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Abstract. This work concerns the statistics of the Two-Time Measurement definition of heat variation in each

reservoir of a thermodynamic quantum system. We study the cumulant generating function of the heat flows

in the thermodynamic and large-time limits. It is well-known that, if the system is time-reversal invariant,

this cumulant generating function satisfies the celebrated Evans–Searles symmetry. We show in addition that,

under appropriate ultraviolet regularity assumptions on the local interaction between the reservoirs, it satisfies

a translation-invariance property, as proposed in [Andrieux et al. New J. Phys. 2009]. We particularly fix

some proofs of the latter article where the ultraviolet condition was not mentioned. We detail how these two

symmetries lead respectively to fluctuation relations and a statistical refinement of heat conservation for isolated

thermodynamic quantum systems. As in [Andrieux et al. New J. Phys. 2009], we recover the Fluctuation-

Dissipation Theorem in the linear response theory, short of Green–Kubo relations. We illustrate the general

theory on a number of canonical models.
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1 Introduction

In this article, we are interested in the heat exchange between different reservoirs forming an isolated

quantum system. In the quantum setup, there exist multiple choices for the definition of the variation

of heat in each reservoir, and different choices may have different mathematical properties and phys-

ical relevance. We consider the Two-Time Measurement (TTM) definition (which was introduced

initially in [Kur00, Tas00] for other thermodynamic quantities, see the reviews [JOPP12, EHM09,

CHT11]). Within this definition we establish a statistical formulation of the heat conservation. We

will see that this is a more subtle problem for quantum systems than for their classical counterparts.

In this introduction we present our results informally in the case of a system consisting of two reser-

voirs and start by ignoring the classical/quantum distinction. Assume that the heat dumped in reser-

voir i between times 0 and t is represented by a quantity Qj . We describe its expected properties.

Since the system is assumed isolated, one expects the first law of thermodynamics to hold in the form

Q1 + Q2 = W with W the work put in by turning on the interaction between the reservoirs. If the

work can be neglected, we then get an expression of the conservation of heat: Q1 +Q2 is negligible

with respect to the elapsed time in the experiment. One also expects a second law to hold in the form

β1Q1 + β2Q2 ≥ 0, where β1 and β2 are the inverse temperatures, stating that the entropy production

is non negative. When Q1,Q2 are average thermodynamic quantities these two laws are easily proved

from microscopic classical or quantum models.

Looking at finer properties of thermodynamic quantities leads to a description of Q1, Q2 and W as

random variables. First, one expects the thermodynamic system to be ergodic; that is, for a long

enough experiment, one expects the time average of heat exchanges Qj to be equal to their mean
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value. In probabilistic terms, Q1 and Q2 should obey a law of large numbers:

lim
t→∞

1

t
Q1 = 〈Φ1〉+ lim

t→∞

1

t
Q2 = 〈Φ2〉+

where 〈Φj〉+ is the limit of the average heat flux 1
t
〈Qj〉t for i = 1, 2. As discussed above, if work can

be neglected, one expects the relations 〈Φ1〉++〈Φ2〉+ = 0 and β1〈Φ1〉++β2〈Φ2〉+ ≥ 0, from which

we deduce that in the long time limit, heat flows from the hot to the cold reservoir. Looking at the first

order of fluctuations around the law of large numbers, one expects a central limit theorem property,

i.e. that the joint distribution of (Q1 − t〈Φ1〉+)/
√
t and (Q2 − t〈Φ2〉+)/

√
t converges to that of

centered Gaussian random variables ξ1 and ξ2 such that ξ1 = −ξ2 with probability 1 or, equivalently,

(1, 1) is in the kernel of their covariance matrix. A description of fluctuations beyond the central

limit theorem typically uses a large deviation principle, i.e. gives a so-called rate function I(q1, q2)
such that the probability that (1

t
Q1,

1
t
Q2) is close to some value (s1, s2) decays exponentially in

time with rate I(s1, s2). The route to a large deviation principle is usually through the Gärtner–Ellis

theorem (see [Ell85, DZ10]). The latter is based on the study of the limit cumulant generating function

χ+(α1, α2) = limt→∞
1
t
log χt(α1, α2), where

χt(α1, α2) = Et(e
−α1Q1−α2Q2) =

∫

R2

e−α1q1−α2q2 dP(q1, q2)

is the moment generating function of (Q1, Q2) or Laplace transform of Pt. Remark that the distri-

bution Pt is completely characterized by the function χt (see [Bil12]). It is now common knowledge

that properties of χt can encode thermodynamic principles: assuming that the interacting dynamics is

time-reversal invariant, Pt should satisfy a transient fluctuation relation (see [RM07] or [JOPP12] and

references therein for a detailed presentation of fluctuation relations) in the form:

dPt(q1, q2) = e−(β1q1+β2q2) dPt(−q1,−q2),

and an equivalent formulation is that the moment generating function verifies the Evans–Searles sym-

metry (see [ES94])

χt(α1, α2) = χt(β1 − α1, β2 − α2). (1.1)

Given this symmetry, Jensen’s inequality implies directly the second law of thermodynamics. Hence,

the Evans–Searles symmetry (1.1) can be seen as a statistical refinement of the second law. Let us

emphasize that this symmetry holds for finite time t (it is therefore called the transient fluctuation re-

lation) and that this statistical refinement of the second law therefore does not require the introduction

of large deviation theory.

It turns out that the properties related to the conservation of heat are not so trivial to express. Let us

describe our approach by making the strongest sensible assumption on the maximal total heat input

Q1+Q2, that it is bounded almost surely or namely that there exists C > 0 such that Pt almost surely

one has |Q1+Q2| ≤ C , for any time t. Then we obtain an almost translation symmetry in the moment

generating function parameters: for any time and any θ ∈ R,

e−|θ|Cχt(α1, α2) ≤ χt(α1 + θ, α2 + θ) ≤ e|θ|Cχt(α1, α2). (1.2)

Remark that this is not a translation symmetry since we do not have equalities. However, since C
does not depend on time, it turns into a symmetry for the asymptotic cumulant generating function

χ+ = limt→∞
1
t
logχt.
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If χ+(α1, α2) is defined then trivially (1.1) implies χ+(α1, α2) = χ+(β1 − α1, β2 − α2), and (1.2)

implies the new relation χ+(α1 + θ, α2 + θ) = χ+(α1, α2) for all θ. If χ+ is defined on R
2 then

this translates into properties of the large deviations rate function I: the first relation satisfied by

χ+ implies I(s1, s2) = I(−s1,−s2) − (β1s1 + β2s2), and the second implies I(s1, s2) = ∞ if

s1 + s2 6= 0, meaning that the probability of an event where conservation does not hold, such as

|(Q1+Q2)/t| > ǫ, decays superexponentially with time. In the present case this last statement would

be a trivial consequence of the almost sure bound |Q1 + Q2| ≤ C (once it is assumed that a large

deviation principle holds for the pair (Q1, Q2)) without need for a detour by the cumulant generating

function χ+.

However, the almost sure bound and the full translation symmetry may not always hold, i.e. even when

χ+(α1, α2) is defined, one may not have χ+(α1, α2) = χ+(α1+ θ, α2+ θ). The extent of validity of

this relation will depend on the total heat introduced by turning on the interaction. It is trivially verified

by classical systems with bounded interaction between the reservoirs (see [BPR18, Proposition 2.3]).

Already for classical models of harmonic oscillators, it holds only for θ in a bounded interval: in

that case the interaction is not bounded and there exists θ0 > 0, such that for any α1, α2 small

enough, for any θ ∈ [−θ0, θ0], χ+(α1, α2) = χ+(α1 + θ, α2 + θ), but one cannot take θ0 to infinity

(see [BJP17, DHP19]). Thankfully, this bounded translation symmetry still implies some bound on

the rate function: the probability that heat is not conserved does not decay superexponentially, but

exponentially with rate proportional to θ0. Namely, if there exists θ0 > 0 such that for any α1, α2 small

enough and any θ ∈ [−θ0, θ0] one has χ+(α1, α2) = χ+(α1+θ, α1+θ), then I(s1, s2) ≥ θ0 |s1+s2|,
and in particular the probability of |(Q1 +Q2)/t| > ǫ decays exponentially with time.

Summarizing, when concerned with the laws of thermodynamics beyond the law of large number

or the central limit theorem, it is useful to study the asymptotic cumulant generating function χ+

of the heat fluxes. We expect two symmetries in its parameters: the Evans–Searles symmetry is

related to the second law through the fluctuation relation, and the translation symmetry induces a

control of heat conservation violations. Interestingly, using jointly both of these symmetries, one

can prove the fluctuation–dissipation theorem short of Green–Kubo relations (see [AGMT09] and

Section 3.4). As already mentioned, for classical system with bounded inter-reservoirs interaction,

proving both symmetries is easy; for unbounded interactions the approach has to be model-dependent

but no conceptual difficulty arises.

For quantum systems, however, even with bounded interactions the very definition of the random

variables Q1 and Q2 raises difficulties and different definitions exist in the literature. Let us introduce

some notation: letH1,H2 be the free Hamiltonians of the two reservoirs and let V denote the bounded

interaction between them. The Hamiltonian governing the dynamics is H = H0+V withH0 = H1+
H2 and (τ t)t is the associated Heisenberg dynamics, i.e. the evolved version At of the observable A is

At = τ t(A) := eitHAe−itH . Let ρ denote the initial state of the system; namely ρ is a density matrix

such that the expectation value of an observable A is tr(ρA) (which we denote ρ(A) for concision).

A “naive quantization” approach would define for i = 1, 2 the variable Qj as proceeding from a

measurement of the observable ∆tHj = Hj,t−Hj , and similarly the work variable W as proceeding

from a measurement of ∆tV = V − τ t(V ). One then benefits from the obvious identity ∆tH1 +
∆tH2 = ∆tV , but the fluctuation relation (1.1) fails (see [JOPP12, Exercices 3.3 & 6.1]) and the

thermodynamic quantities are hard to interpret physically. The TTM approach defines thermodynamic

quantities through the following Gedankenexperiment: if one measures H1 and H2 at time 0 with

outcomes h1 and h2 (remark thatH1 andH2 commute and can therefore be simultaneously measured),

lets the (post-measurement) system evolve for a time t, and measures H1 and H2 again with outcomes

h′1 and h′2, thenQ1 andQ2 are defined as the (random) differences h′1−h1 and h′2−h2. This definition
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is easy to interpret physically and ensures the validity of the fluctuation relation (see below), but the

equality Q1 + Q2 = W does not hold beyond the first two moments (see [JOPP12, §3.5]), so that a

uniform bound for W does not tell us anything about Q1 +Q2. Similarly, the inequality

∣

∣ρ
(

τ t(H1)−H1

)

+ ρ
(

τ t(H2)−H2

)
∣

∣ ≤ 2‖V ‖ (1.3)

leads to E(Q1) + E(Q2) ≤ 2‖V ‖ but this does not prove the almost-sure boundedness of Q1 + Q2.

Thankfully, as proved in [BJP+15, BPR18], under some ultraviolet regularity conditions on the inter-

action one can control the exponential decay of the probability of violation of heat conservation; these

ultraviolet regularity conditions are actually shown in [BPR18] to be essentially necessary to control

the tails of the total heat distribution and some examples with bounded interactions are provided where

the fourth moment Et((Q1 +Q2)
4) of the total heat is infinite for almost every time t.

In the present article we work with the TTM definition of thermodynamic quantities and study the

statistics of the pair (Q1, Q2). We introduce ultraviolet regularity conditions generalizing those of

[BJP+15, BPR18], that allow us to prove a bounded translation symmetry of the cumulant gener-

ating function. Our proof fixes an error in the derivation of the translation symmetry provided in

[AGMT09], where the authors overlooked the necessity of ultraviolet regularity conditions (see Re-

mark 3.9). We then present and derive rigorously the previously mentioned consequences of the

symmetries satisfied by the cumulant generating function (see Section 3), and derive the fluctuation–

dissipation theorem short of Green–Kubo formula (Theorem 3.19) At the end of the article we give

some examples of application to standard models of quantum statistical mechanics (see Section 4).

Before we enter into a more rigorous discussion, we conclude this section with an informal presenta-

tion of our assumptions and results.

Our assumption is essentially that for some strictly positive α0 both of the following bounds hold:

sup
α1,α2∈[−α0,+α0]

∥

∥e+
1
2
(α1H1+α2H2) V e−

1
2
(α1H1+α2H2)

∥

∥ <∞ (1.4)

sup
α1,α2∈[−α0,+α0]

∥

∥e+
1
2
((α1+β1)H1+(α2+β2)H2) V e−

1
2
((α1+β1)H1+(α2+β2)H2)

∥

∥ <∞. (1.5)

We call this assumption an ultraviolet regularity as in paradigmatic models of non-equilibrium statis-

tical mechanics the condition translates directly to an ultraviolet regularity condition (see Section 4.2

and [BPR18]). It can also be understood through a golden rule approximation of the energy transitions

induced by the interaction: in such approximation the transition rate between twoH0 eigenstates |ΨE〉
and |ΨE′〉 of respective energy E and E′ is essentially given by T (E,E′) = |〈ΨE′ |VΨE〉|2. Then the

uniform bounds of equation (1.4) imply for example that T (E,E′) = o(e−α0|E−E′|), namely, tran-

sitions towards high energy (i.e. ultraviolet) states are exponentially suppressed. Although obviously

a stronger condition than the boundedness of V which was assumed to derive (1.3), this ultraviolet

regularity condition holds in many models of physical interest; see Section 4. As already mentioned,

the results of [BPR18] show that this ultraviolet regularity condition is essentially necessary for the

probability of violation of heat conservation to be exponentially suppressed. The emerging underlying

picture is that, in the quantum setting, total heat fluctuations are sensitive to energy transitions induced

by the interaction (i.e. ultraviolet regularity of V ), rather than to the interaction strength (i.e. ‖V ‖).

In the present article, we only deal with bounded interactions. Our results thus do not apply to reser-

voirs of bosons. Nevertheless the intuition behind our proofs should apply to models involving un-

bounded interaction. Though, in this case, as for classical models with unbounded interaction, the

strength of the interaction may also limit the size of the interval on which the translation symmetry

5
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is valid. A first approach to the questions we deal with here but for unbounded V can be found in

[BPR18, §4.2 and §4.3].

We choose to describe infinitely extended systems through their approximations by finite dimensional

systems. Infinitely extended reservoirs are required to observe non-trivial thermodynamic behavior,

but their description relies typically on infinite-dimensional operator algebras, and the related theory

of e.g. states and dynamics is technically demanding. We can however state our assumptions exclu-

sively in terms of generating functions associated with finite-dimensional approximations. Although

such a route may have its limitations (see [JOPP12] for an in-depth discussion), it allows us to bypass

heavy algebraic machinery and make it accessible to a larger audience. Our mathematical analysis re-

lies essentially on simple trace inequalities that allow us to give relevant bounds. The thermodynamic

limit is only performed at the level of generating functions, and therefore of probability distributions.

The probabilistic tools involved are elementary, except possibly for the Gärtner-Ellis theorem, used to

obtain a large deviation principle. Note that [BPR18] takes a different approach and studies directly

infinitely extended systems via algebraic and analytic tools.

The article is organized as follows. In Section 2 we introduce our main objects of interest in a finite-

dimensional setting, i.e. for confined systems, and derive various bounds for generating functions

from simple trace inequalities. In Section 3 we specialize to thermodynamic quantum systems com-

posed of several thermal reservoirs, and establish results concerning the joint distribution for the heat

variations in the different reservoirs: we show a law of large numbers, a central limit theorem and a

large deviation principle. We also recover the Fluctuation-Dissipation Theorem (short of Green–Kubo

relations), and discuss the role of “small” systems, i.e. systems whose Hilbert space stays finite di-

mensional in the thermodynamic limit. In Section 4, we present various models for which we discuss

our ultraviolet regularity assumptions and those of our results that apply.

Acknowledgments. The research of T.B. was supported by ANR project RMTQIT (Grant No. ANR-

12-IS01-0001-01), LabEx CIMI (ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-

0002-02 ) and by ANR contract StoQ ANR-14-CE25-0003-0. The research of A.P. was partially sup-

ported by ANR project SQFT (ANR-12-JS01-0008-01) and ANR grant NonStops (ANR-17-CE40-

0006-01, ANR17-CE40-0006-02, ANR-17-CE40-0006-03), and part of her work was done during

a CNRS leave at CRM, Montreal, UMI 3457. The research of Y.P. was partly supported by ANR

contract StoQ ANR-14-CE25-0003-0 and ANR grant NonStops (ANR-17-CE40-0006-01, ANR17-

CE40-0006-02, ANR-17-CE40-0006-03), and part of his work was done during a CNRS leave at

CRM, Montreal, UMI 3457. All three authors wish to thank the mathematics and statistics department

of McGill University, where this work was initiated, and Vojkan Jakšić for suggesting the problem.

2 Definitions for confined systems and basic bounds

In this section, we consider systems with a finite number of degrees of freedom. This allows us to

define without analytical difficulties the random variables corresponding to thermodynamic quantities

in the Two-Time Measurement picture and to derive relevant inequalities for their joint generating

function from basic trace and norm inequalities for matrices.
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2.1 Setup: observables and measurement

We first recall the basic formalism of quantum mechanics: a physical system is described by a triple

(H,H, ρ) where H is an Hilbert space, H a self-adjoint operator on H and ρ is a density matrix, i.e. a

nonnegative operator ρ on H with trace 1 (we will use the same symbol ρ for the density matrix and

the linear form A 7→ tr(ρA)). We consider a confined system in the sense that dimH < ∞. In this

setting, denoting by B(H) the algebra of (bounded) linear operators on H, the physical observables

can be identified with self-adjoint elements A of B(H). The dynamics of the system is dictated by the

operator H which is interpreted as energy observable and is called the Hamiltonian. We will work in

the Heisenberg picture where an observable evolved to time t is given by At = e+itHA e−itH while

the state ρ stays constant.

We also recall the standard description of measurement: the measurement of an observable A has ran-

dom outcomes taking values in the spectrum spAwith probability depending on the pre-measurement

state ρ. More precisely, if we write A =
∑

a∈spA aPa the spectral resolution of A, then a measure-

ment of the observable A on a system with pre-measurement state ρ will return the value a ∈ spA
with probability tr(Paρ). In particular, the expectation and variance of the measurement outcome are

respectively ρ(A) and ρ
(

(A − ρ(A))2
)

. Conditioned on outcome a, the post-measurement state is

PaρPa/tr(Paρ).

We are interested in systems consisting of several “reservoirs” R1, . . . ,Rℓ. Once again we will ap-

proximate physical reservoirs by confined systems; this will be formalized in the next definition.

Therefore, we view our confined system as consisting of different subsystems. Typically, the Hilbert

space can be written as product of Hilbert spaces H = H1 ⊗ . . . ⊗ Hℓ, and to each reservoir one

can associate a "free" energy Hj , j = 1, . . . , ℓ, generating the dynamics of subsystem Rj . For the

full system we consider two different Hamiltonians: one is H0 =
∑ℓ

j=1Hj which we call the free

Hamiltonian, another isH = H0+V which we call the full Hamiltonian. The observable V therefore

represents the interaction between the different Rj .

For compactness, we set E = (H1, . . . ,Hℓ) and we give the following definition.

Definition 2.1. A confined multisystem is a quadruple (H, ρ,E, V ), with H a finite-dimensional

Hilbert space, E a finite set of commuting observables, ρ a density matrix and V an additional

observable.

In what follows, the nature of the reservoir Rj is irrelevant and the decomposition of the Hilbert

space only appears in the fact that we consider a set of commuting observables E = (H1, . . . ,Hℓ).
Therefore, the analysis in the remainder of the paper can be extended to any system formally satisfying

the above definition. Note that, with the above definition, we do not need to specify the nature of the

interaction, and in particular whether the reservoirs interacts directly or through another system. This

will be relevant in the thermodynamic limit, see Remark 3.2 and Appendix A.

Notation: We follow the convention that bold letters (e.g. A,a,φ) are used for ℓ-tuples. If a, b ∈ C
ℓ,

a.b =
∑ℓ

j=1 ajbj is the bilinear quadratic form extending to C
ℓ the canonical scalar product of Rℓ.

From now on, we always write
∑

j for
∑ℓ

j=1, and use notation such as α.E =
∑

j αjHj for α ∈ C
ℓ.

In addition, we denote |α| = (|α1|, . . . , |αℓ|) and ‖α‖ = supj=1,...ℓ |αj |.
A particular family of states will be relevant in confined multisystems. They are of the form

ρβ = Z−1 e−
∑

j βjHj = Z−1 e−β.E with Z = tr(e−
∑

j βjHj ) = tr(e−β.E), (2.6)

where β = (β1, . . . , βℓ) and βj > 0 for all j. A state of this form is called a multi-thermal state
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with respect to inverse temperatures β. If ρ is a multi-thermal state, then initially each subsystem is

in thermal equilibrium, and if two of the inverse temperatures βj are different, then the temperature

differential will result, in the thermodynamic and large-time limit, in the onset of steady heat fluxes

across the system. Our goal is to study the statistical properties of those fluxes.

Taking a “naive” quantization picture, these fluxes are described by the observables Φj = i[H,Hj ].
One has immediately

Hj,t −Hj =

∫ t

0
Φj,s ds

so the convention is that heat flowing into a subsystem Rj corresponds to positive values of Φj .

2.2 Setup: Two-Time Measurement picture

In this section we fix a confined multisystem (H, ρ,E, V ) and construct the joint probability distribu-

tion Pt of heat variation rates into the different reservoirs, according to the Two-Time Measurement

picture.

The set up is the following. The commuting observables H1,H2, . . . ,Hℓ are measured simultaneously

a first time. For short we say we measure E. The system evolves for a time t, then E is measured

again. We denote by spE the possible outcomes of a measurement i.e.

spE = {e = (e1, . . . , eℓ), ej ∈ spHj for j = 1, . . . , ℓ}.

Let (Pe)e∈spE be the commuting family of projectors such that for any j = 1, . . . , ℓ, one has Hj =
∑

e∈spE ej Pe. If the system is initially in the state ρ, then the outcome of a measurement of E

will be e ∈ spE with probability tr(PeρPe), and after the measurement the system is in the state
PeρPe

tr(PeρPe)
. We can equivalently write the above probability and post-measurement state as tr(ρ̃ Pe)

and ρ̃ Pe/tr(ρ̃ Pe), where ρ̃ is the a priori state with respect to E defined by

ρ̃ =
∑

e∈spE

PeρPe. (2.7)

In many situations of interest, and in particular whenever ρ is a multi-thermal state, ρ will commute

with E and we will therefore have ρ = ρ̃. Assume now that, after measuring E at time 0, with

outcome e, we let the system evolve for a time t before making a second measurement of E. The

post-measurement state evolves, after a time t, into e−itH ρ̃ Pe e+itH

tr(ρ̃ Pe)
. The second measurement of E

then gives e′ with probability
tr(e−itH ρ̃ Pe e+itHPe′)

tr(ρ̃ Pe)
. The probability that these two measurements give

e then e′ is therefore tr(e−itH ρ̃ Pe e
+itHPe′). The joint law of the heat fluxes towards the different

reservoirs is the induced probability measure Pt on R
ℓ of the vector φ = (e′ − e)/t and describes the

rate of change of E between the two measurements. More precisely, for ϕ ∈ R
ℓ,

Pt(ϕ) =
∑

e,e′∈spE

1e′−e=tϕ tr
(

e−itH ρ̃ Pee
+itHPe′

)

. (2.8)

The measure Pt is concentrated on the set (spE − spE)/t. The random variable φ is the canonical

coordinate mapping ϕ 7→ ϕ. We denote by Et the expectation with respect to Pt. We define a map χt

from C
ℓ to C:

χt(α) = Et

(

exp(−tα.φ)
)

=
∑

ϕ

e−
∑

j tαjϕj Pt(ϕ). (2.9)

8
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We will occasionally consider two additional random variables. The first is φ0, defined by

φ0 : ϕ 7→ 1.ϕ =
∑

j

ϕj .

The second is ς , defined in the case where the state ρ is multi-thermal with respect to inverse temper-

atures β by

ς : ϕ 7→ β.ϕ =
∑

j

βjϕj .

It is clear that φ0 and ς are random variable emerging from the Two-Time Measurement of H0 and

(when the state ρ is multi-thermal) S =
∑

j βjHj + logZ = − log ρ respectively. Therefore, φ0
represents the rate of total heat absorption and ς the rate of change of total entropy in the Two-

Time Measurement picture. Our statements below on the distribution of φ obviously translate into

statements on the distributions of φ0 and ς .

In the remainder of the section, we list some immediate properties of χt and establish a connection

with the first two momenta of the heat fluxes.

First, one easily verifies from (2.8) and (2.9) that

χt(α) = tr
(

e−itH ρ̃ e+α.Ee+itHe−α.E
)

= tr
(

e−
1
2
α.Ee−itHe+

1
2
α.E ρ̃ e+

1
2
α.Ee+itHe−

1
2
α.E

)

. (2.10)

It is then clear that χt is an entire function of α and χt(α) ∈ R+ for α ∈ R
ℓ. The restriction of

α 7→ log χt(α) to R
ℓ is a convex function1 . The triangle and Cauchy-Schwarz inequalities imply

respectively

|χt(α)| ≤ χt(Reα) for α ∈ C
ℓ, (2.11)

χt(−α)−1 ≤ χt(α) for α ∈ R
ℓ. (2.12)

An easy computation shows that

∂

∂αj
χt(α)|α=0 = −tr

(

ρ̃(Hj,t −Hj)
)

,

∂2

∂αj∂αk

χt(α)|α=0 = tr
(

ρ̃(Hj,t −Hj)(Hk,t −Hk)
)

.

(2.13)

Recalling that we denote by Φj = i[H,Hj ] the flux observable of Hj in the “naive” quantization

definition, we thus have

Et(φj) = −1

t

∂

∂αj
χt(α)|α=0 =

1

t

∫ t

0
ρ̃(Φj,s) ds,

Et(φjφk) =
1

t2
∂2

∂αj∂αk
χt(α)|α=0 =

1

t2

∫ t

0

∫ t

0
ρ̃(Φj,rΦk,s) dr ds,

covPt(φj , φk) =
1

t2

∫ t

0

∫ t

0
ρ̃
(

(Φj,r − ρ̃(Φj,r))(Φk,s − ρ̃(Φk,s))
)

dr ds.

(2.14)

1We define a convex function as a map f from R
ℓ to ]−∞,+∞] which is not +∞ everywhere, and for α1,α2 ∈ R

ℓ

and u ∈ [0, 1] satisfies f(uα1 + (1− u)α2) ≤ uf(α1) + (1− u)f(α2).

9
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We will denote 〈Φj〉t = 1
t

∫ t

0 ρ̃(Φj,s) ds. Assume temporarily that ρ commutes with E (as is the case

if e.g. ρ is multi-thermal); then ρ = ρ̃ and Equations (2.13) and (2.14) show that for all j and k

Et(φj) =
1

t
ρ(Hj,t −Hj), Et(φjφk) =

1

t2
ρ
(

(Hj,t −Hj)(Hk,t −Hk)
)

,

and we recover the well-known fact (see [DDRM08]) that the heat fluxes defined in the Two-Time

Measurement picture have the same first two moments as the distribution of the observable (Et−E)/t.
Using Ht = H , it implies in particular that

∑

j

〈Φj〉t =
1

t
ρ(V − Vt) and

∑

j,k

covPt(φj , φk) =
1

t2
ρ
(

(V − Vt)
2
)

.

It follows that
∣

∣

∣

∑

j

〈Φj〉t
∣

∣

∣
≤ 2‖V ‖

t
and

∑

j,k

covPt(φj , φk) ≤
4‖V ‖2
t2

. (2.15)

Remark 2.2. One can also consider an additional set of commuting observables (N1, . . . , Nℓ) that

satisfy [Hj, Nk] = 0 for all j, k where Nj is interpreted as the observable counting the number of par-

ticle in the j-th subsystem, and one can study the Two-Time Measurement of (H1, . . . ,Hℓ, N1, . . . , Nℓ)
with respect to the state

ρ =
e−

∑
j βj(Hj−µjNj)

tr(e−
∑

j βj(Hj−µjNj))
,

where µj ∈ R is the chemical potential of the j-th subsystem. Our results extend directly to this setting

and we will leave these extensions to the interested reader.

In the rest of this section, we collect various bounds on the moment generating function χt, which

we will then use to study the thermodynamics of systems described as infinite-dimensional limits of

confined multisystems.

2.3 Transient fluctuation relation for confined systems

As mentioned in the introduction, the Two-Time Measurement definition of thermodynamic quantities

allows for an extension of the transient fluctuation relations to the quantum setting ([Kur00, Tas00,

TM11]). Transient fluctuation relations are equivalent to a symmetry of the generating function,

often called Evans–Searles symmetry (see [ES94], and [RM07, JOPP12] for more references). In

the multi-reservoir context, these relations are often called exchange fluctuation relations ([JW04,

CHT11, EHM09]). For the reader’s convenience, we present a precise statement about fluctuation

relation and the corresponding symmetry in our context.

Definition 2.3. We say that the confined multisystem (H, ρ,E, V ) satisfies time-reversal invariance

if there exists an antilinear involution C on H that commutes with H , ρ, and all Hj’s. In other words,

time-reversal invariance holds iff H has an orthonormal basis in which the matrix elements of H , ρ,

and all Hj’s are real.

We then have:

10
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Proposition 2.4. Let (H, ρ,E, V ) be a time-reversal invariant confined multisystem, where ρ is multi-

thermal with respect to inverse temperatures β. Then

χt(α) = χt(β −α) for any α ∈ R
ℓ. (2.16)

or equivalently Pt(ϕ) and Pt(−ϕ) are mutually absolutely continuous and

Pt(+ϕ)

Pt(−ϕ)
= e+t

∑
j βjϕj (2.17)

for any ϕ ∈ R
ℓ such that Pt(ϕ) 6= 0.

Because of the choice of initial state, the proof is a trivial consequence of time-reversal invariance

(see [JOPP12, Proposition 3.9] for details).

Remark 2.5. Relation (2.17) implies in particular
∑

j βj〈Φj〉t ≥ 0, which is the usual expression

of the positivity of the (average) entropy production. To describe a more familiar form of fluctuation

relation, denote by et the moment generating function of ς , i.e. the function R ∋ α 7→ Et(e
−ας). Then

relation (2.16) implies

et(α) = et(1− α),

which in turn is equivalent to Pt(ς = +s) and Pt(ς = −s) being mutually absolutely continuous and

Pt(ς = +s)

Pt(ς = −s) = e+ts

for any s such that Pt(ς = s) 6= 0.

2.4 Bounds for confined systems

In this section we give relevant bounds on the generating function χt associated with the family

E = (H1, . . . ,Hℓ). Note in particular that Proposition 2.7 proves a relation corresponding to Equa-

tion (1.2). Detailed proofs are given in Section 5.

These bounds are immediate in the classical case when V is bounded, but, as explained in the intro-

duction, the situation is more subtle in the quantum TTM framework, as the fluctuations are controlled

by ultraviolet properties of the interaction rather than its strength. In the confined case, however, this

problem can not occur and classical proofs can be extended making use of trace inequalities (see Sec-

tion 5). The choice of the constants in the bounds below becomes relevant only in the thermodynamic

limit and is therefore discussed in Section 3 (see also Section 4).

Let (H, ρ,E, V ) be a confined multisystem. For any α ∈ R
ℓ, let

Vα = e+
1
2
α.EV e−

1
2
α.E. (2.18)

For α0 ∈ R+ we introduce the constant

S(α0) = sup
‖α‖≤α0

‖Vα‖. (2.19)

Note that there cannot exist a finite uniform bound for supα∈Rℓ ‖e+ 1
2
α.E V e−

1
2
α.E‖ unless V com-

mutes with E. We discard this situation as physically uninteresting since it would imply that all

considered observables are constant (and, after the thermodynamic limit, that V is non local).

11
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We start by giving estimates on χt(α). The relevance of S(‖α‖) comes from the fact that α.E

and H = H0 + V do not commute, so that the term e+
1
2
α.Ee+itHe−

1
2
α.E in the expressions (2.10)

for χt can essentially only be controlled by writing e+α.Ee+itHe−α.E = e+it(H0+Vα) with Vα non

self-adjoint. This is made more precise in the following statement.

Proposition 2.6. For any α in R
ℓ we have

e−2|t|S(‖α‖) ≤ χt(α) ≤ e+2|t|S(‖α‖).

Remark that, if we define

SH0(θ0) = sup
|θ|≤θ0

‖e+ 1
2
θH0 V e−

1
2
θH0‖ (2.20)

then a proof using similar arguments shows the time-independent bounds

e−2|θ|SH0
(θ) ≤ χt(θ1) ≤ e+2|θ|SH0

(θ). (2.21)

This was used in [BJP+15] to derive results on the large deviations of the total heat flux random

variable ϕ0 with respect to Pt. We state a similar result in Remark 3.12.

Let (H, ρ,E, V ) be a confined multisystem with ρ multi-thermal with respect to inverse tempera-

tures β; in this subsection we prove a bound relating χt(α+ θ1) to χt(α). We define for α0 ∈ R+

B(α0) := {α ∈ R
ℓ : α.1 = 0, ‖α‖ < α0},

and for θ0 ≥ α0,

S(α0, θ0) = sup
|θ|≤θ0

sup
α∈B(α0)

‖Vα+θ1‖ (2.22)

and

Sβ(α0, θ0) = S(α0, θ0) + sup
|θ|≤θ0

sup
α∈B(α0)

‖Vβ+α+θ1‖. (2.23)

Note that B(α0) is the intersection of the real open ℓ∞ ball of radius α0 with the hyperplane of

equation α.1 = 0.

Contrary to the simple estimate for χt(α) in Proposition 2.6, a comparison of χt(α) and χt(α+ θ1)
in the case where ρ is proportional to e−β.E requires to control not only e+α.Ee+itHe−α.E but also

e+
1
2
(β−α).Ee+itHe−

1
2
(β−α).E . This explains the role of the second term in (2.23), which is the same

as S(α0, θ0) with V replaced by the deformed interaction observable Vβ.

We then have the following result, which will be crucial in our statistical formulation of heat conser-

vation. Its proof can be found in Section 5.2.

Proposition 2.7. Let (H, ρ,E, V ) be a confined multisystem with ρ multi-thermal at inverse temper-

atures β. Then for all α ∈ R
ℓ such that α.1 = 0 and θ ∈ R,

χt(α) e−|θ|Sβ(‖α‖,θ) ≤ χt(α+ θ1) ≤ χt(α) e+|θ|Sβ(‖α‖,θ). (2.24)

3 Multi-reservoir systems: the first and second laws

In this section we will study the joint distribution of the heat fluxes, as defined by the Two-Time

Measurement picture, in each reservoir of a multi-reservoir systems. Our approach is to describe such

12
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systems as the thermodynamic limit of confined multisystems as described in Section 2.1. We will

use the bounds proved in Section 2.4 and make assumptions of uniform boundedness of quantities

such as S(α0, θ0) or Sβ(α0, θ0). As we have argued in the introduction, we view these assumptions

as ultraviolet conditions.

3.1 Setup: multi-reservoir systems and thermodynamic limit

Our setting for a multi-reservoir system will be the following:

Definition 3.1. A multi-reservoir system is a family of confined multisystems (H(L), ρ(L),E(L), V (L))L∈N
where E(L) is a vector with ℓ components and the index ℓ is independent of L. We say that the multi-

reservoir system is in a multi-thermal state at inverse temperatures β = (β1, . . . , βℓ) if, for all L,

ρ(L) = ρ
(L)
β as in (2.6). We say that the multi-reservoir system is time-reversal invariant if for every

L in N, the confined multisystem (H(L), ρ(L),E(L), V (L)), is time-reversal invariant.

Note that the existence of an embedding of the L system in the L′-th system for L < L′ plays no role

in our arguments and will be neither assumed nor discussed.

Remark 3.2. A multi-reservoir system models a family of reservoirs, each of which is described

through an approximating sequence of confined systems, and the interaction between those reservoirs.

One may wonder what effect a “small” system, i.e. one whose Hilbert space dimension remains finite

in the L → ∞ limit, can have on the thermodynamics of the system, in particular in the case where

the reservoirs Rj interact through this small system. Note that this will typically change not only

the state space of the considered random variables but also the reference probability distribution. In

Appendix A we show that, in the large-time limit, this effect is essentially irrelevant.

In the following, all quantities of interest related to the L-th confined system will be denoted with

a superscript (L) (e.g. P
(L)
t , χ

(L)
t ). We now state our minimal assumptions on the existence of the

thermodynamic limit:

Assumption TL: for (t,α) ∈ R+ × iRℓ, the following limit exists and is finite:

lim
L→∞

χ
(L)
t (α) = χt(α), (3.25)

and for all t ∈ R+, iRℓ ∋ α 7→ χt(α) is continuous at 0.

This is a standard assumption implying the existence of a Borel probability measure Pt on R
ℓ such

that for any bounded continuous function f : Rℓ → C, limL→∞

∫

f(ϕ) dP
(L)
t (ϕ) =

∫

f(ϕ) dPt(ϕ).
We extend the definition of χt(α) to any α ∈ R

ℓ as an extended real number by setting χt(α) :=
∫

e−tα.ϕdPt(ϕ).

We limit our study to bounded interactions, hence throughout the paper we assume

sup
L

‖V (L)‖ <∞ (3.26)

without further mention.

We will consider two regularity assumptions that strengthen this assumption. We recall that S(L)(α0, θ0)

and S
(L)
β (α0, θ0) are defined by relations (2.22) and (2.23) respectively.
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α2

α1

θ

α

• β

• (α0,−α0)

• (θ0, θ0)
Iα0,θ0

C
α0,θ0
β

Figure 1: Schematic representation of the domains Iα0,θ0 ∩ R
ℓ and C

α0,θ0
β ∩ R

ℓ for ℓ = 2 with Iα0,θ0

and C
α0,θ0
β defined in the text.

Assumption B(α0, θ0): for some α0 > 0 and θ0 ≥ α0,

S(α0, θ0)= sup
L

S(L)(α0, θ0) is finite.

Assumption Bβ(α0, θ0): for some α0 > 0 and θ0 ≥ α0,

Sβ(α0, θ0)= sup
L

S
(L)
β (α0, θ0) is finite.

Observe that Bβ(α0, θ0) implies B(α0, θ0), but also that B(α0, θ0) implies Bβ(α0, θ0) (although

with different values of α0 and θ0) for small enough values of the βj , i.e. at high temperatures.

We will use the following sets:

Iα0,θ0 = {α+ s1 s.t. (Reαj)j ∈ B(α0), |Re s| ≤ θ0} (3.27)

C
α0,θ0
β =

{

α+ tβ s.t. α ∈ Iα0,θ0 , t ∈ [0, 1]
}

. (3.28)

Note that C
α0,θ0
β is simply the convex hull of the sets Iα0,θ0 and β+Iα0,θ0 . A schematic representation

of the real part of these sets for ℓ = 2 is drawn in Figure 1.

Remark 3.3. In Appendix C we show that, starting from any multi-reservoir system with interaction

(V (L))L∈N satisfying the assumptions of uniform boundedness supL ‖V (L)‖ < ∞ and the local con-

tinuity in 0: lim‖α‖→0 supL ‖e+iα.E(L)
V (L)e−iα.E(L) −V (L)‖ = 0, we can find an (arbitrarily good)

approximating sequence (Ṽ (L))L∈N satisfying Bβ(α0, θ0) for any β, α0 and θ0.

A standard convergence theorem (Vitali’s lemma [JOPP12, Appendix B]) guarantees the existence

and regularity of the limit limL→∞ χ
(L)
t (α) for α ∈ R

ℓ. This is formulated in the next statement.
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Lemma 3.4. Assume TL and B(α0, θ0) hold. Then for any α ∈ Iα0,θ0 , the limit (3.25) exists. It is

uniform in any compact subset of the strip Iα0,θ0 , and defines an analytic function. Moreover, for any

non negative t and any α in Iα0,θ0 ,

lim
L→∞

χ
(L)
t (α) =

∫

e−tα.ϕ dPt(ϕ). (3.29)

In addition, the family (Pt)t is exponentially tight.

Proof. Under assumptions TL and B(α0, θ0), the bound (2.11) and Proposition 2.6 allow us to apply

Vitali’s lemma on the set Iα0,θ0 . The exponential tightness of (Pt)t follows from Proposition 2.6

again, as

Pt(‖ϕ‖ ≥M) ≤ e−tα0M Et(exp tα0‖ϕ‖) ≤ e−tα0M
∑

ǫ∈{−1,+1}ℓ

χt(α0ǫ)

which from B(α0, θ0) is bounded by 2ℓet2S(α0,0)e−tα0M .

This shows that the distribution Pt of φ (and therefore the distribution PH0,t of φ0 under Pt) is light-

tailed. This is non-trivial, as φ is not in general a bounded random variable; see [BPR18]. Note that

condition B(α0, θ0)was used.

It follows that, if we assume TL and B(α0, θ0), then the thermodynamic limits of average fluxes

exist: from relations (2.14), the limits

〈Φj〉t := lim
L→∞

E
(L)
t (φj) = lim

L→∞
−1

t

∂

∂αj
χ
(L)
t (α)|α=0 = lim

L→∞
〈Φ(L)

j 〉t

exist and satisfy

〈Φj〉t = Et(φj) = −1

t

∂

∂αj
χt(α)|α=0. (3.30)

Transient fluctuations relations are immediately inherited from their confined version (Proposition 2.4)

whenever the limit exists. Finiteness of the limit is guaranteed by Lemma 3.4 and Hölder’s inequality.

This is summarized in the following lemma:

Lemma 3.5. For any multi-reservoir system which is time-reversal invariant, in a multi-thermal state

at inverse temperatures β, and satisfies TL, the quantity χt(α) ∈ [0,+∞] satisfies

χt(α) = χt(β −α) for any α ∈ R
ℓ. (3.31)

If in addition B(α0, θ0) holds then χt(α) is finite for α in C
α0,θ0
β .

3.2 Limiting generating functions and translational symmetry

In this section we consider the large-time limit and we prove a translational symmetry of the limit

function that will have important consequences on statistical refinements of the heat conservation. In

the large-time limit, the relevant quantities are the rates 1
t
log χt(α). Such limits may not exist, and

we therefore start by considering

χ+(α) = lim sup
t→∞

1

t
logχt(α) (3.32)
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for all α in R
ℓ (recall that by convention χt(α) ∈ (0,+∞] is well-defined for all t, see Section 3.1).

This allows us to discuss properties of χ+ without worry. The function χ+ vanishes at the origin,

takes values in [−∞,∞], and is convex. Similarly, whenever the limit is defined, we let

χ+(α) = lim
t→∞

1

t
logχt(α) (3.33)

(we postpone the discussion regarding the domain of definition of χ+). Obviously, relations satisfied

by χ+ will carry over to χ+. The following theorem is obtained as an immediate consequence of the

key bound of Proposition 2.7, and of Lemma 3.5.

Theorem 3.6. Consider a multi-reservoir system in a multi-thermal state satisfying TL. If Bβ(α0, θ0)
holds, then for any α ∈ B(α0), θ ∈ [−θ0, θ0] we have

χ+(α+ θ1) = χ+(α). (3.34)

If the multi-reservoir system is time-reversal invariant, then for any α ∈ R
ℓ,

χ+(β −α) = χ+(α). (3.35)

When the multisystem (H, ρ,E, V ) is such that ρ is not necessarily multi-thermal, assuming that

B(α0, θ0) holds for some α0 and any θ0 leads to the translation symmetry (3.34).

Theorem 3.7. Consider a multisystem satisfying TL and B(α0, θ0) for some α0 > 0 and any θ0 ≥
α0. Then, for any α ∈ B(α0) and any θ ∈ R,

χ+(α+ θ1) = χ+(α).

Proof. Proposition 2.6 implies χ+(α+ θ1) <∞ for any α ∈ B(α0) and θ ∈ R. As a superior limit

of convex functions, (α, θ) → χ+(α + θ1) is convex on B(α0) × R. As a finite convex function,

α 7→ χ+(α) is continuous on B(α0).

Since B(α0, θ0) holds for any θ0, supL S
(L)
H0

(θ) <∞ for any θ ∈ R. Then (2.21) implies χ+(θ1) = 0
for any θ ∈ R. Assumption B(α0, θ0) for any θ0 ∈ R and Lemma 3.4 ensure χt(α+ θ1) is finite for

(α, θ) ∈ B(α0) × R. Then, from Hölder’s inequality, for any t ∈ R, any α ∈ B(α0) and any θ ∈ R,

for any p > 1 small enough that pα ∈ B(α0) and q > 1 such that 1/p + 1/q = 1,

log χt(α+ θ1) ≤ 1

p
log χt(pα) +

1

q
log χt(qθ1).

It follows that for α ∈ B(α0), p > 1 small enough and any θ ∈ R, χ+(α + θ1) ≤ 1
p
χ+(pα). Since

α 7→ χ+(α) is continuous on B(α0), taking p to 1 leads to χ+(α + θ1) ≤ χ+(α) for all θ. By

convexity of χ+ one has equality.

Remark 3.8. We will not mention the assumption “B(α0, θ0) for some α0 > 0 and any θ0 ≥ α0”

again, but every time a result is a consequence of the symmetry (3.34), this assumption can be used

instead of Bβ(α0, θ0) for some α0 > 0 and some θ0 ≥ α0.

Remark 3.9. Assumption Bβ(α0, θ0) is missing in [AGMT09]. In Step 5 of [AGMT09, Section 4.4]

the authors claim that Bβ(α0, θ0) holds for any α0 and θ0 as long as (3.26) holds. In [BPR18,

Section 4.1] a quasi-free fermion gas example is given where the validity of Bβ(α0, θ0) depends on

the ultraviolet regularity of the thermodynamic limit of V (L). Particularly, the example can be such

that supL ‖V (L)‖ < ∞ but there does not exist α0 > 0 and θ0 ≥ α0 such that Bβ(α0, θ0) holds.

Moreover, while Bβ(α0, θ0) and relation (2.21) imply supt∈R χt(−θ01) < ∞, in this model TL
holds and supL ‖V (L)‖ <∞ but χt(−θ1) = ∞ for any θ > 0 and almost every time t.
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In the rest of this section we explore the consequences of the symmetries proved in Theorem 3.6 on

the fluctuations of heat in the reservoirs.

For s ∈ R
ℓ, we define

Ī(s) = − inf
α∈Rℓ

(

α.s+ χ+(α)
)

∈ [0,+∞].

This function Ī allows to control the large deviations of φ: a standard argument using the Markov

inequality and an optimization in the parameter α shows that for any s ∈ R
ℓ and any ǫ > 0, one has

lim sup
t→∞

1

t
log Pt(‖φ − s‖ ≤ ǫ) ≤ − inf

‖u−s‖≤ǫ
I(u). (3.36)

In the case where χ+ is assumed to exist, then the role of the associated function I will be made more

precise by the Gärtner–Ellis theorem.

The following result gives relevant relations satisfied by this function Ī .

Theorem 3.10. Assume that TL holds. Then,

(i) If Bβ(α0, θ0) holds, then

Ī(s) ≥ θ0 |s.1|.
Hence, if for any θ0 Bβ(α0, θ0) holds for some α0 , then Ī(s) = +∞ if s.1 6= 0.

(ii) If the system is time-reversal invariant, then

Ī(s) = Ī(−s)− β.s.

Proof. For Item (i), I(s) = − infα⊥1 infθ∈Rα.s+θs.1+χ+(α+θ1) ≥ − infα∈B(α0) inf |θ|<θ0 α.s+
θs.1+χ+(α+θ1). Theorem 3.6 then implies χ+(α+θ1) = χ+(α) for any α ∈ B(α0) and |θ| < θ0.

Hence, I(s) ≥ θ0|s.1| − infα∈B(α0)

(

α.s + χ+(α)
)

and χ+(0) = 0 implies that (i) holds. Item (ii)

follows from Theorem 3.6.

Theorem 3.10 (i) implies the following heat conservation type result. Theorem 3.10 (ii) is related with

an expression of the fluctuation relations at the level of the rate function.

Theorem 3.11. Consider a multi-reservoir system in a multi-thermal state and assume that TL and

Bβ(α0, θ0) hold. Then, for any Borel set B in R
ℓ,

lim sup
t→∞

1

t
log Pt(B) ≤ −θ0 inf

s∈B
|s.1|. (3.37)

Proof. By Lemma 3.4, the family (Pt)t is exponentially tight. Baldi’s theorem (see e.g. Theorem

4.5.20 in [DZ10]) then implies that

lim sup
t→∞

1

t
log Pt(B) ≤ lim sup

t→∞

1

t
logPt(clB) ≤ − inf

s∈clB
Ī(s)

with clB the closure of B. The result follows from Theorem 3.10 (i) and the continuity of s 7→ s.1.

Remark 3.12. The above implies in particular bounds such as

lim sup
t→∞

1

t
log Pt(|ϕ0| > ǫ) ≤ −θ0ǫ.

Such bounds, however, can be derived by assuming a uniform bound on S
(L)
H0

(θ0) (defined in (2.20)),

which is a condition weaker than Bβ(α0, θ0). See [BJP+15, BPR18] for this and related results on

the Pt-distribution of φ0 .
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3.3 Law of large numbers, central limit theorem and large deviation principle

In this section we want to describe the behavior of the distribution Pt of the heat fluxes φ beyond

large deviation upper bounds. To this purpose, we will introduce additional assumptions in terms

of large-time (LT) behavior of χt, which allow to apply standard results in large deviation theory.

Although proving them can be non-trivial, it is known that LT assumptions hold for relevant physical

models (see [JOPP12] and Section 4). Our proofs make extensive use of the Gärtner-Ellis and Bryc

theorems, which give information on the large time behavior of a random variable (heat fluxes in our

case) from the regularity of a limiting object χ+(α). To this purpose, additional assumptions in terms

of large-time limit are required. Our discussion consists of three levels of increasing precision, which

correspond to a law of large numbers, a central limit theorem, and a large deviation principle.

We assume TL and start with the following assumption about the large-time behavior of the cumulant

generating functions logχt.

Assumption LT(α0): TL holds and for some α0 > 0, the limit

χ+(α) = lim
t→∞

1

t
logχt(α) (3.38)

exists as a real number for any α ∈ R
ℓ such that ‖α‖ < α0.

Remark 3.13. Assuming B(α0, θ0), if χ+(α) exists as an extended real number, then by Proposi-

tion 2.6, ‖α‖ ≤ α0 implies χ+(α) <∞.

Remark 3.14. Assuming LT(α0) and Bβ(α0, θ0), Proposition 2.7 implies that χ+(α + θ1) exists

as a limit and is finite for any (α, θ) ∈ B(α0)× [−θ0, θ0].

The existence of χ+ together with additional regularity assumptions on χ+ will have various conse-

quences on the behavior of the distributions (Pt)t.

Assume first that LT(α0) holds and χ+ is differentiable at the origin. We can then define for j =
1, . . . , ℓ the quantity

〈Φj〉+ := − ∂

∂αj
χ+(α)|α=0. (3.39)

Lemma IV.6.3 in [Ell85] and relations (3.30) then show the existence of the average fluxes in the

thermodynamic and large-time limits:

〈Φj〉+ = lim
t→∞

〈Φj〉t = lim
t→∞

Et(φj) = − lim
t→∞

1

t

∂

∂αj
χt(α)|α=0. (3.40)

We denote by 〈Φ〉+ the vector with components 〈Φj〉+.

The following is a formulation of the heat conservation at the level of the averages of fluxes φ1, . . . , φℓ.
Note that, because we consider the distributions of the random variable φ with respect to different

probability measures Pt, no almost-sure convergence statement can be given.

Theorem 3.15. Consider a multi-reservoir system in a multi-thermal state and assume that LT(α0)
holds, and that χ+ is differentiable at the origin. Then 〈Φ〉+ satisfies

∑

j

〈Φj〉+ = 0, (3.41)
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and for any small enough ǫ > 0, there exists a constant CE(ǫ) > 0 such that

lim sup
t→∞

1

t
log Pt

(

sup
j=1,...,ℓ

|φj − 〈Φj〉+| > ǫ
)

≤ −CE(ǫ). (3.42)

Proof. Equation (3.41) follows from (2.15) and (3.26). The second part of the statement, i.e. relation

(3.42), is similar to Equation (3.36) and is a standard result (see e.g. the proof of Theorem II.6.3. in

[Ell85]).

We now turn to a central limit theorem for the random variables φ. For this assume in addition to

LT(α0) that there exists a complex neigbourhood O of the origin such that 1
t
| log χt(α)| is uniformly

bounded for t > 1 and α ∈ O (remark that Proposition 2.6 only gives a bound on log |χt(α)|). An

application of Vitali’s lemma then shows that the limit χ+(α) can be extended to an analytic function

on O. We define for j, k = 1, . . . , ℓ

Dj,k:=
∂2

∂αj∂αk
χ+(α)|α=0 = lim

t→∞

1

t

(∂2χt(α)

∂αj∂αk
− ∂χt(α)

∂αj

∂χt(α)

∂αj

)

|α=0

= lim
t→∞

t covt(φj , φk)

(3.43)

(again the second and third equalities are consequences of Vitali’s lemma and relations (2.14)). The

ℓ × ℓ matrix D = (Dj,k)j,k is automatically real-symmetric positive semidefinite. It is not positive

definite since (2.15) and (3.26) imply
∑

j,kDj,k = 0. We then have

Theorem 3.16. Consider a multi-reservoir system in a multi-thermal state and assume that LT(α0)
holds and that there exists a complex neigbourhood O of the origin with

sup
t>1

sup
α∈O

1

t
| log χt(α)| <∞.

Then the following convergence in distribution, with respect to the family (Pt)t, holds:

√
t
(

φ− 〈Φ〉+
)

−→
t→∞

N (0,D). (3.44)

Proof. The convergence (3.44) follows from Bryc’s theorem (see Appendix B in [JOPP12] for a

multi-dimensional version of the lemma originally proven in [Bry93]), and relations (3.43).

To formulate a large deviation principle, we need to introduce some additional notation. We simply

apply the Gärtner-Ellis theorem, and follow the treatment of [DZ10]. We will assume LT(α0), and

that χ+(α) is defined as an extended real number by (3.38) for all α in R
ℓ. We denote by D the set

D = {α ∈ R
ℓ s.t. χ+(α) < +∞}.

Note that, under assumption LT(α0), we have I
1
2
α0,

1
2
α0 ⊂ D. We define for s in R

ℓ

I(s) = − inf
α∈Rℓ

(

α.s+ χ+(α)
)

∈ [0,+∞]

and denote by F the set of s ∈ R
ℓ such that there exists α ∈ D with

α.s+ I(s) < α.s′ + I(s′) for all s′ ∈ R
ℓ \ {s}.

We can now state our two theorems:
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Theorem 3.17. Assume that LT(α0) holds and assume that (3.38) defines χ+(α) as an extended real

number for all α in R
ℓ. Then,

(i) if Bβ(α0, θ0) holds, then

I(s) ≥ θ0 |s.1|.
Hence, if Bβ(α0, θ0) holds for any θ0, I(s) = +∞ if s /∈ 1⊥.

(ii) if the system is time-reversal invariant, then

I(s) = I(−s)− β.s.

Proof. The theorem follows from I = Ī and Theorem 3.10.

Theorem 3.18. Consider a multi-thermal multi-reservoir system satisfying LT(α0), and assume that

(3.38) defines χ+(α) as an extended real number for all α in R
ℓ. Then for any Borel set B ⊂ R

ℓ:

− inf
s∈int(B)∩F

I(s) ≤ lim inf
t→∞

1

t
log Pt(B) ≤ lim sup

t→∞

1

t
logPt(B) ≤ − inf

s∈cl(B)
I(s). (3.45)

If we assume that LT(α0) holds for all α0 and R
ℓ ∋ α 7→ χ+(α) is differentiable everywhere, then

(3.45) holds with F replaced with R
ℓ.

Proof. Relation (3.45) is obtained by a direct application of the Gärtner-Ellis theorem (see [DZ10]).

If LT(α0) holds for all α0 > 0 and χ+ is differentiable on R
ℓ, then F = R

ℓ.

3.4 Linear response theory

In this section we are interested in multi-reservoir systems which are near thermal equilibrium, in the

sense that they are multi-thermal at an inverse temperature β = (β1, . . . , βℓ) such that for all j one

has βj ≃ βeq for some βeq > 0. The purpose of the linear response theory of multi-reservoir systems

is to describe fluxes to the first order in the thermodynamical forces ζj = βj − βeq.

We suppose that for some βeq > 0 and δ > 0 we have, for any β with ‖β − βeq1‖ < δ, a multi-

reservoir system (H(L), ρ(L),E(L), V (L))L∈N which is multi-thermal at inverse temperatures β. We

assume that H(L), E(L), V (L) do not depend on β, and that for any β as above, the multi-reservoir sys-

tem (H(L), ρ(L),E(L), V (L))L satisfies assumption LT(α0) (note that LT(α0) depends on β through

the state ρ).

We let βeq = (βeq, . . . , βeq) = βeq1 and β = βeq + ζ so that ζ = 0 corresponds to the equilibrium

situation β = βeq = βeq1. We shall denote by e.g. χt(β,α), χt(β,α) the functions χt(α), χt(α)
corresponding to the value β of the inverse temperatures, and indicate the dependence of the currents

on the thermodynamical forces, denoting them e.g. 〈Φj〉ζ . Assuming that the functions ζ 7→ 〈Φj〉ζ
are differentiable in ζ at the origin, the kinetic transport coefficients are defined by

Lj,k =
∂〈Φk〉ζ
∂ζj

|ζ=0. (3.46)

An immediate consequence of the mean heat conservation in the form (3.41) is
∑

k Lj,k = 0 for all j.
To discuss further properties of these coefficients, we strengthen LT(α0).
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Assumption LR(α0, δ): for some βeq > 0 and δ > 0 there exist α0 > 0 and θ0 ≥
α0 + βeq such that for any β with ‖β − βeq1‖ < δ the multi-reservoir system satisfies

Bβ(α0, θ0) and LT(α0), and for any α, ζ ∈ R
ℓ with ‖α‖ < α0 and ‖ζ‖ < δ, the limit

χ+(βeq + ζ,α) = lim
t→∞

1

t
logχt(βeq + ζ,α) (3.47)

exists and defines a map that is continuously differentiable in ζ and twice continuously

differentiable in α.

An immediate consequence of this assumption is that the transport coefficients (3.46) are well-defined.

The next theorem shows that Onsager reciprocity relations can be easily proven as a simple conse-

quence of the translational symmetry (3.34) and symmetry (3.35), recovering the result of [AGMT09].

Theorem 3.19. Consider aβ-dependent multi-reservoir system as described above, satisfying LR(α0, δ),

and such that for any β with ‖β − βeq1‖ < δ the multi-reservoir system is time-reversal invariant

and multi-thermal at inverse temperature β. Then for every j, k = 1, . . . , ℓ we have

2Lj,k = Dj,k(βeq),

and in particular Lj,k = Lk,j.

Proof. Using successively translational symmetry (3.34) and symmetry (3.35), we have for ‖α‖ ≤ α0,

χ+(βeq + ζ,α) = χ+(βeq + ζ,α+ βeq) = χ+(βeq + ζ, ζ −α). (3.48)

Assumption LR(α0, δ) ensures that χ+ is defined at (βeq + ζ,α) for ‖β‖ < δ, infθ≤θ0 ‖α− θ1‖ <
α0, and is a C1,2 function. By relation (3.48), it satisfies

χ+(βeq + ζ,α) = χ+(βeq + ζ, ζ −α). (3.49)

Definitions (3.39) and (3.46) imply that

Lj,k = − ∂2

∂ζj∂αk

χ+(βeq + ζ,α)|ζ=α=0.

Relation (3.49) and a simple application of the chain rule give

− ∂2

∂ζj∂αk

χ+(βeq + ζ,α)|ζ=α=0 =
1

2

∂2

∂αj∂αk

χ+(βeq + ζ,α)|ζ=α=0.

Comparison with (3.43) shows that Lj,k = 1
2Dj,k(βeq).

Remark 3.20. The equalities Lj,k = Lk,j are the Onsager reciprocity relations. The central limit

theorem (3.44) and relation Lj,k = 2Dj,k are the first part of the Fluctuation-Dissipation Theorem

for multi-reservoir systems. The second part involves the validity of the Green-Kubo formulas for L;

their formulation and proof require introduction of the infinitely extended dynamical system describing

multi-reservoir systems and we will not discuss them in this paper (see [JOPP12] for references). Here

we can only prove

Lj,k = lim
t→∞

lim
L→∞

1

t

∫ t

0

∫ t

0
ρ
(L)
βeq

(

(

Φ
(L)
j,s1

− ρ
(L)
βeq

(Φ
(L)
j,s1

)
)(

Φ
(L)
k,s2

− ρ
(L)
βeq

(Φ
(L)
k,s2

)
)

)

ds1ds2.
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4 Examples

4.1 Open quantum spin systems

In this section we study a model of multi-reservoir system (in the sense of Section 3) defined from

quantum spin systems.

Let G = Z
d, and fix a finite partition G = G1 ∪ . . . ∪ Gℓ of G into infinite sets. For each j, let

∂Gj ⊂ Gj be the boundary of Gj , i.e. the set of elements x of Gj that have at least one neighboring

vertex not in Gj . To each vertex x ∈ G we associate a copy of Ck. Let S be a self adjoint operator

from (Ck)⊗(2d+1) to itself. For any x ∈ G let Sx be a copy of S that acts non trivially only on the

Hilbert space associated to x and its neighboring vertices.

We then denote G(L) = {−L, . . . ,+L}d and G(L)
j = Gj ∩ G(L) the restriction of Gj to G(L) for any

L ∈ N and assume for simplicity that Gj ∩ G(L) 6= ∅ for any L and j. We similarly define ∂G(L)
j . We

then define

H
(L)
j =

∑

x∈G
(L)
j \∂G

(L)
j

Sx

and

V (L) =
∑

x∈∪ℓ
j=1∂G

(L)
j

J(x)Sx

with x 7→ J(x) a real function such that
∑

x∈∪ℓ
j=1∂Gj

|J(x)| <∞. This assumption ensures that V (L)

stays bounded in the thermodynamic limit.

We recall that E(L) = (H
(L)
1 , . . . ,H

(L)
ℓ ) and fix some β = (β1, . . . , βℓ). We assume that the system

is multi-thermal at temperatures β, i.e. we consider the density matrix ρ(L) = e−β.E(L)
/tr(e−β.E(L)

).
This defines a multi-reservoir system (H(L), ρ(L),E(L), V (L))L∈N in the sense of Section 3.1.

The following result shows that Theorem 3.11 applies to this example. It is proven in Appendix B.

Theorem 4.1. Suppose that limL tr(ρ(L)A) = ρ(A) exists for any A ∈ O. Then TL holds, and one

has B(α0, θ0) for α0 and θ0 small enough.

Remarks 4.2.

• Theorem 4.1 can be generalized by looking at convergent subsequences of ρ(L). Then for each

of these subsequences assumption TL is true. This extension is relevant when the uniqueness

of the limit (βj , τj)-KMS state for each part j is not guaranteed.

• If d = 1, one can prove, adapting the results of Araki [Ara69], that Bβ(α0, θ0) holds for any

α0, θ0 ∈ R+.

• Actually TL and B(α0, θ0) hold for a much more general set of spin models. The proof in

Appendix B can be easily extended using the appropriate adaptation of the proof of [BR97,

Theorem 6.2.4].

4.2 Spin-fermion model

We now turn to the spin-fermion model, which describes a two-level atom interacting with ℓ indepen-

dent free Fermi gas reservoirs. We will define a multi-reservoir system (in the sense of Section 3.1)
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through finite-dimensional approximations of the reservoirs, as in Example 5.3 of [AJPP06]. We use

freely standard notation which can be found in e.g. [BR97].

To describe the ℓ reservoirs, we consider for j = 1, . . . , ℓ a Hilbert space hj = L2(R+,dx;Hj) for

some auxiliary Hilbert space Hj , hj the operator of multiplication by the variable x ∈ R+, and

a vector vj ∈ hj which we call a form factor. The Hilbert spaces {Hj} encode the non-energetic

degrees of freedom of each particle, hj is the one-particle energy operator and the vj’s will be the

form factors of the interaction of each reservoir with the spin. We denote by a∗j , aj , ϕj the operators

associated with the free Fermi gas Γf(hj). The small system (see Section A) is described by the state

space HS = C
2 and the Hamiltonian HS = σ(3) =

(

1 0
0 −1

)

. Since, by the discussion in Section

A, the state of the small system has no influence on the large-time behavior, for notational simplicity

we assume the intial state on S is ρS = 1
2 id.

The spin-fermion model is usually defined and studied without tight binding assumption, i.e. for an

unbounded one-particle Hamiltonian, hence our choice of hj . Tight binding models have a natural

ultraviolet sharp cutoff induced by the lattice approximation, so ultraviolet conditions are always

satisfied as we will see in the electronic black box model of Section 4.3. A continuous space model

provides a non-trivial example in the sense that our conditions are satisfied only for some choices of

the form factors.

To fit our previous framework, we need to assume the model can be obtained as limit of confined

approximations. This is summarized in condition SFTL below. This assumption can easily be proved

for relevant choices of Hilbert spaces {Hj}. Proofs will also be given in terms of confined approx-

imations. However note that conditions SFUV(γ0) and SF1 and SF2 are indeed conditions on the

form factor that can be verified directly in the infinite dimensional model.

Assumption SFTL: for every j = 1, . . . , ℓ and L ∈ N, there exist h
(L)
j , h

(L)
j , v

(L)
j with

1. h
(L)
j is a finite-dimensional subspace of hj with h

(L)
j ⊂ h

(L+1)
j and

⋃

L h
(L)
j = hj ,

2. h
(L)
j is a definite-positive operator on h

(L)
j and, if we extend canonically h

(L)
j to hj ,

then h
(L)
j → hj in the strong resolvent sense as L→ ∞,

3. v
(L)
j is an element of h

(L)
j such that v

(L)
j → vj in hj .

We can then define H(L) = HS ⊗⊗ℓ
j=1 Γf(h

(L)
j ). We let H

(L)
j = dΓ(h

(L)
j ), H

(L)
0 =

∑ℓ
j=1H

(L)
j and

V (L) =
∑ℓ

j=1 σ
(1) ⊗ϕj(v

(L)
j ), where all operators are extended canonically to H(L). We also define,

for fixed β = (β1, . . . , βℓ) by ρ(L) the state ρS ⊗⊗ℓ
j=1 e

−βjH
(L)
j /Z

(L)
j with Z

(L)
j = tr(e−βjH

(L)
j ).

Under these assumption we have the following, which we prove in Appendix B.

Proposition 4.3. Assume SFTL is satisfied. Then, for any λ > 0 and β, assumption TL holds.

Conditions B(α0, θ0) and Bβ(α0, θ0) will be guaranteed by the following assumption defined for

any γ0 ∈ R+. Note that this assumption corresponds to the form factor superexponential decay in

high frequencies.

Assumption SFUV(γ0): for all j = 1, . . . , ℓ one has vj ∈ Dom (e
1
2
γ0hj).

Again the following is proven in Appendix B:
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α2

α1

θα

• β

• (α0,−α0)

• (θ0, θ0)

•
γ0

Iα0,θ0

C
α0,θ0
β

Figure 2: Schematic representation of the domains Iα0,θ0 ∩ R
ℓ and C

α0,θ0
β ∩ R

ℓ for ℓ = 2 compared

to the constant γ0 in the spin-fermion model.

Proposition 4.4. Assume SFTL and SFUV(γ0). Then assumption B(α0, θ0) is satisfied for all α0

and θ0 such that α0 ≤ θ0 ≤ γ0, and assumption Bβ(α0, θ0) is satisfied for all α0, θ0 and β such that

α0 ≤ θ0 ≤ γ0 − ‖β‖.

A schematic representation of the real part of Iα0,θ0 and C
α0,θ0
β with respect to γ0 for ℓ = 2 is presented

in Figure 2.

For the large-time limit, we make additional technical assumptions. We extend the form factors vj to

functions ṽj on R by setting ṽj(x) = vj(|x|). The fist is a technical assuption, which is verified for

physical choices of v

Assumption SF1: there exists δ > 0 such that for every j = 1, . . . , ℓ, the functions ṽj
extend to analytic functions on the strip | Im z| < δ satisfying

sup
|y|<δ

∫

R

e−βjx‖ṽj(x+ iy)‖2Hj
dx <∞.

The next assumption states that the small system is effectively coupled to the reservoir at the Bohr

frequency (+1)− (−1) = 2 of the 2-level system S .

Assumption SF2: for all j = 1, . . . , ℓ one has ‖vj(2)‖Hj
> 0.

Remark also that SF1 implies SFUV(γ0) for any γ0 ≤ minj=1,...,ℓ βj =: β∗. Indeed it implies that

for y = 0 and any γ0 ≤ β∗,
∫ 0
−∞ e−γ0x‖ṽj(x)‖2Hj

dx < ∞. A simple change of variable x → −x
leads to ‖e 1

2
γ0hjvj‖2 <∞ for any γ0 ≤ β∗. Nevertheless, for clarity’s sake, we keep referring to both

assumptions independently.

In the sequel, we denote by e.g. χ
(λ)
t the generating function χt obtained in the thermodynamic limit

for the system with coupling constant λ.
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Theorem 4.5. Suppose that SF1 and SF2 hold. Let β ∈ (0,+∞)ℓ and ǫ, δ > 0 be given. Then

there exist Λ > 0 and an open set O in C
2ℓ that contains

(

β + (−ǫ,+ǫ)ℓ
)

× (−δ,+δ)ℓ such that the

following holds:

1. For any λ with |λ| < Λ there exists tλ > 0 such that for t > tλ the function (β′,α) 7→
log χ

(λ)
t (β′,α) has an analytic continuation to O that satisfies

sup
t>tλ

sup
(β′,α)∈O

1

t
| log χ(λ)

t (β′,α)| <∞. (4.50)

2. For any λ with |λ| < Λ, the limit

χ
(λ)
+ (β′,α) = lim

t→∞

1

t
logχ

(λ)
t (β′,α) (4.51)

exists and defines a real analytic function on
(

β + (−ǫ,+ǫ)ℓ
)

× (−δ,+δ)ℓ .

The above statement can be proven using the spectral scheme described in [JOPP12][Sect 5.5] com-

bined with the remarks for the generalization to the multiparameter case in [JOPP12][Sect 6.5]. In

[DR09] a similar analysis of the more involved spin-boson model has been done.

Clearly by Propositions 4.3 and 4.4 and Theorem 4.5, a spin-fermion model with SFTL, SFUV(γ0),

SF1 and SF2 satisfies assumptions TL, Bβ(α0, θ0), LT(α0) with regularity of χ+ in a complex

neighbourhood of the origin, for any α0 and θ0 with α0 + θ0 ≤ γ0, and in addition LR(α0, δ) for

any βeq > 0 and 0 < δ < βeq, as soon as λ is chosen small enough. Therefore, Theorems 3.11, 3.15

and 3.16 apply.

Lastly, the present spin-fermion model is time-reversal invariant if all functions vj are real: if CS is

the complex conjugation in the canonical basis of HS and c
(L)
j the complex conjugation of hj then

C(L) = CS ⊗ ⊗ℓ
j=1 Γ(c

(L)
j ) is a time-reversal of the L-th confined model. If this is assumed in

addition to SFTL, SFUV(γ0), SF1 and SF2, then Theorem 3.19 holds as well.

4.3 Electronic Black Box model

The electronic black box (EBB) model is a basic paradigm in the study of coherent transport in elec-

tronic systems in mesoscopic physics (see [AJPP06, JOPP12] for more references). It consists of ℓ
infinitely extended leads exchanging quasi-free fermionic particles through a finite system S . A dis-

tinctive feature of this model is the tight-binding approximation. This discretization of space leads to

a sharp ultraviolet cut off. The energy of each fermion is bounded, hence the one particle Hamiltonian

is bounded and all our ultraviolet regularity assumptions are verified for any parameter.

The Hilbert space describing the L-th confined system is H(L) = Γf(h
(L)) where h(L) = hS ⊕

⊕ℓ
j=1 h

(L)
j . For simplicity we consider hS = C and h

(L)
j = ℓ2({0, . . . , L}). We use the canonical

embedding to identify each of hS , h
(L)
j with a subspace of h(L). The associated Hamiltonians are

HS = dΓ(hS), H
(L)
j = dΓ(h

(L)
j ), H(L) = dΓ(h(L))

where hS = ǫ0, h
(L)
j = −1

2∆
(L)
j for ∆

(L)
j the discrete Laplacian with Dirichlet boundary conditions

u−1 = uL+1 = 0, and h(L) = hS +
∑

j h
(L)
j + λv(L) for v(L) =

∑

j

(

|χ〉〈δ(L)j | + |δ(L)j 〉〈χ|
)

where
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χ = 1 ∈ C and δ
(L)
j = (1, 0, . . .) ∈ hj . Remark that for all j, supL ‖h(L)j ‖ <∞. The quantity λ > 0

is a coupling constant and we denote h
(L)
0 = hS +

∑

j h
(L)
j . We assume that the initial state of the

reservoirs is multi-thermal, and the initial state of S is chaotic, i.e. ρ(L) = 1
2 id⊗

⊗ℓ
j=1 e

−βjHj/Z
(L)
j .

Once again we discard the heat variation of the small system (see Appendix A) and consider the

generating function χ
(L)
t for the heat variation of the reservoirs only.

We denote by e(L) = (h
(L)
1 , . . . , h

(L)
ℓ ). Using the general identity tr Γ(A) = det(id + A) (see

[JOPP12, Lemma 6.1]) we have immediately

χ
(L)
t (α) =

det
(

id + e−ith(L)
e(α−β)·e(L)

e+ith(L)
e−α·e(L))

det(id + e−β·e(L)
)

=
det

(

id + e−β.e(L)
eith

(L)
α e−ith(L))

det
(

id + e−β.e(L)
) .

(4.52)

with hα = h0 + λvα for

v
(L)
α =

∑

j

(

|χ〉〈e−αjhjδ
(L)
j |+ |eαjhjδ

(L)
j 〉〈χ|

)

.

Remark that the ‖eαh
(L)
j δ

(L)
j ‖ are bounded uniformly in L ∈ N and in α for ‖Reα‖ < α0, for any

α0 (in comparison with the general spin-fermion model, SFUV(γ0) holds for any γ0 in the present

model thanks to the boundedness of the discrete Laplacian). This shows:

Proposition 4.6. For any λ > 0 and β ∈ (0,∞)ℓ, assumption TL holds, and assumption Bβ(α0, θ0)
is satisfied for all α0, θ0 ∈ [0,+∞).

We now wish to compute the quantity χ+; following the results of Appendix A we restrict to the

case αS = 0. Computing ∂
∂αj

log χ
(L)
t (0,α) for j = 1, . . . , ℓ one shows that (see Section 6.6.6 of

[JOPP12] for details on all computations described in this section):

1

t
log χ

(L)
t (0,α) = −

∫ 1

0

∫ 1

0
tr
(

(id + e
(β−uα).e

(L)
(1−r)t euα.e

(L)
−rt)−1 i[h(L),α.e(L)]

)

dr du (4.53)

with e
(L)
t = (h

(L)
1,t , . . . , h

(L)
ℓ,t ) for h

(L)
j,t = e−ith(L)

h
(L)
j e+ith(L)

. The above formula remains valid after

the thermodynamic limit, with operators h0, h (defined similarly to h
(L)
0 , h(L) with a discrete Laplace

operator on ℓ2(N) satisfying Dirichlet conditions at 0) replacing h
(L)
0 , h(L). To discuss the large-time

limit, we make the following additional assumption:

Assumption EBBTL The one-particle coupled Hamiltonian h has only absolutely conti-

nous spectrum.

Precise assumptions leading to EBBTL (typically for any small enough λ) can be given, see e.g. The-

orem 6.2 of [AJPP06]. Next proposition follows from a straightforward adaptation of the arguments

found in Section 6.6.6 of [JOPP12]. Provided EBBTL holds, the following wave operators exist as

strong limits:

W± = lim
t→±∞

eithe−ith0
1R

with h0 = hS +
∑

j hj and 1R the orthogonal projector onto
⊕

j hj . Then we can give a useful

expression for the limit cumulant generating function.
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Proposition 4.7. Assume EBBTL, then the electronic black box model satisfies LT(α0) for any α0.

Let S =W ∗
+W− be the scattering matrix and T =W ∗

− i[h,α · e]W−. We have

χ+(α) = −
∫ 1

0
trHR

(

(idR + S∗e(β−uα)·eS euα.e)−1 T
)

du. (4.54)

and the electronic black box model satisfies LR(α0, δ) for any α0 and δ.

Noticing that T is finite rank, Equation (4.54) yields that LR(α0, δ) holds for all α0 and δ and that

there exists a complex neigbourhood O of the origin such that 1
t
| log χt(α)| is uniformly bounded for

t > 1 and α ∈ O. Therefore, under assumption EBBTL, Theorems 3.11, 3.15, 3.16 and 3.18 hold

for the electronic black box model.

As for time-reversal invariance, if the state ρ
(L)
S is Gibbs then the Electronic Black Box model is au-

tomatically TRI: if cS and c
(L)
1 , . . . , c

(L)
ℓ are the complex conjugations of hS of h

(L)
j then the operator

C(L) = Γ(cS) ⊕
⊕ℓ

j=1 Γ(c
(L)
j ) is a time-reversal invariant of the L-th confined system, and Theo-

rem 3.19 holds. Note that, denoting J the complex conjugation on hs ⊕ h1 . . . hℓ, one has Jh0 = h0J
and Jh = hJ , therefore S∗ = JSJ .

One can also write χ+(α) in the momentum representation. By discrete Fourier transform, one can

identify hj with L2([0, π],dξj) and hj with the multiplication operator by ǫ(ξj) = 1 − cos ξj . More-

over we can identify hR =
∑ℓ

j=1 L
2([0, π],dξj) with L2([0, π],dξ) ⊗ C

ℓ. In this representation the

scattering matrix acts as the operator of multiplication by a unitary ℓ× ℓ matrix S(ξ) =
(

sj,j′(ξ)
)

j,j′
,

and T has an integral kernel T (ξ′, ξ) (see Equation 6.18 in [JOPP12]) with diagonal given by

T (ξ, ξ) =
ǫ′(ξ)

2π

(

S∗(ξ)K(α, ξ)S(ξ) −K(α, ξ)
)

where K(α, ξ) is the diagonal matrix on C
ℓ with jth coefficient K(α, ξ)j = −αjǫ(ξ).

Again following the arguments in Section 6.6.6 of [JOPP12] we find:

χ+(α) =
1

2π

∫ π

0
log

det(id + S∗(ξ) e−K(β−α, ξ) S(ξ)e−K(α, ξ))

det(id + e−K(β, ξ))
ǫ′(ξ) dξ.

From the above expression, it is easy to recover the symmetry χ+(β − α) = χ+(α) of Theorem 3.6

for α ∈ R
ℓ. SetD(ξ) = S∗(ξ) e−K(β−α, ξ) S(ξ)e−K(α, ξ). Since χ+(α) ∈ R, then det(id+D(ξ)) =

det(id + D(ξ)∗). Using S∗ = JSJ , J2 = 1 and e−K(α, ξ)J = Je−K(α, ξ) the symmetry follows

immediately.

Last, the translation symmetry χ+(α+ θ1) = χ+(α) follows from e−K(α+θ1, ξ) = eθǫ(ξ)ide−K(α, ξ).

4.4 Open XY chain

We first describe the general XY chain over a finite discrete interval [a, b] ⊂ Z (in all of this sec-

tion, the notation [·, ·] refers to discrete intervals). The Hilbert space is H[a,b] =
(

C
2
)⊗[a,b]

, with

Hamiltonian

H[a,b] = −J
4

∑

a≤x<b

(σ(1)x σ
(1)
x+1 + σ(2)x σ

(2)
x+1)−

λ

2

∑

a≤x≤b

σ(3)x .
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where σ
(i)
x acts on the x-th copy of C2 as the Pauli matrix σ(i). This describes a spin system, where

spins are localized at sites x ∈ [a, b], with nearest neighbour coupling and magnetic field in the (3)-
direction. The constants J and λ represent the strengths of, respectively, the nearest neighbor coupling

and the magnetic field.

Now fix M ∈ N. For any integer L > M , consider the above model with [a, b] = [−L,+L]. We view

the sites belonging to [−M,+M ] as the small system, and sites belonging to [M +1, L] (respectively

to [−L,−M − 1]) as the confined right (respectively left) reservoir. With a slight abuse of notation,

we denote

HS = H[−M,+M ] H
(L)
1 = H[−L,−M−1] H

(L)
2 = H[M+1,L], H

(L)
0 = HS+H

(L)
1 +H

(L)
2 ,

and

V1 = −J
4
(σ

(1)
−M−1σ

(1)
−M + σ

(2)
−M−1σ

(2)
−M ) V2 = −J

4
(σ

(1)
M σ

(1)
M+1 + σ

(2)
M σ

(2)
M+1),

so that H(L) = H
(L)
0 + V1 + V2. We assume that the initial state of the system is of the form

ρ(L) =
e−β1H

(L)
1

Z
(L)
1

⊗ ρS ⊗ e−β2H
(L)
2

Z
(L)
2

.

Generating functions for this model can be computed by identifying unitarily the XY chains with

an electronic black box model using the well-known Jordan-Wigner transformation (see [JOPP12]

for details) up to an irrelevant additive constant. In the Jordan-Wigner representation, the decoupled

system is a free Fermi gas with one-particle Hilbert space

ℓ2([−L,+L]) = ℓ2([−L,−M − 1])⊕ ℓ2([−M,+M ]) ⊕ ℓ2([M + 1, L])

and the one-particle uncoupled and coupled Hamiltonians are

h
(L)
0 = h[−L,−M−1] ⊕ hΛ[−M,+M]

⊕ h[M+1,L], h(L) = h[−L,+L] = h
(L)
0 + v

(L)
1 + v

(L)
2 ,

where the coupling terms

v
(L)
1 =

J

2
(|δ−M−1〉〈δ−M |+ |δ−M 〉〈δ−M−1|) , v

(L)
2 =

J

2
(|δM 〉〈δM+1|+ |δM+1〉〈δM |) ,

are finite-rank operators. It then follows from Section 4.3 that our general assumptions TL, Bβ(α0, θ0),

LT(α0) and LR(α0, δ) are satisfied for any α0, θ0. Formulas for the generating functions are special

cases of the ones obtained in the previous subsection. In particular, for χ+(α) starting from (4.3) and

using the explicit form of the scattering matrix

s(ξ) = e−2i sign(J)Mξ

(

0 1
1 0

)

,

one has, denoting α = (α1, α2) and β = (β1, β2),

χ+(α) =
1

2π

∫ 2

0
log

cosh u
2 (β1 − α1 + α2) cosh

u
2 (α1 + β2 − α2)

cosh(12β1u) cosh(
1
2β2u)

du.

In addition, the Jordan-Wigner transformation shows that the XY-chain model is time-reversal invari-

ant. Therefore Theorems 3.11, 3.15, 3.16, 3.18 and 3.19 hold for the XY-chain. Note that symmetries

χ+(α+ θ1) = χ+(α) and χ+(β −α) = χ+(α) are apparent in the above expression.

28



Heat conservation for multi-reservoir systems

5 Proofs of the bounds for confined systems

In this section we gather the technical proofs for the bounds in Section 2.4.

5.1 Trace and norm inequalities

In this section we give two relevant general inequalities which will be used to prove the bounds in

Section 2.4.

Lemma 5.1. Let A and X be two operators on a Hilbert space, with A bounded and X trace-class.

We have

|tr(AX)| ≤ ‖A‖ tr|X|. (5.55)

Proof. Let X = U |X| be the polar decomposition of X and (ψj)j be an orthonormal basis of

eigenvectors for |X|, with corresponding eigenvalues (|xj |)j . We have

|tr(AX)| =
∑

j

|〈ψj , AU |X|ψj〉| ≤ sup
j

|〈ψj , AU ψj〉|
∑

j

|xj|

which implies tr(AX) ≤ ‖A‖ tr|X|.
Lemma 5.2. For any two bounded A and B one has

‖eA+Be−A‖ ≤ exp sup
s∈[0,1]

‖esABe−sA‖. (5.56)

Proof. One has the obvious relations

d

ds
‖es(A+B) e−sA‖ ≤ ‖ d

ds
es(A+B) e−sA‖ = ‖es(A+B)B e−sA‖ ≤ ‖es(A+B) e−sA‖ ‖e+sAB e−sA‖,

so that

log ‖e(A+B) e−A‖ ≤
∫ 1

0
‖e+sAB e−sA‖ds

and the result follows.

5.2 Proofs for Section 2.4

We first prove Proposition 2.6; note that the upper bound and inequality (2.12) imply the lower bound.

Since ρ̃ and α.E commute, it follows from relation (2.10) that

χt(α) = tr
(

ρ̃ e+it(H0+Vα) e−it(H0+V−α)
)

. (5.57)

Remark that e+it(H0+Vα) and e−it(H0+V−α) are mutually adjoint. Using (5.55) we have

χt(α) ≤ ‖e+it(H0+Vα) e−it(H0+V−α)‖ ≤ ‖e+it(H0+Vα) e−itH0‖2.

Using (5.56) with A = itH0 and B = itVα we have

|χt(α)| ≤ exp
(

2|t| sup
s∈[0,1]

‖e+istH0Vα e−istH0‖
)

= exp
(

2|t|‖Vα‖
)

.
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This concludes the proof of Proposition 2.6.

We now turn to the proof of Proposition 2.7. Recall that Vα was defined in (2.18). We first prove that

the similar upper bound

χt(α+ θ1) ≤ χt(α) e+|θ| Tβ(α,θ), (5.58)

where

Tβ(α, θ) = sup
s∈[0,1]

‖Vα+sθ1‖+ sup
s∈[0,1]

‖Vβ−α−sθ1‖,

is valid for any α (not necessarily satisfying α.1 = 0) and θ. We have ρ = ρ̃ = Z−1 e−β.E . Let

Γ(α, θ) = e
1
2
θ(H0+Vα)e−

1
2
θH0 = e

1
2
α.Ee

1
2
θHe−

1
2
θH0e−

1
2
α.E

and

D(α, θ) = Γ(α, θ)Γ∗(α, θ).

Starting from (2.10),

χt(α+ θ1) = Z−1tr
(

D(α, θ)e−
1
2
α.Ee−itHe−

1
2
(β−α).ED(β −α,−θ)e− 1

2
(β−α).Ee+itHe−

1
2
α.E

)

.

Applying twice inequality (5.55) we have:

χt(α+ θ1) ≤ Z−1‖D(α, θ)‖tr
(

e−
1
2
α.Ee−itHe−

1
2
(β−α).ED(β −α,−θ)e− 1

2
(β−α).Ee+itHe−

1
2
α.E

)

= Z−1‖D(α, θ)‖tr
(

D(β −α,−θ)e− 1
2
(β−α).Ee+itHe−α.Ee−itHe−

1
2
(β−α).E

)

≤ Z−1‖D(α, θ))‖‖D(β −α,−θ)‖tr
(

e−
1
2
(β−α).Ee+itHe−α.Ee−itHe−

1
2
(β−α).E

)

= ‖D(α, θ)‖‖D(β −α,−θ)‖χt(α).

From (5.56), for any α ∈ R
ℓ and θ ∈ R,

‖D(α, θ)‖ = ‖e 1
2
θ(H0+Vα)e−

1
2
θH0‖2 ≤ exp(|θ| sup

s∈[0,1]
‖Vα+sθ1‖),

‖D(β −α,−θ)‖ = ‖e− 1
2
θ(H0+Vβ−α)e

1
2
θH0‖2 ≤ exp(|θ| sup

s∈[0,1]
‖Vβ−α−sθ1‖).

The desired inequality therefore holds. In addition, the inequality Tβ(α, θ) ≤ Sβ(‖α‖, |θ|) holds

when α.1 = 0. This yields the upper bound in (5.58). The obvious symmetry Tβ(α, θ) = Tβ(α +
θ1,−θ) gives the lower bound.

A The role of the small system

We consider a system which we view as consisting of a fixed system S described by (HS , ρS ,HS),

which is coupled to reservoirs Rj , j = 1, . . . , ℓ, each of which is decribed by (H(L)
j , ρ

(L)
j ,H

(L)
j )L∈N.

We assume that HS is of finite dimension, and that HS , ρS ,HS do not depend on L. Then the L-th

confined full system is described by the Hilbert space H(L)
f = HS ⊗H(L), with the free Hamiltonian

HS ⊗ id + id ⊗ H0 and initial state ρ
(L)
f = ρS ⊗ ρ(L). The coupling is described by an observable

V (L) on H(L)
f so that the full Hamiltonian is given by H

(L)
f = HS +H

(L)
0 + V (L).
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One way to look at this system is to consider the small system S as an ℓ+ 1-th reservoir and measure

the energies both in the reservoirs Rj and in the small system S . We call this the “full” descrip-

tion and label corresponding objects with an f . It amounts to consider the multi-reservoir system

(Hf , ρ
(L)
f ,E

(L)
f , V (L))L with E

(L)
f = (HS ,H

(L)
1 , . . . ,H

(L)
ℓ ). Setting αf = (αS ,α), we denote by

χ
(L)
f,t (αf ) the associated generating function on R×R

ℓ. Another way to look at the system is to view

S as part of the interaction and therefore to consider only the ℓ reservoirs. We call this the “reduced”

description and label corresponding objects with an r. It amounts to consider the multi-reservoir

system (Hf , ρ
(L)
f ,E,HS + V (L))L. We have:

χ
(L)
f,t (αf ) = tr

(

e−itH(L)
ρ̃S ⊗ ρ̃(L) e+αSHS+α.E(L)

e+itH(L)
e−αSHS−α.E(L))

,

χ
(L)
r,t (α) = tr

(

e−itH(L)
ρS ⊗ ρ̃(L) e+α.E(L)

e+itH(L)
e−α.E(L))

and obviously,

e−2|αS |‖HS‖χr,t(α) ≤ χ
(L)
f,t (αS ,α) ≤ e2|αS |‖HS‖χr,t(α), (A.59)

so that, even though the assumption TL in the reduced and the full picture are not equivalent (although

the latter implies the former), as soon as they are assumed to hold then χr,+(α) = χf,+(αS ,α)
for all αS , and both versions of LT(α0) are equivalent and define the same functional χ+, which

only depends on α. Similarly, the fact that HS commutes with the Hj , j = 1, . . . , ℓ implies that

assumptions B(α0, θ0) and Bβ(α0, θ0) are equivalent for the full and the reduced pictures. Therefore,

the choice of the full or reduced description is irrelevant to the conclusions of all our large-time results

results, from Theorem 3.6 to Theorem 3.19.

B Proofs for Section 4

For the spin system, of Section 4.1, since the considered interaction has finite range, a direct appli-

cation of e.g. Theorem 6.2.4 in [BR97] shows the existence of strongly continuous one-parameter

groups (τ t)t, (τ
t
α)t of *-automorphisms on the norm closure O =

⋃

X⊂G

⊗

x∈X Mk(C), such that

for α ∈ C
ℓ with ‖α‖ small enough,

lim
L→∞

‖e+itH(L)
A e−itH(L) − τ t(A)‖ = 0 lim

L→∞
‖e+itα.E(L)

A e−itα.E(L) − τ tα(A)‖ = 0 (B.60)

uniformly for t in a compact set of R+ and A ∈ O. We will denote by τ t0 the map τ tα for α = 1,

which is the limit of the evolution associated with the free Hamiltonian H
(L)
0 .

Proof of Theorem 4.1 An immediate adaptation of the proof of Theorem 6.2.4 in [BR97] shows that

there exists two constants γ0 > 0 and C > 0 such that for any x ∈ ∪ℓ
j=1∂Gj , any α with ‖α‖ < γ0,

one has

lim sup
L

‖e+ 1
2
α.E(L)

Sx e
− 1

2
α.E(L)‖ ≤ C ‖A‖. (B.61)

Expanding V (L) and applying Equation (B.61) implies B(α0, θ0) provided θ0 < γ0.

We now prove TL. Let Γ
(L)
α (t) = e+it(H

(L)
0 +V

(L)
α )e−itH

(L)
0 , with V

(L)
α = e+

1
2
α.E(L)

V (L)e−
1
2
α.E(L)

as before. Fix α ∈ iRℓ; from relation (5.57) we have

χ
(L)
t (α) = tr

(

ρ(L) Γ
(L)
α (t) Γ

(L)
α (t)∗

)

. (B.62)
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Let V and Vα be the (norm) limits as L → ∞ of V (L) and V
(L)
α respectively. Their existence is

assured by our assumption on x 7→ J(x), and α ∈ iRℓ. Let Γα(t) be as the solution of ∂
∂t

Γα(t) =
iΓα(t) τ

t
0(Vα), with initial condition Γα(0) = id (this Γα(t) can be explicitly constructed in terms of

a Dyson expansion). By differentiating Γ
(L)
α (t) Γ∗

α(t), and using the unitarity of Γ
(L)
α (t) and Γ∗

α(t),
we obtain

‖Γ(L)
α (t)Γ∗

α(t)− id‖ ≤
∫ t

0
‖e+isH

(L)
0 V

(L)
α e−isH

(L)
0 − τ s0 (Vα)‖ds.

Since by B(α0, θ0) and (B.60), ‖e+isH
(L)
0 V

(L)
α e−isH

(L)
0 − τ s0 (Vα)‖ is uniformly bounded and con-

verges to 0 as L → ∞ for any t, we have limL→∞ ‖Γ(L)
α (t) − Γα(t)‖ = 0. Relation (B.62) and the

assumption that the states converge then imply

lim
L→∞

χ
(L)
t (α) = ρ

(

Γα(t)Γ
∗
−α(t)

)

uniformly for t in any compact set, and α ∈ iRℓ. Continuity of χt(α) in α = 0 along iRℓ is a

consequence of the uniform in α ∈ iRℓ norm convergence of the Dyson expansion of Γα(t). This

proves TL.

Proof of Proposition 4.3 We have

χ
(L)
t (αS ,α) =

1

2
tr
(

e−
∑

j βjH
(L)
j e+itH

(L)
αS ,α e−itH(L)

)

/
(

ℓ
∏

j=1

Z
(L)
j

)

with

H
(L)
αS ,α = HS +

∑

j

Hj + λ
∑

j

(

0 e+2αS

e−2αS 0

)

⊗ 1√
2

(

a∗j(e
+αjh

(L)
j v

(L)
j ) + aj(e

−αjh
(L)
j v

(L)
j )

)

A Dyson expansion of e+itH
(L)
αS ,α e−itH(L)

shows that χ
(L)
t (αS ,α) converges for any (αS ,α) in iRℓ+1

as L → ∞ (see [BPR18, Appendix B] for some related techniques of thermodynamic limit on Fock

spaces).

Proof of Proposition 4.4 Using ‖a#(v)‖ ≤ ‖v‖ and the positivity of each h
(L)
j , one has for α in

B(α0) and θ in [−θ0,+θ0]

‖e+ 1
2
(α+θ1).E(L)

V (L)e−
1
2
(α+θ1).E(L)‖ ≤ |λ|e(α0+θ0)

ℓ
∑

j=1

(

‖e+ 1
2
(α0+θ0)h

(L)
j v

(L)
j ‖+ ‖v(L)j ‖

)

.

Assumption SFUV(γ0) therefore implies B(α0, θ0) whenever α0 ≤ θ0 ≤ γ0. The proof regarding

Bβ(α0, θ0) is similar.

C Analytic approximation of the interaction

As discussed in Section 3.1, starting from any multi-reservoir system (H(L), ρ(L),E(L), V (L))L∈N
we can always find a sequence (Ṽ (L))L∈N) approximating (V (L))L∈N uniformly in L, and such that

Bβ(α0, θ0) is true with any α0 and θ0 in (0,+∞), provided that t 7→ e+iα.E(L)
V (L)e−iα.E(L)

fulfills

some uniform (in L) continuity condition at t = 0. More precisely, we have:
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Proposition C.1. Assume that supL ‖V (L)‖ <∞ and

lim
‖α‖→0

sup
L∈N

‖e+iα.E(L)
V (L)e−iα.E(L) − V (L)‖ = 0. (C.63)

Then for any ε > 0 there exists a sequence of (Ṽ
(L)
ε )L∈N, with Ṽ

(L)
ε = Ṽ

(L)
ε

∗ ∈ B(H(L)), such that

sup
L

‖Ṽ (L)
ε − V (L)‖ < ε (C.64)

and the multi-reservoir system (H(L), ρ(L),E(L), Ṽ
(L)
ε )L∈N satisfies assumption Bβ(α0, θ0) for any

β ∈ R
ℓ, for any α0 and θ0 in (0,+∞),

Proof. We define (denoting dσ = dσ1 . . . dσℓ)

Ṽ
(L)
N =

√

N
π

∫

Rℓ

e+
1
2
iσ.E(L)

V (L)e−
1
2
iσ.E(L)

e−N
∑ℓ

j=1 σ
2
j dσ.

This is the analytic element defined in [BR87, Proposition 2.5.22] . As a direct consequence of this

definition, for any L and N in N, we have ‖Ṽ (L)
N ‖ ≤ ‖V (L)‖. In addition, it is easy to prove that for

any ε > 0, there exists Nε > 0 such that supL ‖Ṽ (L)
Nε

− V (L)‖ < ε. We now drop the subscript Nε for

Ṽ
(L)
Nε

and we show that for any α in (0,+∞)ℓ, one has supL ‖Ṽ (L)
α ‖ < ∞ where Ṽ

(L)
α is V

(L)
α with

V (L) replaced by Ṽ (L).

For α ∈ iRℓ a simple change of variable gives

Ṽ
(L)
α =

√

N
π

∫

Rℓ

e+
1
2
iσ.E(L)

V (L)e−
1
2
iσ.E(L)

e−N(σ+iα).(σ+iα) dσ.

For a general α ∈ C
ℓ, the integrand on the right end side and its derivative in α can be norm bounded

by

sup
L

‖V (L)‖
(

1 + 2N(‖σ‖ + ‖α‖)
)

eN
∑ℓ

j=1(Reαj)2e−N
∑ℓ

j=1(σ−Imαj)2 ,

so the integral is well defined for any α ∈ C
ℓ and the map α ∈ C

ℓ 7→ I(L)(α) ∈ B(H) it defines is

entire analytic. Since for any L finite α 7→ Ṽ
(L)
α is entire analytic, Ṽ

(L)
α = I(L)(α) for any α ∈ C

ℓ.

Since I(L) is uniformly bounded in L and α on any compact subset K ⊂ C
ℓ, so is α 7→ Ṽ

(L)
α and

Bβ(α0, θ0) is satisfied for any β, α0, θ0.

Remark C.2. We would like to insist that this proposition does not imply that Bβ(α0, θ0) is fulfilled

for V (L), even if V (L) is the limit of an analytic approximation such as Ṽ (L): in general we do not

have

lim
ε→0

sup
L

‖Ṽ (L)
ε,α − V

(L)
α ‖ = 0

since the factor eN
∑ℓ

j=1(Re(αj ))2 blows up as N grows to infinity.
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