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Handling visual features losses during a coordinated vision-based task
with a dual-arm robotic system

Renliw Fleurmond1 and Viviane Cadenat1

Abstract— We address the problem of total visual features
losses during a coordinated vision-based task. We present a
new method allowing to reconstruct these features even if the
image is completely unavailable. Contrary to previous works,
the proposed technique allows to deal with moving objects
characterized by both points and lines features. Simulation
results show the relevance of the proposed approach.

I. INTRODUCTION

Nowadays, robots are more and more expected to operate
in human friendly environments. This trend is visible in both
industrial and service settings. The considered applications
are various and range from domestic tasks [1] to manufactur-
ing missions [2]. To successfully realize these typical human
tasks, bi-manual systems have been intensively developed.
As a consequence, the interest for dual arm manipulation has
increased [3], [4]. This problem can be tackled at different
levels and through many approaches. See [4] for a survey.

In previous works [5], we have addressed this problem us-
ing low-level control techniques, and more precisely image-
based visual servoing (IBVS). This technique consists in
using visual features to control a robot [6]. We have proposed
a multi-camera image-based control strategy allowing to truly
coordinate both arms to recap a pen [5]. However, two prob-
lems still occur. First, in the considered task, it is not always
possible to insure the visual features visibility, especially at
the end when the pen is about to be recapped. It follows
that this task cannot be performed if the visual features total
loss is not tolerated. In addition, other phenomenons such as
camera temporary breakdowns or image processing failures
can also lead to the lack of visual features and to a task
failure. The second problem is directly related to the IBVS
controller. Indeed, this controller classically depends on the
interaction matrix which relates the visual signal variation
to the camera and objects motions. This matrix is function
of both the measured visual features and some generally
unknown 3D information [6]. Traditionally, the interaction
matrix is expressed at the absolute pose to be reached [6].
However, this solution cannot be used in our case. Indeed,
to guarantee a true coordination between the arms, it is
necessary to reach a desired relative pose between both
end-effectors, and not an absolute one [5], [7]. Thus, the
interaction matrix must be estimated at each instant.

Our objective is to develop a method allowing to cope
with these two problems: the image cues total losses and the
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interaction matrix estimation. Concerning the first one, we
need methods able to tolerate the total occlusions and not
to simply avoid them as [8], [9]. We have first considered
tracking techniques. They allow to follow mobile or static
objects despite total occlusions. See for example [10], [11].
However, they appear to be unsuitable in our context be-
cause they generally rely on measures extracted from the
image. Other solutions consist in virtually projecting the
visual features describing the object, given the relative pose
between this object and the camera. This method requires
the knowledge of the object 3D structure whereas in IBVS,
this information is a priori unavailable. To recover this
structure, it is possible to use methods based on nonlinear
observers [12], [13]. However, the first one depends on
gains which are difficult to tune a priori [14], while, in the
second one, the camera motion is constrained to maximize
the estimation quality (active vision). It is also possible
to build a predictor/corrector to reconstruct the depth of
pointwise features when images are available and then use
this information to estimate the visual cues if an occlusion
occurs [14]. However, these solutions cannot be used in our
context. First of all, they all are restricted to the case of a
static object characterized by only point-wise visual features
and seen from only one camera. In our case, the cap and the
pen are moving because they are manipulated by two arms.
Furthermore, they are represented by two kinds of visual
features (a point and a line [5]) and seen by two cameras.

In this paper, we propose a method adapted to the different
constraints imposed by the considered task. This method will
be able to reconstruct the 3D structure of the objects in the
presence of images, and then to use this result to compute the
visual features whenever needed. In addition, the estimated
data will be also used to compute the necessary interaction
matrices, showing that our method is able to cope with the
two highlighted problems.

The paper is organized as follows: in section 2, we briefly
recall the initial vision-based control strategy. Then, we
describe the method allowing to reconstruct the objects 3D
structure and the corresponding visual features whenever
they become unavailable. Finally, we present simulation
results showing the efficiency of our approach.

II. PRELIMINARIES
A. The robotic system

1) The robot modeling: Our robotic platform is the PR2
from Willow Garage. It consists of an omni-directional
mobile base equipped with two 7-DOF arms. We suppose
that only the arms are moving. The robot is equipped with



six cameras: four on the head and one on each forearm.
Here, we only use one head camera and one in a forearm
to get complementary points of view. We assume that the
cap and the pen: (i) are respectively gripped by the right and
left arms; (ii) can be seen initially by both cameras; (iii) are
cylindrical and can be described by the same parameters set.

We denote by qr and ql (respectively q̇r and q̇l) the joint
coordinates (respectively the joint velocities) of the right
and left arms. We introduce the different frames which are
necessary to model our problem (see Fig. 1). The frames
Fw, Fr and Fl are respectively linked to the world, the right
and left end effectors, while frames Ff and Fm are attached
to the fixed and mobile cameras. From them, the kinematic
and differential kinematic models of both arms have been
determined [5]. From these models, we can deduce the poses
and the kinematic screws of the end-effectors and of the
different cameras with respect to Fw.
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Fig. 1: The robotic platform and the different frames.

2) The camera modeling: All cameras are supposed to be
calibrated. They are modeled using the pinhole model [15].
In this model, each camera consists of an image plane I
attached to an orthonormal frame linked to the considered
camera FC(C; xC; yC; zC) as shown on Fig. 2. The image
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Fig. 2: Pinhole camera model

plane I is parallel to the (xC; yC) plane and the distance
between those two planes along zC is known as the focal
length f (see Fig. 2). When considering a pinhole camera
model, a 3D point of the environment p whose coordinates
in the camera frame are given by the triple (x,y,z), can be
projected in the image plane. The coordinates of the so-
obtained 2D point P are given by the perspective projection
equations as follows: X = f x/z and Y = f y/z.

B. Modeling the task

1) Choosing the visual features: The cap and the pen are
supposed to be cylindrical objects. To perform the task, it
is necessary to position them in the image and to monitor
the translation of each cylinder along its axis. Three visual
features suffice to respect these requirements [5]: the polar
parameters (ρ, θ) of the cylinder inertia axis (the grey
coloured part in Fig. 3) and parameter k which expresses
the position of one end point r (xr;yr) of the cylinder on
the straight line (see Fig. 3). Thus our image cues vector S
is defined by S = [ρ θ k]T . We denote by S f c and Smc the
visual features corresponding to the cap seen by respectively
the fixed and the moving cameras, by S f p and Smp the visual
features corresponding to the pen seen by respectively the
fixed and the moving cameras. More details about the visual
features and their interaction matrices can be found in [5].
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Fig. 3: Visual features used: ρ, θ and k.

2) Definition of the manipulation task: To recap the pen,
the robot has to align both cylinders before connecting them.
We then divide the task into three subtasks: (i) making both
cylinders axes coplanar while ensuring a sufficient distance
between the two objects ; (ii) aligning the latter axes ;
and (iii) bringing the cap near the pen. Thus, it suffices
to sequence these three substasks to recap the pen. Now, it
remains to model them and to design a suitable control law.
To do so, we have chosen to use the task function formalism
[16]. In this framework, the task is modeled by a function
e(q, t) chosen so that its regulation will ensure the realization
of the mission. We have shown in [5] that the sequence of the
following task functions ei (i={1,2,3}) represent the above
mentioned task and can be written as follows :

ei = Hi ·
([

Smc−Smp
S f c−S f p

]
−αi

)
(1)

where Hi is an activation matrix allowing to select only the
necessary visual features for the current task function ei,
and αi is a constant vector intended to monitor the distance
between the cap and the pen. Note that the task functions
ei express as a relative error between the visual features
representing the cap and the pen. In this way, the task can be
executed in a coordinated manner. Note also that this task is
based on visual data provided by several cameras. A multi-
cameras visual servoing will then be designed.



C. The multi-cameras vision based control strategy

As classically done in the visual servoing area [6], we have
chosen to impose an exponential decay to make ei vanish.
The corresponding controller is given by [5], [6] :

q̇ =−Ji
+

λiei (2)

where λi is a positive gain or a positive-definite matrix, Ji the
Jacobian of the task function, J+i its Moore-Penrose inverse
and q =

[
qT

r qT
l

]T . The expression of Ji and its computation
are detailed in [5]. However, the above mentioned control
law only makes the current task function ei decrease to zero.
From this, it follows that the different control laws must be
sequenced to perform successively the three subtasks. To do
so, we use the following control law [5]:

q̇(t) = q̇N(t)− exp(−µ(t− ts))(q̇N(ts)− q̇C(ts)) (3)

where q̇C(t) and q̇N(t) are respectively the current and next
controllers to be applied to the robot, ts is the switching
instant and µ ∈ R∗+ regulates the transition delay. The
switching between the controllers occurs when the norm of
the corresponding tasks drops under a given threshold.

III. OCCLUSION HANDLING STRATEGY

As previously mentioned, we cope with two problems: the
image cues total losses and the interaction matrix estimation.
To do so, we have chosen to estimate the 3D structure during
the execution of the task, while the images are available.
We then use this result to compute the interaction matrices
and the visual features whenever it is needed. The proposed
method is summarized in the algorithm 1. At first, very
rough values for the 3D structure are provided from which
the interaction matrices are determined. These values are
refined by our estimation process using the available images.
Once this process has converged (t > tc), the interaction
matrices are computed with the reconstructed 3D structure.
At this time, the system is ready to deal with the problem
of occlusions. If such a problem occurs, the control law
is computed using the estimated visual features instead of
the measured ones. In this way, it is possible to keep on
executing the task despite the image loss.

Now, we focus on our estimation process. To build it, we
have made several choices. First of all, contrary to [14],
we minimize a quadratic criterion expressing the distance
between the bundles and the objects 3D structure. In this
way, it is possible to use all the images provided by all the
cameras before the occlusion to refine the estimation, without
significantly increasing the computational cost. The visual
features can then be reconstructed sufficiently rapidly with
respect to the control law sampling period, which allows to
reuse them to feed our IBVS control law. Furthermore, by
considering the totality of the available images, our method
remains accurate, even at the end of the task when the motion
of the objects is reduced1. The second fundamental aspect

1The techniques proposed in [14] might suffer from this drawback if
the constant number of images which is used for the reconstruction is not
sufficient.

Algorithm 1: Extended visual servoing loop.

3DStructure model = initialvalues();
3DStructure estim = initialvalues();
dt > 0; // period of the control loop.
tc > 0; // Time for convergence of estimation.
t = 0;
repeat

if Features available then
S = processLastImage();
estim = estimation(S);
if t > tc then

L = interactionMatrix(estim);
else

L = interactionMatrix(model);
end

else
S = projection(estim);
L = interactionMatrix(estim);

end
e = computeTask(S);
J = computeTaskJacobian(L, q);
q̇ = computeControlLaw(e, J);
sendControlToRobot(q̇);
t = t +dt;

until ‖e‖< threshold;

concerns the frame in which we have chosen to reconstruct
the 3D structure. This frame is defined by the frame attached
to each object. In this way, the estimated data will converge
towards a constant value, making the implementation easier.

Now, we focus on the reconstruction of the point and the
line. We detail the method for one mobile object and we
will consider n images provided by all the cameras during a
time interval. As explained above, we introduce a frame Ft
linked to the manipulated object (the cap or the pen). As the
object has been already grasped, we have chosen Ft so that
it is identical to the corresponding end-effector frame. Let
us recall that the transformations between the world frame
Fw and the end-effector frames on one hand and Fw and the
fixed and mobile cameras on the other hand are known. We
can then deduce the transformation between Ft and all the
considered camera frames at any time.

A. Estimation of pointwise visual features

Our first goal is to estimate the 3D point R corresponding
to point r in the image plane (see Fig. 3). We aim at
estimating the constant coordinates R̄ of R in Ft . To do
so, we introduce the following definitions. We denote by
(xri , yri) the projections of this point in the ith image.
We denote by Ci a position of the optical center of one
camera and by C̄i its coordinates in Ft (see Fig. 4). These
coordinates can be easily deduced from the above mentioned
transformations. We also introduce ∆i as the line of sight
connecting Ci to the measured point ri. Its unitary direction
vector

−→
V i can be expressed in the camera frame as follows:
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Fig. 4: Geometric error in point case.

1√
x2

ri
+y2

ri
+ f 2

[
xri yri f

]T . From this, we can compute its

components V̄i in frame Ft . Finally, we define Ri as the point
given by the orthogonal projection of point R on ∆i.

Now, let us state our problem. From Fig. 4, it follows that,
for the 3D point R to be properly estimated, it is necessary
to minimize the distances which separate each point Ri from
point R. The geometric error Dn can then be defined for the
n available images by:

Dn =
n

∑
i=1

di with di = (R̄− R̄i)
T
(R̄− R̄i) (4)

where R̄i represents the coordinates of point Ri in Ft . They
express as follows:

R̄i = V̄iV̄ T
i · (R̄−C̄i)+C̄i (5)

Using (5) into (4) leads to:

di = R̄T
ΠiR̄−2R̄T

ΠiC̄i +C̄T
i ΠiC̄i (6)

where Πi is the symmetrical projector I3−V̄iV̄ T
i . From this

and relation (4), we deduce:

Dn = R̄T
ΦnR̄−2R̄T

βn +σn (7)

with : Φn =
n

∑
i=1

Πi βn =
n

∑
i=1

[ΠiC̄i] σn =
n

∑
i=1

[C̄T
i ΠiC̄i]

Dn is then a quadratic function of R̄. Minimizing it leads to
the following estimator of R̄: R̂n = [Φn]

+
βn.

Let us remark that Φn is a 3× 3 hermitian matrix. Two
cases may occur. Either all points Ci are aligned with R,
then Φn is a rank 2 positive semi-definite matrix, and there
exits an infinite number of solutions. The pseudo inverse
provides the nearest point to the origin of Ft . Or n > 1, Φn
is an invertible positive definite matrix: Φ+

n = Φ−1
n , and the

obtained solution is unique.
Our method can also be implemented iteratively, making

easier the handling of new images:

Φn+1 = Φn +Πn+1 ; βn+1 = βn +Πn+1C̄n+1

R̂n+1 = [Φn+1]
+

βn+1
(8)

The necessary informations to properly estimate R̄ are stored
in low-dimensional elements (a 3×3 matrix and a 3×1 vec-
tor). The implementation complexity is significantly reduced,
making easier the use of this algorithm in a control context.

Finally, it remains to compute the coordinates of point r
in the image. To do so, knowing R̂n, it suffices to use the
perspective projection equations (see section II-A.2).

B. Estimation of the line visual features

We now focus on the estimation of the 3D cylinder axis
denoted by ∆ (see Fig. 5) from which we will deduce the
visual cues ρ and θ. As previously, we estimate the necessary
parameters in the frame Ft linked to the manipulated object.
To do so we first introduce the following definitions. We

Ci

T

−→
N i

P

−→
U

P′

Ft

∆

∆im
πi

Fig. 5: Geometric error in straight line case.

denote by Ci a position of the optical center of one camera.
We also define by ∆im the perceived line in the image plane.
This line is characterized by the visual features (ρi, θi).
Finally, we introduce

−→
N i the normal unitary vector to the

plane πi defined by ∆im and the optical center Ci [15]. Its
components in the camera frame can be deduced from the
visual features (ρi,θi) as follows [15]:

1√
f 2 +ρ2

i

[
f cosθi f sinθi −ρi

]T (9)

As previously, our idea is to express a geometrical error.
To do so, we first choose a suitable representation for the
straight line materializing the cylinder axis: a 3D point P∈ ∆

which is the nearest to the origin of Ft and a unitary direction
vector

−→
U (see Fig. 5). It then follows that:

P̄T ·Ū = 0 and ŪT ·Ū = 1

where P̄ and Ū represent the components of P and
−→
U in

Ft . Thus, our goal is to estimate these constant parameters
using the information ρi, θi extracted from n images. To
this aim, we define the geometric error so that it vanishes
when the projection error is zero. Fig. 5 shows that this
condition is fulfilled when ∆ and ∆im belong to πi, that is
if two distinct points of ∆ belong to this plane. To ease the
problem modeling, the points have been chosen so that their
coordinates in Ft can be easily expressed from the parameters
describing the 3D line. P and P′ both satisfy this property
(see Fig. 5). Point P′ is defined such that its coordinates in
Ft are given by P̄′ = P̄+Ū . The geometric error at instant ti
can then be defined by:

gi = (P̄′−C̄i)
T N̄iN̄T

i (P̄′−C̄i)+(P̄−C̄i)
T N̄iN̄T

i (P̄−C̄i) (10)

where N̄i is the components of
−→
N i in Ft . Defining

Θi = N̄iN̄T
i , ξi = ΘiC̄i and εi = C̄T

i ξi, gi can be rewritten as:

gi = 2P̄T
ΘiP̄+2P̄T

ΘiŪ−4P̄T
ξi +ŪT

ΘiŪ−2ŪT
ξi +2εi



Now, we consider the sum of these errors over n images:

Gn =
n

∑
i=1

gi = 2P̄T [
n

∑
i=1

Θi]P̄+2P̄T [
n

∑
i=1

Θi]Ū−4P̄T [
n

∑
i=1

ξi]

+ŪT [
n

∑
i=1

Θi]Ū−2ŪT [
n

∑
i=1

ξi]+2
n

∑
i=1

εi

(11)
Introducing: Ψn = ∑

n
i=1 Θi, δn = ∑

n
i=1 [ξi], µn = ∑

n
i=1 [εi], it

is possible to obtain a simpler expression of the total error:

Gn = 2P̄T
ΨnP̄+ŪT

ΨnŪ +2P̄T
ΨnŪ−4P̄T

δn −2ŪT
δn +2µn

(12)
Now, it remains to minimize this error with respect to P̄ and
Ū . Derivating Gn with respect to these parameters leads to:

ΨnP̄−δn = 0 (13)
ΨnŪ = 0 (14)

From equation (13), the estimator P̂ of P̄ is given by:
P̂n = [Ψn]

+
δn. As Ψn is a 3× 3 matrix obtained by adding

rank 1 positive semi-definite hermitian matrices, its rank is
necessarily greater than or equal to 1. Two cases may occur:
either all πi are identical (degenerate case), Ψn is rank 1 and
it is impossible to determine the line [15] ; or, this matrix is
rank 2 and the 3D line can be determined. Assuming Ψn is
rank 2, we can deduce from equation (14) that Ū ∈ ker(Ψn).
The estimator Û of Ū will then be defined by the eigenvector
associated to the smallest eigenvalue of Ψn.

Our estimator can also be expressed using the following
iterative formula:

Ψn+1 = Ψn +Θn+1 δn+1 = δn +Θn+1C̄n+1

P̂n+1 = [Ψn+1]
+

δn+1

Ûn+1 = associed vector to smallest eigenvalue of Ψn+1

Now it remains to compute the visual features corresponding
to the 3D line. To this aim, we first compute the equation
of the plane defined by Ci, P and P′. The normal vector to
this plane is given by :

−→̂
Ni =

−→
CiP̂×

−→̂
U . From this relation,

we can deduce the following equation for the considered
plane in the camera frame: aix+biy+ciz= 0 where (ai,bi,ci)

correspond to the components of
−→̂
Ni in the camera frame. The

2D projected line is then given by the intersection of this
plane with the image plane defined by z = f . Its equation
then expresses as: aix+biy+ci f = 0. From this, (ρ̂i, θ̂i) can
be deduced as follows [17]:

ρ̂i =−
ci f√

a2
i +b2

i

θ̂i = arctan(bi/ai)

IV. SIMULATION RESULTS

These results have been obtained using ROS and Gazebo.
To get closer to experimental conditions, we have added a
Gaussian noise on the visual features (mean = 0, standard
deviation = 2 pixels)2 and on the joint positions and velocities
(mean = 0, covariance 7.6× 10−9). We consider the task

2The sensors provide 640 × 480 pixels images.

consisting in recapping a pen. At the beginning, it is assumed
that the cap and the pen have already been grasped by the
robot, and that the visual features are fully available. After
3 seconds, we simulate an image processing failure on both
cameras to evaluate our method in the worst case. At t = 6
seconds, the visual features are available anew. The evolution
of the corresponding task functions and control inputs are
shown on Fig. 9 and 10, while the estimated parameters are
illustrated on pictures 6, 7, and 8. The time instants between
which the image cues are totally lost are materialized by the
dotted red and blue vertical arrows on each figure. These
plots will allow to evaluate the efficiency of our approach.

We first focus on Fig. 6, 7 and 8. They respectively show
the evolution of P̄, Ū and R̄ for the pen. As their real values
have been initially set to (in meters): P̄ =

[
0 0 0

]T , Ū =[
0 0 1

]T , R̄ =
[
0 0 0.07

]T .
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The obtained curves show that the estimators of these
parameters quickly converge towards their real values despite
the different added noises. The residual error is very small
(less than 1 millimeter), because the 3D parameters are
estimated using the information provided by two cameras.
When only one view point is available, the performances are
lower but remain satisfactory.

When the image processing failure occurs, the algorithm
has already converged and an estimation of the 3D point and
of the 3D line have been obtained. From them, the visual
features are computed and then used to feed the control law.
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Fig. 9 and 10 show that the evolution of the task functions
and of the control law are not perturbed during the image
processing failure, which demonstrates the method accuracy.
Let us also remark that e1, e2 and e3 vanish, which means
that the pen is correctly recapped. Thus, the vision-based
task is successfully performed despite the total loss of the
visual features in both vision systems.

V. CONCLUSION

In this paper, we have dealt with the image features total
loss during a coordinated vision-based task. The proposed
solution allows to cope with the specificities of this task,
namely: the manipulated objects are moving and they are
perceived by several mobile cameras. Its main originality
lies in the idea of reconstructing the 3D structure parameters
directly in the frame linked to each object. This idea allows
to reconstruct only constant data. In addition, the method
benefits from a low computational cost, which allows to use
the different data in the control loop.

We are now working experimentally to couple the pro-
posed estimation approach to the existing vision-based con-
trol strategy. We also plan to evaluate the robustness of the
estimation technique in the presence of calibration errors.
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