assertion
L 4
= Pr[>] = 1;

– a state expression ẽ distributed according to a law g is modeled by the
probabilistic assertion

ẽ ∼ g 4
= ∀w, Pr[ẽ = w] = E[Ev∼g[1v=w]].

The inner expectation computes the probability that v drawn from g is equal
to a fixed w; the outer expectation weights the inner probability by the
probability of each value of w.

We can easily define � operator from the previous section in our new syntax:
�φ

4
= Pr[¬φ] = 0.

Syntactic Proof Rules. Now that we have a concrete syntax for assertions, we can
give syntactic versions of many of the existing proof rules. Such proof rules are
often easier to use since they avoid reasoning about the semantics of commands
and assertions. We tackle the non-looping rules first, beginning with the following
syntactic rules for assignment and sampling:

{η[x := e]} x← e {η}
[Assgn]

{Pgx(η)} x $← g {η}
[Sample]

The rule for assignment is the usual rule from Hoare logic, replacing the program
variable x by its corresponding expression e in the pre-condition. The replacement
η[x := e] is done recursively on the probabilistic assertion η; for instance for
expectations, it is defined by E[ẽ][x := e]

4
= E[ẽ[x := e]], where ẽ[x := e] is the

syntactic substitution.
The rule for sampling uses probabilistic substitution operator Pgx(η), which

replaces all occurrences of x in η by a new integration variable t and records that
t is drawn from g; the operator is defined in Fig. 6.

Next, we turn to the loop rule. The side-conditions from Fig. 3 are purely
semantic, while in practice it is more convenient to use a sufficient condition in
the Hoare logic. We give sufficient conditions for ensuring certain and almost-
sure termination in Fig. 7; ẽ is an integer-valued expression. The first side-
condition CCTerm shows certain termination given a strictly decreasing variant ẽ
11 The term Pr[>]n−1 is necessary since we work with sub-distributions.



Pgx(v)
4
= v

Pgx (E[ẽ])
4
= E[Et∼g[ẽ[x := t]]]

Pgx(o(η))
4
= o(Pgx(η1), . . . ,Pgx(ηn))

Pgx(η1 ./ η2)
4
= Pgx(η1) ./ Pgx(η2)

for o ∈ Ops, ./∈ {∧,∨,⇒}.

Fig. 6. Syntactic op. P (main cases)

CCTerm
4
= {L ∧�(ẽ = k ∧ 0 < k ∧ b)} s {L ∧�(ẽ < k)}
|= η ⇒ (∃ẏ. �ẽ ≤ ẏ) ∧�(ẽ = 0⇒ ¬b)

CASTerm
4
= {L ∧�(ẽ = k ∧ 0 < k ≤ K ∧ b)} s {L ∧�(0 ≤ ẽ ≤ K) ∧ Pr[ẽ < k] ≥ ε}
|= η ⇒ �(0 ≤ ẽ ≤ K ∧ ẽ = 0⇒ ¬b)
|= tclosed(η)

Fig. 7. Side-conditions for loop rules

that is bounded below, similar to how a decreasing variant shows termination
for deterministic programs. The second side-condition CASTerm shows almost-
sure termination given a probabilistic variant ẽ, which must be bounded both
above and below. While ẽ may increase with some probability, it must decrease
with strictly positive probability. This condition was previously considered by
[17] for probabilistic transition systems and also used in expectation-based
approaches [33,20]. Our framework can also support more refined conditions (e.g.,
based on super-martingales [9,31]), but the condition CASTerm already suffices
for most randomized algorithms.

While t-closedness is a semantic condition (cf. Definition 10), there are simple
syntactic conditions to guarantee it. For instance, assertions that carry a non-strict
comparison ./ ∈{≤,≥,=} between two bounded probabilistic expressions are
t-closed; the assertion stating probabilistic independence of a set of expressions
is t-closed.

Precondition Calculus. With a concrete syntax for assertions, we are also able
to incorporate syntactic reasoning principles. One classic tool is Morgan and
McIver’s greatest pre-expectation, which we take as inspiration for a pre-condition
calculus for the loop-free fragment of Ellora. Given an assertion η and a
loop-free statement s, we mechanically construct an assertion η∗ that is the
pre-condition of s that implies η as a post-condition. The basic idea is to replace
each expectation expression p inside η by an expression p∗ that has the same
denotation before running s as p after running s. This process yields an assertion
η∗ that, interpreted before running s, is logically equivalent to η interpreted after
running s.

The computation rules for pre-conditions are defined in Fig. 8. For a probability
assertion η, its pre-condition pc(s, η) corresponds to η where the expectation ex-



pressions of the form E[ẽ] are replaced by their corresponding pre-term, pe(s,E[ẽ]).
Pre-terms correspond loosely to Morgan and McIver’s pre-expectations—we will
make this correspondence more precise in the next section. The main interesting
cases for computing pre-terms are for random sampling and conditionals. For
random sampling the result is Pgx(E[ẽ]), which corresponds to the [Sample] rule.
For conditionals, the expectation expression is split into a part where e is true
and a part where e is not true. We restrict the expectation to a part satisfying
e with the operator E[ẽ]|e

4
= E[ẽ · 1e]. This corresponds to the expected value

of ẽ on the portion of the distribution where e is true. Then, we can build the
pre-condition calculus into Ellora.

pe(s1; s2,E[ẽ])
4
= pe(s1, pe(s2,E[ẽ]))

pe(x← e,E[ẽ]) 4
= E[ẽ][x := e]

pe(x $← g,E[ẽ]) 4
= Pgx(E[ẽ])

pe(if e then s1 else s2,E[ẽ])
4
= pe(s1,E[ẽ])|e + pe(s2,E[ẽ])|¬e

pc(s, p1 ./ p2)
4
= pe(s, p1) ./ pe(s, p2)

Fig. 8. Precondition calculus (selected)

Theorem 1. Let s be a non-looping command. Then, the following rule is
derivable in the concrete version of Ellora:

{pc(s, η)} s {η}
[PC]

6 Case Studies: Embedding Lightweight Logics

While Ellora is suitable for general-purpose reasoning about probabilistic pro-
grams, in practice humans typically use more special-purpose proof techniques—
often targeting just a single, specific kind of property, like probabilistic independence—
when proving probabilistic assertions. When these techniques apply, they can be
a convenient and powerful tool.

To capture this intuitive style of reasoning, researchers have considered
lightweight program logics where the assertions and proof rules are tailored to
a specific proof technique. We demonstrate how to integrate these tools in an
assertion-based logic by introducing and embedding a new logic for reasoning
about independence and distribution laws, useful properties when analyzing
randomized algorithms. We crucially rely on the rich assertions in Ellora—it
is not clear how to extend expectation-based approaches to support similar,
lightweight reasoning. Then, we show to embed the union bound logic [4] for
proving accuracy bounds.



6.1 Law and Independence Logic

We begin by describing the law and independence logic IL, a proof system with
intuitive rules that are easy to apply and amenable to automation. For simplicity,
we only consider programs which sample from the binomial distribution, and
have deterministic control flow—for lack of space, we also omit procedure calls.

Definition 12 (Assertions). IL assertions have the grammar:

ξ := det(e) |#E | e ∼ B(e, p) | > | ⊥ | ξ ∧ ξ

where e ∈ E, E ⊆ E, and p ∈ [0, 1].

The assertion det(e) states that e is deterministic in the current distribution,
i.e., there is at most one element in the support of its interpretation. The
assertion #E states that the expressions in E are independent, as formalized
in the previous section. The assertion e ∼ B(m, p) states that e is distributed
according to a binomial distribution with parameter m (where m can be an
expression) and constant probability p, i.e. the probability that e = k is equal to
the probability that exactly k independent coin flips return heads using a biased
coin that returns heads with probability p.

Assertions can be seen as an instance of a logical abstract domain, where
the order between assertions is given by implication based on a small number of
axioms. Examples of such axioms include independence of singletons, irreflexivity
of independence, anti-monotonicity of independence, an axiom for the sum of
binomial distributions, and rules for deterministic expressions:

#{x} #{x, x} ⇐⇒ det(x) #(E ∪ E′) =⇒ #E

e∼B(m, p)∧e′∼B(m′, p)∧#{e, e′} =⇒ e+e′∼B(m+m′, p)∧
1≤i≤n

det(ei) =⇒ det(f(e1, . . . , en))

Definition 13. Judgments of the logic are of the form {ξ} s {ξ′}, where ξ and
ξ′ are IL-assertions. A judgment is valid if it is derivable from the rules of Fig. 9;
structural rules and rule for sequential composition are similar to those from § 4
and omitted.

The rule [IL-Assgn] for deterministic assignments is as in § 4. The rule
[IL-Sample] for random assignments yields as post-condition that the variable
x and a set of expressions E are independent assuming that E is independent
before the sampling, and moreover that x follows the law of the distribution that
it is sampled from. The rule [IL-Cond] for conditionals requires that the guard is
deterministic, and that each of the branches satisfies the specification; if the guard



is not deterministic, there are simple examples where the rule is not sound.12
The rule [IL-While] for loops requires that the loop is certainly terminating
with a deterministic guard. Note that the requirement of certain termination
could be avoided by restricting the structural rules such that a statement s has
deterministic control flow whenever {ξ} s {ξ′} is derivable.

We now turn to the embedding. The embedding of IL assertions into general
assertions is immediate, except for det(e) which is translated as �e ∨�¬e. We
let ξ denote the translation of ξ.

Theorem 2 (Embedding and soundness of IL logic). If {ξ} s {ξ′} is derivable
in the IL logic, then {ξ} s {ξ′} is derivable in (the syntactic variant of) Ellora.
As a consequence, every derivable judgment {ξ} s {ξ′} is valid.

Proof sketch. By induction on the derivation. The interesting cases are condi-
tionals and loops. For conditionals, the soundness follows from the soundness of
the rule:

{η} s1 {η′} {η} s2 {η′} �e ∨�¬e
{η} if e then s1 else s2 {η′}

To prove the soundness of this rule, we proceed by case analysis on �e ∨�¬e.
We treat the case �e; the other case is similar. In this case, η is equivalent to
η1 ∧�e⊕ η2 ∧�¬e, where η1 = η and η2 = ⊥. Let η′1 = η′ and η2 = �⊥; again,
η′1 ⊕ η′2 is logically equivalent to η′. The soundness of the rule thus follows from
the soundness of the [Cond] and [Conseq] rules. For loops, there exists a natural
number n such that while b do s is semantically equivalent to (if b then s)n. By
assumption {ξ} s {ξ} holds, and thus by induction hypothesis {ξ} s {ξ}. We
also have ξ =⇒ det(b), and hence {ξ} if b thens {ξ}. We conclude by [Seq].

To illustrate our system IL, consider the statement s in Fig. 10 which flips
a fair coin N times and counts the number of heads. Using the logic, we prove
that c ∼ B(N · (N + 1)/2, 1/2) is a post-condition for s. We take the invariant:

c ∼ B (j(j+ 1)/2, 1/2)

The invariant holds initially, as 0 ∼ B(0, 1/2). For the inductive case, we show:

{c ∼ B (0, 1/2)} s0 {c ∼ B ((j+ 1)(j+ 2)/2, 1/2)}

where s0 represents the loop body, i.e. x $← B (j, 1/2) ; c← c+ x. First, we apply
the rule for sequence taking as intermediate assertion

c ∼ B (j(j+ 1)/2, 1/2) ∧ x ∼ B (j, 1/2) ∧#{x, c}

12 Consider the following program where Bern(p) is the Bernoulli distribution with
parameter p:

b $← Bern(p); if b then x1 $← Bern(p1);x2 $← Bern(p2)

else x1 $← Bern(p′1);x2 $← Bern(p′2)

Each branch establishes #{x1, x2}, but this is not a valid post-condition for the
conditional. There are similar examples using the binomial distribution.



{ξ[x := e]} x← e {ξ}
[IL-Assgn]

{x} ∩ FV(E) ∩ FV(e) = ∅
{#E} x $← B(e, p) {#(E ∪ {x}) ∧ x ∼ B(e, p)}

[IL-Sample]

{ξ} s1
{
ξ′
} {

ξ′
}
s2

{
ξ′′

}
{ξ} s1; s2

{
ξ′′

} [IL-Seq]

{ξ} s1
{
ξ′
}

{ξ} s2
{
ξ′
}

ξ =⇒ det(b)

{ξ} if b then s1 else s2
{
ξ′
} [IL-Cond]

{ξ} s {ξ} ξ =⇒ det(b) CCTerm
{ξ} while b do s {ξ}

[IL-While]

Fig. 9. IL proof rules (selected)

proc sum () =
var c:int, x:int;
c← 0;
for j← 1 to N do

x $← B(j,1/2);
c← c + x;

return c

Fig. 10. Sum of bin.



The first premise follows from the rule for random assignment and structural
rules. The second premise follows from the rule for deterministic assignment and
the rule of consequence, applying axioms about sums of binomial distributions.

We briefly comment on several limitations of IL. First, IL is restricted to
programs with deterministic control flow, but this restriction could be partially
relaxed by enriching IL with assertions for conditional independence. Such
assertions are already expressible in the logic of Ellora; adding conditional
independence would significantly broaden the scope of the IL proof system and
open the possibility to rely on axiomatizations of conditional independence (e.g.,
based on graphoids [36]). Second, the logic only supports sampling from binomial
distributions. It is possible to enrich the language of assertions with clauses
c ∼ g where g can model other distributions, like the uniform distribution or the
Laplace distribution. The main design challenge is finding a core set of useful
facts about these distributions. Enriching the logic and automating the analysis
are interesting avenues for further work.

6.2 Embedding the Union Bound Logic

The program logic aHL [4] was recently introduced for estimating accuracy of
randomized computations. One main application of aHL is proving accuracy of
randomized algorithms, both in the offline and online settings—i.e. with adversary
calls. aHL is based on the union bound, a basic tool from probability theory, and
has judgments of the form |=β {Φ} s {Ψ}, where s is a statement, Φ and Ψ are
first-order formulae over program variables, and β is a probability, i.e. β ∈ [0, 1].
A judgment |=β {Φ} s {Ψ} is valid if for every memory m such that Φ(m), the
probability of ¬Ψ in JsKm is upper bounded by β, i.e. PrJsKm [¬Ψ ] ≤ β.

Figure 11 presents some key rules of aHL, including a rule for sampling
from the Laplace distribution Lε centered around e. The predicate CCTerm(k)
indicates that the loop terminates in at most k steps on any memory that satisfies
the pre-condition. Moreover, β is a function of ε.

|=β {>} x $← Lε(e) {|x− e| ≤
1

ε
log

1

β
}

[aHL-Sample]

|=β1 {Φ} s1 {Θ} |=β2 {Θ} s2 {Ψ}
|=β1+β2 {Φ} s1; s2 {Ψ}

[aHL-Seq]

|=β {Φ} c {Φ} CCTerm(k)

|=k·β {Φ} while e do c {Φ ∧ ¬e}
[aHL-While]

Fig. 11. aHL proof rules (selected)
aHL has a simple embedding into Ellora.

Theorem 3 (Embedding of aHL). If |=β {Φ} s {Ψ} is derivable in aHL, then
{�Φ} s {E[1¬Ψ ] ≤ β} is derivable in Ellora.



7 Case Studies: Verifying Randomized Algorithms

In this section, we will demonstrate Ellora on a selection of examples; we
present further examples in the supplemental material. Together, they exhibit
a wide variety of different proof techniques and reasoning principles which are
available in the Ellora’s implementation.

Hypercube Routing. will begin with the hypercube routing algorithm [41,42].
Consider a network topology (the hypercube) where each node is labeled by a
bitstring of length D and two nodes are connected by an edge if and only if the
two corresponding labels differ in exactly one bit position.

In the network, there is initially one packet at each node, and each packet
has a unique destination. The algorithm implements a routing strategy based
on bit fixing : if the current position has bitstring i, and the target node has
bitstring j, we compare the bits in i and j from left to right, moving along the
edge that corrects the first differing bit. Valiant’s algorithm uses randomization
to guarantee that the total number of steps grows logarithmically in the number
of packets. In the first phase, each packet i select an intermediate destination ρ(i)
uniformly at random, and use bit fixing to reach ρ(i). In the second phase, each
packet use bit fixing to go from ρ(i) to the destination j. We will focus on the
first phase since the reasoning for the second phase is nearly identical. We can
model the strategy with the code in Figure 18, using some syntactic sugar for
the for loops.13 We assume that initially, the position of the packet i is at node

proc route (D T : int) :
var ρ, pos, usedBy : node map;
var nextE : edge;

pos ← Map.init id 2D; ρ ←Map.empty;
for i ← 1 to 2D do

ρ[i] $←[1 , 2D ]
for t ← 1 to T do

usedBy ← Map.empty;

for i ← 1 to 2D do
if pos[i ] 6= ρ [i ] then

nextE ← getEdge pos[i] ρ [i ];
if usedBy[nextE] = ⊥ then
// Mark edge used
usedBy[nextE] ← i;
// Move packet
pos[i]← dest nextE

return (pos, ρ)

Fig. 12. Hypercube Routing
i (see Map.init). Then, we initialize the random intermediate destinations ρ. The
remaining loop encodes the evaluation of the routing strategy iterated T time.
The variable usedBy is a map that logs if an edge is already used by a packet,
it is empty at the beginning of each iteration. For each packet, we try to move
it across one edge along the path to its intermediate destination. The function

13 Recall that the number of node in a hypercube of dimension D is 2D so each node
can be identified by a number in [1, 2D].



getEdge returns the next edge to follow, following the bit-fixing scheme. If the
packet can progress (its edge is not used), then its current position is updated
and the edge is marked as used.

We show that if the number of timesteps T is 4D + 1, then all packets reach
their intermediate destination in at most T steps, except with a small probability
2−2D of failure. That is, the number of timesteps grows linearly in D, logarithmic
in the number of packets. This is formalized in our system as:

{T = 4D + 1} route {Pr[∃i . pos[i ] 6= ρ [i ] ] ≤ 2−2D ]}

proc coupon (N : int) :
var int cp[N ], t[N ];
var int X ←0;
for p ← 1 to N do
ct ← 0;

cur $← [1 , N ];
while cp[cur] = 1 do
ct ← ct + 1;

cur $← [1 , N ];
t[p] ← ct;
cp[cur] ← 1;
X ←X + t[p];

return X

Fig. 13. Coupon collector
Modeling Infinite Processes. Our second example is the coupon collector process.
The algorithm draws a uniformly random coupon (we have N coupon) on each
day, terminating when it has drawn at least one of each kind of coupon. The
code of the algorithm is displayed in Fig. 13; the array cp records of the coupons
seen so far, t holds the number of steps taken before seeing a new coupon, and
X tracks of the total number of steps. Our goal is to bound the average number
of iterations. This is formalized in our logic as:

{L} coupon
{
E[X] =

∑
i∈[1,N ]

(
N

N−i+1

)}
.

proc pwInd (N : int) :

var bool X[2N], B[N];
for i← 1 to N do

B[i] $← Ber(1/2);

for j ← 1 to 2N do
X[j] ← 0;
for k ← 1 to N do
if k ∈ bits(j) then
X[j] ← X[j] ⊕ B[k]

return X

Fig. 14. Pairwise Independence
Limited Randomness. Pairwise independence says that if we see the result of
Xi, we do not gain information about all other variables Xk. However, if we see
the result of two variables Xi, Xj , we may gain information about Xk. There
are many constructions in the algorithms literature that grow a small number



of independent bits into more pairwise independent bits. Figure 14 gives one
procedure, where ⊕ is exclusive-or, and bits(j) is the set of positions set to 1 in
the binary expansion of j. The proof uses the following fact, which we fully verify:
for a uniformly distributed Boolean random variable Y , and a random variable
Z of any type,

Y # Z ⇒ Y ⊕ f(Z) # g(Z) (1)
for any two Boolean functions f, g. Then, note that X[i] =

⊕
{j∈bits(i)} B[j] where

the big XOR operator ranges over the indices j where the bit representation of
i has bit j set. For any two i, k ∈ [1, . . . , 2N] distinct, there is a bit position in
[1, . . . , N] where i and k differ; call this position r and suppose it is set in i but
not in k. By rewriting,

X[i] = B[r]⊕
⊕

{j∈bits(i)\r}

B[j] and X[k] =
⊕

{j∈bits(k)\r}

B[j].

Since B[j] are all independent, X[i] # X[k] follows from Eq. (1) taking Z to be
the distribution on tuples 〈B[1], . . . , B[N]〉 excluding B[r]. This verifies pairwise
independence:

{L} pwInd(N) {L ∧ ∀i, k ∈ [2N]. i 6= k ⇒ X[i] # X[k]}.

Adversarial Programs. Pseudorandom functions (PRF) and pseudorandom per-
mutations (PRP) are two idealized primitives that play a central role in the
design of symmetric-key systems. Although the most natural assumption to make
about a blockcipher is that it behaves as a pseudorandom permutation, most
commonly the security of such a system is analyzed by replacing the blockcipher
with a perfectly random function. The PRP/PRF Switching Lemma [22,6] fills
the gap: given a bound for the security of a blockcipher as a pseudorandom
function, it gives a bound for its security as a pseudorandom permutation.

Lemma 4 (PRP/PRF switching lemma). Let A be an adversary with blackbox
access to an oracle O implementing either a random permutation on {0, 1}l or a
random function from {0, 1}l to {0, 1}l. Then the probability that the adversary
A distinguishes between the two oracles in at most q calls is bounded by

| Pr
PRP

[b ∧ |H| ≤ q]− Pr
PRF

[b ∧ |H| ≤ q]| ≤ q(q − 1)

2l+1
,

where H is a map storing each adversary call and |H| is its size.

Proving this lemma can be done using the Fundamental Lemma of Game-
Playing, and bounding the probability of bad in the program from Fig. 15. We
focus on the latter. Here we apply the [Adv] rule of Ellora with the invariant
∀k,Pr[bad∧|H| ≤ k] ≤ k(k−1)

2l+1 where |H| is the size of the map H, i.e. the number
of adversary call. Intuitively, the invariant says that at each call to the oracle the
probability that bad has been set before and that the number of adversary call is
less than k is bounded by a polynomial in k.

The invariant is d-closed and true before the adversary call, since at that
point Pr[bad] = 0. Then we need to prove that the oracle preserves the invariant,
which can be done easily using the precondition calculus ([PC] rule).



var H: ({0 , 1} l, {0 , 1} l) map;

proc orcl (q:{0 , 1} l):
var a : {0 , 1} l;
if q 6 ∈ H then

a $←{0 , 1} l;
bad ← bad || a ∈ codom(H );
H [q ] ←a;

return H [q ];

proc main():
var b: bool;
bad ← false;
H ← [];
b ← A();
return b;

Fig. 15. PRP/PRF game

8 Implementation and Mechanization

We have built a prototype implementation of Ellora within EasyCrypt [5,2],
a theorem prover originally designed for verifying cryptographic protocols. Easy-
Crypt provides a convenient environment for constructing proofs in various
Hoare logics, supporting interactive, tactic-based proofs for manipulating asser-
tions and allowing users to invoke external tools, like SMT-solvers, to discharge
proof obligations. EasyCrypt provides a mature set of libraries for both data
structures (sets, maps, lists, arrays, etc.) and mathematical theorems (algebra,
real analysis, etc.), which we extended with theorems from probability theory.

Example LC FPLC

hypercube 100 1140
coupon 27 184
vertex-cover 30 61
pairwise-indep 30 231
private-sums 22 80
poly-id-test 22 32
random-walk 16 42
dice-sampling 10 64
matrix-prod-test 20 75

Table 1. Benchmarks

We used the implementation for verifying
many examples from the literature, including
all the programs presented in § 7 as well as
some additional examples (such as polynomial
identity test, private running sums, proper-
ties about random walks, etc.). The verified
proofs bear a strong resemblance to the exist-
ing, paper proofs. Independently of this work,
Ellora has been used to formalize the main
theorem about a randomized gossip-based pro-
tocol for distributed systems [26, Theorem
2.1]. Some libraries developed in the scope of
Ellora have been incorporated into the main

branch of EasyCrypt, including a general library on probabilistic independence.

A New Library for Probabilistic Independence. In order to support assertions of
the concrete program logic, we enhanced the standard libraries of EasyCrypt,
notably the ones dealing with big operators and sub-distributions. Like all
EasyCrypt libraries, they are written in a foundational style, i.e. they are
defined instead of axiomatized. A large part of our libraries are proved formally
from first principles. However, some results, such as concentration bounds, are
currently declared as axioms.

Our formalization of probabilistic independence deserves special mention. We
formalized two different (but logically equivalent) notions of independence. The
first is in terms of products of probabilities, and is based on heterogenous lists.



Since Ellora (like EasyCrypt) has no support for heterogeneous lists, we
use a smart encoding based on second-order predicates. The second definition
is more abstract, in terms of product and marginal distributions. While the
first definition is easier to use when reasoning about randomized algorithms, the
second definition is more suited for proving mathematical facts. We prove the
two definitions equivalent, and formalize a collection of related theorems.

Mechanized Meta-Theory. The proofs of soundness and relative completeness
of the abstract logic, without adversary calls, and the syntactical termination
arguments have been mechanized in the Coq proof assistant. The development is
available in supplemental material.

9 Related Work

More on Assertion-Based Techniques. The earliest assertion-based system is due
to Ramshaw [37], who proposes a program logic where assertions can be formulas
involving frequencies, essentially probabilities on sub-distributions. Ramshaw’s
logic allows assertions to be combined with operators like ⊕, similar to our
approach. [18] presents a Hoare-style logic with general assertions on the distribu-
tion, allowing expected values and probabilities. However, his while rule is based
on a semantic condition on the guarded loop body, which is less desirable for
verification because it requires reasoning about the semantics of programs. [8] give
decidability results for a probabilistic Hoare logic without while loops. We are
not aware of any existing system that supports assertions about general expected
values; existing works also restrict to Boolean distributions. [38] formalize a
Hoare logic for probabilistic programs but unlike our work, their assertions are
interpreted on distributions rather than sub-distributions. For conditionals, their
semantics rescales the distribution of states that enter each branch. However,
their assertion language is limited and they impose strong restrictions on loops.

Other Approaches. Researchers have proposed many other approaches to verify
probabilistic program. For instance, verification of Markov transition systems goes
back to at least [17,40]; our condition for ensuring almost-sure termination in loops
is directly inspired by their work. Automated methods include model checking
(see e.g., [1,25,29]) and abstract interpretation (see e.g., [32,12]). Techniques for
reasoning about higher-order (functional) probabilistic languages are an active
subject of research (see e.g., [7,13,14]). For analyzing probabilistic loops, in
particular, there are tools for reasoning about running time. There are also
automated systems for synthesizing invariants [11,3]. [9,10] use a martingale
method to compute the expected time of the coupon collector process for N = 5—
fixing N lets them focus on a program where the outer while loop is fully
unrolled. Martingales are also used by [15] for analyzing probabilistic termination.
Finally, there are approaches involving symbolic execution; [39] use a mix of
static and dynamic analysis to check probabilistic programs from the approximate
computing literature.



10 Conclusion and Perspectives

We introduced an expressive program logic for probabilistic programs, and showed
that assertion-based systems are suited for practical verification of probabilistic
programs. Owing to their richer assertions, program logics are a more suitable
foundation for specialized reasoning principles than expectation-based systems.
As evidence, our program logic can be smoothly extended with custom reasoning
for probabilistic independence and union bounds. Future work includes proving
better accuracy bounds for differentially private algorithms, and exploring further
integration of Ellora into EasyCrypt.
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A Soundness of Ellora

Before presenting the proof of soundness, we will introduce two technical lemmas
needed for the loop rules. Intuitively, d- and t-closed assertions are preserved in
the limit of general and lossless loops, respectively.

Proposition 5.

1. If η is d-closed and is s.t.

∀µ. µ |= η =⇒ Jif b then sKµ |= η,

then ∀µ. µ |= η =⇒ Jwhile b do sKµ |= η.
2. If η is t-closed and is s.t.

∀µ. µ |= η =⇒ Jif b then sKµ |= η,

then ∀µ. µ |= η =⇒ Jwhile b do sKµ |= η, provided that while b do s is
lossless.

Proof. We only treat the first case; the second is similar. Let η be a d-closed
assertion s.t. for any sub-distribution µ, if η(µ), then Jif b then sKµ |= η. We
prove by induction on n that for any sub-distribution µ such that µ |= η, we have
J(if bthens)nKµ |= η. By downward closedness of η, we have J(if bthens)n|¬bKµ |= η.
We conclude by t-closenedness of η.

Lemma 6. Let η be an assertion and s be a command. Then {η[JsK]} s {η}.

Proof. Let µ |= η[JsK]. By definition of η[JsK], this amounts to have JsKµ |= η,
which exactly gives the expected result.

Lemma 7. Let µ be a sub-distribution and s be a command. Then, |JsKµ| ≤ |µ|.

Proof. We have

|JsKµ| = |Em∼µ[JsKm]| =
∑
m

µ(m) ·
≤1︷ ︸︸ ︷
|JsKm|

≤
∑
m

µ(m) = |µ|

Lemma 8. Let µ be a sub-distribution s.t. µ 4
=
∑
i∈I λiµi where I is a finite

set, all the λi’s are in [0, 1] and all the µi’s are sub-distributions. Then, for any
command s,

JsKµ =
∑
i∈I

λi · JsKµi

Proof. Immediate consequence of the linearity of E.



Lemma 9. Let s be a lossless command and µ be a sub-distribution. Then
µ|mod(s)

= JsKµ|mod(s)
.

Proof. The proof is done by a direct induction of s.

Lemma 10. The rules of Ellora are sound.

Proof. We use the notation of the rules.

– [Skip] — immediate since JskipKµ = µ.
– [Abort] — immediate by definition of �η and since

supp(JabortKµ) = supp(0) = ∅.

– [Assgn] & [Sample] — immediate consequence of Lemma 6.
– [Seq] — let µ |= η1. Then, by the first premise, Js1Kµ |= η2. Hence, by the

second premise, Js2KJs1Kµ |= η3.
– [Conseq] — if µ |= η0, then µ |= η1 by the first premise. Hence, JsKµ |= η2

by the second premise and JsKµ |= η3 by the third premise.
– [Split] — let µ |= η1 ⊕ η2. Then, there exists µ1, µ2 s.t. µ = µ1 + µ2 and
µi |= ηi for i ∈ {1, 2}. By the two premises of the rule, we have JsKµi |= η′i for
i ∈ {1, 2}. Now, by Lemma 8, we have JsKµ = JsKµ1 + JsKµ2 . By taking resp.
JsKµ1

and JsKµ2
for the witnesses of η′1 ⊕ η′2, we obtain that JsKµ |= η′1 ⊕ η′2.

– [Cond] — we first prove that

{η1 ∧�e} if e then s1 else s2 {η′1}. (2)

Let µ |= η1 ∧�e. Then, for m ∈ supp(µ), we know that JeKm = >. It follows
that

Jif e then s1 else s2Kµ = Em∼µ[Jif e then s1 else s2Km︸ ︷︷ ︸
=Js1Km

]

= Js1Kµ.

However, by the first premise, Js1Kµ |= η′1. Hence,

Jif e then s1 else s2Kµ |= η′1,

concluding the proof of Eq. (2). By a similar reasoning, we have:

{η2 ∧�¬e} if e then s1 else s2 {η′2}. (3)

We conclude the proof of soundness of [Cond] from the one of [Split] applied
to Eq. (2) and Eq. (3).

– [Call] — immediate consequence of [Seq] and [Assgn].
– [Frame] — let µ |= η. Let µ |= η. To show that JsKµ |= η, from the

definition of separated(η,mod(s)), it is sufficient to show that |µ| = |JsKµ|
and µ|mod(s)

= JsKµ|mod(s)
. The first one is a consequence of the losslessness

of s, the second one is a direct application of Lemma 9.



– [While] — from the first premise, by induction on n and using [Seq], we
know that for any n, the following holds:

{η} (if b then s)n {η}. (4)

Now, let µ |= η. First, form the definition of Jwhile b do sKµ, we know that

Jwhile b do sKµ |= �¬b.

It remains to prove Jwhile b do sKµ |= η. In the case of certain termination,
we know the existence of a k s.t.

Jwhile b do sK = J(if b then s else )kK

and we conclude by Eq. (4). For the cases of almost surely termination and
almost termination, we conclude for Eq. (4) and Proposition 5 of the paper.

– [Adv] — the proof is done by induction on the body of the external procedure
which is of the form s1; c

?
1; · · · ; sn; c?n where the si’s do not contain calls and

the c?i ’s are potential calls to the oracles. From the [Frame] rule, we know
that the si’s preserve the invariant η — noting that the losslessness of the
adversary implies the losslessness of the si’s. Likewise, from the last premise
of the [Adv] rule, we know that calls to the oracles also preserve the invariant.
Hence, by multiple application of the [Seq] rule, we obtain that the adversary
body maintains η.

B Semantics of Assertions

The semantics of assertions is given Fig. 16.

C Precondition Calculus

Figure 17 contains the full definition of the precondition calculus.

D Soundness of the Syntactic Rules

D.1 Certain Termination

Proposition 11 (Soundness of rule [While-CCTerm]). Let µ be a sub-distributions
such that CCTerm is valid. Then,

Jwhile b do sKµ |= η ∧�¬b.

Proof. Given µ satisfying CCTerm, we first claim that there exists a decreasing
function f : N → N such that �(ẽ ≤ f(n) ∨ ¬b) holds at each iteration of the



JvKρm
4
= ρ(v)

J1φKρm
4
= 1JφKρm

JEv∼g[ẽ]Kρm
4
= Ew∼JgKρm [JẽKρ[v:=w]

m ]

Jo(ẽ)Kρm
4
= o(JẽKρm)

Jẽ1 ./ ẽ2Kρm
4
= Jẽ1Kρm ./ Jẽ2Kρm

JFO(φ)Kρm
4
= FO(JφKρm)

JE[ẽ]Kρµ
4
= Em∼µ[JẽKρm]

Jo(p)Kρµ
4
= o(JpKρµ)

Jp1 ./ p2Kρµ
4
= Jp1Kρµ ./ Jp2Kρµ

Jη1 ⊕ η2Kρµ
4
= ∃µ1, µ2. µ = µ1 + µ2 ∧ Jη1Kρµ1

∧ Jη2Kρµ2

JFO(η)Kρµ
4
= FO(JηKρµ)

Fig. 16. Semantics of assertions

pe(s, o(p)) 4
= o(pe(s, p)) where o ∈ Ops

pe(skip,E[ẽ]) 4
= E[ẽ]

pe(s1; s2,E[ẽ])
4
= pe(s1, pe(s2,E[ẽ]))

pe(x← e,E[ẽ]) 4
= E[ẽ][x := e]

pe(x $← g,E[ẽ]) 4
= Pgx(E[ẽ])

pe(if e then s1 else s2,E[ẽ])
4
= pe(s1,E[ẽ])|e + pe(s2,E[ẽ])|¬e

pe(abort,E[ẽ]) 4
= 0

pc(s, p1 ./ p2)
4
= pe(s, p1) ./ pe(s, p2)

pc(s, FO(η))
4
= FO(pc(s, η))

Fig. 17. Precondition calculus



loop. Indeed, we remark that the statement ∃k �(ẽ ≤ k) holds at first iteration
by the precondition hypothesis. Let:

f(n) =

{
k − n if n ≤ k
0 otherwise.

Then unrolling the loop and using the semantical [Seq] rule ensure by induction
the claimed domination. The termination of the loop arises then naturally from
the exit condition �(ẽ = 0⇒ ¬b).

D.2 Almost-Sure Termination

The main challenge for proving the soundness of the is proving termination; from
there, we can conclude by rule [While-CASTerm]. Our arguments use basic
notations and theorems from the theory of Markov processes.

Proposition 12 (Soundness of rule [While-CASTerm]). Let η be a t-closed
assertion. For any sub-distributions µ, such that CASTerm is valid. Then

Jwhile b do sKµ |= η.

Proof. As indicated, by soundness of the semantic while rule for almost-sure
termination, and the premises, it suffices to prove almost-sure termination. The
sketch of the proof is the following:

1. We follow the behavior of the variant by seeing it as a random variable on
the space of state.

2. We first introduce a Markov chain that reaches a particular state (the state
zero) with probability 1.

3. We then stochasticaly dominates the variant by the latter chain.
4. In particular, this shows that the probability of the variant to eventually

reach 0 is 1, ensuring almost-sure termination.

Step one: Variant as a Random variable.
We consider the integer-valued variant ẽ as a random variable over the space of
states. Let the family (ẽi)i represents the value taken by ẽ after the i-th iteration
of the loop. Then we have, using the semantical [Seq] rule and the

– The sequence is uniformly bounded by K.
– The probability of decreasing is bounded below by ε:

∀i ∈ N. Pr[ẽi > ẽi+1 | ẽi, . . . , ẽ0] = εi ≥ ε > 0.

Step two: Modelization with a Markov chain.
First, we can assume that K > 0 since if K = 0, the loop terminates immediately.
Consider the following finite Markov chain (Xi)i, over the state space S =
{0, . . . ,K}, following the transitions:



ε

1

ε ε ε
...

ε

1-ε

This chain models the following behavior: with probability ε the value decrease
by one, while with probability 1−ε it jumps to K. Since zero is the only connected
component of the underlying graph, the probability of terminating in the state
zero is 1 by a standard result on Markov chains.

Step three: Stochastic domination.
By construction, there exists a natural coupling between (X̃i) and (ẽi)i, since
the probability of the event ẽi decrease is greater than the probability of the
event X̃i decrease. Since we impose that X0 = ẽ0 (initial position), a simple
induction over i ensure that we have, for this coupling: Pr[ẽi > 0] ≤ Pr[Xi > 0],
so limi→∞ Pr[ẽi = 0] ≥ 1− limi→∞ Pr[Xi > 0] = 1 as desired.

E Further Examples

E.1 Randomization for Approximation: Vertex Cover

We begin with a classical application of randomization: approximation algorithms
for computationally hard problems. For problems that take long time to solve in
the worst case, we can sometimes devise efficient algorithms that find a solution
that is “nearly” as good as the true solution.

Our first example illustrates a famous approximation algorithm for the vertex
cover problem. The input is a graph described by vertices V and edges E. The
goal is to output a vertex cover: a subset C ⊆ V such that each edge has at least
one endpoint in C, and such that C is as small as possible.

It is known that this problem is NP-complete, but there is simple randomized
algorithm that returns a vertex cover that is at on average at most twice the size
of the optimal vertex cover. The algorithm proceeds by maintaining a current
cover (initially empty) and considering each edge in order. If neither endpoint
is in current cover, the algorithm adds one of the two endpoints uniformly at
random. The Ellora program is:

proc VC (E : set<edge>) :
var set<node> C ← ∅;
for (e1,e2) in E do
if (e1 /∈ C) ∧ (e2 /∈ C) then

b $←{0,1};
C ← (b ? e1 : e2) ∪ C;

fi
end



Here, we represent edges as a finite set of pairs of nodes. We loop through
the edges, adding one point of each uncovered edge to the cover C uniformly at
random. The operator b ? e1 : e2 returns e1 if b is true, and e2 if not.

To prove the approximation guarantee, we first assume that we have a set of
nodes C∗. We only assume that C∗ is a valid vertex cover; i.e., each edge has at
least one endpoint in C∗. Then, we use the following loop invariant:

E[size(C \ C∗)] ≤ E[size(C ∩ C∗)]. (5)

Given the loop invariant, we can prove the conclusion by letting C∗ be the
cover OPT of minimal size, and reasoning about intersections and differences of
sets.

Clearly the invariant is initially true. To see why the invariant is preserved,
let e be the current edge, with both endpoints out of C. Since C∗ is a vertex cover,
it has at least one endpoint of e. Since our algorithm includes an endpoint of
e uniformly at random, the probability we choose a vertex not in C∗ is at most
1/2, so the expectation on the left in Eq. (5) increases by at most 1/2. If e is
not covered in C but is covered by C∗, there is at least a 1/2 probability that we
increase the intersection C ∩ C∗, so the right side in Eq. (5) increases by at least
1/2. Thus, the invariant is preserved, and we can prove

{isVC(C∗, E)} VC(E) {E[size(C \ C∗)] ≤ E[size(C ∩ C∗)]}

and by reasoning on intersection and difference of sets,

{isVC(C∗, E)} VC(E) {E[size(C)] ≤ 2 · E[size(C∗)]}.

E.2 Random Walks: Termination and Reachability

A canonical example of a random process is a random walk. There are many
variations, but the basic scenario describes a numeric position changing over time,
where the position depends on the position at the previous timestep, influenced
by random noise drawn from some distribution.

To demonstrate how to verify interesting facts about random processes, we
will model a one-dimensional random walk on the natural numbers. We start at
position 0, and repeatedly update our position according to the following rules.
From 0, we always make a step to 1. From non-zero positions, we flip a fair coin
that is biased to come up heads with probability p > 0. If heads, we increase our
position by 1; if tails, we decrease by 1.

We will prove two facts about this random walk. First, for any natural number
T , the probability of eventually reaching T is 1. Second, when we reach T , we
must first pass through all intermediate points 1, . . . , T − 1. In Ellora, we can
express the random walk with the following code.

var bool visited[T];
var int pos = 0;
visited[0] ← true;
while pos 6= T do:

c $← Ber(p);



pos ← pos + ((pos = 0) ∨ c) ? 1 : -1;
visited[pos] ← true;

end

In order to verify this example, we will use the probabilistic while rule [While-
ASTerm]. First we establish almost-sure termination by finding an appropriate
termination measure: the distance between our current position, and T. Indeed,
this measure is bounded by T, and has a non-negative (at least 1/2) probability
of decreasing each iteration. Therefore, the loop terminates almost-surely, and
thus our random walk eventually reaches any point T with probability 1.

To prove our second assertion—that we visit every point from 0 to T—we use
the following loop invariant for the while command:

�(∀i. 0 ≤ i ≤ pos⇒ visited[i] = true).

In other words, if we have reached position pos, then we must have already
reached every position in [0, pos]. Since this invariant is t-closed, we may apply
rule [While-ASTerm] and the invariant holds at the end of the loop. With the
assertion pos = T at termination, we have enough to prove that each position is
visited:

{L} s {L ∧�(∀i ∈ [T]. visited[i] = true)}.

The losslessness post-condition indicates that the walk terminates almost-
surely.

E.3 Amplification: Polynomial Identity Testing

A second use of randomness is in running independent trials of the same algorithm.
This technique, known as probability amplification, runs a randomized algorithm
several times in order to reduce the error probability. Roughly speaking, a single
trial may have high error with some probability, but by repeating the trial it
is unlikely that all of the trials yield poor results. By combining the results
appropriately—e.g., with a majority vote for algorithms with binary outputs, or
by selecting the best answer when we can check the quality of the solution—we
can produce an output that is more accurate than a single run of the original
algorithm.

An example in this vein is probabilistic polynomial identity testing. Given two
multivariate polynomials P (x1, . . . , xn) and Q(x1, . . . , xn) over the finite field Fq
of q elements, we want to check whether P = Q, or equivalently, whether the
polynomial P −Q is zero or not. We will take n uniformly random samples (vi)i
from Fq and check whether (P −Q)(v1, . . . , vn) = 0. We repeat the trial q times,
rejecting if we see a sample where the difference is non-zero. In our system, this
corresponds to the following program:

var bool res = true;
for i = 1 to q do:

v $← Unif(Fnq );
res ← res ∧ ((P - Q)(v) = 0);

end



The proof uses an instance of the Schwartz-Zippel lemma due to Øystein Ore
for finite fields, which upper bounds the probability of randomly picking a root
of a polynomial over a finite field.

Lemma 13. Let P a non-zero polynomial function over Fq. If we sample the
variables v1, . . . , vn uniformly at random from Fq, then

Pr[P (v1, . . . , vn) = 0] ≤ 1− 1/q.

We encode this lemma as an axiom in our system:

P 6= 0 ∧ v ∼ Unif(Fnq )⇒ Pr[P (v) = 0] ≤ 1− 1/q.

With this fact, we can prove the following loop invariant:

P 6= Q⇒ Pr[res = true] ≤ (1− 1/q)
i
,

finally proving that

{P 6= Q} s {Pr[res = true] ≤ (1− 1/q)
q ≤ 1/e}.

We have also verified Freivald’s algorithm, an amplification-based algorithm
for checking matrix multiplication.

E.4 Concentration Bounds: Private Running Sums

Now, we turn to examples involving independence of random variables. Our
first example is drawn from the differential privacy literature. Given a list of N
integers, we add noise from a two-sided geometric distribution to each entry in
order to protect privacy, and we calculate the partial sums of the noisy values:
x1, x1 + x2, x1 + x2 + x3, and so on. We wish to measure how far the noisy sums
deviate from the true sums.

In Ellora, we can express this algorithm as follows:
var int X[N], noise[N], out[N];
var int acc = 0;
for i = 1 to N do

noise[i] $← twogeom(ε);
out[i] ← acc + X[i] + noise[i];
acc ← out[i];

end

The parameter ε to the noise distribution twogeom is a numeric parameter control-
ling the strength of the privacy guarantee, by changing the magnitude of the
noise.

Our loop invariant tracks three pieces of information: (i) noise[i] is distributed
according to twogeom(ε); (ii) the array noise remains independent; and (iii) out[i]

stores the noisy running sum:

∀q ∈ [i]. out[q]−
∑
p∈[q]

X[p] =
∑
p∈[q]

noise[p].



To bound the error introduced by the noise, we need to bound
∣∣∣∑p∈[q] noise[p]

∣∣∣.
Since we know that the elements in noise are all independent, we can apply a
concentration bound to bound the probability of a large error in the p-th running
sum, concluding:

{L} s
{
∀p ∈ [N]. Pr

[∣∣∣∑i∈[p] Xi

∣∣∣ ≥ T] ≤ Q(ε, T )/
√
N

}
for a particular function Q derived from the Berry-Esseen theorem.

E.5 Hypercube Routing in More Details

We will begin with the hypercube routing algorithm [41,42]. To set the stage,
consider a network where each node is labeled by a bitstring of length D, and
two nodes are connected by an edge if and only if the two corresponding labels
differ in exactly one bit position. This network topology is known as a hypercube,
a D-dimensional version of the standard cube; a simple example with D = 3 is
in Fig. 18. In the network, there is initially one packet at each node, and each

001 101

011

010

111

000 100

110

Fig. 18. Hypercube path from 111 to 100 (D = 3)

packet has a unique destination. Our goal is to design a routing strategy that
will move the packets from node to node, following the edges, until all packets
reach their destination. Furthermore, the routing should be oblivious: to avoid
coordination overhead, each packet must select a path without considering the
behavior of the other packets.

To model the flow of packets, each packet’s current position is a node in
the graph. Time proceeds in a series of steps, and at each step at most one
packet can traverse any single edge. If several packets try to use the same edge



simultaneously, one packet will be selected to move (for any selection strategy
that selects some packet). The other packets wait at their current position; these
packets are delayed and make no progress this step.

The routing strategy is based on bit fixing : if the current position has bitstring
i, and the target node has bitstring j, we compare the bits in i and j from left to
right, moving along the edge that corrects the first differing bit. For instance, if we
are at 111 and we wish to reach 100, we will move along the edge corresponding
to the second position: from 111 to 101, and then along the edge corresponding
to the third position: from 101 to 100. See Fig. 18 for a picture.

While this strategy is simple and oblivious, there are permutations π that
require a total number of steps growing linearly in the number of packets to route
all packets. Valiant proposes a simple modification, so that the total number of
steps grows logarithmically in the number of packets. In the first phase, each
packet i will first select an intermediate destination ρ(i) uniformly at random
from all nodes, and use bit fixing to reach ρ(i). In the second phase, each packet
will use bit fixing to go from ρ(i) to the destination π(i). We will focus on the
first phase, since the reasoning for the second phase is nearly identical. We can
model the strategy with the following code, using some syntactic sugar for the
for loops; recall that the number of node in a hypercube of dimension D is 2D
so each node can be identified by a number in [1, 2D].

proc route (D T : int) :
var ρ, pos, usedBy : node map;
var nextE : edge;

pos ← Map.init id 2D; ρ ←Map.empty;
for i ← 1 to 2D do ρ[i] $←[1 , 2D ]
for t ← 1 to T do

usedBy ← Map.empty;

for i ← 1 to 2D do
if pos[i ] 6= ρ [i ] then

nextE ← getEdge pos[i] ρ [i ];
if usedBy[nextE] = ⊥ then

usedBy[nextE] ← i; // Mark edge used
pos[i]← dest nextE // Move packet

return (pos, ρ)

We assume that initially the position of the packet i is at node i (see Map.init).
Then, we initialize the random intermediate destinations ρ. The remaining loop
encodes the evaluation of the routing strategy iterated T time. The variable
usedBy is a map that logs if an edge is already used by a packet, it is empty at the
beginning of each iteration. For each packet, we try to move it across one edge
along the path to its intermediate destination. The function getEdge returns the
next edge to follow, following the bit-fixing scheme. If the packet can progress
(its edge is not used), then its current position is updated and the edge is marked
as used.

Our goal is to show that if the number of timesteps T is 4D + 1, then all
packets reach their intermediate destination in at most T steps, except with a
small probability 2−2D of failure. That is, the number of timesteps grows linearly
in D, logarithmic in the number of packets. At a high level, the analysis involves
three steps.



The first step is to consider a single packet traveling from i to ρ(i), and to
calculate the average number of other packets that share at least one edge with
i’s path P . Let Hρ(i, j) be 1 if the paths of packets i and j share at least one
edge and 0 otherwise. Then, the load Rρ(i) on i’s path is the sum of Hρ(i, j) over
all the other packets j. By using the fact that each intermediate destination in ρ
is uniformly distributed, and by analyzing the number of packets beside i’s that
use each edge on i’s path, we can upper bound the expected value of Rρ(i) by
D/2. In the second step, we move from a bound on the expectation of Rρ(i) to a
high-probability bound : we want to show that Rρ(i) < 3D holds except with a
small probability of failure. The key tool is the Chernoff bound, which gives high
probability bounds of sums of independent samples. The libraries in Ellora
include a mechanized proof of a generalized Chernoff bound, with the following
statement (leaving off some of the parameters):

lemma Chernoff n(d:mem distr)(X:int→ mem→ bool):
let Xm = Σi∈ [1 ,n ] X i m in

E[X |d ] ≤ µ ∧ indep [0 , n ] (X i) d

⇒ Pr[X > (1 + δ )µ |d ] ≤ (eδ /(1 + δ )1+δ )µ

Returning to the proof, we bounded the expectation of Rρ in the previous
step. To apply the Chernoff bound, we need to show that for any packet i, the
expressions Hρ(i, j) are independent for all j. This is not exactly true, since
Hρ(i, j1) and Hρ(i, j2) both depend on the (random) destination ρ(i) of packet
i. However, it suffices to show that these variables are independent if we fix the
value of ρ(i); then we can apply the Chernoff bound to upper bound Rρ with
high probability.

Finally, we can bound the total delay of any packet. This portion of the proof
rests on an intricate loop invariant assigning an imaginary coin for each delay
step to some packet that crosses P . By showing that each packet holds at most
one coin, we can conclude that the i’s delay is at most the number Rρ(i) of
crossing packets. With our high probability bound from the previous step, we
can show that T = 4D + 1 timesteps is sufficient to route all packets i to ρ(i),
except with some small probability:

{T = 4D + 1} route {Pr[∃i . pos[i ] 6= ρ [i ] ] ≤ 2−2D ]}

E.6 Coupon Collector in More Details

Our second example is the coupon collector process. The algorithm draws a
uniformly random coupon (we have N coupon) on each day, terminating when it
has drawn at least one of each kind of coupon. The code of the algorithm is as
follows.

proc coupon (N : int) :
var int cp[N ], t[N ];
var int X ←0;
for p ← 1 to N do
ct ← 0;

cur $← [1 , N ];
while cp[cur] = 1 do
ct ← ct + 1;



cur $← [1 , N ];
t[p]←ct;
cp[cur]← 1;
X ←X + t[p];

return X

The array cp keeps track of the coupons seen so far; initially cp[i] = 0. We divide
the loop into a sequence of phases (the outer loop) where in each phase we
repeatedly sample coupons and wait until we see a new coupon (the inner loop).
We keep track of the number of steps we spend in each phase p in t[p], and the
total number of steps in X.

Our goal is to bound the average number of iterations. The code involves two
nested loops, so we have two loop invariants. The inner loop has a probabilistic
guard: at every iteration, there is a finite probability that the loop terminates
(i.e., if we draw a new coupon), but there is no finite bound on the number of
iterations we need to run. Since our desired loop invariant is not downwards
closed, we must apply the rule for almost sure termination. We use a variant that
is 1 if we have not seen a new coupon, and 0 if we have seen a new coupon. Note
that each iteration, we have a strictly positive probability ρ(p) of seeing a new
coupon and decreasing the variant. Furthermore, the variant is bounded by 1,
and the loop exits when the variant reaches 0. So, the side-condition CASTerm
holds. For the inner loop, we prove that forall c the invariant ηi is preserved:

∨
(�(cp[cur] = 1⇒ c ≤ ct) ∧ Pr[cp[cur] = 0 ∧ c = ct] = (1− ρ(p))cρ(p))

∃k ∈ [1, c).

{
�(cp[cur] = 1⇒ ct = k) ∧ (cp[cur] = 0⇒ ct ≤ k)
Pr[cp[cur] = 1 ∧ ct = k] = (1− ρ(p))k).

Note that this is a t-closed formula; there is an existential in the second disjunction,
but it has finite domain (for fixed c).

For intuition, for every natural number c there are two cases: Either we have
already unrolled more than c iterations, or not. The first disjunction corresponds
to the first case, since loops where the guard is true all have ct ≥ c, and the
probability of stopping at c iterations is (1− ρ(p))cρ(p)—we see c old coupons,
and then a new one. Otherwise, we have the second disjunction. The integer k
represents the current number of unfoldings of the loop. If the loop is continuing
then k = ct. If the loop is terminated, it terminated before the current iteration:
ct < k. Furthermore, the probability of continuing at iteration k is (1− ρ(p))k.
At the end of the loop we have �cp[cur] = 0. So, by the first conjunct and some
manipulations,

∀c ∈ N. Pr[c = ct] = (1− ρ(p))cρ(p)

holds when the inner loop exits, precisely describing the distribution of iterations
ct as Geom(ρ(p)) by definition.

The outer loop is easier to handle, since the loop has a fixed bound N on the
number of iterations so we can use the rule for certain termination. For the loop



invariant, we take:

ηout
4
=


∀i ∈ [p− 1]. t[i] ∼ Geom(ρ(i)) ∧ �

(
X =

∑
i∈[p−1] t[i]

)
∧ �

(∑
i∈[1,N ] cp[i] = p− 1

)
∧ ∀i ∈ [1, N ]. �(cp[i] ∈ {0, 1}).

The first conjunct states that the previous waiting times follow a geometric
distribution with parameter ρ(i); this assertion follows from the previous reasoning
on the inner loop. The second conjunct asserts that X holds the total waiting
time so far. The final two conjuncts state that there are at most p− 1 flags set
in cp. Thus,

{L} coupon
{
∀i ∈ [1, N ]. t[i] ∼ Geom(ρ(i))
∧ �X =

∑
i∈[1,N ] t[i]

}
at the end of the outer loop. By applying linearity of expectations and a fact
about the expectation of the geometric distribution, we can bound the expected
running time:

{L} coupon
{
E[X] =

∑
i∈[1,N ]

(
N

N−i+1

)}
.
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