
HAL Id: hal-01959391
https://hal.science/hal-01959391v1

Submitted on 19 Dec 2018 (v1), last revised 7 Jan 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Proofs for Lattice-Based Cryptography
Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie

Jacomme, Elaine Shi

To cite this version:
Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie Jacomme, et al.. Symbolic
Proofs for Lattice-Based Cryptography. CCS 2018 - Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security Canada, October 15-19, 2018, Oct 2018, Toronto, Canada.
pp.538-555, �10.1145/3243734.3243825�. �hal-01959391v1�

https://hal.science/hal-01959391v1
https://hal.archives-ouvertes.fr

Symbolic Proofs for Lattice-Based Cryptography
Gilles Barthe

IMDEA Software Institute

Madrid, Spain

gilles.barthe@imdea.org

Xiong Fan

Cornell University

Ithaca, NY, USA

xfan@cs.cornell.edu

Joshua Gancher

Cornell University

Ithaca, NY, USA

jrg358@cornell.edu

Benjamin Grégoire

INRIA

Sophia-Antipolis, France

benjamin.gregoire@inria.fr

Charlie Jacomme

LSV & CNRS & ENS Paris-Saclay &

Inria & Université Paris-Saclay

charlie.jacomme@lsv.fr

Elaine Shi

Cornell University

Ithaca, NY, USA

elaine@cs.cornell.edu

ABSTRACT
Symbolic methods have been used extensively for proving secu-

rity of cryptographic protocols in the Dolev-Yao model, and more

recently for proving security of cryptographic primitives and con-

structions in the computational model. However, existing methods

for proving security of cryptographic constructions in the compu-

tational model often require significant expertise and interaction,

or are fairly limited in scope and expressivity.

This paper introduces a symbolic approach for proving security

of cryptographic constructions based on the Learning With Errors

assumption (Regev, STOC 2005). Such constructions are instances

of lattice-based cryptography and are extremely important due

to their potential role in post-quantum cryptography. Following

(Barthe, Grégoire and Schmidt, CCS 2015), our approach combines a

computational logic and deducibility problems—a standard tool for

representing the adversary’s knowledge, the Dolev-Yao model. The

computational logic is used to capture (indistinguishability-based)

security notions and drive the security proofs whereas deducibility

problems are used as side-conditions to control that rules of the

logic are applied correctly. We then use AutoLWE, an implementa-

tion of the logic, to deliver very short or even automatic proofs of

several emblematic constructions, including CPA-PKE (Gentry et

al., STOC 2008), (Hierarchical) Identity-Based Encryption (Agrawal

et al. Eurocrypt 2010), Inner Product Encryption (Agrawal et al.

Asiacrypt 2011), CCA-PKE (Micciancio et al., Eurocrypt 2012). The

main technical novelty beyond AutoLWE is a set of (semi-)decision

procedures for deducibility problems, using extensions of Gröbner

basis computations for subalgebras in the (non-)commutative set-

ting (instead of ideals in the commutative setting). Our procedures

cover the theory of matrices, which is required for lattice-based

assumption, as well as the theory of non-commutative rings, fields,

and Diffie-Hellman exponentiation, in its standard, bilinear andmul-

tilinear forms. Additionally, AutoLWE supports oracle-relative as-

sumptions, which are used specifically to apply (advanced forms of)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243825

the Leftover Hash Lemma, an information-theoretical tool widely

used in lattice-based proofs.

CCS CONCEPTS
• Security and privacy → Cryptography; Logic and verifica-
tion;

KEYWORDS
Symbolic proofs; provable security; lattice-based cryptography

ACM Reference Format:
Gilles Barthe, Xiong Fan, Joshua Gancher, Benjamin Grégoire, Charlie Ja-

comme, and Elaine Shi. 2018. Symbolic Proofs for Lattice-Based Cryptogra-

phy. In CCS ’18: 2018 ACM SIGSAC Conference on Computer & Communica-
tions Security, Oct. 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY,

USA, 17 pages. https://doi.org/10.1145/3243734.3243825

1 INTRODUCTION
Formal methods, and in particular formal verification, have long

been used for building and checking mathematical claims of correct-

ness or security for small but possibly very complex to moderately

large and complex systems. In contrast to pen-and-paper counter-

parts, formally verified claims deliver higher assurance and indepen-

dently verifiable proofs that can be replayed by third parties. Over

the last 20 years, formal methods have been applied successfully to

analyze the security of cryptographic protocols in the Dolev-Yao

model [?], an idealized model in which cryptographic constructions

are treated algebraically. By abstracting away from the probabilistic

nature of cryptographic constructions, the Dolev-Yao model has

served as a suitable and practical foundation for highly or fully au-

tomated tools [? ? ?]. These tools have subsequently been used for

analyzing numerous cryptographic protocols, including recently

TLS 1.3. [? ?]. Unfortunately, the Dolev-Yao model is focused on

cryptographic protocols and cannot be used for reasoning about

cryptographic primitives. A related approach is to use so-called

refinement types (a.k.a. logical assertions) for reasoning about im-

plementations written in a functional programming language [?];
this approach has also been used for analyzing TLS 1.3. [? ?], but
is also primarily limited to cryptographic protocols.

An alternative approach is to develop symbolic methods that rea-

son directly in the computational model. This approach applies both

to primitives and protocols, and instances of this approach have

been instrumented in tools such as CertiCrypt [?], CryptHOL [?
] CryptoVerif [?], EasyCrypt [? ?], and FCF [?] (see also [? ?]

1

https://doi.org/10.1145/3243734.3243825
https://doi.org/10.1145/3243734.3243825

for further approaches not supported by tools). However, these

tools require significant user interaction and expertise, in particular

when used for reasoning about cryptographic primitives.

A promising approach for analyzing cryptographic primitives in

the computational model is to combine computational logics and

symbolic tools from the Dolev-Yao model. Prior work has demon-

strated that this approach works well for padding-based (combin-

ing one-way trapdoor permutations and random oracles) [?] and
pairing-based cryptography [?]. Broadly speaking, computational

logics formalize game-playing security proofs; each step of the

proof corresponds to a hop, and symbolic side-conditions are used

to ensure the validity of the hop. More specifically, computational

logics, which can be seen as specializations of [?], are used to

capture computational security goals and to drive security proofs

whereas side-conditions use symbolic tools such as deducibility

and static equivalence to guarantee that the rules of the logic are

applied correctly. In particular, a key idea of this approach is to use

deducibility for controlling the application of rules for performing

reductions to hardness assumptions, and for performing optimistic

sampling, a particularly common and useful transformation which

simplifies probabilistic experiments by allowing to replace, under

suitable circumstances, sub-computations by uniform samplings.

The use of deducibility in side conditions, as opposed to arbitrary

mathematical conditions, is a necessary step for automating appli-

cation of proof rules, and more generally for automating complete

proofs. However, the interest of this approach is conditioned by the

ability to check the validity of deducibility problems. The problem

of deciding deducibility has been studied extensively in the context

of symbolic verification in the Dolev-Yao model, where deducibility

formalizes the adversary knowledge [? ? ? ? ? ? ? ?]. This line of
work has culminated in the design and implementations of decision

procedures for classes of theories that either have some kind of

normal form or satisfy a finite variant property. However, existing

decidability results are primarily targeted towards algebraic theo-

ries that arise in the study of cryptographic protocols. In contrast,

deducibility problems for cryptographic constructions require to

reason about mathematical theories that may not have a natural

notion of normal form or satisfy the finite variant property.

Thus, a main challenge for computational logics based on de-

ducibility problems is to provide precise and automated methods for

checking the latter. There are two possible approaches to address

this challenge:

• heuristics: rather than deciding deducibility, one considersweaker

conditions that are easier for verification. As demonstrated with

AutoG&P, such an approach may work reasonably well in prac-

tice. However, it is not fully satisfactory. First, the heuristics may

be incomplete and fail to validate correct instances. Second, ad-

vanced proof rules that perform multiple steps at once, and proof

search procedures, which explores the space of valid derivations,

become unpredictable, even for expert users.

• (semi-)decision procedures based on computational mathemat-

ics: in this approach, one provides reductions from deducibility

problems to computational problems in the underlying mathe-

matical setting. Then, one can reuse (semi-)decision procedures

for the computational problems to verify deducibility problems.

This approach offers some important advantages. First, it elimi-

nates a potential source of incompleteness, and in particular the

possibility that a proof step fails. Second, it is more predictable.

Predictability is very important when a high level of automation

is sought. Indeed, automation is often achieved through advanced

tactics. When they involve multiple heuristics, the outcome of

advanced tactics cannot be anticipated, which is a major hurdle

to the adoption of formal verification tools. Third, it formalizes

connections between known mathematical problems, which may

have been extensively studied, and verification problems that

may arise for the first time. Lastly, it encourages reusing existing

algorithms and implementations.

The idea using methods from computational mathematics to rea-

son about deducibility is natural. However, we are not aware of

prior work that exploits this connection in relation with the use of

deducibility in a computational logic.

Contributions
We propose symbolic methods for proving security of lattice-based

cryptographic constructions. These constructions constitute a prime

target for formal verification, due to their potential applications in

post-quantum cryptography and their importance in the ongoing

NIST effort to standardize post-quantum constructions; see e.g. [?
] for a recent survey of the field.

In this paper, we define a logic for proving computational secu-

rity of lattice-based cryptographic constructions. The logic follows

the idea of combining computational proof rules with symbolic

side-conditions, as in [? ?]. One important feature of our logic is

that the proof rule for assumptions supports information-theoretic

and computational assumptions that are stated using adversaries

with oracle accesses. This extension is critical to capture (advanced

cases of) the Leftover Hash Lemma [?]. The Leftover Hash Lemma

is a powerful information-theoretical tool which allows to replace,

under suitable conditions, a subcomputation by a sampling from a

uniform distribution. The Leftover Hash Lemma is widely used in

cryptographic proofs, in particular in the setting of lattice-based

cryptography. We implement our logic in a tool called AutoLWE
(https://github.com/autolwe/autolwe), and use the tool for proving

(indistinguishability-based) security for several cryptographic con-

structions based on the Learning with Errors (LWE) assumption [?
].

More specifically, our examples include: dual Regev PKE [?], MP-

PKE [?], ABB-(H)IBE [?] and IPE [?]. All of our mechanized proofs

are realistically efficient, running in at most three seconds (Fig. 12);

efficiency in this setting is usually not an issue, since cryptographic

constructions typically induce small instances of the deducibility

problem. Recent progress on more advanced cryptographic con-

structions based on lattices, like attribute-based encryption [?] and
predicate encryption [?], are closely related to both the structure

of the schemes and strategy in the proofs in [? ? ?]. The MP-PKE [?
] inspires development in some lattice-based constructions, like

homomorphic encryption [?] and deniable attribute-based encryp-

tion [?].
The technical core of our contributions are a set of (semi-)decision

procedures for checking deducibility in the theory of Diffie-Hellman

exponentiation, in its standard, bilinear and multilinear versions,

2

https://github.com/autolwe/autolwe

and in the theories of fields, non-commutative rings, and matrices.

In particular, we give decision procedures for checking deducibility

in the theory of Diffie-Hellman exponentiation. This procedure

has immediate applications to reasoning about security of crypto-

graphic constructions based on bilinear and multilinear maps. The

central idea behind our algorithm is to transform a deducibility

problem into a problem from commutative algebra. The latter can be

resolved through standard computations of Gröbner basis. Further-

more, we give a semi-decision procedure for checking deducibility

in the theory of matrices. This has immediate applications to rea-

soning about security of lattice-based constructions. In this case,

our algorithm extracts from a deducibility question a problem from

non-commutative algebra. The problem can be resolved through

semi-decision procedures based on non-commutative variants of

Gröbner bases known as Subalgebra Analog of Gröbner Basis on

Ideals (SAGBI) [?].

2 EXAMPLE: DUAL REGEV ENCRYPTION
In this section, we describe an example public-key encryption

scheme and show how it will be encoded in our formal system.

We provide some mathematical background in Section 5.2. Recall

that a public-key cryptosystem is given by three probabilistic al-

gorithms (Setup, Enc,Dec) for generating keys, encryption, and

decryption, such that with overwhelming probability, decryption

is the inverse of encryption for valid key pairs.

We consider the Dual Regev Encryption scheme [?], an opti-

mization of Regev’s original encryption [?]. We focus on a simple

version that encrypts single bits; however, standard techniques can

be used to encrypt longer messages.

Definition 2.1 (Dual Regev Encryption). Below, let λ = n be the

security parameter, m = O (n logq),q = O (m) and χ (or χn) be
discrete Gaussian distribution over Z (or Zn).

• The key generation algorithm, KeyGen(1λ), chooses a uniformly

sampled random matrix A ∈ Zn×mq and a vector r ∈ {−1, 1}m

sampled uniformly, interpreted as a vector in Zmq . The public key

is pk = (A,u), where u = Ar , and the secret key is sk = r .
• To encrypt amessageb ∈ {0, 1}, the encryption algorithm Enc(pk,b)
chooses a random vector s ∈ Znq , a vector x0 sampled from χn

and an integer x1 sampled from χ . The ciphertext consists of the
vector c0 = sTA + xT

0
and the integer c1 = sTu + x1 + b ⌈q/2⌉,

where T denotes the transpose operation on matrices.

• The decryption algorithm checks whether the value c1 − ⟨r ,c0⟩
is closer to 0 or b ⌈q/2⌉ modulo p, and returns 0 in the first case,

and 1 in the second.

Decryption is correct with overwhelming probability, since we

compute that c1 − ⟨r ,c0⟩ = x1 + b ⌈q/2⌉ − ⟨r ,x0⟩, so the norm of

the term x1 − ⟨r ,x0⟩ will be much smaller than b ⌈q/2⌉.
Gentry, Peikert and Vaikuntanathan [?] show that Dual Regev

Encryption achieves chosen-plaintext indistinguishability under

the decisional LWE assumption, defined below. Traditionally, chosen-
plaintext indistinguishability is modeled by a probabilistic experi-

ment, where an adversary proposes two messagesm0 andm1, and

is challenged with a ciphertext c⋆ corresponding to an encryption

of messagemb , where b is sampled uniformly at random. The ad-

versary is then requested to return a bit b ′. The winning condition

for the experiment is b = b ′, which models that the adversary

guesses the bit b correctly. Formally, one defines the advantage of

an adversary A against chosen-plaintext security as:

Advcpa
A
=
����PrG [b = b

′
] −

1

2

����
whereG is the probabilistic experiment thatmodels chosen-plaintext

security and
1

2
represents the probability that a trivial adversary

which flips a coin b ′ at random guesses the bit b correctly. We note

that in our case, since the message space is {0, 1}, we can wlog set

m0 = 0 andm1 = 1; thus, the adversary only needs to be queried

once in this experiment.

The formal definition ofG, instantiated to Dual Regev Encryp-

tion, is shown in Figure 1. We inline the key generation and encryp-

tion subroutines. In line 1, the public key (A,u) and its associated

secret key r are randomly sampled. In lines 2 and 3, the message bit

b is sampled uniformly, and the ciphertext (c0, c1) of this message

is generated. Finally, in line 4, the adversary outputs a bit b ′, given
as input the public key and the ciphertext.

Now, we outline the hardness assumptions and lemmas used in

the proof of Dual Regev Encryption.

Learning with Errors. The LearningWith Errors (LWE) assumption [?
] is a computational assumption about the hardness of learning a

linear function from noisy samples. We make use of the decisional

variant, in which one distinguishes a polynomial number of “noisy”

inner products with a secret vector from uniform.

Definition 2.2 (LWE). Let n,m, q, and χ be as in Definition 2.1.

Given s ∈ Znq , let LWEs, χ (dubbed the LWE distribution) be the prob-
ability distribution on Zn×mq ×Zmq obtained by samplingA ∈ Zn×mq
at uniform, sampling e from χn , and returning the pair (A, sTA+e).
The decision-LWEq,n,m, χ problem is to distinguish LWEs, χ from

uniform, where s is uniformly sampled.

We say the decision-LWEq,n,m, χ problem is infeasible if for

all polynomial-time algorithms A, the advantage Advlwe
A

(1λ) is
negligibly close to 1/2 as a function of λ:

Advlwe
A

(1λ) = |Pr[A solves LWE] − 1/2|

The works of [? ? ?] show that the LWE assumption is as hard

as (quantum or classical) solving GapSVP and SIVP under various

settings of n,q,m and χ .

Leftover Hash Lemma. LetA ∈ Zn×mq be a collection ofm samples of

uniform vectors from Znq . The Leftover Hash Lemma (LHL) states

that, given enough samples, the result of multiplying A with a

random {−1, 1}-valued matrix R is statistically close to uniform.

Additionally, this result holds in the presence of an arbitrary linear

leakage of the elements of R. Specifically, the following leftover

hash lemma is proved in [?] (Lemma 13).

Lemma 2.3 (Leftover Hash Lemma). Let q,n,m be as in Defini-
tion 2.1. Letk be a polynomial ofn. Then, the distributions {(A,AR,RTw)}

{(A,B,RTw)} are negligibly close in n, whereA
$

←− Zn×mq in both dis-

tributions, R
$

←− {0, 1}m×k , B
$

←− Zn×kq , andw ∈ Zmq is any arbitrary
vector.

Given the above, security of Dual Regev Encryption is stated as

follows:

3

Game Gpke
org :

A
$

← Zn×mq ,r
$

← {−1, 1}m ;

let u = Ar ;

b
$

← {0, 1}, s
$

← Znq ,x0
$

← DZm ,x1
$

← DZ;

let c0 = sTA + x0, c1 = sTu + x1 + b ⌈q/2⌉;
b ′ ← A (A,u,c0, c1);

Figure 1: IND-CPA security of dual-Regev PKE.

Proposition 2.4 ([?]). For any adversary A against chosen-
plaintext security of Dual Regev Encryption, there exists an adversary
B against LWE, such that:

• Advcpa
A
≤ Advlwe

B
+ ϵLHL ;

• tA ≈ tB ;

where Advlwe
B

denotes the advantage of B against decisional LWE
problem, ϵLHL is a function of the scheme parameters determined
by the Leftover Hash Lemma, and tA and tB respectively denote the
execution time of A and B.

Security proof. We now outline the proof of Proposition 2.4.

The proof proceeds with a series of game transformations, begin-
ning with the game in Figure 1. The goal is to transform the game

into one in which the adversary’s advantage is obviously zero. Each

transformation is justified semantically either by semantic identi-

ties or by probabilistic assertions, such as the LWE assumption; in

the latter case, the transformation incurs some error probability

which must be recorded.

The first transformation performs an information-theoretic step

based on the Leftover Hash Lemma. The Leftover Hash Lemma

allows us to transform the joint distribution (A,Ar) (where A and

r are independently randomly sampled) into the distribution (A,u)
(where u is a fresh, uniformly sampled variable). (This invocation

does not use the linear leakage w from Lemma 2.3). In order to

apply this lemma, we factor the security game from Figure 1 into

one which makes use of A and u, but not r . That is, if G0 is the

original security game, then we have factored G into

G0 = G
′{A←$ Zn×mq ; r ←$ {−1, 1}m ; let u =Ar }p ,

where G ′{·}p is a game context with a hole at position p, such that

G ′ does not make reference to r except in the definition of u. By
the Leftover Hash Lemma, we may now move to the game:

G1 = G
′{A←$ Zn×mq ; u ←$ Znq }p .

This transformation effectively removes r from the security

game, thus removing any contribution of the secret key r to the

information gained by the adversaryA. This transformation incurs

the error probability ϵLHL . The resultant game is shown in Figure 2.

Game G2 :

A
$

← Zn×mq ,u
$

← Znq ;

b
$

← {0, 1}, s
$

← Znq ,x0
$

← DZm ,x1
$

← DZ;

let c0 = sTA + x0, c1 = sTu + x1 + b ⌈q/2⌉;
b ′ ← A (A,u,c0, c1);

Figure 2: Dual-Regev PKE: Game 2

The second transformation performs a reduction step based on

the LWE assumption. Indeed, note that after the first transformation,

the ciphertexts (c0, c1) contain an LWE distribution of dimension

n × (m + 1), with the message bit added to c1. By applying LWE,

we then may safely transform c0 to be uniformly random, and c1
to be uniformly random added to to the message bit. The resulting

security game is shown in Figure 3.

Game G3 :

A
$

← Zn×mq ,u
$

← Znq ;

b
$

← {0, 1},r0
$

← Zmq , r1
$

← Zq ;

let c0 = r0, c1 = r1 + b ⌈q/2⌉;

b ′ ← A (A,u,c0, c1);

Figure 3: Dual-Regev PKE: Game 3

The next transformation applies a semantics-preserving trans-

formation known as optimistic sampling. To remove the message

bit from the adversary input, note that the term c1 is equal to the

sum of r1 and b ⌈q/2⌉, where r1 is uniformly sampled and does not

appear anywhere else in the game. Because of this, we know that c1
itself is uniformly random. Thus, we can safely rewrite the body of

c1 to be equal to a fresh uniformly sampled r1. The resulting game

is shown in Figure 4.

Game G4 :

A
$

← Zn×mq ,u
$

← Znq ;

b
$

← {0, 1},r0
$

← Zmq , r1
$

← Zq ;

let c0 = r0, c1 = r1;

b ′ ← A (A,u,c0, c1);

Figure 4: Dual-Regev PKE: Game 4

In this final game, there is no dependence between the challenge

given to the adversary and the challenge b, so the probability that

the adversary guesses b is upper bounded by
1

2
.

The most important point about the above proof is that while

the cryptographic theory underlying the Leftover Hash Lemma and

Learning with Errors assumption is in nature analytic, the proof of

security which uses them is only algebraic. That is, no complicated

4

analytic arguments must be made in order to carry out the above

proof; instead, each transformation is a straightforward syntactic

transformation of the security game.

Our logic is designed to handle game transformations such as

the ones in the above proof. Our implemented security proof for

Dual Regev Encryption is shown in Figure 5. In lines 1-3, we ap-

ply the Leftover Hash Lemma. The move tactic is used to reorder

samplings in the security game, as long as the two reorderings

are semantically equivalent. The assumption_decisional tactic
is used to apply hardness assumptions and information-theoretic

lemmas. Note that all required factorings of games in this proof are

performed automatically, handled by our use of the SAGBI method

in Section 4.3. This is reflected by the “!” at the end of the tactic,

which asks the proof system to automatically factor the game. (More

complicated applications of assumption_decisional do require

the user to provide some hints to the proof system about how to

factor the game. These hints are minimal, however.) The arrow ->
after the tactic specifies that we wish to apply the transformation

in the forward direction. (It is possible to apply the LHL and the

LWE assumption in reverse, as well. This is used in later proofs.)

Throughout, we use the // tactic to normalize the game. This tactic

unfolds let bindings, and applies a syntactic normal form algorithm

to all expressions in the game. The mat_fold and mat_unfold tac-

tics are used to reason about uniformity of matrices of the form

Z
n×(m+k)
q : the mat_unfold tactic will separate a uniform sampling

of type Z
n×(m+k)
q into two uniform samplings of types Zn×mq and

Zn×kq respectively; the mat_fold does the corresponding inverse

operation.

The rnd tactic is used to reason about transformations of uni-

form samplings: given two functions f , f −1 which must be mutual

inverses, the rnd tactic allows one to “pull” a uniform sampling

through f −1. This is used in two ways in the proof: on lines 13 and

15, we use rnd to show that instead of sampling a matrix, we may

instead sample its transpose. Whenever the original matrix is used,

we now take the transpose of the new sampled matrix. Similarly,

on line 19 we use rnd to perform an optimistic sampling operation,

in which B is transformed in order to remove the additive factor

b?Mu(()):0_{1,1}. Here, Mu is an uninterpreted function from the

unit type to 1 by 1 matrices, modelling the message content ⌈q/2⌉,
and 0_{1,1} is the constant zero matrix of dimension 1 by 1. The

notation _?_:_ is the standard ternary if-then-else construct; thus,

we can model the expression b ⌈q/2⌉ present in the Dual Regev

scheme as the expression b?Mu(()):0_{1,1}.
Finally, the indep! tactic is used to reason about games such

as the game in Figure 4, in which the adversary trivially has no

advantage. Detail about the proof rules present in our logic is given

in Section 3.4.

3 LOGIC
Our logic reasons about probabilistic expressions P , built from
atomic expressions of the form PrG [ϕ], where G is a game, and

ϕ is an event. Games are probabilistic programs with oracle and

adversary calls, and ϕ is the winning condition of the game. The

proof rules of the logic formalize common patterns of reasoning

from the game-playing approach to security proofs. In their simpler

form, proof steps will transform a proof goal PrG [ϕ] ≤ p into a

1 (* apply LHL *)
move A 1.

3 assumption_decisional! LHL -> u; //.

5 (* fold A, u into single matrix Au *)
mat_fold 1 2 Au; //.

7

(* apply LWE assumption *)
9 move s 2.

assumption_decisional! LWE -> w; //.
11

(* unfold LWE distribution *)
13 rnd w (λ w. tr w) (λ w. tr w); //.

mat_unfold 2 wa wb; //.
15 rnd wb (λ B. tr B) (λ B. tr B); //.

17 (* perform optimistic sampling *)
move wb 4.

19 rnd wb (λ B. B - (b?Mu (()):0_{1 ,1}))
(λ B. B + (b?Mu (()):0_{1 ,1})); //.

21 indep!.

23 qed.

Figure 5: AutoLWE proof for Dual Regev Encryption.

Dimensions

d ::= n dimension variable

| d1 + d2 addition

| 1 constant dimension 1

Types

t ::= B boolean value

| Zq prime field of order q

| Zd1×d2q integer matrix

| listd t list

| t × . . . × t tuple

Expressions

M ::= 0 null matrix

| I identity matrix

| [M] constant list

| M +M addition

| M ×M multiplication

| −M inverse

| M ∥ M concatenation

| slM left projection

| srM right projection

| M⊤ transpose

Figure 6: Syntax of expressions (selected)

proof goal PrG′[ϕ
′
] ≤ p′, with p = p′ + c , and G ′ a game derived

from G; alternatively, they will directly discharge the proof goal

PrG [ϕ] ≤ p (and give a concrete value for p) when the proof goal

is of a simple and specific form, e.g. bounding the probability that

an adversary guesses a uniformly distributed and secret value.

In order to be able to accommodate lattice-based constructions,

the following novelties are necessary: the expression language

5

Assertions (event expressions)

ϕ ::= e expression

| ∃b1, . . . ,bk . e existential queries

| ∀b1, . . . ,bk . e universal queries

where
b ::= x ∈ Qo x ranges over queries

for all queries

Game commands

дc ::= let x = e assignment

| x ←$ µ sampling from distr.

| assert(ϕ) assertion

| y ← A (x) with
−→
O adversary call

Oracle commands

oc ::= let x = e assignment

| x ←$ µ sampling from distr.

| guard(b) guard

Oracle definitions

O ::= o(x) = {−→oc; return e}

Game definitions

G ::= {
−→дc; return e};

−→
O

where A and O range over adversary and oracle names

respectively.

Figure 7: Syntax of games

includes vectors and matrices; new rules for probabilistic sam-

plings and for oracle-relative assumptions (both in the information-

theoretic and computational forms). These extensions do not pose

any foundational challenge, but must be handled carefully to obtain

the best trade-off between generality and automation.

3.1 Games
Games consist of a security experiment in which an adversary with

oracle access interacts with a challenger and of an assertion that

determines the winning event.

Expressions. The expression language operates over booleans,

lists, matrices, and integers modulo q, and includes the usual al-

gebraic operations for integer modulo q and standard operators

for manipulating lists and matrices. The operations for matrices

include addition, multiplication and transposition, together with

structural operations that capture the functionalities of block ma-

trices, and can be used for (de)composing matrices from smaller

matrices. concatenation, split left, and split right. The type of lists,
listd , denotes a list of length d . Lists are manipulated symbolically,

so do not support arbitrary destructuring. Lists may be constructed

through the constant list operation [·], which takes a type τ to

the type listd τ , for any d . All of the matrix operations are lifted

pointwise to lists.

The syntax of expressions (restricted to expressions for matrices)

is given in Figure 6. Selected typing rules for expressions are given

in the Appendix, in Figure 13. Expressions are deterministic, and

are interpreted as values over their intended types. Specifically, we

first interpret dimensions as (positive) natural numbers. This fixes

the interpretation of types. Expressions are then interpreted in the

intended way; for instance, transposition is interpreted as matrix

transposition, etc.

Games. Games are defined by a sequence of commands (random

samplings, assignments, adversary calls) and by an assertion. The

command defines the computational behavior of the experiment

whereas the assertion defines the winning event. Each adversary

call contains a list of oracles that are available to the adversary;

oracles are also defined by a sequence of commands (random sam-

plings, assignments, assert statements) and by a return expression.

The grammars for oracle definitions and game definitions are given

in Figure 7.

The operational behavior of oracles is defined compositionally

from the operational behavior of commands:

• random sampling x ←$ µ: we sample a value from µ and store the

result in the variable x ;
• assignments: let x = e : we evaluate the expression e and store the
result in the variable x ;
• assertion guard(b): we evaluate b and return ⊥ if the result is

false. Guards are typically used in decryption oracles to reject

invalid queries.

In addition, we assume that every oracle O comes with a value

δO that fixes the maximal number of times that it can be called

by an adversary. To enforce this upper bound, the execution is

instrumented with a counter cO that is initially set to 0. Then,

whenever the oracle is called, one checks cO ≥ δo; if so, then ⊥ is

returned. Otherwise, the counter cO is increased, and the oracle

body is executed. In order to interpret events, we further instrument

the semantics of the game to record the sequence of interactions

between the adversary and the oracle. Specifically, the semantics of

oracles is instrumented with a query set variableQO that is initially

set to ∅. Then, for every call the query parameters are stored in

QO . (Following [?] it would be more precise to hold a single list

of queries, rather than a list of queries per oracle, but the latter

suffices for our purposes.)

Informally, adversaries are probabilistic computations that must

execute within a specific amount of resources and are otherwise

arbitrary. One simple way to give a semantics to adversaries is

through syntax, i.e. bymapping adversary names to commands, and

then interpret these commands using the afore described semantics.

However, our language of games is too restrictive; therefore, wemap

adversary names to commands in a more expressive language, and

then resort to the semantics of this richer language. For convenience

of meta-theoretic proofs, e.g. soundness, it is preferable to choose a

language that admits a set-theoretical semantics. For instance, one

can use the probabilistic programming language pWhile to model

the behavior of the adversaries.

The semantics of games is defined compositionally from the

operational behavior of commands, oracles, and adversaries:

• assertion assert(ϕ): we evaluate ϕ and abort if the result is false.

• adversary call y ← A (e) with
−→
O : we evaluate e , call the ad-

versary A with the result as input, and bind the output of the

6

adversary to y. The adversary is provided with access to the

oracles

−→
O .

Finally, the interpretation of PrG [ϕ] is to be the probability of ϕ
in the sub-distribution obtained by executing G.

Throughout the paper, we assume that the games satisfy the

following well-formedness conditions and (without loss of general-

ity) hygiene conditions: (WF1) all variables must be used in scope;

(WF2) commands must be well-typed; (Hyg1) adversary and oracle

names are distinct; (Hyg2) bound variables are distinct.

3.2 Reasoning about expressions
Our indistinguishability logic makes use of two main relations

between expressions: equality and deducibility. Equality is specified

through a set of axioms E, from which further equalities can be

derived using standard rules of equational reasoning: reflexivity,

symmetry, transitivity of equality, functionality of operators, and

finally instantiation of axioms. We write Γ ⊢E e = e ′ if e and e ′

are provably equal from the axioms E and the set of equalities Γ.
Throughout the paper, we implicitly assume that the set of axioms

includes standard identities on matrices.

Deducibility is defined using the notion of contexts. A contextC
is an expression that only contains a distinguished variable •. We

write e ⊢C
E
e ′, where e, e ′ are expressions and C is a context, if ⊢E

C[e] = e ′. We write e ⊢E e ′ if there exists a contextC such that e ⊢C
E

e ′. Similarly, we write Γ |= e ⊢C
E
e ′ if Γ ⊢E C[e] = e ′ and Γ |= e ⊢E

e ′ if there exists a contextC such that Γ |= e ⊢E e ′. More generally, a

(general) contextC is an expression that only contains distinguished

variables •1, . . . , •n . We write e1, . . . , en ⊢
C
E
e ′, where e1, . . . , en , e

′

are expressions andC is a context, if ⊢E C[e1, . . . , en] = e ′. Wewrite

e1, . . . , en ⊢E e ′ if there exists a context C such that e1, . . . , en ⊢
C
E

e ′. Similarly, we write Γ |= e1, . . . , en ⊢
C
E
e ′ if Γ |= C[e1, . . . , en] =E

e ′ and Γ |= e1, . . . , en ⊢E e ′ if there exists a context C such that

Γ |= e1, . . . , en ⊢E e ′. Intuitively, a context is a recipe that shows
how some expression may be computed given other expressions. If

we consider matrices, we may haveM + N ,O,N ⊢ M ×O with the

context C (•1, •2, •3) := (•1 − •3) × •2.

3.3 Strongest postcondition
A desirable property of any logic is that one can replace equals

by equals. In particular, it should always be possible to replace an

expression e by an expression e ′ that is provably equivalent to e .
However, it is often desirable to use a stronger substitution property

which allows to replace e by an expression e ′ that is provably

equivalent to e relative to the context in which the replacement

is to be performed. To achieve this goal, our proof system uses a

strongest postcondition to gather all facts known at a position p in

the main command. The computation of spp (G) is done as usual,

starting from the initial position of the program with the assertion

true and adding at each step the assertion ϕc corresponding to the

current command c , where:

ϕlet x = e = x = e
ϕguard(b) = b

ϕassert(e) = e
ϕ∀/∃b1, ...,bk . e = true

3.4 Judgment and proof rules
Our computational logic manipulates judgments of the form P ⪯
P ′ where P and P ′ are probability expressions drawn from the

following grammar:

P , P ′ ::= ϵ | c | P + P ′ | P − P ′ | c × P | |P | | PrG [ϕ],

where ϵ ranges over variables, c ranges over constants, |P | denotes
absolute value, and PrG [ϕ] denotes the success probability of

event ϕ in gameG . Constants include concrete values, e.g. 0 and 1

2
,

as well as values whose interpretation will depend on the parame-

ters of the scheme and the computational power of the adversary,

e.g. its execution time or maximal number of oracle calls.

Proof rules are of the form

P1 ⪯ ϵ1 . . . Pk ⪯ ϵk

P ⪯ ϵ

where Pi s and P are probability expressions, ϵi s are variables and
finally ϵ is a probability expression built from variables and con-

stants.

Figure 8 present selected rules of the logic. In many cases, rules

consider judgments of the form PrG [ϕ] ⪯ ϵ ; similar rules exist

for judgments of the form
��PrG [ϕ] − PrG′[ϕ

′
]
�� ⪯ ϵ .

Rules [False] and [Case] formalize elementary axioms of proba-

bility theory. Rules [Refl] and [Add] formalize elementary facts

about real numbers. Rule [Eq] can be used to replace a probabil-

ity expression by another probability expression that is provably

smaller within the theory of reals. For instance, derivations com-

monly use the identity ϵ1 ≤ |ϵ1 − ϵ2 | + ϵ2.
Rules [Swap], [Insert], [Subst] are used for rewriting games in

a semantics-preserving way. Concretely, rule [Swap] swaps succes-

sive commands (at position p) that can be reordered (are dataflow

independent in the programming language terminology). By chain-

ing applications of the rule, one can achieve more general forms of

code motion. Rule [Insert] inserts at position p command that does

not carry any operational behaviour. Rule [Subst] substitutes at po-

sitionp an expression e by another expression e ′ that is contextually
equivalent at p, i.e. spp (G) |= e =E e ′ holds.

The rule [Rand] performs a different transformation known

as optimistic sampling. It replaces a uniform sampling from t by

s ←$ t ′; return C[s]. To ensure that this transformation is correct,

the rule checks that C is provably bijective at the program point

where the transformation arises, using a candidate inverse context

C ′ provided by the user. Rules [RFold] and [RUnfold] are dual

and are used to manipulate random samplings of matrices. The

rule [RFold] is used to turn two uniform samplings of matrices

into one uniform sampling of the concatenation; conversely, the

rule [RUnfold] may be used to turn one uniform sampling of

a concatenation into uniform samplings of its component parts.

(We also have similar rules [LFold] and [LUnfold] in order to

manipulate the vertical component of the dimension.) These rules

are primarily used to apply axioms which are stated about matrices

of compound dimension.

The rule [Abstract] is used for applying computational assump-

tions. The rule can be used to instantiate a valid judgment with

a concrete adversary. The side-conditions ensure that the exper-

iments G1 and G2 are syntactically equivalent to the experiment

7

[False]

PrG [false] ⪯ 0

[Case]

PrG [ϕ ∧ c] ⪯ ϵ1 PrG [ϕ ∧ ¬c] ⪯ ϵ2

PrG [ϕ] ⪯ ϵ1 + ϵ2

[Refl]

PrG [ϕ] ⪯ PrG [ϕ]

[Add]

P ⪯ ϵ1 P ′ ⪯ ϵ2

P + P ′ ⪯ ϵ1 + ϵ2
[Eq]

P ⪯ ϵ ⊢ P ′ ≤ P

P ′ ⪯ ϵ

[Swap]

PrG {c ′; c }p [ϕ] ⪯ ϵ

PrG {c ; c ′ }p [ϕ] ⪯ ϵ
[Insert]

PrG {c ; c ′ }p [ϕ] ⪯ ϵ

PrG {c ′ }p [ϕ] ⪯ ϵ

c sampling, let,

or guard(true) [Subst]

PrG {e }p [ϕ] ⪯ ϵ

PrG {e ′ }p [ϕ] ⪯ ϵ
spp (SE) |= e =E e

′

[Abstract]

���PrG′1 [ϕ1] − PrG′2 [ϕ2]
��� ⪯ ϵ

���PrG1
[ϕ1] − PrG2

[ϕ2]
��� ⪯ ϵ

G1 ≡ G′
1
[B]

G2 ≡ G′
2
[B] [Rand]

PrG {s←$ t ′; let r =C[s]}p [ϕ] ⪯ ϵ

PrG {r←$ t }p [ϕ] ⪯ ϵ
spp (G) |= C′[C] =E •

[RFold]

Pr

G {x←$ Z
d
1
×(d

2
+d′

2
)

q ; let x1 = sl x ; let x2 = sr x }p
[ϕ] ⪯ ϵ

Pr

G {x1←$ Z
d
1
×d

2

q ; x2←$ Z
d
1
×d′

2

q }p
[ϕ] ⪯ ϵ

[RUnfold]

Pr

G {x1←$ Z
d
1
×d

2

q ; x2←$ Z
d
1
×d′

2

q ; let x = x1 ∥x2 }p
[ϕ] ⪯ ϵ

Pr

G {x←$ Z
d
1
×(d

2
+d′

2
)

q }p
[ϕ] ⪯ ϵ

[Upto]

PrG {guard(c) }p [ϕ] ⪯ ϵ1 PrG {guard(c) }p [∃ x ∈ Qo . c (x) , c
′(x)] ⪯ ϵ2

PrG {guard(c ′) }p [ϕ] ⪯ ϵ1 + ϵ2
p first position in o

[Guess]

PrG ; x←A ()[ϕ] ⪯ ϵ

PrG [∃ x ∈ Qo .ϕ] ⪯ ϵ
[Find]

PrG ; x←A (e)[ϕ1 ∧ ϕ2] ⪯ ϵ

PrG [(∃ x ∈ Qo .ϕ1) ∧ ϕ2] ⪯ ϵ
C efficient and

sp |G | (G) |= C[(e, x)] =E ϕ1

Figure 8: Selected proof rules

G ′
1
[B := B] and G ′

2
[B := B], where the notation G ′[B := B] repre-

sents the game obtained by inlining the code of B in G ′. Because
of the requirement on syntactic equivalence, it is sometimes neces-

sary to apply multiple program transformations before applying

an assumption.

The rule [Upto] rule is used for replacing guard(c ′) at position
p in an oracle with guard(c). According to the usual principle for
reasoning up to failure events, the rule yields two proof obligations:

bound the probability of the original event and the probability that

the adversary performs a query where the results of c and c ′ differ.
The rules [Guess] and [Find] rules are used to deal with winning

events involving existential quantification.

The logic also contains a rule for hybrid arguments. The rule is

similar to [?] and omitted For lack of space.

3.5 Soundness
All proof rules of the logic are sound. To state soundness, we lift

the interpretation of games to an interpretation of judgments and

derivations. This is done by first defining a fixed interpretation of

dimensions that is used for all the games of the derivation. Then,

we define the interpretation of P inductively. We say that judgment

P ⪯ P ′ is valid iff the inequality holds for every valid interpretation

of P and P ′. Finally, one can prove that P ⪯ P ′ is valid whenever

P ⪯ P ′ is derivable in the logic.

3.6 Axioms Used
Here, we describe the axioms used to prove the schemes in Sections

2 and 5 secure. Each axiom is decisional, in that it is a claim about

the closeness of two games. This is modeled by having both games

end with a bit output b, so that each axiom is a claim of the form

���PrG0
[b] − PrG1

[b]
��� ⪯ ϵ . This allows us to apply the [Abstract]

rule from Figure 8.

3.6.1 Learning with Errors. Recall from Section 2 that the LWE

assumption states that the distribution (A, sTA+e) is indistinguish-
able from uniform, where A and s are uniformly sampled elements

of Zn×mq and Znq respectively, and e is sampled from some given

error distribution.

Our concrete encoding is given in Figure 9. Since our logic only

deals with uniform samplings, in order to encode more complicated

sampling algorithms such as the error distribution for LWE, we

separate the sampling algorithm into a coin sampling stage and a

deterministic stage. In the coin sampling stage, an element of {0, 1}c

is sampled, where c is the number of coins the sampling algorithm

will use. (Since the sampling algorithm is polynomial time, c will
be a polynomial of the security parameter.) In the deterministic

stage, we call an uninterpreted function (here, Chi) which uses the

sampled coins to produce the output of the distribution.

In various applications of the LWE assumption, the parameter

settings of Figure 9 will alter slightly – for instance, in the Dual

Regev scheme from Section 2, we do not usem on the nose, but

8

Game GLW E
0

:

A
$

← Zn×mq ; s
$

← Znq ;

ce
$

← {0, 1}cChi ; let e = Chi(ce);

b ← A (A, sTA + e);

Game GLW E
1

:

A
$

← Zn×mq ; u
$

← Zmq ;

b ← A (A,u);

Figure 9: The LWE assumption, encoded in AutoLWE.

rather m + 1. This difference is immaterial to the validity of the

assumption.

3.6.2 Leftover Hash Lemma. The most subtle part of our proofs is

often not applying the LWE assumption, but rather applying the

Leftover Hash Lemma. This is because the LHL is an information-
theoretic judgment rather than a computational one; information-

theoretic judgments enjoy stronger composition properties than

computational judgments.

Recall that the (basic) LHL states that the distribution (A,AR,wR)
is statistically close to the distribution (A,B,wR), whereA is a uni-

formly random element of Zn×mq , R is a uniformly random element

of {−1, 1}m×k (interpreted as a matrix), andw is a fixed arbitrary

vector in Zmq . For the LHL to hold, however, we can actually re-

lax the requirements on A: instead of A being sampled uniformly,

we only require that A is sampled from a distribution which is

statistically close to uniform.

In the literature, it is often the case that the lemma being applied

is not the LHL on the nose, but rather this weakened (but still valid)

form in which A only need to be close to uniform. In many of our

proofs, this occurs because A is not uniformly sampled, but rather

sampled using an algorithm, TrapGen, which produces a vector A
statistically close to uniform along with a trapdoor TA, which is

kepts secret from the adversary.

By combining the LHLwith the TrapGen construction, we obtain

the security games in Figure 10. Both games are displayed at once:

the expressions which vary between the two games are annotated

withwhich game they belong in. In order tomodel howR is sampled,

we sample the component bits of R from {0, 1}dLHL , and apply a

symbolic function, bitinj, which converts these component bits into

a matrix. Note in this security game that w comes from a symbolic

adversary,A1. This models the universal quantification ofw in the

LHL. Additionally, note that A2 actually receives the trapdoor TA.
This is counterintuitive, because adversaries in the cryptosystems

do not have access to the trapdoor. However, remember that here

we are constructing the adversary for the LHL; giving A2 the trap-

door reflects the assertion that the distribution (A,AR,wR,TA) is
statistically close to the distribution (A,B,wR,TA), which follows

from the information theoretic nature of the LHL.

While we use the assumption from Figure 10 in our proofs, we

also use several small variations which are also valid. One such

variation is in the proof of Dual Regev, where we do not use the

TrapGen algorithm, but rather sample A uniformly (and do not

give the adversary TA); additionally, we do not include this linear

leakagew . Another such variation is used in our CCA proof from

Section 5. In this instance, we do not transform AR to B, but rather

Game GLHL
β :

c
$

← {0, 1}dTG ; let (A,TA) = TrapGen(c);

r
$

← {0, 1}dLHL
; let R = bitinj(r);

if β=1

B
$

← Zn×mq ; w← A1 ();

b ← A2 (A,
if β=0

AR
if β=1

B ,wR,TA,w);

Figure 10: The LHL assumption combinedwith TrapGen, en-
coded in AutoLWE.

to AR + B (thus generalizing our [Rand] rule.) Additionally, we

must state the LHL in the CCA proof to be relative to the decryption

oracle, which makes use of R. This relativized lemma is still valid,

however, since the decryption oracle does not leak any information

about R. It will be interesting future work in order to unify these

small variations of the LHL.

3.6.3 Distribution Equivalences. In addition to the two main ax-

ioms above, we also rely on several opaque probabilistic judgments

about distributions from which the adversary may sample, but are

written in terms of private variables which the adversary may not

access. For instance, in an Identity-Based Encryption scheme, the

adversary could have access to a KeyGen oracle, which must use

the master secret key in order to operate. This is the case in Sec-

tion 5.2. In the concrete proof, there is a step in which we change

the implementation of the KeyGen oracle from one uninterpreted

function to another. Transformations of this sort are encoded using

oracle-relative assumptions, which are generalizations of axioms

in AutoG&P which allow adversaries to query oracles.

For example, in Figure 11, we state closeness of the distributions

D0 (s0, ·) and D1 (s1, ·), where both s0 and s1 are unknown to the

adversary. (As before, each distribution is separated into a coin

sampling stage and a deterministic stage.) Note that s0 and s1 need
not be of the same type, since the adversary does not see them.

Jumping ahead in (H)IBE part in the case study, D0,D1 correspond

to the real/simulated key generation algorithms, where s0 is the
master secret key, and s1 is the secret trapdoor information the

simulator knows in order to answer secret key queries.

4 DECIDING DEDUCIBILITY
Several rules involve deducibility problems as side-conditions. For

instance, in the [Abstract] rule from Fig 8, we may transform

a bound involving G1 and G2 into a bound involving G ′
1
and G ′

2
,

if there exists a common subgame B which can be used to factor

the former pair into the latter. Finding this subgame B will induce

deducibility subproblems. In order to automate the application of

the rules, it is thus necessary to provide algorithms for checking

whether deducibility problems are valid. As previously argued, it

is desirable whenever possible that these algorithms are based on

decision procedures rather than heuristics.

9

Game G0 :

s0
$

← Zmq ;

b ← A ()
with O (x) = {

c0
$

← {0, 1}d0 ;

ret D0 (c0, s0,x);
}

Game G1 :

s1
$

← Zkq ;

b ← A ()
with O (x) = {

c1
$

← {0, 1}d1 ;

ret D1 (c1, s1,x);
}

Figure 11: Example axiom capturing computational close-
ness of distributions.

In this section, we provide decision procedures for the theory

of Diffie-Hellman exponentiation, both in its basic form and in

its extension to bilinear groups, and for the theory of fields. The

decision procedures for Diffie-Hellman exponentiation are based

on techniques from Gröbner bases. In addition to being an im-

portant independent contribution on its own, the algorithms for

Diffie-Hellman exponentiation also serve as a natural intermediate

objective towards addressing the theory of matrices (although the

problems are formally independent). For the latter, we require signif-

icantly more advanced algebraic tools. For the clarity of exposition,

we proceed incrementally. Concretely, we start by considering the

case of fields and non-commutative rings. We respectively provide

a decision procedure and a semi-decision procedure. Subsequently,

we give a reduction from deducibility for matrices to deducibility

for non-commutative rings. The reduction yields a semi-decision

procedure for matrices. The algorithms for non-commutative rings

and matrices are based on so-called SAGBI [?] (Subalgebra Analog
to Gröbner Basis for Ideals) techniques, which as justified below

provide a counterpart of Gröbner basis computations for subalge-

bras.

4.1 Diffie-Hellman exponentiation
Diffie-Hellman exponentiation is a standard theory that is used for

analyzing key-exchange protocols based on group assumptions. It

is also used, in its bilinear and multilinear version, in AutoG&P for

proving security of pairing-based cryptography. In this setting, the

adversary (also often called attacker in the symbolic setting) can

multiply groups elements between them, i.e perform addition in

the field, and can elevate a group element to some power he can

deduce in the field. Previous work only provides partial solutions:

for instance, Chevalier et al [?] only consider products in the

exponents, whereas Dougherty and Guttman [?] only consider

polynomials with maximum degree of 1 (linear expressions).

The standard form of deducibility problems that arises in this

context is defined as follows: let Y be a set of names sampled in Zq ,
д some group generator, E the equational theory capturing field

and groups operations, some set X ⊂ Y , f1, ... fk ,h ∈ K[Y] be a set
of polynomials over the names, and Γ be a coherent set of axioms.

The deducibility problem is then:

Γ |= X ,дf1 , ...,дfk ⊢E дh

Proposition 4.1. Deducibility for Diffie-Hellman exponentiation
is decidable.

The algorithm that supports the proof of the proposition pro-

ceeds by reducing an input deducibility problem to an equivalent

membership problem of the saturation of some Zq[X]-module in

Zq [Y], and by using an extension for modules [?] of Buchberger’s
algorithm [?] to solve the membership problem.

The reduction to the membership problem proceeds as follows:

first, we reduce deducibility to solving a system of polynomial

equations. We then use the notion of saturation for submodules

and prove that solving the system of polynomial equations cor-

responding to the deducibility problem is equivalent to checking

whether the polynomial h is a member of the saturation of some

submodule M . The latter problem can be checked using Gröbner

basis computations.

4.2 Fields and non-commutative rings
Another problem of interest is when we consider deducibility inside

the field rather than the group. The deducibility problem can then

be defined as follows: let Y be a set of names sampled in Zq , E the

equational theory capturing field operations, f1, ... fk ,h ∈ K[Y] be
a set of polynomials over the names, and Γ be a coherent set of

axioms. The deducibility problem is then:

f1, ..., fk ⊢E h

We emphasize that this problem is in fact not an instance of the

problem for Diffie-Hellman exponentiation. In the previous prob-

lem, if we look at field elements, the adversary could compute any

polynomial in K[X] but he may now compute any polynomial in

K[f1, ..., fk], the subalgebra generated by the known polynomials.

Decidability is obtained thanks to [?], where they solve the

subalgebra membership problem using methods based on classical

Gröbner basis.

Proposition 4.2. Deducibility for fields is decidable.

If we wish to characterize the full adversary knowledge as done

for Diffie-Hellman exponentiation using Gröbner basis, we would

have to resort to so-called SAGBI [?] (Subalgebra Analog to Gröbner
Basis for Ideals) techniques, which form the counterpart of Gröbner

basis computations. However, some finitely generated subalgebras

are known to have infinite SAGBI bases [?], thus it can only provide
semi-decision for the membership problem.

For the case of non-commutative rings, we are not aware of any

counterpart to [?], we resort to the non-commutative SAGBI [?]
theory.

Proposition 4.3. Deducibility for non-commutative rings is semi-
decidable.

It is an open problem whether one can give a decision procedure

for non-commutative rings. We note that the problem of module

membership over a non-commutative algebra is undecidable [?], as
there is a reduction from the word problem over a finitely presented

group. On the other hand, the problem is known to be decidable

for some classes of subalgebras, notably in the the homogeneous

case where all monomials are of the same degree.

10

4.3 Matrices
The case of matrices introduces a final difficulty: expressions may

involve structural operations. To address the issue, we show that

every deducibility problem in the theory of matrices is provably

equivalent to a deducibility problem that does not involve struc-

tural operations, nor transposition—said otherwise, a deducibility

problem in the theory of non-commutative rings.

Proposition 4.4. Deducibility for matrices is semi-decidable.

The algorithm that supports the proof of semi-decidability for

matrices operates in two steps:

(1) it reduces the deducibility problem for matrices to an equivalent

deducibility problem for non-commutative rings;

(2) it applies the semi-decision procedure for non-commutative

rings.

The reduction to non-commutative rings is based on a generaliza-

tion of the techniques introduced in [?] for the theory of bitstrings—
note that the techniques were used for a slightly different purpose,

i.e. deciding equivalence between probabilistic expressions, rather

than for proving deducibility constraints.

The general idea for eliminating concatenation and splitting

comes from two basic facts:

• M ⊢ M ∥ N ⇔M ⊢ M ∧M ⊢ N
• M ∪ {M ∥ N } ⊢ T ⇔M ∪ {M,N } ⊢ T

For transposition, we observe that it commutes with the other oper-

ations, so in a proof of deducibility, we can push the transposition

applications to the leaves. Everything that can be deduced from

a set of matricesM and the transpose operation can also be de-

duced if instead of the transpose operation we simply provide the

transposition of the matrices inM.

5 IMPLEMENTATIONS AND CASE STUDIES
The implementation of our logic, called AutoLWE, is available at:

https://github.com/autolwe/autolwe

AutoLWE is implemented as a branch of AutoG&P and thus makes

considerable use of its infrastructure.

Moreover, we have used AutoLWE to carry several case studies

(see Figure 12): an Identity-Based Encryption scheme and an Hi-

erarchical Identity-Based Encryption scheme by Agrawal, Boneh

and Boyen [?], a Chosen-Ciphertext Encryption scheme from Mic-

ciancio and Peikert [?], and an Inner Product Encryption scheme

and proof from Agrawal, Freeman, and Vaikuntanathan [?]. These
examples are treated in Sections 5.2, 5.4, 5.3 and 5.5 respectively.

Globally, our tool performs well, on the following accounts: for-

mal proofs remains close to the pen and paper proofs; verification

time is fast (less than 3 seconds), and in particular the complexity of

the (semi-)decision procedures is not an issue; formalization time is

moderate (requiring at most several hours of programmer effort per

proof). One of the main hurdles is the Leftover Hash Lemma, which

must be applied in varying levels of sophistication. The Leftover

Hash Lemma (and more generally all oracle-relative assumptions)

increase the difficulty of guessing (chained) applications of assump-

tions, and consequently limits automation.

Case study Proof

Reference Scheme Property LoC

Gentry et al. ’08 [?] dual-Regev PKE IND-CPA 11

Micciancio et al. ’12 [?] MP-PKE IND-CCA 98

Agrawal et al. ’10 [?] ABB-IBE IND-sID-CPA 56

Agrawal et al. ’10 [?] ABB-HIBE IND-sID-CPA 77

Agrawal et al. ’11 [?] AFV-IPE IND-wAH-CPA 106

Figure 12: Overview of case studies. All proofs took less than
three seconds to complete.

5.1 Implementation
Security games are written in a syntax closely resembling that

shown in Figure 1. See Figure 5 for an example concrete proof in

our system. Each line of the proof corresponds to a proof rule in our

logic, as seen in Figure 8. All tactic applications are fully automated,

except for the application of oracle-relative assumptions. The user

must provide some hints to AutoLWE about how the security game

needs to be factored in order to apply an oracle-relative assumption.

The system in [?] additionally supports a proof search tactic which

automatically finds a series of tactics to apply to finish the goal; we

do not have a version of that in our setting.

5.1.1 Oracle-relative Assumptions. AutoG&P allows one to add

user defined axioms, both to express decisional assertions (two

distributions are computationally close) and computational asser-

tions (a certain event has small chance of happening). In AutoG&P,
these user-defined axioms are stated in terms of symbolic adver-

saries, which are related to the main security game by rules such

as [Abstract] in Section 3.4. However, the symbolic adversaries

present in axioms may not have oracles attached to them. While

these restricted adversaries can be used to define the LWE assump-

tion, they are not expressive enough to state the oracle-relative

axioms we use throughout our proofs. In AutoLWE, we remove this

restriction. An example axiom we now support which we did not

before is that in Figure 11.

Recall that in order to apply a user defined axiomusing [Abstract],

we must factor the security game into one which is in terms of the

axiom’s game. This is done essentially by separating the security

game into sections, where each section either reflects the setup

code for the axiom, or an instantiation of one of the adversaries in

the axiom. We still do this factoring in the case of oracle-relative

axioms, but we must also factor oracles in the security game in

terms of oracles in the axiom. Once this second step of factoring is

done, oracles in the axiom can be compared syntactically to factored

oracles in the security game.

5.1.2 Theory of Lists and Matrices. Note that in our case studies,

we manipulate both matrices and lists of matrices (often simultane-

ously). Thus, both our normal form algorithm and our deducibility

reduction from Section 4.3 must be lifted to apply to lists of matrices

as well. This is what allows our system to reason about the more

complicated HIBE scheme in a manner similar to the IBE scheme,

which does not use lists.

In order to do this, we do not implement our main algorithms on

expressions of matrices directly, but instead over a general signature
11

https://github.com/autolwe/autolwe

of matrices, encoded as a certain type of an ML module. We then

instantiate this signature both with matrices and lists of matrices.

By doing so, we receive an implementation for our new algorithms

which operate uniformly across these two types of expressions.

5.1.3 Deduction algorithms. Many implementations of Gröbner

basis computations can be found online, but all of them are only

usable for polynomial ideals. In order to handle module and non-

commutative subalgebra, we thus implemented generic versions of

the Buchberger algorithm for K[X]-module and the SAGBI algo-

rithm and plugged them into AutoLWE. The algorithms performed

well: we could prove all the LWE examples, and the pairing-based

examples very quickly, using the SAGBI methods. The efficiency of

the computations contrasts with the complexity of the algorithms,

which is high because the saturation squares up the number of

inputs terms and the Gröbner Basis can be at worst a double expo-

nential. However, we are dealing with relatively small instances of

our problem that are extracted from concrete primitives.

5.2 Identity-Based Encryption
Mathematical background. Let Λ be a discrete subset of Zm . For

any vectorc ∈ Rm , and any positive parameterσ ∈ R, let ρσ ,c (x) =
exp(−π | |x − c | |2/σ 2) be the Gaussian function on Rm with center

c and parameter σ . Next, we let ρσ ,c (Λ) =
∑
x ∈Λ ρσ ,c (x) be the

discrete integral of ρσ ,x over Λ, and let χΛ,σ ,c (y) :=
ρσ ,c (y)
ρσ ,c (Λ)

. Let

Sm denote the set of vectors in Rm whose length is 1. The norm of a

matrix R ∈ Rm×m is defined to be supx ∈Sm | |Rx | |. We say a square

matrix is full rank if all rows and columns are linearly independent.

Identity-based encryption is a generalization of public key en-

cryption. In IBE, the secret key and ciphertext are associated with

different identity strings, and decryption succeeds if and only if the

two identity strings are equivalent. The securitymodel, IND-sID-CPA,
requires adversary to declare challenge identity upfront before see-

ing the public parameters, and allows adversary to ask for secret

key for any identity except for the challenge identity, and CPA

security holds for ciphertext associated with the challenge identity.

The IBE scheme our system supports is constructed by Agrawal

et al. [?]. The scheme operates as follows:

• Matrix A is generated by algorithm TrapGen, which outputs a

randomA ∈ Zn×mq and a small normmatrix T ∈ Zm×mq such that

A · TA = 0. Matrices A1,B are sampled randomly from Zn×mq ,

and u is sampled randomly from Znq . Set pp = (A,A1,B,u) and
msk = TA.
• To encrypt a message µ ∈ {0, 1} with identity id ∈ Znq , one
generates a uniform s ∈ Znq , error vector e0 ← χm and error

integer e1 ← χ from discrete Gaussian, a random R ∈ {0, 1}m×m ,

and computes ciphertext

ct = sT [A| |A1 +M (id)B| |u] + (eT | |eTR| |e ′) + (0| |0| | ⌈q/2⌉µ).
• The secret key for identity id ∈ Znq is generated by procedure

r ← SampleLeft(A,A1 + M (id)B,TA,u), where we have r is

statistically close to χ2m , and [A| |A1 +M (id)B]r = u.
The idea of the proof is first to rewrite A1 as AR − M (id∗)B,

where id∗ is the adversary’s committed identity. If we do so, we

then obtain that the challenge ciphertext is of the form

sT [A| |AR| |u] + (eT | |eT R| |e ′) + (0| |0| | ⌈q/2⌉µ)

where A comes from TrapGen. We then apply a computational

lemma about SampleLeft, in order to rewrite the KeyGen oracle to

be in terms of another probabilistic algorithm, SampleRight. This

is a statement about equivalence of distributions from which the

adversary may sample, so must be handled using an oracle-relative

assumption. This is done as described in Section 3.6.3. The compu-

tational lemma states that, for appropriately sampled matrices,

SampleLeft(A,AR + B,TA,u) ≈ SampleRight(A,B,R,TB ,u),

where A is sampled from TrapGen in the first and uniform in the

second, and B is sampled uniformly in the first and from TrapGen in

the second. By applying this transformation to our KeyGen oracle,

we transform our matrix A from one sampled from TrapGen to

uniform. Now that A is uniform, we finish the proof by noticing

that our challenge ciphertext is equal to b| |bR| |b + ⌈q/2⌉µ, where
(b,b) forms an LWE distribution of dimension n ×m + 1. Thus we
may randomize b to uniform, and apply the rnd tactic to erase µ
from the ciphertext.

The main point of interest in this proof is the initial rewrite

A1 → AR −M (id∗)B. Given that A1 is uniform, we may first apply

optimistic sampling to rewrite A1 to A2 − M (id∗)B, where A2 is

uniformly sampled. Thus, we now only need to perform the rewrite

A2 → AR. This rewrite is not at all trivial, because A at this point

in the proof comes from TrapGen. However, as noted in Section

3.6.2, it is sound to apply the LHL in this case, because TrapGen

generates matrices which are close to uniform in distribution. Thus,

we can use the LHL as encoded in Figure 10.

5.3 CCA1-PKE
The CCA1-PKE scheme we study is proposed by Micciancio and

Peikert [?]. In comparison with the CPA-PKE scheme [?] described
in Section 2, the security model of CCA1-PKE is stronger: the ad-

versary can query a decryption oracle for any ciphertext he desires

before receiving the challenge ciphertext. The scheme operates as

follows:

• Matrix A ∈ Zn×mq is sampled randomly and R ← {−1, 1}m×m .

Set pk = (A,AR) and sk = R.
• LetM : Znq → Z

n×m
q be an embedding from Znq to matrices, such

that for distinct u and v,M (u) −M (v) is full rank. To encrypt a

message µ ∈ {0, 1}, one generates a uniform s ∈ Znq , a uniform
u ∈ Znq , a uniform matrix R′ ∈ {−1, 1}m×m and an error vector

e ∈ Zmq sampled from a discrete Gaussian, and computes the

ciphertext

c0 = u, c1 = sTAu + (eT | |eT ∗ R′) + (0| |Encode(µ)),
where Au := [A| | − AR +M (u)G], G is a publicly known gadget

matrix, and Encode : {0, 1} → Zmq sends µ to µ ⌈q/2⌉ (1, . . . , 1).

• To decrypt a ciphertext (u := c0, c1) with sk = R and u , 0, one

computes Au and calls a procedure Invert(Au,R, c1), which will

output s and e such that c1 = sTAu + e, where e has small norm.

By doing a particular rounding procedure using c1, s, e, and R,
the message bit µ can be derived.

The main subtlety of the proof is that the secret key R is used in

the decryption oracle. Because of this, we must apply the Leftover

Hash Lemma relative to this oracle, by using oracle-relative axioms.

As we will see, not all uses of the LHL are valid in this new setting;

12

care must be taken to ensure that the axioms derived from the LHL

are still cryptographically sound.

The high-level outline of the proof is as follows: first, we note that

instead of using a fresh R′ to encrypt, we can actually use the secret

key R. This is justified by the following corollary of the Leftover

Hash Lemma: the distribution (A,AR,e,eR′) is statistically close

to the distribution (A,AR,e,eR) where A,R,R′, and e are sampled

as in the scheme. This corollary additionally holds true relative to

the decryption oracle, which makes use of R.
Once we use R to encrypt instead of R′, we again use the Left-

over Hash Lemma to transform AR into −AR +M (u)G , where u is

generated from the challenge encryption. Again, this invocation of

the Leftover Hash Lemma is stated relative to the decryption oracle.

Crucially, note here that we do not transform AR directly into uni-

form, as we did before: the reason being is that this transformation

would actually be unsound, because it would decouple the public

key from R as it appears in the decryption oracle. Thus, we must do

the transformation AR→ −AR+M (u)G in one step, which is cryp-

tographically sound relative to the decryption oracle. (Currently,

we must write this specialized transformation as a unique variant

of the Leftover Hash Lemma, as discussed in Section 3.6.2; future

work will involve unifying these separate variants.)

At this point, we may apply the LWE assumption along with a

more routine invocation of the LHL in order to erase the message

content from the challenge ciphertext, which finishes the proof.

5.4 Hierarchical Identity-Based Encryption
Hierarchical IBE is an extension of IBE. In HIBE, the secret key for

ID string id can delegate secret keys for ID strings id′, where id
is a prefix for id. Moreover, decryption succeeds if the ID string

for the secret key is a prefix of (or equal to) the ID string for the

ciphertext. The security model can be adapted according to the

delegation functionality.

The HIBE construction our system supports is described in [?].
The ID space for HIBE is idi ∈ (Znq)

d
. The secret key for ID string

id = (id1, . . . , idℓ), where idi ∈ Znq , is a small-norm matrix T, such
that FidT = 0, and Fid = [A0 | |A1 +M (id1)B| | · · · | |Aℓ +M (idℓ)B].
We note that T can be computed as long as we know the secret key

for id′, where id′ is a prefix of id. Ciphertext for ID string id can be

generated similarly with respect to matrix Fid.
The security proof of HIBE is similar to the counterpart of IBE.

The challenge ID string id∗ = (id∗
1
, . . . , id∗

ℓ
) is embedded in pp as

∀i ∈ [ℓ],Ai = ARi −M (id∗i)B, ∀ℓ < j ≤ d,Aj = ARj

For admissible query id = (id1, . . . , idk), where id is not a prefix of

id∗, we have
Bk =

[
(M (id1) −M (id∗

1
))B| | · · · | |(M (idk) −M (id∗k))B

]
, 0

Then we can generate secret key for id using information Bk and

Rk = (R1 | | · · · | |Rk). In previous cases, we manipulate and apply

rewriting rules to matrices. However, in order to reason about the

security in a similar manner to pen-and-paper proof, we intro-

duce the list notation, and adapt our implementation to operate

uniformly across these two types of expressions.

5.5 Inner Product Encryption
The IPE scheme our scheme supports is described in [?]. We briefly

recall their construction as

• MatrixA is generated by algorithm TrapGen. Matrices {matBi }i ∈[d]
are sampled randomly from Zn×mq , and random vector u is from

Znq . The public parameters pp = (A, {Bi }i ∈[d],u), andmsk = TA.
• Secret key skv = r for vectorv ∈ Zdq is computed by algorithm

r ← SampleLeft(A,
∑
i ∈[d] BiG−1 (viG),TA,u), where for oper-

ation G−1 (·) : Zn×mq → Zm×mq , for any A ∈ Zn×mq , it holds that

G · G−1 (A) = A and G−1 (A) has small norm.

• To encrypt a message µ ∈ {0, 1} for attributew , one generates a

uniform s ∈ Znq , error vector e0 ← χm and error integer e1 ← χ

from discrete Gaussian, random matrices {Ri }i ∈[d] ∈ {0, 1}m×m ,

and computes ciphertext (c0, {ci }i ∈[d], c) as

c0 = sTA + eT
0
, ci = sT (Bi +wiG) + eT

0
R, c = sTu + e + ⌈q/2⌉µ

The main challenge in the proof is to answer secret key queries

for any vector v as long as ⟨v,w0⟩, ⟨v,w1⟩ are both not 0, where

(w0,w1) is declared by adversary upfront. The attributewb (b is a

random bit) is first embedded in pp, i.e. Bi = ARi −wbiG,∀i ∈ [d],
where Ri is a small matrix. By unfolding the matrix for query v ,

we have

A| |
∑
i ∈[d]

BiG−1 (viG)

=

A| |A

∑
i ∈[d]

RiG−1 (viG) + ⟨wb ,v⟩G

If ⟨wb ,v⟩ , 0, the algorithm SampleRight can be used to generate

secret key forv .

The sequence of hybrids generated in symbolic proof is a bit

different from the pen-and-paper proof. In particular, instead of

transforming from embedding of challenge attribute w0 directly

to embedding ofw1, we use the original scheme as a middle game,

i.e. from embedding ofw0 to original scheme, then to embedding

ofw1. The reason for using the original scheme again in the proof

is that when using LHL to argue the indistinguishability between

(A, {Bi = ARi −w0iG}i) and (A, {Bi = ARi −w1iG}i), the real pub-
lic parameters (A, {Bi }i) actually serves as a middleman. Therefore,

to ensure the consistency with respect to public parameters and se-

cret key queries, the real scheme is used to make the transformation

valid.

6 RELATEDWORK
For space reasons, we primarily focus on related works whose main

purpose is to automate security proofs in the computational model.

Corin and den Hartog [?] show chosen plaintext security of

ElGamal using a variant of a general purpose probabilistic Hoare

logic. In a related spirit, Courant, Daubignard, Ene, Lafourcade and

Lakhnech [?] propose a variant of Hoare logic that is specialized for
proving chosen plaintext security of padding-based encryption, i.e.

public-key encryption schemes based on one-way trapdoor permu-

tations (such as RSA) and random oracles. Later, Gagné, Lafourcade,

Lakhnech and Safavi-Naini [? ?] adapt these methods to symmetric

encryption modes and message authentication codes.

Malozemoff, Katz and Green [?] and Hoang, Katz and Maloze-

moff [?] pursue an alternative approach for proving security of

modes of operations and authenticated encryption schemes. Their

approach relies on a simple but effective type system that tracks

whether values are uniform and fresh, or adversarially controlled.

By harnessing their type system into a synthesis framework, they

are able to generate thousands of constructions with their security

13

proofs, including constructions whose efficiency compete with

state-of-the-art algorithms that were discovered using conven-

tional methods. Using SMT-based methods, Tiwari, Gascón and

Dutertre [?] introduce an alternative approach to synthesize bitvec-

tor programs, padding-based encryption schemes and modes of

operation.

Our work is most closely related to CIL [?], ZooCrypt [?] and
AutoG&P [?]. Computational Indistinguishability Logic (CIL) [?
] is a formal logic for reasoning about security experiments with

oracle and adversary calls. CIL is general, in that it does not pre-

scribe a syntax for games, and side-conditions are mathematical

statements. CIL does not make any provision for mechanization,

although, as any mathematical development, CIL can be formal-

ized in a proof assistant, see [?]. ZooCrypt [?] is a platform for

synthesizing padding-based encryption schemes; it has been used

successfully to analyze more than a million schemes, leading to

the discovery of new and interesting schemes. ZooCrypt harnesses
two specialized computational logics for proving chosen-plaintext

and chosen-ciphertext security, and effective procedures for finding

attacks. The computational logics use deducibility to trigger proof

steps that apply reduction to one-wayness assumptions, and to

compute the probability of bad events using a notion of symbolic

entropy. However, ZooCrypt is highly specialized.

AutoG&P [?] introduce a computational logic and provide an

implementation of their logic, called AutoG&P, for proving security
of pairing-based cryptographic constructions. Their logic uses de-

ducibility for ensuring that proof rules are correctly enforced. Their

implementation achieves a high level of automation, thanks to a

heuristics for checking deducibility, and a proof search procedure,

which decides which proof rule to apply and automatically selects

applications of computational assumptions.We build heavily on this

work; in particular, AutoLWE is implemented as an independent

branch of AutoG&P. The main differences are:

• AutoLWE supports oracle-relative assumptions and general forms

of the Leftover Hash Lemma, and (semi-)decision procedures

for deducibility problems, for the theories of Diffie-Hellman ex-

ponentiation, fields, non-commutative rings and matrices. In

contrast, AutoG&P only support more limited assumptions and

implements heuristics for the theory of Diffie-Hellman exponen-

tiation;

• AutoG&P supports automated generation of EasyCrypt proofs,
which is not supported by AutoLWE. Rather than supporting gen-
eration of proofs a posteriori, a more flexible alternative would

be to integrate the features of AutoG&P and AutoLWE in Easy-
Crypt.

Theodorakis and Mitchell [?] develop a category-theoretical

framework for game-based security proofs, and leverage their frame-

work for transferring such proofs from the group-based or pairing-

based to the lattice-based setting. Their results give an elegant proof-

theoretical perspective on the relationship between cryptographic

proofs. However, they are not supported by an implementation.

In contrast, we implement our computational logic. Furthermore,

proofs in AutoLWE have a first-class status, in the form of proof

scripts. An interesting direction for future work is to implement

automated compilers that transform proofs from the group- and

pairing-based settings to the lattice-based settings. Such proof com-

pilers would offer a practical realization of [?] and could also

implement patches when they fail on a specific step.

7 CONCLUSION
We have introduced a symbolic framework for proving the security

of cryptographic constructions based on the (decisional) Learning

with Errors assumption. A natural step for future work is to broaden

the scope of our methods to deal with other hardness assumptions

used in lattice-based cryptography, including the Ring Learning

with Errors assumption, the Short Integer Solution assumption. A

further natural step would then be to analyze lattice-based key

exchange protocols [? ?]. To this end, it would be interesting to

embed the techniques developed in this paper (and in [?]) into the

EasyCrypt proof assistant [? ?], and to further improve automation

of EasyCrypt for typical transformations used for proving security

of protocols.

Acknowledgements. This work is partially supported by ONR Grant

N000141512750 (Barthe), by IBM under Agreement 4915013672

(Fan), and by NSF Grant 1704788 (Gancher).

A PROOFS OF SECTION 4.1
In group theory, a multilinear map is a function which goes from a

set of groups into a target group, and is linear with respect to all

its arguments. They have been used in the past years to develop

new schemes, such as Boneh-Boyen Identity Based Encryption [?]
or Waters’ Dual System Encryption [?].

Given a multilinear map ê , д1, ..,дn ,дt a set of groups generators,
let X be a set of public names sampled in Zq , Y be a set of private

names sampled in Zq , f1, ... fk ,h ∈ K[X ,Y] be a set of polynomials

over both public and secret names and Γ be a coherent set of axioms.

Our deducibility problem is to decide if Γ |= X ,д
f1
i1
, ...,д

fk
ik
⊢E дht

Without loss of generality, we consider here the case of a bilinear

map, to simplify the writing, but the proofs scale up to multilinear

maps.

A.1 Saturation into the target group
First, we reduce our problem to the case of a single group. This

result comes from the Proposition 1 of [?]. Their constructive proof
can trivially be used to obtain the following proposition:

Proposition A.1. For any setsX andY , polynomials f1, ... fn ,h ∈
K[X ,Y] and groups elements дf1i1 , ...,д

fn
in
, we denote

(дeit) = {ê (дi j ,дik) |1 ≤ j ≤ k ≤ n,дi j ∈ G1,дik ∈ G2}
∪{ê (дi j , 1) |1 ≤ j ≤ n,дi j ∈ G1, }
∪{ê (1,дi j) |1 ≤ j ≤ n,дi j ∈ G2, }

Then Γ |= X ,д
f1
i1
, ...,д

fn
in
⊢E дht ⇔ Γ |= X ,дe1t , ...,д

eN
t ⊢E−ê д

h
t .

We obtain a problem where we only have elements in the target

group, we can therefore reduce the general problem to the single

group case.

14

A.2 Reduction to polynomials
Lemma A.2. For any sets X and Y , polynomials w1, ...wN ,h ∈

K[X ,Y] we have Γ |= X ,дw1

t , ...,д
wN
t ⊢E дht if and only if:

∃(ei ,дi) ∈ K[X], (∀i, Γ |= дi , 0) ∧
∑
i
ei ×

fi
дi
= h

Proof. If Γ = ∅, the adversary can construct elements of the

form (дwi
t)ei , where ei ∈ K[X], i.e ei is a polynomial constructed

over variables fully known by the adversary, and then multiply

this kind of term, yielding a sum in the exponent. If Γ , ∅, he may

also divide by some д
дi
t , with дi ∈ K[X]. We capture here the three

capabilities of the adversary, which when looking in the exponent

immediately translate into the formula on the right side. □

To handle this new problem, we notice that we can actually

compute the set {д |Γ |= д , 0}. Indeed, for each axiom f , 0,

we can extract a finite set of non zero irreducible polynomials by

factorizing them (for example using Lenstra algorithm [?]). Any
non annulling polynomial will be a product of all these irreducible

polynomials. We can then obtain a finite setGs = (дi) such thatG =

{д |Γ |= д , 0} = {
∏

д∈Gs д
kд |∀д,kд ∈ N}. With these notations,

we can simplify proposition 1, because we know the form of the дi .
Moreover, as we do not want to deal with fractions, we multiply by

the common denominator of all the
wi
дi .

Lemma A.3. For any sets X and Y , polynomials w1, ...wN ,h ∈

K[X ,Y] we have Γ |= X ,дw1

t , ...,д
wN
t ⊢E дht if and only if:

∃(ei) ∈ K[X], (kд) ∈ N,
∑
i
ei ×wi = h

∏
д∈Gs

дkд

We do not prove this lemma, we will rather reformulate it using

more refined mathematical structures and then prove it. Let us call

M = {
∑
i ei ×wi |ei ∈ K[X]} the free K[X]-module generated by

the (wi). We recall that a S-module is a set stable by multiplication

by S and addition, and that ⟨(wi)⟩S is the S-module generated by

(wi). We also recall the definition of the saturation :

Definition A.4. Given a S-module T, f ∈ S and S ⊂ S ′, the
saturation of T by f in S’ is T :S ′ (f)

∞ = {д ∈ S ′ |∃n ∈ N, f nд ∈ T }.

The previous lemma can be reformulated using saturation; if M

is the module generated byw1, ...,wN :

Lemma A.5. Γ |= X ,дw1

t , ...,д
wN
t ⊢E дht ⇔ h ∈ M :K[X ,Y]

(д1...дn)
∞

Proof. We recall that:

M :K[X ,Y] (д1...дn)
∞ = {x ∈ K[X ,Y]|∃k ∈ N, (д1...дn)

k × x ∈ M }

⇒We have

∑
i ei ×wi = h

∏
д∈Gs д

kд
. WithK =max (kд), we mul-

tiply both sides by

∏
д д

K−kд
to geth

∏
д∈Gs д

K =
∑
i
∏

д д
K−kдei×

wi ∈ M . Which proves that h ∈ M :K[X ,Y] (д1...дn)
∞
.

⇐ If h ∈ M :K[X ,Y] (д1...дn)
∞
, we instantly have (ei) ∈ K[X],k ∈

N such that h
∏

д∈Gs д
kд =

∑
i ei fi . □

We then simplify the saturation, by transforming it into the

membership of the intersection of modules.

Lemma A.6. For any sets X and Y , f1, ... fn ,h ∈ K[X ,Y], д ∈
K[X],letM = {

∑
i ei × fi |ei ∈ K[X]} . Then, with t a fresh variable

M :K[X ,Y] д
∞ = ⟨(fi) ∪ ((дt − 1)Y j)j∈{deдY (fi) }⟩K[X ,t] ∩ K[X ,Y].

Proof. ⊂. Let there be v ∈ M :K[X ,Y] д∞. Then, we have k

such that дk ×v ∈ M . The following equalities shows that v is in

the right side set v = дk tkv − (1 + дt + ... + дk−1tk−1) (дt − 1)v .

Indeed, дk tkv ∈ MK[X , t], so we have (ei) ∈ K[X , t] such that

дk tkv =
∑
i ei fi . Moreover, дk × v ∈ M and д ∈ K[X] implies

that deдY (v) ⊂ {deдY (fi)}. So we do have (e ′i) ∈ K[X , t] and
(ji) ⊂ {deдY (fi)} such that

(1 + дt + ... + дk−1tk−1) (дt − 1)v =
∑

e ′i (дt − 1)Y
ji

Finally, v ∈ ⟨(fi) ∪ ((дt − 1)Y j)j∈{deдY (fi) }⟩K[X ,t] ∩ K[X ,Y].

⊃. Let there be v ∈ ⟨(fi) ∪ ((дt − 1)Y j)j∈{deдY (fi) }⟩K[X ,t] ∩

K[X ,Y]. Then we have (ei), (e
′
i) ∈ K[X , t] and (ji) ⊂ {deдY (fi)}

such that :

v =
∑
i
ei fi +

∑
i
e ′i (дt − 1)Y

ji

We have that v ∈ K[X ,Y], so v is invariant by t. So, if we

subsitute t with
1

д , we have that v =
∑
i ei (X ,

1

д) fi . Let us con-

sider дk the common denominator of all those fractions and call

e ′′i = дkei ∈ K[X]. We finally have дk × v =
∑
i e
′′
i fi ∈ M , which

means that v ∈ M :K[X ,Y] д
∞
. □

The Buchberger algorithm allows us to compute a Gröbner basis

of any free K[X]-module [?] and then decide the membership

problem for a module. We thus solve our membership problem

using this method.

Theorem A.7. For any sets X and Y , polynomials f1, ... fn ,h ∈
K[X ,Y], group elements дi1 , ...,дin and a set of axioms Γ we can
decide if Γ |= X ,д

f1
i1
, ...,д

fn
in
⊢E дht

Proof. To decide if h is deducible, we first reduce to a member-

ship problemwith lemmaA.5 that can be solved using lemma A.6 by

computing theGröbner basis of ⟨(fi)∪((дt−1)Y
j)j∈{deдY (fi) }⟩K[X ,t],

keeping only the elements of the base that are independent of t and
then checking if the reduced form of h is 0. □

As a side note, being able to decide the deducibility in this setting

allows us to decide another classical formal method problem, the

static equivalence. Indeed the computation of the Gröbner basis

allows us to find generators of the corresponding syzygies (Theorem

15.10 of [?]), which actually captures all the possible distinguishers

of a frame.

B PROOFS FOR SECTION 4.3
We provide a more detailed proof of Proposition 4.4. To reason

about matrices deducibility, writtenM ⊢ M for a set of matricesM

and a matrixM , we use the natural formal proof system K which

matches the operations on expressions (see Figure 13), that we

extend with the equality rule

[Eq]

M ⊢ M1 M ⊢ M1 = M2

M ⊢ M2 . For

ease of writing, we denote (AB) := (A⊤ | |B⊤)⊤.

Splits elimination.

Proposition B.1. Given a set of matricesM and a matrixM , we
can obtain S (M) a set of matrices without any concats, such that
M ⊢ M ⇔ S (M) ⊢ H .

15

[0]

Γ ⊢ 0 : Zq
n,m [id]

Γ ⊢ I : Zqn,n
[Tr]

Γ ⊢ M : Zq
m,n

Γ ⊢ M⊤ : Zq
n,m [sL]

Γ ⊢ M : Zq
n,m+m′

Γ ⊢ sl M : Zq
n,m

[sR]

Γ ⊢ M : Zq
n,m+m′

Γ ⊢ sr M : Zq
n,m′ [-]

Γ ⊢ M : Zq
n,m

Γ ⊢ −M : Zq
n,m

[∈]
M ∈ M

M ⊢ M
[×]

Γ ⊢ M : Zq
n, ℓ Γ ⊢ M ′ : Zq ℓ,n

Γ ⊢ M ×M ′ : Zqn,m
[+]

Γ ⊢ M : Zq
n,m Γ ⊢ M ′ : Zqn,m

Γ ⊢ M +M ′ : Zqn,m
[||]

Γ ⊢ M : Zq
n,m Γ ⊢ M ′ : Zqn,m

′

Γ ⊢ M | |M ′ : Zqn,m+m
′

Figure 13: Typing rules for matrix operators.

Proof. We notice that the concat operations commute with all

the other operators: (A| |B) + (C | |D) = (A + C | |B + D), (A| |B) −

(C | |D) = (A − C | |B − D), A × (B | |C) = (AB | |AC) , (A| |B) × C
D =

AC + BD, (A| |B)⊤ = (A
⊤

B⊤). Given a set of matricesM, we rewrite

the matrices so that the concatenations operators are at the top. We

can see the matrices as block matrices with submatrices without

any concat, and then, we can create a set S (M) containing all the

submatrices. This preserves deducibility thanks to the Eq rule for

the rewriting, and to the split rules for the submatrices. □

Definition B.2. We call N the proof system based on K without

splits, and write the deducibility withM ⊢N M .

Lemma B.3. IfM ⊢ (R | |S) with a proof π (resp.M ⊢ (RS)) then
M ⊢ R andM ⊢ S with smaller proofs (resp.M ⊢ R,M ⊢ S) .

Proof. We prove it by induction on the size of the proof, and

by disjunction on the last rule applied.

Base case: |π | = 2, then the proof is a concat on axioms and we

can then obtain the sub matrix directly, with a proof of size one.

Induction case:

• The last rule is

[Tr]

(
R

S
)

(R |S) .

Then, we directly obtain by induction on (RS) smaller proofs for

R and S .

• The last rule is

[×]
M (N l | |N r)

(MsN l |MN r) . Then, by induction on the

proof of N, we obtain proofs of size smaller than |π | − 1 of N l

and N r
, and we just have to add a [×] to those proofs, yielding

smaller proofs ofMN l
andMN r

.

• If the last rule is [+], [-], [||], the proof can be done similarly to

the two previous cases.

• The last rule is

[sL]

((M |N) |L)

(M |N) Then, we have a proof of ((M |N) |L)
of size |π | − 1, so by induction we have a proof of (M |N) smaller

than |π | − 1, and by adding a sL, we for instance obtainM with a

proof smaller than |π |.
• [sR] is similar.

□

Lemma B.4. IfM is a set of matrix without concatenations, and if
M ⊢ M , thenM ⊢N M .

Proof. We prove it by induction on the size of the proof, and

by disjunction on the last rule applied.

Base case: |π | = 1, then the only problem might be if the rule

used was a split, but as we have matrices without concatenations,

this is not possible.

Induction case:

• If the last rule is [Tr], [+], [-], [||], we conclude by applying the

induction hypothesis to the premise of the rule.

• The last rule is

[sL]

(M |N)

M . Then, we have a proof of (M |N) of
size π − 1, and with lemma B.3 we have a smaller proof ofM , on

which we can then apply our induction hypothesis to obtain a

proof ofM without split.

• splitR is similar.

□

Concatenations elimination.

Definition B.5. We call T the proof system based on N without

concatenations, and write the deducibilityM ⊢T M .

Lemma B.6. IfM,M,N do not contain any concat, then:

M ⊢N (M |N) ⇔M ⊢T M ∧M ⊢T N

Proof. The left implication is trivial. For the right one, we once

more do a proof by induction on the size of the proof.

Base case: |π | = 1, the last rule is a [||], and we do have a proof

ofM and N .

Induction case:

• The last rule is

[×]
M (N l | |N r)

(MN l |MN r)
Then, by induction on the proof of N, we obtain proofs of size

smaller than |π | − 1 of N l
and N r

without concats, and we just

have to add a [×] to those proofs, yielding proofs of MN l
and

MN r
without concats.

• If the last rule is [Tr], [+], [-], [sL], [sR], we proceed as in the

previous case

• The last rule is [||]. Then the induction rule instantly yields the

expected proofs. Then, we have a proof of (M |N) of size π − 1,
and with lemma B.3 we have a smaller proof ofM , on which we

can then apply our induction hypothesis to obtain a proof ofM
without split.

□

Lemma B.7. M ⊢N M ⇔ ∀G ⊑ M,M ⊢T G Where G ⊑ H
denotes the fact thatG is a submatrix ofM without any concatenation.

Proof. The left implication is trivial, we prove the right one. As

was done in Lemma B.1, we can seeM has a bloc matrix, i.e with

all the concat at the top.

We are given a proof ofM ⊢N M , which must contain all its

concatenations at the bottom of the proof tree. If we look at all the

highest concat rule in the proof such that no concat is made before,

we have some proof ofM ⊢N (Mi |Mj), and thanks to lemma B.6,

16

we haveM ⊢T Mi ∧ (Ai) ⊢T Mj . Applying this to all the highest

concat rules in the proof yields the result. □

Removal of the transposition.

Definition B.8. We callV the proof system based on N without

concat, and write the deducibilityM ⊢V M .

The transposition commutes with the other operations, given a

matrixM we define the normal form N (M) where the transposition
is pushed to the variables. We extend the notation for normal form

to sets of matrices.

Lemma B.9. M ⊢T M ⇔M ∪ (N (Mt))) ⊢V N (M)

Proof. ⇐ This is trivial, as the normal form can be deduced

using the rule [Eq].

⇒ Given the proof ofM , we can commute the trans rule with all the

others, and obtain a proof tree where all the transposition are just

after a [∈] rule. Then, any [∈] followed by [trans] can be replaced

by a [∈] and a [eq] when given the inputM ∪ (N (Mt))) instead
ofM. We can thus construct a valid proof ofM ∪ (N (Mt))) ⊢V
N (M) □

Conclusion. The proof of proposition 4.4 is a direct consequence

of Lemmas B.1, B.4, B.7 and B.9.

17

	Abstract
	1 Introduction
	2 Example: Dual Regev Encryption
	3 Logic
	3.1 Games
	3.2 Reasoning about expressions
	3.3 Strongest postcondition
	3.4 Judgment and proof rules
	3.5 Soundness
	3.6 Axioms Used

	4 Deciding deducibility
	4.1 Diffie-Hellman exponentiation
	4.2 Fields and non-commutative rings
	4.3 Matrices

	5 Implementations and Case Studies
	5.1 Implementation
	5.2 Identity-Based Encryption
	5.3 CCA1-PKE
	5.4 Hierarchical Identity-Based Encryption
	5.5 Inner Product Encryption

	6 Related work
	7 Conclusion
	A Proofs of section 4.1
	A.1 Saturation into the target group
	A.2 Reduction to polynomials

	B Proofs for section 4.3

