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An anticipative reactive control strategy to deal with unforeseen
obstacles during a multi-sensor-based navigation task

Adrien Durand Petiteville1 and Viviane Cadenat2

Abstract— We address the problem of the rangefinder-based
avoidance of unforeseen static obstacles during a visual navi-
gation task. We extend previous strategies which are efficient
in most cases but remain still hampered by some drawbacks
(e.g., risks of collisions or of local minima in some particular
cases, etc.). The key idea is to complete the control strategy
by adding a controller providing the robot some anticipative
skills to guarantee non collision and by defining more general
transition conditions to deal with local minima. Simulation
results show the proposed strategy efficiency.

I. INTRODUCTION

Autonomous navigation is a well-known problem which
has been the source of countless contributions. It roughly
consists for the robot in reaching a pre-defined goal through
a cluttered environment [1]. In the robotics literature, the
navigation strategies are traditionally splitted into two cat-
egories: the map-based ones and the mapless (or reactive)
ones [1], [2], [3]. The first approach covers methods which
require an a priori knowledge of the environment. In other
words, a map of the scene must be provided to the robot
before the mission begins. It then consists in extracting and
following a path connecting the initial position to the goal to
perform the task. However, doing so, this kind of methods
assume that the environment does not change while the robot
is moving [4], which does not allow to take into account the
unexpected events. Indeed, while navigating, the robot has
to deal with static (e.g. walls), semi-static (e.g. chairs) or
dynamic (e.g. humans) obstacles. If the first ones can be
easily included in the map, it is not the case of the two
last ones which may lead to unforeseen risks of collisions.
Thus these techniques appear to introduce some rigidity
in the navigation system, even if improvements have been
made by developing methods allowing to re-plan a new path
[5], [6] or to locally modify the robot trajectory [7], [8].
The second category of approach covers reactive techniques
which allow to deal much more efficiently with unforeseen
events. In this case, the robot will move through the scene
depending on the goal to be reached and on the sensory
data perceived during the navigation [3]. Some well-known
techniques belong to this category: the extended potential
field [9], the global DWA [10] or the VFH* technique [11].
An interesting overview of such approaches can be found in
[2], [12].
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Our works focus on the sensor-based navigation in a
cluttered environment using the task function approach [13].
While navigating towards the target using a visual servoing
controller, the robot may have to deal with unforeseen static
and semi-static obstacles. To overcome this issue, we have
chosen to design a path following controller allowing to
make the robot move on a security envelope. The key idea
was to switch between these two controllers designed using
the task function approach. Although the proposed strategy
has led to very interesting results [14], it still suffered from
several drawbacks. First of all, the bypassing motion is
started only when the obstacle becomes really dangerous,
that is when the robot enters a predefined zone around it.
This strategy may increase the risk of collision in some
cases (e.g., the robot velocity is too fast, the zone is too
small, etc.). All these parameters can be hardly set a priori
and their values will depend on the context. The same
problem holds for the transition conditions allowing to switch
between the vision-based task and the obstacle avoidance.
Indeed, they strongly depend on multiple parameters which
may greatly differ depending on the environment, the task,
the robot, etc. It is then difficult to properly tune them a
priori and to obtain a set of parameters suitable for any
vision-based task. Thus, the previously proposed strategies
suffer from a lack of generality which induces problems
of local minima, unexpected collisions, etc. Our goal is to
improve and generalize them. First, we have developed a new
controller which allows to ease the bypassing motion and
which does not rely on any particular parameter. Second, we
have also improved the supervision algorithm by determining
novel transition conditions based on the prediction of the
effects of the controllers on the robot behavior. Finally, we
have also proposed a new method allowing to sequence the
controllers more easily. The obtained control strategy is then
more generic.

The article is organized as follows. We first describe the
robotic system and our previous navigation strategy. We
then detail our contributions. Finally, we present simulation
results validating our approach.

II. PRELIMINARIES
A. System modeling

The considered system is a differential robot equipped
with a camera mounted on a pan-platform and a laser
rangefinder able to detect the obstacles. Fig 1(a) shows the
robot model, which requires to define the successive frames:
FO attached to the world, FM linked to the robot, FP
attached to the platform, and FC linked to the camera. Let θ



be the direction of the robot wrt. ~xO, ϑ the direction of the
pan-platform wrt. ~xM , P the pan-platform centre of rotation,
Cx and Cy the coordinates of C in FP , and Dx the distance
between M and P . Defining vector q = (l, θ, ϑ)T where l
is the robot curvilinear abscissa, the control input is given
by q̇ = (υ, ω,$)T , where υ and ω are the cart linear and
angular velocities, and $ is the pan-platform angular velocity
wrt. FM . Thus, we obtain the following kinematic model:

χ̇ =


ẋ(t)

ẏ(t)

θ̇(t)

ϑ̇(t)

 =


υ(t) cos(θ(t))

υ(t) sin(θ(t))

ω(t)

$(t)

 (1)

(a) The robot model (b) The camera pinhole model

Fig. 1: The robotic system

We now describe the pinhole model used to represent the
camera (Fig. 1(b)). A point P , with coordinates (X,Y ) in the
image plane, is the projection of a point p, with coordinates
(x,y, z) in FO. Moreover we define z as the depth in FC
of the projected point p and f as the camera focal length.

A landmark, which can be characterized by a number
k of points Pi (for i ∈ [1, ..., k]) in the world frame,
is represented by a 2k-dimensional vector s made of the
coordinates (Xi, Yi) in the image plane. For such a robot
and visual features, the relation between ṡ and q̇ is given by:

ṡ = L(s,z)Jr q̇ (2)

where Jr is the robot jacobian [15]

Jr =

 − sin(ϑ(t)) Dx cos(ϑ(t)) + Cx Cx

cos(ϑ(t)) Dx sin(ϑ(t))− Cy −Cy
0 −1 −1

 (3)

and L(s,z) = [LT(P1)
, ..., LT(Pk)]

T the interaction matrix. L(Pi)

is classically given by [16]:

L(Pi) =

(
Lx(si, zi)

Ly(si, zi)

)
=

(
0 Xi

zi
XiYi
f

− f
zi

Yi
zi

f +
Y 2
i

f

)
(4)

B. The control strategy
We now recall the main principles of our earlier control

strategy. We have chosen a reactive strategy made of several
controllers. They respectively allow to perform the vision-
based task and the obstacle avoidance. It will then suffice to
switch between them when necessary to perform the task. We
first present the two controllers and the sequencing method
before highlighting the limitations of the approach.

1) The vision-based controller: The vision-based naviga-
tion task consists in positioning the camera with respect to
the above static landmark. To do so, we have used an image-
based visual servoing (IBVS) controller whose goal is to
make the current visual signals s converge to their reference
values s∗ obtained at the desired pose for the camera. To
perform this task, we apply the visual servoing technique
given in [16] to mobile robots as in [17]. The approach
relies on the task function formalism [13] and consists in
expressing the visual servoing task by the following task
function to be regulated to zero:

evs = s− s∗ (5)

By imposing an exponential decrease on evs to make it
vanish, we obtain the following a controller [15] :

q̇vs = −(L(s,z)Jr)
+λvs(s− s∗) (6)

where λvs is a positive scalar or a positive definite matrix.
2) Obstacle avoidance: We now recall our obstacle avoid-

ance technique [14]. The strategy consists in making the ve-
hicle avoid the obstacle1 by following the security envelope
ξ0 (Fig. 2). To design the desired controller, the following

Fig. 2: Collision detection

task function has been defined [14]:

emb = (l − vrt δ + κoaα)
T (7)

where l is the curvilinear abscissa of point M , while δ and α
respectively represent the distance and the relative orientation
between the robot and the obstacle (Fig 2). κoa is a positive
gain to be fixed and vr the desired linear velocity. The first
component allows to regulate the linear velocity to vr. The
second component can be seen as a sliding variable whose
regulation to zero makes both δ and α vanish. Thanks to task
(7), only the mobile base is controlled. To keep the target
in the camera field of view during the avoidance phase, we
define a specific task function for the pan-platform:

epp = Y0 (8)

where Y0 is the abscissa of the visual pattern gravity center.
We now obtain eoa = (eTmb epp)

T for the obstacle avoidance.
Following the same reasoning as for visual servoing, a
controller making eoa vanish is given by:

q̇oa = J−1
oa (−λoaeoa −A) (9)

1We will suppose in the sequel that the obstacles are non-occluding.
However, note that we have already proposed efficient solutions to this
problem in previous works [15], [18].



where λoa is a positive scalar, A = ( −vr 0 0 )T and:

Joa =

 1 0 0

sin(α)− κoaχoa cos(α) κoa 0
LY0

Jr

 (10)

χoa =
1
R

1+ σ
R δ

, with R the curvature radius of the obstacle and
σ = {−1, 0, 1} depending on the sense of the robot motion
around the obstacle. LY0 = (− f

z0
, Y0

z0
, f +

Y 2
0

f ), and z0 is
the depth of the visual pattern gravity center. It should be
noticed that the obstacle avoidance task is admissible as the
task function jacobian Joa is invertible (see [14]).

3) Sequencing the controller: The strategy requires to
switch between q̇vs and q̇oa whenever necessary. It is manda-
tory to preserve the global control law continuity sent to
the robot at the switching instant. In previous works, we
have used two main techniques to fulfill this objective [14].
The first one relies on convex combination of q̇vs and
q̇oa. Although it is simple, it is sensitive to local minima
because two antagonist controllers can act on the robot at the
same time. The second one, known as dynamical sequencing
[19], has been developed to solve this problem. It insures
the values of the successive controllers are identical at the
switching time, guaranteeing the control law continuity [14].

C. Parameters estimation for visual servoing

As indicated in the introduction, the novel transition con-
ditions rely on the prediction of the effects of the controllers
on the robot behavior. To do so, concerning the IBVS, it
is necessary to predict the visual features (Xi, Yi) and their
depth zi. We have already developed such tools to answer the
problem of the visual features loss during the navigation task
[15], [18]. We plan to use them to fulfill another purpose.
We briefly summarize the estimation algorithms below.

1) The current visual features reconstruction: In [15], we
have developed a method allowing to reconstruct the visual
features when the image is totally unavailable. The idea was
to integrate the dynamical system (2) during a time control
interval [tk−1, tk], with tk = tk−1 +Ts and Ts the sampling
period. We have then obtained an analytical solution which
provides the values of Xi(k), Yi(k) and zi(k) using Xi(k−
1), Yi(k − 1), zi(k − 1) and q̇(k − 1). This method requires
the initial values of Xi(t), Yi(t) and zi(t). The two first ones
can be easily obtained from the image processing, while it
is not the case of the last one which must be estimated.

2) The visual feature depth estimation: To provide the
necessary depths for II-C.1, we have developed in [18] an
estimation process based on a predictor/corrector pair using
a number m of previous images. This latter characteristic
allows to improve the signal/noise ratio, making the method
robust to image processing and odometry errors, thereby
increasing the depth estimation accuracy.

D. Evaluation of the control strategy

Our control strategy is purely reactive. It relies on switch-
ing between two controllers (visual servoing and obstacle
avoidance). This kind of approach presents the advantage

to deal easily with unforeseen events, but they suffer from
the existence of local minima. When designing this strategy,
we have paid a particular attention to this problem by: (i)
guaranteeing the robot is always given a nonzero linear
velocity during obstacle avoidance; and (ii) avoiding that
two opposite controllers act at the same time on the vehicle.
Thanks to our strategy, in most cases, the robot was able
to reach the goal while avoiding obstacles. However, a deep
analysis of the results has shown that some problems still
may arise [14].

First, the avoidance motion is started only when the
obstacle becomes really dangerous, that is when the robot
enters the zone surrounded by ξ0. Thus, if d0 is chosen
too small or if the vehicle cannot turn sufficiently fast, a
collision might still occur. Furthermore, it is quite difficult
to tune parameters a priori. As a consequence, this region
is often overestimated, preventing the vehicle from moving
through narrow passages between obstacles. The second
problem is related to the choice of the transition conditions.
These conditions cannot be easily set because their values
depend on multiple parameters. The last problem concerns
the control law continuity at the switching time. We have
chosen to use the dynamical sequencing technique to avoid
the local minima problem. However, this technique requires
to design all the controllers to be sequenced using the
task function approach, which may appear limited. Thus, as
shown above, although the current strategy offers interesting
results, it is still hampered by some problems which are
mainly due to a lack of generality. We then propose new
solutions allowing to make our control strategy more generic
and more efficient.

III. EXTENDED CONTROL STRATEGY

Now, we focus on our contribution. First, we have added
a new anticipative controller which modifies the robot tra-
jectory by considering the obstacle before entering the area
surrounded by ξ0. Thus, the robot will begin turning sooner
and will reach the security envelope in such a way that the
avoidance motion is significantly eased and does not depend
anymore on particular parameters. Then, we propose general
transition conditions based on the prediction of the evolution
of the visual features. Our last contribution will concern the
extension of the sequencing methods to more general cases.

A. The anticipative controller

This controller is intended to provide the robot some
anticipative skills to ease the avoidance motion. The idea
is to make the robot turn before the obstacle becomes really
dangerous to reach the security envelope with a proper orien-
tation and a proper linear velocity. To do so, the controller is
defined so that: (i) the robot direction is aligned with respect
to the obstacle tangent ~T (Fig. 2) and (ii) the robot linear
velocity is equal to vr. We propose the task function:

eanti =
[
l − vrt α

]T
(11)

where α is the same angle as in figure 2. It is important
to note that no relative distance to the obstacle is imposed.



The aim of the anticipative controller is to modify the
robot trajectory before it enters the area surrounded by ξ0.
However, this task function just allows to control the mobile
base, while it is also necessary to keep the target in the
camera line of sight. We propose to use task function epp
which is able to center the landmark in the image. Finally,
we will consider ea = (eTanti epp)

T . Making it vanish using
an exponential decrease, we get:

ėa = Jaq̇a +A = −λaea (12)

where λa is a positive scalar or a positive definite matrix and
q̇a = [υa ωa $a]

T denotes the anticipation controller. Ja
is given as shown below:

Ja =

 1 0 0

χoa cos(α) 1 0

LY0Jr

 (13)

We can now deduce the anticipative controller:

q̇a = J−1
a

(
− λaea −A

)
(14)

B. The general transition conditions

During the navigation the robot is driven using three
controllers. The role of the supervision process is to select
the most suitable controller according to the context. This
decision will be taken on the base of the sensory data. The
proposed supervision process is illustrated on figure 3. It
is made of three states S0, S1 and S2 which respectively
correspond to the tasks ”IBVS”, ”Anticipate” and ”Avoid
obstacles”. Cij represents the transition condition from state
Si to Sj and depends on geometric parameters and/or predic-
tion of the robot position. We present hereafter the different
transition conditions Cij and the parameters involved in the
decision.

S0 S1

C01

C10

S2

C12
C20

C02

Fig. 3: The control process - S0: IBVS - S1: anticipation -
S2: obstacle avoidance

C01 is the condition to start the anticipation motion while
the robot is performing the IBVS task. The idea is to decide
whether keeping on applying q̇vs is dangerous or not. We
propose to predict the successive robot poses if it remains
driven by q̇vs. To do so, we first place the laser range finder
data in the robot frame. Then, using the visual features
estimation equations and equation (6), we predict the next
na values of the IBVS controller. These successive values
are denoted here by ˙̂qvs(tk + iaTs), with Ts the sampling
time and ia ∈ [1, ..., na]. na corresponds to the number of
predicted steps and allows to define the prediction horizon.

To predict the robot poses, we have solved (1) between tk
and tk+1 = tk + Ts. Assuming that the velocities are kept
constant during the sampling period, we get:


x(k + 1) = x(k) + υ

ω

(
sin
(
ωTs + θ(k)

)
− sin

(
θ(k)

))
y(k + 1) = y(k)− υ

ω

(
cos
(
ωTs + θ(k)

)
− cos

(
θ(k)

))
θ(k + 1) = ωTs + θ(k)

ϑ(k + 1) = $Ts + ϑ(k)
(15)

where υ, ω,$ denote the values of the robot velocities at
instant tk. Now, from this result and using the na values of
˙̂qvs(tk + iaTs), we can predict the successive robot poses
which should be reached under the action of this controller.
We can then easily deduce the distances between the robot
predicted positions and the measured parts of the obstacle.
We denote by d̂coll(tk + iaTs) these distances.

If d̂coll(tk + iaTs) < d0 for any ia ∈ [1, ..., na]

then C01 = 1, otherwise C01 = 0

In this way, some anticipation skills are provided to the
vehicle. Moreover, it allows to consider only the most
disturbing obstacles, that is those which are on the possible
path of the robot.

As we have seen the prediction is done by using na
times the visual features evolution and robot state evolution
equations. This process is not really time consuming with
respect to others processes such as image processing. For
this reason, the value for na could only be selected based
on the sampling time and the average robot speed in order
to accurately anticipate an obstacle.
C10 is the condition to stop the anticipation movement and

to start executing the IBVS task again. This condition must
be set to 1 when the obstacle concerned by the anticipation
is not dangerous anymore.

If d̂coll(tk + iaTs) > d0 for all ia ∈ [1, ..., na]

then C10 = 1, otherwise C10 = 0

C12 and C02 are the conditions to start the obstacle
avoidance. They become true when the robot enters the
area surrounded by ξ0. The obstacle is then considered as
dangerous and must be strictly avoided.

If dcoll(tk) < d0 then C12 = C02 = 1

otherwise C12 = C02 = 0

C20 is the condition to stop the avoidance motion and to
start executing the IBVS task again. The approach is similar
to the one used for C10. It consists in predicting the next
successive nout poses reached by the robot under the action
of the IBVS controller.

If d̂coll(tk + iaTs) > d− for any iout ∈ [1, ..., nout]

and dcoll(tk) > d0

then C20 = 1, otherwise C20 = 0



C. The global control law and its continuity

The global control law sent to the robot is defined by
switching between the three controllers q̇vs, q̇oa and q̇a. We
propose to extend the dynamical sequencing technique [19],
[20]. As this technique allows to sequence task functions
(and not directly controllers) [14], it is mandatory to use the
task function formalism [13] to model the whole problem.
Our goal is to propose a solution to be able to sequence any
controllers. Let us denote by q̇i(t) the current controller and
by q̇i+1(t) the next one. To guarantee the global control law
continuity at the switching time ts, it is necessary to ensure
that:

q̇(t) =

{
q̇i(t) ∀t ≤ ts
q̇i+1(t) ∀t ≥ ts

(16)

To this aim, we propose to design the global control law sent
to the robot q̇(t) as follows:

q̇(t) = q̇i+1(t) +
(
q̇i(ts)− q̇i+1(ts)

)
e−γ(t−ts) (17)

where γ is a positive scalar allowing to define the transient
time. As we can see, q̇i+1(ts) = q̇i(ts), which satisfies
constraint (16). The computation of q̇(t) only requires the
current and next controllers which can then be independently
designed. It also guarantees that only one controller acts
on the robot at a time, which was not the case of convex
combination. Our third objective is then fulfilled.

IV. SIMULATION RESULTS

We now describe simulation tests demonstrating the con-
trol strategy efficiency. We propose hereafter two sets of
results which have been obtained using MatlabTMsoftware.
The first ones (Fig. 4) are intended to show the interest of the
proposed approach; the last one (Fig. 4(e)) allows to evaluate
its efficiency in a more tricky environment. In every case, the
goal is to perform a navigation task allowing to position the
camera so that it faces the target.

First, we have set the control strategy parameters as
follows:

λvs = 0.6 λoa = 0.7 λa = 0.5

κoa = 0.1 γ = 500 ms Ts = 0.1 s

vr = 0.5 m/s na = 25 nout = 10

We have also introduced a ±2 pixel noise on the image
features which results on a 20 cm gaussian noise on the
estimated depth value [18]. Finally, we have set the security
distances (d−, d0) to (0.3m, 0.5m) for the first simulation
(see figure 4(a)) and to (0.1m, 0.3m) for all the other ones.
In all cases, the robot trajectory plotted in black is performed
thanks to q̇vs, the one represented in green is realized using
q̇a and the one shown in red is executed using q̇oa.

Now, we focus on the two first simulations represented on
figures 4(a) and 4(b). They have been realized without the
anticipation controller. As one can see in figure 4(a), the task
is correctly performed thanks to a proper switch between q̇vs
and q̇oa when the robot crosses envelope ξ0. On the contrary,
in figure 4(b), the security distances have been reduced and
controller q̇oa is not sufficient to guarantee non collision

(the robot velocity appears to be too high when entering the
dangerous zone). The third simulation has been performed
using the same set of parameters as in the second test.
However, the anticipation controller q̇a has been added into
the control process. As shown in figure 4(c), despite a small
value of (d−, d0), the task is successfully performed. Indeed,
the prediction of the robot behavior controlled using q̇vs
shows that it will make the robot enter the zone surrounded
by ξ0 (d̂coll < d0). Thus, condition C01 is enabled, making
the control law switch to q̇a. Thanks to this controller, the
vehicle starts turning sooner than in figure 4(b) and reaches
ξ0 with an orientation which makes the avoidance motion
easier. When ξ0 is crossed, q̇oa is applied to the robot until
the prediction shows that the obstacle is no more dangerous
and that q̇vs can be applied anew. Thanks to our anticipative
controller, non collision can be guaranteed and the navigation
is less sensitive to the tuning of parameters such as d0
or the control gains. It is illustrated in figure 4(d), where
the obstacle avoidance parameters have been changed to
λoa = 1.5 and κoa = 0.3. This set of parameters will
lead to a collision in the first case (fig. 4(a)). Thanks to
the anticipation controller the robot safety is guaranteed. In
addition to these results, we have also evaluated the effect of
the prediction horizons na and nout on the control strategy.
In figure 4(e), these horizons have been chosen so that
the anticipation step is performed longer than in the third
simulation. In this case, the use of the avoidance controller
q̇oa appears to be unnecessary as the prediction shows that
the obstacle is no longer dangerous. It is then possible to
completely suppress the avoidance step, although it is not
our goal here. Finally, we have also plotted the evolution
of the robot velocities during the navigation task realized in
figure 4(c). The corresponding results are presented on figure
4(f). As one can see, thanks to our sequencing technique,
the corresponding speeds appear to be continuous at each
switching instant. The global control law smoothness is
preserved during the whole navigation task.

To definitely validate our approach, we have also con-
sidered a more tricky environment which is cluttered with
three obstacles (two walls, one cylinder). This environment
has been designed so that the robot has to go through a
narrow passage to complete the mission. The obtained robot
trajectory is shown on figure 5. As we can see, the task is
successfully performed. The three controllers are sequenced
in such a way that the robot does not collide with the walls
and that it is able to navigate between them. It is particularly
interesting to remark that, to cross the narrow passage, the
robot is driven by visual servoing as the prediction shows
that applying this controller allows to leave the dangerous
zone. Once this phase is over, the anticipative controller is
launched because the predicted distance d̂coll to the cylindric
obstacle drops under d0. Finally, when it has been verified
that the last obstacle does not induce any risk, the IBVS
controller is sent to the vehicle again and the goal is reached.
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(b) Navigation without
anticipation step ((d−, d0) =
(0.1m, 0.3m)).
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(c) Navigation with anticipation step
((d−, d0) = (0.1m, 0.3m)).
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(d) Navigation with anticipation step
(λoa = 1.5, κoa = 0.3)
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(e) Navigation with anticipation step
(na = 30).
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(f) Robot velocities evolution corre-
sponding to simulation 4(c).

Fig. 4: Navigation simulations results - Black: visual servo-
ing - Green: anticipation - Red: obstacle avoidance.
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Fig. 5: A navigation task through narrow passages.

V. CONCLUSION

We have addressed the problem of the avoidance of
unforeseen obstacles during a vision-based navigation task.
We have extended previous strategies, making them more
efficient and general. Three main contributions can be high-
lighted: first, the design of an anticipative controller able to
make the robot reach the security envelope with a proper
speed and a proper orientation. The sensitivity of the control
strategy with respect to key parameters can then be signif-
icantly reduced. As second contribution, we have exhibited
new general transitions conditions which allow to suppress
local minima due to bad switching decisions. The third

contribution concerns the global control law smoothness.
As for future works, we first plan to integrate this strategy

in our latest works [21] dedicated to visual navigation to
improve the overall execution of the task. Furthermore,
mobile obstacles bypassing appears to be a fundamental
issue. We then plan to extend this strategy to take into
account such obstacles.
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