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Abstract

We propose in this article an adaptive algorithm for optimal and robust guidance for the users

of the road networks. The algorithm is based on the Stochastic On Time Arrival (SOTA) fam-

ily of routing algorithms, which is appropriate for taking into account the variability of travel

times through the road networks. The SOTA approach permits the derivation of the maxi-

mum cumulative probability distribution of the time arrival toward a given destination in the

network. Those distributions allow the selection of the most reliable origin-destination paths

under given travel time budgets. We investigate here the introduction of robustness against

link and path failures in the criterion of the guidance strategy selection. Our algorithm takes

into account the reliability of itinerary travel times, since it is based on a SOTA approach. In

addition, the algorithm takes into account itinerary robustness, by favoring itineraries with

possible and reliable alternative diversions, in case of link failures, with respect to itineraries

without or with less reliable alternatives. We first analyze the algorithm in its static version,

without considering the traffic dynamics, and show some interesting properties. We then

combine the robust guidance algorithm with a dynamic traffic model by using the traffic sim-

ulator SUMO (Simulation of Urban Mobility), and illustrate its effectiveness in some dynamic

scenarios.

Keywords: Optimal routing, Robust guidance, Travel time reliability, Optimization, Traffic

control.

1Corresponding author. E-mail: nadir.farhi@ifsttar.fr

Preprint submitted to Elsevier December 18, 2018



Introduction

The most common way to select a route in a given network consists in determining the

shortest path from the origin to the destination. Shortest path problems are intensively studied

in the network theory and operations research, with various applications in many scientific

and engineering fields, particularly in transportation engineering. Shortest path algorithms

are widely available in the literature. In case of having perfect information on the link travel-

times, a shortest path problem may be solved for example by Dijkstra algorithm [7], or more

generally by value iteration [23]. If we have a known dependence on the link travel-times, an

optimal strategy may be a sequence of links, i.e. a path, because no additional information

can be acquired therein. In case of a stochastic shortest path problem, link travel-times are

random variables, and available information is given in the form of travel-time probability

distributions. Several formulations have been proposed in the literature, associating one or

many criteria for the optimal path selection. We cite for example, -minimizing the expected

travel-time [15, 28], -maximizing the expected utility [19, 29], -maximizing the probability of

arriving at the destination on time [9, 36], -minimizing the expected travel-time while ensuring

a pre-specified probability of arriving by a given deadline [33, 3, 32, 31, 34], and minimizing

the sum of expected travel-time [24, 33, 4, 40]. The stochastic shortest path problem solutions

are either a priori paths or adaptive strategies. In the a priori case, the path is determined

based on the information available at the starting time only. In the adaptive case, the solution

consists in a routing policy that adapts the path according to information obtained during the

travel. In a stochastic framework, different performance criteria may lead to different optimal

routing strategies.

Among from several formulations of the stochastic shortest path problem, the basic one is

most likely the Least Expected Time (LET). This formulation is based on the minimization

of the expected travel-time. Determining a LET path when random link travel-times are in-

dependently distributed and constant over time, is trivial. Fortunately, LET problems have

been studied broadly and have been extended to other cases. Hall [18] studied the LET prob-

lem in a stochastic time-dependent network and considered that the travel-times on outgoing

links from a node are conditional on the arrival time to the node. The authors of [15, 16, 17]

addressed the LET problem by including real-time information about the travel-time. In [15],

Fu has shown that the relationship between route planning and information can be charac-
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terized in three schemes. The first one is the non-adaptive routing rule which is made at the

beginning of the task. In this category, a complete fixed path is identified on the basis of a

priori or historical travel-time information. In general, this complete path is computed before

a trip starts and no re-route adaptive diversion is taken into account, either because of lack of

real-time information, or of an unavailability of route guidance system. The second category

is the open-loop adaptive routing. It is similar to the non-adaptive routing in the sense that a

complete path must be computed. However, in this case, the remaining path by non-adaptive

routing is recalculated every time new data become available. The third class is the closed-loop

adaptive routing. Contrary to the open-loop category, the closed-loop one takes into account

the future availability of travel-time information, and thus, specifies at each node how to react

to the new information.

The LET formulation does not take into account travel time variations. In other words,

LET solutions are risk-neutral and do not depend on the uncertainties associated to the

link travel-times. Utility functions [14, 30] can be used to model attitude towards risk in

stochastic shortest path problems; see for example [19, 29]. Other heuristic approaches for the

risk aversion in such problems can be found for example in [33, 4]. However, most of these

approaches result in extremely complex formulations in relation to the objective function

that does not accumulate over the links, in which case, dynamic programming cannot be

applied [25].

For the stochastic path planning optimization, Frank [13] introduced the objective of

maximizing the probability to reach the destination node under a given time deadline. Since

the work of Frank, the on-time arrival problems have been explored by many researchers [9, 11,

24, 36]. In [9], Fan et al. defined optimality as the maximization of the travel-time reliability,

and proposed an adaptive optimal path algorithm to solve this optimization problem, called

the Stochastic On-Time Arrival (SOTA) problem. In this section, for the convenience of

readers and for the continuity of our discussion in the next sections, we give a brief review

and a discussion on the concept of the SOTA formulation including two existing variants.

In the SOTA formulation, one seeks to maximize the probability of the time arrival at a

given destination, departing from a given origin, with a given travel-time budget. The travel-

time across every link is a random variable with some arbitrary probability distribution. Two

primary variants can be distinguished in the SOTA model. The first one consists in finding
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the most reliable non adaptive path to the destination. It is designed as the shortest path

problem on-time arrival reliability, or as the path-based SOTA problem; see [32]. The second

variant is referred as the policy-based SOTA problem, which consists in calculating a routing

policy such as the selection of the next node at each intersection, depending on the current

state (remaining time budget).

The policy-based SOTA problem is solved in discrete-time. In [10], the authors presented

a discrete SOTA algorithm that ensures finite convergence and runs very well in polynomial

time. Solving the SOTA problem in discrete-time allows computing product convolution of

arbitrary distributions. The computation of the policy requires a subsequent maximization

step. Unfortunately, this step mixes distributions and prevents finding an analytical solution

in continuous-time. A successive approximation method is proposed in [11] for solving the

policy-based SOTA problem. This algorithm is improved in [36, 37] to a dynamic program-

ming algorithm, and the speed-up techniques including zero-delay convolution [6] have been

explored to solve the problem in pseudo-polynomial-time. The authors of [35] have shown

how pre-processing methods can be used to further reduce the computation time of the SOTA

problem. Unfortunately, the structure of the SOTA problem formulation limits the types of

pre-processing methods that can be used for this problem, and prevents massive running time

reductions in the deterministic case. Recently, the authors of [22] presented a novel approach

to reduce the immense computational effort of stochastic routing based on existing techniques

for alternative routes.

In this paper an extension of the SOTA algorithm reported in [36] is presented. This

extension permits to include robustness in the criteria of the routing optimization. Instead of

considering a unique objective of maximizing the travel-time reliability, we propose to consider

also the optimization of the robustness of the selected paths and routing policies against link

failures. Link failures refer here to a effective cuts of links caused for example by accidents,

works, etc. excluding slowdowns caused by traffic congestions. Finally, lets notice that the

approach we propose here is rather an individual user guidance than a traffic assignment.

The failure of a link is taken into account in the calculus of a new path (in case of off-line

routing) and of a new routing strategy (in case of on-line routing) for one user and for one

origin-destination pair. The effect of the link failure on the paths of other origin-destination

pairs and on the flows on those paths are not taken into account here. The remainder of this
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paper is organized as follows.

In section 1, we give a short review on the SOTA problem in both cases of uncorrelated

and correlated link travel-times. In section 2, we consider the problem of robust guidance in

case of uncorrelated link travel-times. We begin this section by extending the stochastic on-

time arrival (SOTA) algorithm proposed in [36]. We incorporate here the alternative routing

choices at nodes by considering eventual link failures. A user being at a given node of the

network has a number of routing possibilities for the next routing step. Each routing possibility

corresponds to a successor node of the considered node. The probability for the user to reach

the destination varies depending on the selected successor node. The existing SOTA model

takes the maximum over all the probabilities of reaching the destination node in a given time

budget. The routing model we propose here takes a weighted mean, instead of a maximum, of

those probabilities. As explained below in section 2, the weights of the mean operator depend

on the probabilities to reach the destination node from every successor node. Therefore, the

model is not trivial. We provide a new definition of robust-optimality and explain how a

user can measure the robustness, and evaluate the quality of the solution. Finally, we give a

discretization scheme of the model for the case of uncorrelated link travel times, and analyze

the complexity of the associated algorithm.

In section 3, we provide the robust guidance model in the case of correlated link travel-

times. We present an extension of our model in order to consider eventual correlations of the

travel times associated to neighboring links. In section 4, we propose a parameter optimization

of the robust routing algorithm, and show how to choose the robustness parameter in function

of the desired travel-time reliability and of the available travel-time budget.

In section 5, we conduct numerical calculus and compare two scenarios on a well-known

road network (the Sioux Falls network) in the static case, where the traffic dynamics are not

taken into account. By that, we assess the sensitivity of the proposed approach to changes

in the key parameters. In section 6, we evaluate our routing approach in the context of

dynamic guidance, where the traffic dynamics are taken into account through the microscopic

simulation tool SUMO. Finally we draw some conclusions and perspectives for future research.
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1. A short review on the stochastic on time arrival (SOTA) formulation

In this section, we briefly summarize the original SOTA problem for the convenience of

readers and for the continuity of our discussion in the next sections. The details of the

approach summarized here are available for example in [11, 27, 26, 12].

A road network is represented by a graph with arcs and nodes corresponding respectively

to the links and the junctions of the road network. We denote the graph by G (N,A), where

N is the set of nodes, with |N | = n, and A is the set of arcs, with |A| = a. The set of

successor and predecessor nodes of a given node i are denoted by Γ+1 (i) = {j, (i, j)∈A} and

Γ−1 (i) = {k, (k, i)∈A} respectively. The travel times through the links of the network are

assumed here to be stochastic. Probability distributions of the travel times are then associated

to the links of the network. The SOTA problem consists in finding the best routing strategy

from any starting node i, (i = 1, 2, . . .. . ., n), that maximizes the probability of arriving to a

given destination node, denoted d, within a time budget t.

Given a node i∈N and a time budget t, ui (t) denotes the maximum probability of arriving

to the destination node d departing from node i, within a time budget t, and under the

optimal routing policy. The latter, denoted by si (t) , i ∈ N , gives the optimal subsequent

node of node i. The probability distribution functions (pdf) of the travel times on links

(i, j) are denoted pij (.). They are assumed to be known and can for example be obtained

using historical data or real-time traffic information. The maximum probability ui (t) and the

optimal successor node si (t) are written as follows.

ui (t) = max
j∈Γ+1(i)

∫ t

0
pij (w)uj (t− w) dw ,∀i ∈ N \ {d}, j ∈ Γ+1 (i) , 0≤t≤T (1)

ud (t) = 1, 0≤t≤T (2)

si (t) = arg max
j∈Γ+1(i)

∫ t

0
pij (w)uj (t− w) dw ,∀i ∈ N \ {d}, j ∈ Γ+1 (i) , 0≤t≤T (3)

where T is the maximum time budget.

Formula (1) expresses the fact that a traveler, being at node i, having a time budget t , and

knowing up (t) ,∀p∈{1, 2, . . ., n}, ∀s∈[0, t], should go through the link (i, j) that maximizes the

probability of arriving within time t to the destination node d, with respect to all the possible

successor nodes j of i. Formula (2) tells simply that departing from node d, the maximum

probability of arriving to the same node d, within any time budget is 1. Formula (3) tells that
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the optimal successor node for the traveler being at node i, is given as the argument of the

maximum taken in formula (1).

One of the possible approaches to solve the system of nonlinear equations (1)-(2) is the

Picard method of successive approximation proposed in [9]. This fixed point method starts

with initial approximations of the solution and refines these approximations by successive

iterations. The iterative relationships for successive approximations are given as follows.

uiter=0
i (t) = 0, ∀i∈N \ {d}, ∀t∈[0, T ] (4)

uiter=0
d (t) = 1, 0≤t≤T (5)

uiter+1
i (t) = max

j∈Γ+1(i)

∫ t

0
pij (w)uiterj (t− w) dw ,∀i∈N \ {d}, j∈Γ+1 (i) , 0≤t≤T (6)

uiter+1
d (t) = 1, 0≤t≤T, (7)

where the superscript iter is the iteration index. The function uiteri (t) represents the proba-

bility of reaching the destination node d if optimal choices are made, and using a path with

no more than iter intermediate nodes. It is easy to show that uiteri (t) belongs to [0, 1] and is

increasing with respect to the iteration index iter .

0≤uiteri (t)≤uiter+1
i (t)≤1, ∀iter∈N, ∀i∈N, ∀t∈[0, t] (8)

The sequence {uiteri (t)}iter≥0 converges as iter increases and it reaches its limit when iter

is equal to the number of links in the optimal path; see [11] for more details.

Formulas (1)-(2) present the simple case of the SOTA problem where the travel-times

on the links of the network are uncorrelated. Different variants of the SOTA problem with

correlations are proposed in the literature, see for example [9, 36]. We expose below the model

with travel-time correlations proposed in [36].

In [36], the authors presented a simple extension of the SOTA model that considered

correlations between any two consecutive links. Let us denote by uki (t, y) the maximum

probability for a user to arrive to destination node d within a time t, departing from node i,

conditioned that the user comes from node k, predecessor of i, and that the realized travel

time on link (k, i) is y. The maximum probabilities uki (t, y) are written as follows.
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uki (t, y) = max
j∈Γ+1(i)

∫ t

0
pij (w|y)uij (t− w,w) dw , (9)

∀i∈N \ {d}, k∈Γ−1 (i) , j∈Γ+1 (i) , 0≤t≤T, 0≤y≤T − t,

ukd (t, y) = 1, ∀k∈Γ−1 (d) , 0≤t≤T, 0≤y≤T − t, (10)

ski (t, y) = arg max
j∈Γ+1(i)

∫ t

0
pij (w|y)uij (t− w,w) dw , (11)

∀i∈N \ {d}, k∈Γ−1 (i) , j∈Γ+1 (i) , 0≤t≤T, 0≤y≤T − t,

where pij (w|y) denotes the probability distribution function (pdf) of the travel time on

link (i, j) conditioned on the travel time on link (k, i). The pdf pij (.) is assumed to be

known and can be obtained for example, using historical data or real-time traffic information.

uij (t− w,w) is the maximum probability of arriving to destination node d within time t−w,

departing from node j, conditioned that the travel time on link (i, j) is w.

In the next sections, we will base on the SOTA formulation described above and propose

an extension of the routing algorithm including a robustness criterion for the routing strategy,

against link and path failures.

2. Robust guidance with uncorrelated link travel-times

In a stochastic framework, robustness is generally defined as the probability that the system

of interest has the ability to resist to changes without adapting its initial stable configuration.

Recently, path robustness in transport networks has emerged as an important topic. It has

attracted many researchers to develop various indicators to assess the path robustness in road

networks [20, 21]. In this paper we provide a new idea of incorporating robustness with route

choice using the case that link failure may occur. As mentioned above, link failures refer here

to a effective cuts of links caused for example by accidents, works, etc. excluding slowdowns

caused by traffic congestions. We notice here that for a user who calculates an off-line routing

path, if a link belonging to that path fails, then the link failure can be considered as a path

failure for that user, since he needs to calculate another path. We consider here that a routing

strategy is robust if it minimizes the deterioration of its maximum value calculated before

8



the depart at the origin, against eventual reconfigurations of the network that may be due to

accidents, works, etc. The value of a strategy is maximized with respect to the average travel

time and its reliability associated to the routing strategy. Consequently, a robust routing

strategy would resist to network reconfiguration due to link failures. We notice here that the

connectivity of the network is important for the robustness of routing strategies. Indeed, a

path passing through nodes having many successor nodes would be more robust than a path

passing through nodes having one or a low number of successor nodes.

The impact of a link failure on the traffic, and by that on the routing, depends on the

importance of the link for the network topology. Many indices, called generally centrality

indices (the average degree, the shortest path betweeness, the random walk betweeness, etc.),

have been defined in the literature in order to measure the importance or the role of links in

a given network; see for example [38, 1, 2, 5].

2.1. Continuous time formulation of the robust guidance algorithm

In this section we base on the routing model presented in [11] (formulas (1)-(2) above)

where from the probability distributions of travel times through the links of the network,

users evaluate their maximum probability to reach their destination in given time budgets,

and passing through different possible routes. We propose here an extension of this approach

in order to take into account the existence and the performance of alternative detours of the

selected paths, in the calculus of the guidance strategy. This first extension assumes that

the travel times through the links of the network are uncorrelated. We take into account the

fact that one or many links of the selected optimal path may fail during the travel. We then

consider that users may be sensitive to path changing. That is to say that they may prefer

paths with efficient alternative detours, with respect to paths without, or with less efficient

detours, even with a loss in the average travel time, and/or in its reliability. In order to

take into account such behaviors, we propose a model that includes the existence as well as

the performance of detours for selected paths, in the calculus of the travel time reliability

(i.e. the probability of reaching a destination node). This new way of calculating travel time

reliability guarantees a kind of robustness of the guidance strategies. That is to say that the

travel time reliability associated to the obtained optimal guidance strategy is not likely to

change, however associated adaptive paths change during the travel. The variation of the

travel time reliability, with respect to a network structure changing, is thus improved. For
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that, we propose to calculate for each node i the probability ui (t) to reach the destination

node d, where we take into account the case where the selected path fails before the users who

selected it reach the destination node d; for which case, alternative neighboring paths are used.

ui (t) denotes, as above, the probability to reach the destination node d, departing from node

i, in a time-budget t. The mathematical definition of ui (t) is different from formulas (1)-(2).

It is given below.

The probabilities ui (t)

We introduce here a modification on the model (1)-(3) in order to take into account the

existence and the performance of alternative paths in the calculated optimal routing strategies.

In our model, the word optimal refers to the robustness of the strategy. The idea here is to

replace the maximum operator in equation (1) by a weighted mean over a chosen number

of successor nodes. Instead of calculating ui (t) basing on the successor node giving the

maximum value of ui (t), we propose here to consider also other successor nodes of i, and we

rather calculate ui (t) basing on a weighted mean over a number of successor nodes of i. Let

us consider the following notation.

Aij (t) =

∫ t

0
pij (w)uj (t− w) dw ,∀i∈N \ {d}, j∈Γ+1 (i) ,∀0≤t≤T. (12)

We denote by Ai(t) the vector Ai(t) = (Ai1(t), Ai2(t), . . . , Aini(t)), where ni is the number

of successor nodes of node i in the graph. We then define n maps Si, i = 1, . . . , n as follows.

Si : Rni → Rni

Ai(t) 7→ Si(Ai(t)),
,∀i ∈ {1, 2, . . . , n}.

where Si(Ai(t)) is the vector whose components are the same as those of Ai(t), but sorted in a

decreasing order. Sij(Ai(t)) denotes here the jth component (Si(Ai(t)))j of vector Si(Ai(t)).

We then rewrite the probability for a user to reach the destination node d from node i in

a time budget t, as follows.

ui (t) =
m∑
p=1

ψpSip(Ai(t)),∀i6=d, 0≤t≤T, (13)

ud (t) = 1, 0≤t≤T, (14)
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where m is a parameter giving the number of successor nodes taken into account in the sum

of equation (13), and ψp are non increasing weighting coefficients satisfying

ψp≥0, ∀p∈{1, 2, . . .,m} ,
m∑
p=1

ψp = 1, and ψ1≥ψ2≥. . .≥ψm.

The following two cases are distinguished.

1. m≤
∣∣Γ+1 (i)

∣∣, in which case, the robust routing calculus (13) takes into account the best

m successor nodes of i, without considering eventual other successor nodes.

2. m >
∣∣Γ+1 (i)

∣∣, in which case, passing through node i is penalized by the robust routing

calculus (13) with respect to passing through nodes with higher number of successors

(than
∣∣Γ+1 (i)

∣∣), up to m.

In case 2 above, nodes i with small numbers of successors are penalized; they get low

values ui (t). Therefore, paths passing through these nodes i.e. paths with low numbers of

alternatives or detours shall have low probabilities to be selected as optimal paths. One way

to choose m can be to take the maximum over the cardinals of the sets Γ+1 (i) of successors

of all the nodes i of the network.

m = max
i∈N

∣∣Γ+1 (i)
∣∣ ,

where |.| denotes the cardinal of a set. In the examples we give below, we simply take m = 2.

In order that formula (13) will have a meaning, ψp have to be chosen such that ψ1 ≥ ψ2 ≥

. . . ≥ ψm. That is to say that ψp decrease as Sip(Ai(t)) decrease with respect to p. This

dependence of ψp on Aip (t) makes the model non-trivial. Indeed, instead of taking the max-

imum over Aip (t), with respect to successors p of i, as in formula (1), we take a weighted

mean in formula (13), where the weights are in the same order as the one of the quantities

Sip(Ai(t)). Therefore, we need to, first, sort the quantities Aip (t), before applying the mean

operator. So the model (13) needs more operations than the model (1). Finally, let us notice

that if m = 1, or if m > 1 and ψp = 0, ∀p≥2, then the model (1)-(2) coincides with the

model (13)-(14). Therefore, the model (13)-(14) extends the model (1)-(2).
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The successor nodes

The optimal guidance strategy is determined by the sequence of successor nodes si (t) as

follows.

si (t) = arg max
j∈Γ+1(i)

(Aij (t)) , i∈N. (15)

si (t) denotes here the optimal successor node of node i for a user to reach the destination

node d. By taking a mean in formula (13) rather than the maximum (as in formula (1)),

we take into account the existence and the performance of alternative deviations at every

intermediate node from i to d. We notice here that although formula (15) resembles to

formula (3), the resulted successor nodes from the two formulas are not necessarily the same,

since the maximized quantities in both formulas are calculated differently. We also notice that

the model (13)-(14) is a dynamic programming-like model which propagates information on

the routing, from the destination node to the origin one, as done by the SOTA model (1)-(2).

The extension consists here in the fact that the existing SOTA model (1)-(2) propagates only

information on the path travel time and its reliability, while the proposed model (13)-(14)

propagates also information on the robustness of the routing, in addition to information on

the path travel time and its reliability. The robust routing approach we propose in this article

does not take loops as a matter of robust decision. The robustness of the calculated routing

strategies is offline. However, users can apply the robust routing in an adaptive way, by

launching a new robust routing calculus whenever they arrive to a new node, based on the

information available at the arrival time to the node.

Algorithm 1 below gives a continuous time scheme for the model (13)-(15). In Algorithm 1,

we fix the time unit δ = ttmin − ε, where ttmin is the minimum realizable travel-time across

the network, and ε is a short time. We then have ∀i, j∈N, ∀w∈ [0, δ] , pij (w) = 0.

Algorithm 1 (Continuous time formulation of the robust guidance algorithm)

Step 0. Initialization

• Fix m (max. number of successor nodes); e.g. m = 2 or m = max
i∈N

∣∣Γ+1 (i)
∣∣.

• Fix ψp, p = 1, . . .,m such that
∑m

p=1 ψp = 1 and ψ1≥ψ2≥. . .≥ψm.

• Fix the time unit δ.

• Fix the total time budget T as a multiple of δ: T = Lδ.
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• Fix iter = 0 (iteration index).

• uiteri (t) = 0, ∀i∈N \ {d}, 0≤t≤T , uiterd (t) = 1, 0≤t≤T

Step 1. Update For iter = 1, 2, . . . , L = T/δ.

• τ iter = iter ∗ δ

• uiteri (t) = uiter−1
i (t) , ∀i∈N, i 6=d, (i, j)∈A, t∈

(
0, τ iter − δ

]
.

• Calculate Aiter−1
ip (t), for every i, p, t ∈ (τ iter − δ, τ iter ], by (12) and using uiter−1

j for uj .

• For every i, t ∈ (τ iter − δ, τ iter ] apply Si to sort Aiter−1
i (t) in a decreasing order.

• uiteri (t) =
∑m

p=1 ψpSip
(
Aiter−1
i (t)

)
, ∀i ∈ N \ {d}, j ∈ Γ+1(i), t ∈ (τ iter − δ, τ iter ].

• siteri (t) = arg max
j∈Γ+1(i)

Aiter−1
ij (t), ∀i ∈ N \ {d}, j ∈ Γ+1 (i) , t∈(τ iter − δ, τ iter ].

Definition 2.1. (Robust-optimality) We say that u is robust-optimal, with respect to param-

eters m, ψp, p = 1, 2, . . .,m and time-budget T , if it is the unique possible routing strategy for

the time budget T , or if u is robust-optimal with respect to parameters m, ψp, p = 1, 2, . . .,m

and time-budget T − δ, and u satisfies

ui (t) =
m∑
p=1

ψpSip (Ai(t)) ,∀i ∈ N \ {d}, j ∈ Γ+1 (i) , t ∈ (t− δ, T ].

Robustness of a routing strategy has a price in term of travel time reliability and a price

in term of travel time budget, as explained in section 2.4 below.

Proposition 2.1. For a total time budget T = δL, the solution obtained at iteration L of

Step 1 of Algorithm 1 is robust-optimal.

Proof. By induction on L.

• For L = 0, the total time budget is zero, and thus only Step 0 is performed by the

algorithm, which consequently terminates with a u satisfying ui (0) = 0,∀i∈N \ {d} and

ud (0) = 1. This solution is robust-optimal since it is the unique possible solution for

the time budget zero.

• Assume that for T = δL, the solution given at iteration L of Step 1 of Algorithm 1 is

robust-optimal. Then with a time budget T = (L + 1)δ, and for every time t∈[0, δL],

the algorithm keeps the same robust-optimal solution uL+1
i (t) = uLi (t) ,∀i∈N . For

times t∈(δL, δ(L + 1)], uL+1
i (t) is robust-optimal by definition of the robust-optimality

(Definition 2.1 above).
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The meaning of Proposition 2.1 is that the continuous scheme of Algorithm 1 can be solved

in a single update i.e. without resorting to value iteration. It is similar to the one introduced

in [36]. The unique difference lies in the calculus of ui(t), using here a weighted mean instead

of the maximum operator.

2.2. Discrete-time scheme of the robust guidance algorithm

To numerically approximate ui (t), we discretize the interval [0, T ] into L = T/∆t time

steps of length ∆t. As in [36], the discretization length is supposed to satisfy ∆t≤δ. The

discretization is then given in Algorithm 2 below.

The probability distributions of the link travel times are discrete here. Therefore, the

calculus of Aij(x) for x ∈ {0, 1, . . . , L} is done as follows (replacing (12)).

Aij (x) =

x∑
h=0

pij (tt ij = h)uj (x− h) (16)

Complexity analysis

Proposition 2.2. The complexity of Algorithm 2 is O
(
a (T/∆t)2 + (T/∆t)a log a

)
.

Proof. The functions Aij (.) and pij (.) are vectors of length L. Each link travel-time dis-

tribution in the network is of length T/∆t, and the discretized probability mass function

is computed in time O (T/∆t) for each link. As there are a links, then the total time is

O (aT/∆t). In step 0, there are iter vectors to initialize for each node, and each vector is of

length T/∆t. Then the initialization is done in time O (iterT/∆t). In step 1, the algorithm

progressively calculates:

- The sum of the convolution product Aij (x) from x = 0 to x = T/∆t. Then the time

complexity of the summation for a link is O
(
a (T/∆t)2

)
.

- The sum on the weighting coefficients from p = 1 to p = m. Then the time complexity

of this summation is O (aT/∆t).

- The quantities Aij(x) are sorted for each x. Then the complexity of this sorting is

(T/∆t)a log a.

Therefore, the total complexity to this algorithm is O
(
a (T/∆t)2 + (T/∆t)a log a

)
.
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Algorithm 2 (Discrete time formulation of the robust guidance algorithm)

Step 0. Initialization

• Fix m (max. number of successor nodes); e.g. m = 2 or m = max
i∈N

∣∣Γ+1 (i)
∣∣.

• Fix ψp, p = 1, . . . ,m such that
∑m

p=1 ψp = 1 and ψ1≥ψ2≥. . .≥ψm.

• Fix the time unit ∆t≤δ. We then have ∀i, j∈N, ∀w∈ [0,∆t] , pij (w) = 0.

• Fix the total time budget T as a multiple of ∆t: T = L∆t .

• uiteri (x) = 0,∀i∈N \ {d} , x∈N, 0≤x≤ T
∆t , uiterd (x) = 1, x∈N, 0≤x≤ T

∆t .

Step 1. Update For iter = 1, 2, . . . , L = T/∆t.

• τ iter = iter ∗ δ

• uiteri (x) = uiter−1
i (x) , ∀i∈N, i 6=d, (i, j)∈A, x∈

(
0, τ

iter−δ
∆t

]
, x∈N .

• Calculate Aiter−1
ip (x) for every i, p, x∈

[
τ iter−δ

∆t + 1, τ
iter

∆t

]
, x∈N, by (16) and using uiter−1

j

for uj .

• For every i, x∈
[
τ iter−δ

∆t + 1, τ
iter

∆t

]
, x∈N apply Si to sort Aiter−1

i (x) in a decreasing order.

• uiteri (x) =
∑m

p=1 ψpSip
(
Aiter−1
i (x)

)
,

∀i ∈ N \ {d}, j ∈ Γ+1 (i) , x∈
[
τ iter−δ

∆t + 1, τ
iter

∆t

]
, x∈N.

• siteri (x) = arg max
j∈Γ+1(i)

(
Aiter−1

ij (x)
)
, ∀i∈N \ {d}, j∈Γ+1 (i) ,x∈

[
τ iter−δ

∆t + 1, τ
iter

∆t

]
, x∈N.

2.3. An illustration example

Figure 1: A small network for illustration. The numbers on the links give the average travel times through
the links and their variances respectively.

Let us consider the network of Figure 1 including 5 nodes and 7 links. We illustrate here

our approach of robust routing by applying Algorithm 2 to find a robust-optimal path from

node 1 to node 5. We assume that the travel times on the links of the network are uncorrelated,

and follow Gamma probability distributions. For all the links of the network, we assume an

average travel time of 7 time units with a standard deviation of 3 time units, except for link
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(1,3), for which we assume an average travel time of 6 time units and a standard deviation

of 1.5 time units. To reach node 5 from node 1, four routes exist: route 1 (1-3-5), route 2

(1-2-4-5), route 3 (1-2-4-3-5) and route 4 (1-2-5). In term of minimum average travel time

(i.e. applying the LET routing algorithm), it is easy to check that route 1 is the optimal one.

We apply Algorithm 2 (formulas (13)-(15)) for this example. We fix m = 2 (the maximum

number of successor nodes in the network). We then have two weighting parameters ψ1 and

ψ2, with ψ1 + ψ2 = 1. To simplify, we denote ψ = ψ1 and then ψ2 = 1 − ψ. We vary ψ in

(1/2, 1]. The results are given in Table 1 below.

Table 1: Robust-optimal solutions (u and s) to reach node 5 from node 1 for different value of ψ.

Time budget 15 16 17 18 19 20 21 22 23
ψ = 1 s1(t) 3 3 3 3 3 3 3 3 3

u1(t) 0,9436 0,9742 0,9909 0,9968 0,9989 0,9990 0,9996 0,9999 1
ψ = 0.9 s1(t) 3 2 2 2 2 2 2 2 2

u1(t) 0,8442 0,8772 0,9038 0,9283 0,9457 0,9587 0,9683 0,9751 0.9797
ψ = 0.8 s1(t) 2 2 2 2 2 2 2 2 2

u1(t) 0,7472 0,7817 0,8208 0,8503 0,8744 0,8941 0,9096 0,9213 0.9300
ψ = 0.7 s1(t) 2 2 2 2 2 2 2 2 2

u1(t) 0,6522 0,6921 0,7294 0,7600 0,7865 0,8092 0,8277 0,8423 0.8540

The results of Table 1 are obtained with the model (13)-(15). We notice that for ψ = 1,

the model (13)-(15) is equivalent to the model (1)-(3). We can clearly see in Table 1 that,

for any fixed time budget t, probabilities u1(t) are decreasing with ψ. For ψ = 1 the optimal

route is the route passing through node 3 i.e. route 1, for all the considered time budgets.

For ψ < 1, the robust-optimal route changes with the time budget. For example, for ψ = 0.9,

the robust-optimal route is route 1 (the same as in the case ψ = 1) for time budgets less

than 16 time units, while for time budgets higher than or equal to 16 time units, the robust-

optimal policy changes and node 2 becomes the robust-optimal successor node of node 1. The

robust-optimal route in this case is route 4. The selection of route 4 as the robust-optimal

route instead of route 1 in case ψ < 1 is justified by the fact that, node 2 offers two routing

options (go to node 5, or go to node 4). More options offer more alternatives in adaptive

routing. Indeed, for a user who has chosen route 4, if link (2,5) fails once the user arrives to

node 2, then he will still have two other alternative routes to reach the destination node 5:

route 2 and route 3 by link (2,4). However, if the user chooses route 1, then if link (3,5) fails

once the user arrives to node 3, then he will not have any other alternative route to reach the

destination. Therefore, route 4 passing through node 2 is more robust than route 1 passing
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through node 3, because node 2 has more successor nodes than node 3. The robust guidance

algorithm favors routes passing by nodes with alternative detours. From these results we can

conclude that:

• If a user prefers to maximize the travel time reliability of his routing strategy, without

taking into account its robustness against link and path failures, then he should select

route 1 because it is the one maximizing the probability of reaching the destination

node 5 in the considered time budget.

• If a user seeks a guarantee in terms of robustness and if he has sufficient travel time

budget and/or travel time reliability margins, then he should select route 4 because it

is the one giving more alternative detours in case of link failure.

2.4. Price of robust-optimality

On the one hand, robustness of a routing strategy has a price in term of travel time

reliability, in the sense that a user with a travel fixed time budget can improve the robustness of

his routing strategy if he accepts to lose travel time reliability. On the other hand, robustness

of a routing strategy has a price in term of travel time budget, in the sense that a user

who requires a fixed level of travel time reliability can improve the robustness of his routing

strategy if he accepts to extend his time budget. In order to illustrate this concept of price

of robust-optimality, let us back to the example above. From Table 1, if a user likes to

reach the destination node within a time budget of 16 time units, then he gets a travel time

reliability of 0.9742 by passing by a non robust route (route 1 with ψ = 1), and a travel time

reliability of 0.8772 by passing by a more robust route (route 4 with ψ = 0.9). Then, the

value 0.097 = 0.9742 − 0.8772 can be interpreted as the price of robustness (of passing from

a robustness level corresponding to ψ = 1 to a robustness level corresponding to ψ = 0.9) to

pay in term of travel time reliability; see Figure 2. On the other hand, if the user likes to

reach the destination node with a travel time reliability of at least 0.9742, he can select a non

robust route (route 1 with ψ = 1) with a time budget of 16 time units, or a more robust route

(route 4 with ψ = 0.9) with a time budget of 22 time units (assuring a travel time reliability

of 0.9751). Then, the value 6 = 22 − 16 can be interpreted as the price of robustness (of

passing from a robustness level corresponding to ψ = 1 to a robustness level corresponding to

ψ = 0.9) to pay in term of travel time budge; see Figure 2.
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Figure 2: The price of robust-optimality.

3. Formulation of the algorithm in the case of correlated link travel-times

In this section we extend our algorithm to the case of correlated link travel-times. More

precisely, we propose an extension of the model (13)-(15) that takes into account eventual

correlation between any consecutive links in the network. For that, we propose to calculate

for each node i the probability to reach the destination node d, where we take into account

the case where the selected path fails before the users who selected it reach the destination

node d; for which case, alternative neighboring paths are used. Let us first notice that we

follow here the approach of [36] recalled in section 1 (formulas (9)-(11)). Therefore, travel

time correlations are considered on pairs of consecutive links of the road network. This is not

the general case, but it is sufficient here since we treat in this article individual user guidance

without calculating global traffic assignments in the network. uki (t, y) denotes, as above, the

probability to reach the destination node d, departing from node i, in a time-budget t, and

knowing that the user comes from node k, a predecessor node of i, and that the realized travel

time from k to i is y. The mathematical definition of uki (t, y) is given below in (17) and (18).

We proceed as in section 2. Let us consider the following notation.

Akij (t, y) =

∫ t

0
pkij (w|y)uij (t− w, y) dw ,

∀i∈N \ {d}, k∈Γ−1 (i) , j∈Γ+1 (i) ,∀0≤t≤T, 0≤y≤T − t,
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where pkij (·|·) denotes the probability distribution function of the travel time on link (i, j)

conditioned by the one on link (k, i).

For given k, i, t and y, we sort the quantities Akij (t, y) in a decreasing order with respect

to the index j as done above in section 2.1. We denote by Aik(t, y) the vector Aki(t, y) =

(Aki1(t, y), Aki2(t, y), . . . , Akini
(t, y)), where ni is the number of successor nodes of node i in

the network. We then define n maps Si, ∀i = 1, . . . , n, as follows.

Si : Rni → Rni

Aki(t, y) 7→ Si(Aki(t, y)),
,∀i ∈ {1, 2, . . . , n}.

where Si(Aki(t, y)) is the vector whose components are the same as those of Aki(t, y), but

sorted in a decreasing order. Sij(Aki(t, y)) denotes here the jth component (Si(Aki(t, y)))j of

vector Si(Aki(t, y)).

We then rewrite the probability for a user to reach the destination node d from node i in

a time budget t, knowing that the user comes from node k and that the travel time from k to

i is y, as follows.

uki (t, y) =

m∑
p=1

ψpSip(Aki(t, y)), ∀i 6=d, k ∈ Γ−1(i), 0≤t≤T, (17)

ukd (t, y) = 1, k ∈ Γ−1(d), 0≤t≤T, (18)

where m is a parameter giving the number of successor nodes taken into account in the sum

of formula (17), ψp are non increasing weighting coefficients satisfying

ψp≥0,∀p∈{1, 2, . . .,m} ,
m∑
p=1

ψp = 1, and ψ1≥ψ2≥. . .≥ψm.

The optimal guidance strategy is then determined by the sequence of successor nodes

ski (t, y) as given by the formula (19) below.

ski (t, y) = arg max
j∈Γ+1(i)

(Akij (t, y)) (19)
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4. How to fix the parameters ψj

As mentioned above, in order that the model (17)-(19) has a meaning, ψp have to be chosen

such that ψ1≥ψ2≥. . .≥ψm. We will be interested here in the case where m = 2 (i.e. we only

take into account the two best successor nodes of every node i). In this case, we have two

weighting parameters ψ1 and ψ2, such that ψ1 +ψ2 = 1. In order to simplify the notations, we

simply denote ψ = ψ1, and ψ2 is given by ψ2 = 1−ψ. Therefore, we have only one parameter

ψ for the robustness, such that the case ψ = 1 corresponds to the case where robustness is

not taken into account; while the obtained routing strategy is as robust as the parameter ψ

is low. We notice here that ψ should satisfy 1/2≤ψ≤1, since we have ψ1≥ψ2.

We propose in this section a method to fix the parameter ψ in such a way that a user

will be able to manage his travel time budget to favor travel time reliability with respect to

robustness. More precisely, the user fixes a desired travel time reliability that he aims to reach,

and by that, the routing algorithm will use all the available travel time budget in order to

reach the desired level of travel time reliability; and the remaining travel time budget is used

to improve the robustness of the routing strategy. The details are given below.

Given a travel time budget τ and a desired travel time reliability p (expressed as the

probability that the destination will be reached on the time budget τ); given a time interval Ψ

to which the parameter ψ belongs (for example Ψ = (1/2, 1]), the optimal weighting coefficient

ψ∗ is determined as follows (formulas (20)-(21) below).

The desired travel time reliability p being fixed, the algorithm first calculates the map

ψ 7→ Tkiy (p, ψ) giving, for every value of ψ, the minimum time budget needed to satisfy the

desired travel time reliability p.

Tkiy (p, ψ) = u−1
ki (t, y, ψ) := min (t, t≥0, uki (t, y, ψ)≥p) (20)

The notation u−1
ki (t, y, ψ) denotes the pseudo-inverse of the non-decreasing map t 7→

uki (t, y, ψ); see Figure 3 (left side).

Then, the desired travel time budget being fixed, the algorithm calculates the optimal

robustness parameter ψ∗ needed to satisfy the constraint on the travel time budget.

ψ∗kiy (τ, p) = T−1
kiy

(
p, ψ

)
:= min (ψ,ψ∈[1/2, 1], Tkiy (p, ψ)≤τ) (21)
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The notation T−1
kiy

(
p, ψ

)
denotes the pseudo-inverse of the non-increasing map ψ 7→ Tkiy (p, ψ);

see Figure 3. (right-side).

Figure 3: How to choose the robustness parameter ψ.

Therefore, the calculus of ψ∗kiy (τ, p) consists in inversing the maximum cumulative prob-

ability distribution uki (t, y, ψ) once on the variable t in order to derive, for every fixed value

of robustness parameter ψ, the optimal time budget Tkiy (p, ψ) needed to satisfy the desired

travel time reliability p; and a second time (inversing Tkiy (p, ψ)) on the variable ψ in order to

calculate the optimal robustness parameter ψ∗ needed to satisfy the constraint on the travel

time budget.

The approach of fixing the parameter ψ, given by formulas (20)-(21), is general, in the

sense that it includes the case where one only likes to optimize travel time reliability, and not

robustness against path failure. In this case, one can just let ψ belonging to the singleton

{1}, i.e. set ψ = 1. Moreover, if one tries to optimize robustness, but he does not have any

margin on the time budget that permits this optimization, equation (21) will fix systematically

ψ∗ to the value ψ∗ = 1. In other terms, any margin on the travel time budget is first used

to optimize travel-time reliability, and after that, the remaining margin is used to optimize

robustness.

The parameter optimization we propose in this section allows each user to optimize his

travel time budget in order to feat his personal compromise between travel time reliability and

robustness of the routing. With this parameterization, we achieve the theoretic development of

our algorithm. We obtain thus a robust routing model in the form of a dynamic programming-

like system, which we know that it admits a solution which can be derived by the Algorithms

above (Algorithmes 1 and 2). In term of algorithmic complexity, it is clear that the case
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where the travel time correlations are taken into account necessitates more computing time

and more memory space than the case where travel time correlations are not taken into

account. We finally notice that our algorithm retrieves the well-known min-max concept of

robust optimization, since, as mentioned above, it is conceived in such a way that it minimizes,

over link failure scenarios, the deterioration of the maximum probability of arrival.

5. Static routing in Sioux Falls network

We use here the well known Sioux Falls network to test the model (17)-(19). The network

is simplified to 24 nodes and 76 links as illustrated in Figure 4 below. We assume that link

travel times on the network are drawn from bi-variate Gamma distribution. More precisely,

we assume that the joint probability distribution of two successive links of the network is a

bi-variate Gamma. We base here on the bi-variate Gamma distribution from [32]. In the

network of Figure 4, even though the maximum number of successors over all the nodes is

equal to 5, we take here, for simplification, m = 2, with weighting coefficients ψ1 and ψ2, and

denote ψ = ψ1 and then we have ψ2 = 1− ψ.

Figure 4: Sioux falls network. The nodes as well as the links are numbered in this figure.

To reach the destination node 10 departing from node 1, we have 2979 elementary paths.

We apply the model (17)-(19) and derive the probabilities uki (t, y) for all origin nodes i of

the network. In order to illustrate our approach, let us consider the following parameters.
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Travel-times on two successor links of the network follow a bi-variate Gamma probability

distribution, with given average travel times tt l for links l and variance-covariance matrix

Cov , with Cov ll = 3, ∀l and Cov ll′ = 1.5,∀l 6=l′. The average travel times we take here are

shown in Figure 5.

Figure 5: The average travel-time on each link (seconds).

As mentioned in section 2, our approach takes into account the existence and the perfor-

mance of alternative detours of the selected paths, in the calculus of the guidance strategy.

The proposed algorithm takes into account the fact that one or many links of the selected

optimal path may fail during the travel. We consider that users may be sensitive to path

changing. That is to say that they may prefer paths with efficient alternative detours, with

respect to paths without, or with less efficient detours, even with a loss in the average travel

time, and/or in its reliability. To illustrate our algorithm, we will be interested in what will

happen at node 3 in two different scenarios presented in sub-sections 5.1 and 5.2.

In the following, we apply our algorithm for a user being at node 1 and going to node 10.

We assume that the user has a time budget equal to 2400 seconds (40 minutes). In order

to illustrate the algorithm, we consider two scenarios. In scenario 1, we use the network of

Figure 4. We show that the algorithm gives the path passing by nodes (1,3,12,11,10) as the

robust-optimal one in the two cases of ψ = 1 (without taking into account the robustness

criterion) and ψ∈(1/2, 1) (taking into account the robustness criterion). For scenario 2, we

remove link 37 from the network of Figure 4. By removing link 37, node 12 will have only 2
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successor nodes. Then, the user being at node 3 will have to chose between the two successor

nodes: node 4 (with 3 successor nodes) and node 12 (with only 2 successor nodes). We will

show that the algorithm gives the same optimal path as for scenario 1, in the case ψ = 1, but

it gives another optimal path, the one passing by nodes (1,3,4,11,10), in the case ψ∈(1/2, 1).

Indeed, path (1,3,4,11,10) has more alternatives than path (1,3,12,11,10), since, in scenario 2,

node 4 has more successor nodes than node 12.

5.1. Scenario 1

In this first scenario, we consider the network of Figure 4. Let us consider the probability

u13(t, y) of reaching the destination node 10 from node 3, coming from node 1, and knowing

that tt13 = y. We take here y = 115 seconds. In this first scenario, we have three routing

actions from node 3 coming from node 1: go to successor node 12, which will give us three

routing actions at the next step (go to successor node 11, or 13 or back to 3), or go to successor

node 4, which will give us three routing actions at the next step (go to 5 or 11, or back to 3).

The simulation results are given in Figure 6. The left side of Figure 6 shows the maximum

probabilities u13 (t, 115) in function of the time budget t, and for different values of ψ. The

right side of Figure 6 gives the optimal successor nodes s13 (t, 115) in function of the time

budget t, and for different values of ψ.

Figure 6: The robust-optimal probability of arriving on time (left side) and the robust-optimal routing policy
at node 3, in function of the time budget, and for different values of ψ. - Scenario 1.

The case ψ = 1 (dashed line) corresponds to the model (9)-(11) taking into account

travel time correlations, while the cases ψ∈(1/2, 1) (solid lines) correspond to the model (17)-

(19). We see from the left side of Figure 6 that, for any time budget t, the robust-optimal

probabilities u13 (t, 115) decrease as the values of ψ decreases. That is to say that for lower
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values of ψ, lower values of u13 (t, 115) are obtained. This is because we replaced a maximum

operator in (9)-(11) by a mean value in (17)-(19). Indeed, a user taking a lower value of ψ, asks

for more path-robustness or path-flexibility, and, in the counterpart, he loses in term of travel-

time reliability. The difference u13 (t, 115, ψ1)− u13 (t, 115, ψ2) can then be interpreted as the

price of path-robustness corresponding to a measure of it, given by the difference ψ1−ψ2. The

right side of Figure 6 gives the robust-optimal routing policy in term of the robust-optimal

successor nodes. We see from that figure that the optimal routing policy is the same for every

value of ψ, and corresponds to a path passing by node 12 as the optimal successor node of

node 3.

5.2. Scenario 2

This second scenario aims to illustrate our approach with respect to the robustness of the

optimal strategy offered by our algorithm, in the case of path failure. The scenario is the

following. We take the same network of Figure 4, but we remove link 37. By that, we penalize

(in term of robustness) the passage by node 12, since we decrease the number of successor

nodes of it. Therefore, node 12 will have only two, instead of three successor nodes. At node 3,

coming from node 1, we have three routing actions: go to successor node 12, which will give

us only two routing options at the next step (go to successor node 11 or back to 3), or go to

successor node 4, which will give us three routing options at the next step (go to successor

nodes 5 or 11, or back to 3). Indeed, if we chose node 12 as successor of node 3, then at node

12, if link 36 fails, we have to back to node 3. However, if we chose node 4 as successor of

node 3, then at node 4, if one of the links 9 or 10 fails, we have the possibility to change and

take a detour using the other link; see Figure 4. Therefore, passing by node 4 allows us more

options than passing by node 12. We will see below that our algorithm is able to take into

account such robustness criterion in the selection of the optimal routing strategy.

In scenario 2, the optimal policies obtained by the algorithm for the two cases of ψ = 1

and ψ∈(1/2, 1) are clearly different. For the case ψ = 1, we obtain the same optimal policy

as in scenario 1 (dashed line on the right side of Figure 7). However, with low values of ψ

(ψ = 0.95, respectively 0.93, 0.9, 0.85, 0.8), where path-robustness is considered, we see that,

with a time budget greater than or equal to 57 time units (a time unit is 24 seconds here)

(respectively 56, 55, 53 time units), the optimal successor node of node 3 is node 4 rather than

node 12, even though paths passing through node 12 have lower average travel time comparing
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Figure 7: The robust-optimal probability of arriving on time (left side) and the robust-optimal routing policy
at node 3, in function of the time budget, and for different values of ψ. - Scenario 2.

to those passing through node 4. For example, for ψ = 0.95, we see that with a time budget

lower than 56 time units, the algorithm prefers paths passing through node 12 (see blue line

on the right side of Figure 7). However, with a time budget higher than 56 time units, the

optimal policy at node 3 changes, and node 4 becomes the robust-optimal successor node).

That means that, node 12 which has only two successor nodes is penalized, i.e. it gets low

values uki (t, y). Therefore, paths that pass through that node i.e. paths with small number

of alternatives or detours have low probability to be selected as robust-optimal paths.

6. Combination of the robust routing algorithm with a dynamic traffic model

In this section we combine the robust guidance algorithm with a dynamic traffic model in

a closed loop, in order to see how the algorithm reacts dynamically to the state of traffic. We

use here the microscopic traffic simulator SUMO (Simulation of Urban MObility) [8], with the

traffic control interface Traci (Traffic control interface), where we implement our algorithm.

We illustrate our results on the same network of Figure 4. We apply the guidance here only

for the traffic demand departing from the zone around node 1 to the zone around node 10.

The routing of all other origin-destination traffic demands is done by SUMO, by means of

DUAROUTER algorithm. The application of our algorithm in parallel with another dynamic

routing algorithm permits also to evaluate its efficiency in case where only some travelers are

optimizing the robustness of the guidance against link failures.

The guidance is applied in its static form but periodically in time. The traffic is simulated

by SUMO for a fixed period of time (10 minutes here). At the end of the time period, travel

times on the links of the network are retrieved, and estimations are made on the average
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travel times and on their variations. By that, we obtain an estimation of the bi-variate

Gamma probability distribution of every couple of successive links in the network. With

these travel time distributions, we apply the robust guidance algorithm for the traffic demand

corresponding to the origin-destination pair (1,10). For the traffic demand corresponding to

the other origin-destination pairs, the assignment is done by SUMO using DUAROUTER

algorithm. The optimal and robust itineraries (obtained by our algorithm for the origin-

destination pair (1,10), and by DUAROUTER for the other origin-destination pairs) are then

used by SUMO to load the network and simulate the traffic for another time period. We

iterate this procedure up to a given total simulation time.

6.1. Simulations results

In the simulation with SUMO we have used the network of Figure 4, and set node 1 as the

origin, and node 10 as the destination. We considered a total simulation time of 40 minutes,

with a time period of 10 minutes, at the end of which, we apply the guidance algorithm for

the traffic demand from 1 to 10. The guidance algorithm is applied as follows. We assume

that we are at node 1 and that we have spent a time y on the upstream link, and we seek to

reach destination node 10. The maximum time budget we consider here is T = 40 minutes.

The routes obtained at different times are given in Table 2, for ψ = 1 (without taking into

account robustness criterion) and for ψ = 0.9 (with taking into account robustness criterion).

In AppendixA we give the 10th shortest paths from node 1 to node 10, for the four

time periods of Table 2. The calculus is based on Yen’s k-Shortest Path algorithm [39].

In AppendixB, we give the computation times as well as the occupied space memory for

one run of robust routing calculus (at a given node and independent of the vehicular traffic

simulation) in the case of correlated link travel times, and for varied number of links a, and

varied number of time horizon units T/∆t. We notice that the implementation of the robust

routing algorithm and of its combination with the vehicular traffic simulation are not optimized

here. We intend to do the optimization of the implementations in our future works.

For ψ = 1, the optimal route obtained at 10 and 20 minutes is the one passing through the

links [2-7-36-32]. At 30 minutes, the optimal strategy changes to [2-6-10-32]. We obtain the

same route at 40 minutes. This optimal route is different from that obtained at 10 minutes.

The optimal strategy obtained from node 3 changes, and node 4 becomes the optimal successor

node, instead of node 12. Indeed, we observed that the link 7 is highly congested during the
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Table 2: Optimal route for ψ = 1 and optimal robust route for ψ = 0.9.
ψ = 1 ψ = 0.9

Time periods (minutes) Optimal route Robust-optimal route
[0, 10] 2→ 7→ 36→ 32 2→ 6→ 10→ 32

[10, 20] 2→ 7→ 36→ 32 2→ 6→ 10→ 32

[20, 30] 2→ 6→ 10→ 32 2→ 6→ 10→ 32

[30, 40] 2→ 6→ 10→ 32 2→ 6→ 10→ 32

time periods [20,30] and [30,40] minutes. The guidance algorithm then proposes to rather pass

by link 6, during these two periods of time.

For ψ = 0.9, where robustness is taken into account by the guidance algorithm, the

robust-optimal route obtained during all the period times is [2-6-10-32]. We explain here why

the algorithm proposes this robust-optimal route during the time periods [0,10] and [10,20]

minutes, where the link 7 is not yet congested, and where the guidance algorithm with ψ = 1

proposes rather path [2-7-36-32]. From node 3 coming from node 1 we have three routing

options: go to successor node 12, which will give us three routing actions at the next step

(back to 3, go to 11, or 13), or go to successor node 4, which will give us also three routing

actions at the next step (back to 3, go to 11, or 5), or back to node 1. It is clear that the option

of backing to node 1 is not very interesting. Let us now compare the two options of going to

node 4, and going to node 12. The two nodes 4 and 12 have two common successor nodes 3

and 11. The difference is in the third successor node (node 5 successor for node 4, and node 13

successor for node 12). Thus, we need to compare the two nodes 5 and 13. In terms of routing

robustness, node 5 is better than node 13, since node 5 has three successor nodes, while node

13 has only two successor nodes. Therefore, it is better to pass by node 4 rather than passing

by node 12. We recall here that the number of successor nodes is important for the robust

guidance because, if we are at a given node with many successor nodes, we have more options

in case of failures of any successor link. In this example, being at node 4 is better than being

at node 12, because, if we are at node 4 and if link 10 fails, we need to choose between backing

to node 3 or to go to node 5, which has three routing options (successor nodes), but if we are

at node 12 and if link 36 fails, we have to choose between backing to node 3 (which option is

also offered by node 4) or to go to node 13, which has only two routing options.

Let us now derive the price of robustness in term of travel time reliability and budget.

We consider the first time period [0-10]. We follow section 2.4. Directly from Figure 8 and
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(a) (b)

Figure 8: (a) The maximum probability of arriving on time at destination node 10 from node 1 coming from
node 2, for ψ = 1. The optimal paths corresponding to the maximum cumulative probability distributions
are given in Table 2. (b) The probability of arriving on time at destination node 10 from node 1 coming from
node 2, for ψ = 0.9. The robust-optimal paths corresponding to the robust-optimal cumulative probability
distributions are given in Table 2.

Table 2, we have the following.

• With a time budget of 40 minutes, a user can take the non robust path 2→ 7→ 36→ 32,

with ψ = 1 and guarantees a travel time reliability of 0.9, or he can take the more robust

path 2 → 6 → 10 → 32 with ψ = 0.9 and guarantees a travel time reliability of 0.8.

Therefore, with a time budget of 40 minutes, the price of 0.1 point of robustness is 0.1

of travel time reliability.

• With a level of 0.8 of travel time reliability, a user can take the non robust path 2 →

7→ 36→ 32, with ψ = 1 and for that he needs 35 minutes as a time budget, or he can

take the more robust path 2 → 6 → 10 → 32 with ψ = 0.9 and for that he needs 40

minutes as a time budget. Therefore, at a level of 0.8 of travel time reliability, the price

of 0.1 point of robustness is 5 minutes of travel time budget.

Conclusion

We considered here the optimal guidance problem of users in road networks, for which

we proposed a new robust adaptive strategy. We based on an existing SOTA routing model,

which we extended in order to take into account robustness of routing strategies against path

failure. In order to include the performance of alternative detours of the selected paths, we

extended the concept of reliability by introducing a new reliability index. The improvement

we made here allows the selection of an optimal path according to two criteria: the reliability
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of the path in term of travel time and the robustness of the path in term of its flexibility

(i.e. existence and performance of alternative detours). We have shown that the robustness

of routing strategies has a price in term of time budget and a price in term of travel time

reliability. In other terms, a user can increase the robustness of his routing strategy against

path failures if he has a margin on his travel time budget or if he has a margin on his travel

time reliability requirement. Finally, we illustrated our algorithm on the Sioux Falls network,

with some scenarios in static and in dynamic traffic cases. Our future research in this direction

is to optimize the implementation of our algorithm, in order to permit evaluations on large

networks.
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AppendixA. k- shortest paths for the OD 1-10 and four the four considered pe-

riods of time

We give here the 10 shortest paths from node 1 to node 10 four the time period [0-10].

10th Paths for time period [0-10] Average travel time

2 - 7 - 36 - 32 515.47

2 - 6 - 10 -32 526.86

2 - 6 - 9 - 13 - 25 607.23

1 - 4 - 15 - 13 - 25 758.56

1 - 4 - 16 - 22 -48 767.52

2 - 7 - 37 - 39 - 75 - 64 - 61 - 58 - 51 805.47

1 - 4 - 16 - 20 - 18 - 55 - 48 827.33

1 - 4 - 16 - 22 - 49 - 51 836.40

2 - 7 - 36 - 34 - 41 - 43 842.91

2 - 7 - 37 - 39 - 75 - 65 - 67 - 43 847.56

We give here the 10 shortest paths from node 1 to node 10 four the time period [10-20].

10th Paths for time period [10-20] Average travel time

2 - 6 - 10 - 32 552.97

2 - 7 - 36 -32 595.53

2 - 6 - 9 - 13 - 25 661.78

1 - 4 - 15 - 13 - 25 767.75

1 - 4 - 16 - 22 -49 - 51 835.75

1 - 4 - 16 - 21 - 25 850.58

1 - 4 - 16 - 22 - 48 850.58

2 - 7 - 37 - 39 - 75 - 64 - 61 - 58 - 51 852.02

1 - 4 - 15 - 11 - 10 - 32 860.58

1 - 4 - 16 - 20 - 18 - 56 - 61 - 58 - 51 899.44

We give here the 10 shortest paths from node 1 to node 10 four the time period [20-30].
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10th Paths for time period [20-30] Average travel time

2 - 6 - 10 - 32 633.31

2 - 7 - 36 -32 633.31

2 - 6 - 9 - 13 - 25 725.94

1 - 4 - 15 - 13 - 25 788.29

1 - 4 - 16 - 21 - 25 866.45

1 - 4 - 16 - 22 - 48 866.45

1 - 4 - 15 - 11 - 10 - 32 875.51

1 - 4 - 16 - 22 - 49 - 51 893.81

2 - 7 - 37 - 39 - 75 - 64 - 61 - 58 - 51 897.57

1 - 4 - 16 - 20 - 18 - 56 - 61 - 58 - 51 900.62

We give here the 10 shortest paths from node 1 to node 10 four the time period [30-40].

10th Paths for time period [30-40] Average travel time

2 - 6 - 10 - 32 713.48

2 - 7 - 36 -32 713.48

1 - 4 - 15 - 13 - 25 816.96

2 - 6 - 9 - 13 - 25 848.41

1 - 4 - 16 - 21 - 25 896.17

1 - 4 - 16 - 22 - 48 896.17

1 - 4 - 16 - 20 - 18 - 56 - 61 - 58 - 51 925.76

1 - 4 - 15 - 11 - 10 - 32 949.77

1 - 4 - 16 - 22 - 49 - 51 964.44

2 - 7 - 37 - 39 - 75 - 64 - 61 - 58 - 51 992.25

AppendixB. Computation times and space memory

We give here the computation times and the occupied space memory for one run of robust

routing calculus (at a given node and independent of the vehicular traffic simulation) in the

case of correlated link travel times, and for varied number of links a, and varied number of

time horizon units T/∆t.
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Table B.3: Computation times in seconds (s.) and space memory in Megabytes (MB) for one run of robust
routing calculus in the case of correlated link travel times, and for varied number of links a, and varied number
of time horizon units T/∆t.

PPPPPPPPPa
(T/∆t) 35 40 45 50

20 363 s. 480 s. 611 s. 743 s.
71.3 MB 71.7 MB 72.2 MB 72.7 MB

30 876 s. 1157 s. 1424 s. 1746 s.
73.1 MB 73.9 MB 74.7 MB 75.6 MB

50 2455 s. 3251 s. 4182 s. 5178 s.
75.1 MB 76.7 MB 78.5 MB 80.4 MB

76 3367 s. 4409 s. 5646 s. 6966 s.
79.9 MB 82.7 MB 85.8 MB 89.2 MB

The implementation is done with Python 3 on an Intel (R) Xeron (R) CPU E5-2609

v3, 1.90 GHz, single thread. As mentioned above, the implementation of the robust routing

algorithm and of its combination with the vehicular traffic simulation are not optimized here.

We intend to do the optimization of the implementations in our future works.
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