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ABSTRACT

3D meshes are widely used in computer graphics applications for approximating 3D models. When representing
complex shapes in raw data format, meshes consume a large amount of space. Applications calling for com-
pact and fast processing of large 3D meshes have motivated a multitude of algorithms developped to process
these datasets efficiently. The concept of multiresolution analysis proposes an efficient and versatile tool for
digital geometric processing allowing for numerous applications. In this paper, we survey recent developments
in multiresolution methods for 3D triangle meshes. We also show some results of these methods through various
applications.
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1. INTRODUCTION

3D computer graphics have been more and more used in different scientific and artistic fields, such as education,
science, engineering, medecine, advertising, entertainment, etc. This implies the use of 3D models through
different kinds of representation : explicit with triangle meshes, parametric with splines, and implicit with
functions. These 3D models are more and more precise and complex, and can be obtained from various sources:
modeling software, acquisition device, scientific simulation. In the last decades, the processing of 3D models has
emerged as an active and very productive research area. The need to process high-quality 3D models has driven
the research on efficient data structures and algorithms. In this paper, we only consider 3D models represented
with triangle meshes.

Multiresolution techniques have proven their efficiency through a large number of applications: compression,
feature extraction, rendering, modeling, filtering, etc. Moreover these techniques have been applied on different
kinds of data, such as signals, images, meshes, etc. Multiresolution techniques decompose the initial data into
a hierarchy that represents different levels of detail. Technically this hierarchy can be exploited in order to
significantly speed up many algorithms. More important, however, is the semantic effect in that such hierarchies
can be used for intuitive modeling metaphors or highly efficient geometry compression algorithms. An example
of the multiresolution decomposition of a mesh is shown in Figure 1. Many papers present the multiresolution
analysis and the wavelet transform in the computer graphics domain. Here we refer to1–4 as an introduction.

In this paper, we present a survey of the different multiresolution methods proposed for triangle meshes.
We start with the preliminary background on triangle meshes and multiresolution analysis. Then we show the
different proposed methods and their applications. We conclude this survey on the use of multiresolution methods
in 3D computer graphics.
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Figure 1. An example of the multiresolution decomposition of a triangle mesh. The initial mesh is decomposed in a
set of levels of detail represented by an approximation mesh and detail coefficients shown in pseudo-colors. The detail
coefficients represent the data lost during the appromixation process. The initial mesh can be recontructed using the
approximations and the detail coefficients.

2. BACKGROUND

In this section, we present the necessary background for the survey proposed in this article. First, we will
define how 3D models are represented using triangle meshes. We will make a difference between a semi-regular
mesh and an irregular mesh. Then, we will define the multiresolution analysis originally proposed in the signal
processing field.

2.1 Triangle meshes

3D models can de represented in many different ways5 ; the most common representations are: polygon mesh
surfaces, parametric surfaces, and implicit surfaces. Here, we only consider triangle meshes representing a 2-
manifolds with boundaries. We denote a triangle mesh as a pair (P,K), where P is a set of N point positions
pa = (xa, ya, za) ∈ R3 with 1 ≤ a ≤ N , and K is an abstract simplicial complex which contains all the topological,
i.e. adjacency information. The complex K is a set of subsets of {1, ..., N}. These subsets are called simplices
and come in 3 types: vertices v = {a} ∈ V ⊂ K, edges e = {a, b} ∈ E ⊂ K, and faces f = {a, b, c} ∈ F ⊂ K, so
that any non-empty subset of a simplex of K is again a simplex of K, e.g., if a face is present so are its edges
and vertices. The performances of a geometry processing application are directly influenced by the underlying
triangle mesh representation and its data structure.3,6

Guskov et al.7 distinguish three types of topology among triangulations (see Figure 2). A regular mesh has
vertices of degree six. An irregular mesh has vertices of any degree. A semi-regular mesh are obtained using a
subdivision algorithm where coarse vertices have arbitrary degree while all other vertices have degree six. Using
this terminology, we distinguish multiresolution methods for semi-regular meshes, and multiresolution methods
for irregular meshes. The first ones are usually based on subdivision algorithms, and the latter on decimation
algorithms.



(a) Regular (b) Semi-regular (c) Irregular

Figure 2. Different types of topology of triangle meshes. Semi-regular meshes involve the use of subdivision algorithms.

2.2 Multiresolution methods

Multiresolution analysis8–10 is a solid and efficient framework to represent a data set at different levels of resolu-
tion. It decomposes an initial data set into a sequence of approximations and details by projecting the data onto
two sets of basis functions: the scalar and wavelet bases. The approximations are computed by using the scalar
functions, and represent the initial data at different levels of resolution. The details are computed by using the
wavelet functions, and encode the data lost by the approximations. The initial data can be reconstructed from
the wavelet representation using the dual scalar and wavelet bases. This technique has been extended to multi-
dimensional functions efficiently using the concept of a tensor product: the one-dimensional wavelet transform
is applied to each dimension of the data independently.

Different types of basis functions are available in the literature. Every basis function has different properties,
and it is best suited to solve a particular problem. Properties are the orthogonality, the size of the support, the
number of vanishing moments, the symetry and the smoothness of the basis function. The main advantage of
the multiresolution analysis is its representational and computational efficiency. The appeal of multiresolution
methods comes from their ability to represent features of a data set through different scales.

The lifting scheme11 allows the construction of filter banks entirely in the spatial domain. Instead of explicitly
specifying scaling functions and wavelets, the decomposition process is made up of so-called splitting, prediction,
update, scaling and merging steps that are arranged in a flow chart (see Figure 3). Using the lifting scheme, the
wavelet decomposition can be performed in-place and in linear time.

Figure 3. The lifting scheme decomposition and reconstruction process.

The multiresolution methods for 3D meshes presented in this paper do not always respect the strict definition
of the wavelet transform. Some methods use so-called pyramid algorithms, whose construction is very close to
the wavelet transform. In fact, multiresolution techniques on semi-regular meshes use subdivision schemes,
which allow the construction of wavelets. Multiresolution techniques on irregular meshes do not always have this
guarantee, but sometimes it can be achieved.



3. MULTIRESOLUTION DECOMPOSITION OF SEMI-REGULAR MESHES

In this section, we present the main multiresolution methods for semi-regular meshes. Lounsbery12 made the
connection between wavelet analysis and subdivision methods to define different levels of resolution. This tech-
nique called subdivision wavelet transform uses the theory of the multiresolution analysis and of the subdivision
rules to construct a multiresolution surface representation for surface with subdivision connectivity (i.e. semi-
regular mesh). In the Lounsbery decomposition, a mesh is subdivided using Loop subdivision,13 and deformed
to make it fit the surface to be approximated. These steps can be repeated depending on the required resolution
levels. Multiresolution analysis is computed with two analysis filters, Aj and Bj for each resolution level j. The
reconstruction is done with two synthesis filters P j and Qj . These filters are represented using matrix notation
and, to ensure exact reconstruction, must satisfy the following constraint:

(

Aj

Bj

)

=
(

P j Qj
)

−1
, (1)

Let us call V j the vertex positions of the mesh at the level j and W j the corresponding wavelet coefficients, the
decomposition is computed as:

V j = Aj+1V j+1, (2)

W j = Bj+1V j+1. (3)

The reconstruction is made using the following relation:

V j+1 = P jV j + QjW j . (4)

The decomposition process is shown on Figure 4.

Figure 4. The Lounsbery decomposition process.12

Schröder and Sweldens14 defined the spherical wavelets using Lounsbery decomposition and the lifting scheme.
They show how to construct biorthogonal wavelets for scalar functions defined on a triangulated sphere. The
authors experiment different vertex bases that are easy to implement and allow fully adaptive subdivision. They
give examples of application with topograhic data and bidirectional reflection distribution functions. Bonneau15

improved the orthogonalization of the decomposition of spherical data with optimal triangular Haar bases.

Zorin et al.16 proposed a combination of subdivision and smoothing algorithms to construct a set of algorithms
for interactive multiresolution editing of complex meshes with arbitrary topology with no attributes. Loop
subdivision is used for the estimation of the high resolution mesh from the coarse representation. The authors
introduce Taubin smoothing operation17 in the transformation and use a Burt-Adelson pyramid scheme18 (see
Figure 5). They demonstrate the efficiency of their method through an adaptive editing and rendering application.



Figure 5. The Burt-Adelson pyramid used in the Zorin multiresolution decomposition.

Khodakovsky et al.19 use MAPS parametrization20 and propose a novel Loop wavelet transform. They
introduce a zero-tree coder to achieve mesh compression with very good results.

Bertram21 proposed a biorthogonal Loop-subdivision wavelet scheme. Wavelets are orthogonalized with
respect to local scaling functions. This way, the wavelet analysis computes locally a least squares fit when
reducing the resolution and converting geometric detail into sparse wavelet coefficients. The contribution of
Bertram approach is local computation of both, wavelet analysis and synthesis in linear time.

Wang et al.22 proposed an new biorthogonal wavelet decomposition of semi-regular meshes using the
√

3-
subdivision.23 The

√
3-subdivision has a slower topological refinement than the traditional triangular subdivi-

sions, and allows the multiresolution analysis to be more balanced than the existing wavelet analyses on triangular
meshes. The

√
3-subdivision based wavelet decomposition offers more levels of detail for processing polygonal

models with good performances.

Recently, Roudet et al.24,25 proposed a new patch-based multiresolution analysis of semi-regular mesh sur-
faces. They proposed a mesh partitioning method relying on surface roughness (based on frequency magnitude
variations), in order to produce patches, representative of semantic attributes of the object. The partitioning
framework uses a segmentation algorithm based on the wavelet coefficient magnitude, which every remeshing
or compressing algorithm tends to minimize. Each produced partition share surface roughness homogeneity,
inherently reflected by wavelet coefficient magnitude. The authors show the efficiency of this patch-based de-
composition with a progressive compression application.

All of the previous methods are designed for semi-regular meshes, so you need to have triangle meshes with
subdivision connectivities. If you have irregular meshes as input and if you want to use one of the previous
methods, you can remesh the surface of the 3D model using one of the several methods proposed in the litera-
ture.20,26–29

4. MULTIRESOLUTION DECOMPOSITION OF IRREGULAR MESHES

Different approaches have been presented in order to deal directly with irregular meshes. This has the advantage
of avoiding the remeshing process, but you loose the support of the subdivision framework.

Bonneau30 introduced the concept of multiresolution analysis over non-nested spaces, which are generated by
the so-called BLaC-wavelets, a combination of the Haar function with the linear B-Spline function. This concept
was then used to construct a multiresolution analysis over irregular meshes. Two operators are introduced: a
smoothing operator to compute the coarse mesh, and an error operator to determine the difference between
the approximation mesh and the initial one. Bonneau uses a hierarchical Delaunay triangulation to encode the
decomposition.

Kobbelt et al.31 proposed a multiresolution editing tool for irregular meshes using the discrete fairing method.
The authors use the progressive mesh algorithm32 to build the coarse resolution mesh, and a smoothing operator
to estimate the high resolution mesh. This method is not a wavelet transform in the strict sense, but it gives
good ideas to construct multiresolution mesh using a decimation algorithm and a smoothing operator.



Daubechies33 and Guskov7 presented a series of non-uniform signal processing algorithms designed for ir-
regular triangulation. They used a smoothing algorithm combined with existing hierarchical methods to build
subdivision, pyramid, and wavelet algorithms for meshes with irregular connectivity. The authors proposed a
non-uniform subdivision to build a geometrically smooth mesh with the same connectivity as the original mesh.

Roy et al.34,35 proposed a novel multiresolution decomposition based on Guskov method. They use global
decimation method based on the quadric error metric,36 and the Meyer smoothing operator37,38 as predict
operator to compute detail coefficients. Also, they extend the multiresolution analysis to appearance attributes
such as vertex colors and normal vectors. The authors show experimental results through denoising and adaptive
rendering applications.

Valette et al.39 presented a new wavelet-based multiresolution analysis of irregular surface meshes. This
method is based on Lounsbery decomposition. The authors proposed a new irregular subdivision scheme, which
allows the algorithm to be applied directly to irregular meshes. They use three codebooks to describe the different
merge-split cases, and define some constraints in order to keep the simplification/decomposition step reversible.
The method is a fine-to-coarse decomposition, and uses a complex simplification algorithm in order to define
surface patches suitable for the irregular subdivision.

Recently, Szczesna40,41 proposed a multiresolution decomposition for irregular meshes using the lifting
scheme. She introduces a new predict operator using Voronoi cells in a local neighborhood.

5. APPLICATIONS OF MULTIRESOLUTION MESHES

The multiresolution analysis is a versatile tool and can offer a wide range of applications. The main advantages
of the multiresolution analysis are: multi-scale representation of a data set, efficient encoding of the geometrical
features, and fast computation. In this section, we present the main applications of multiresolution methods for
triangle meshes in the computer graphics domain.

5.1 Feature extraction

One recent application of multiresolution meshes is the feature extraction.42,43 By using the detail coefficients
through the different scales, important features (such as sharp edges) can be efficiently found. Figure 6 shows
an example of sharp edge detection using segmentation of the detail coefficients.

(a) Initial mesh (b) Detail coefficients (c) Segmentation

Figure 6. An example of sharp edge extraction using segmentation of the detail coefficients from the multiresolution
analysis.



Roudet et al.24 proposed a mesh segmentation method based on the multiresolution decomposition. They
use the wavelet coefficients norm and polar angle (the angle between each coefficient and its corresponding
surface normal vector) obtained by the various schemes to differentiate mesh regions in term of roughness. They
efficiently use this segmentation method to create patch-based multiresolution analysis and mesh compression.

5.2 Denoising

One of the properties of multiresolution analysis is the ability to represent a data set in a space/frequency domain.
Even if the term frequency is not well defined for triangle mesh, multiresolution analysis can successfully be used
to denoised meshes.44,45 Actually, most of traditional multiresolution denoising techniques can be extended
to multiresolution meshes. Figure 7 shows an example of mesh denoising using soft-thresholding of the detail
coefficients.46 First, the initial noisy mesh is decomposed using an irregular mesh multiresolution analysis,34 and
the noise is removed using a wavelet shrinkage method. The idea is to transform the data into the wavelet basis,
where the large coefficients are mainly the signal, and smaller ones represent the noise. By suitably modifying
these coefficients, the noise can be removed from the data. A threshold is apply to a filter operator in order to
shrink the detail coefficients before the reconstruction. The soft thresholding is a fast, efficient denoising method
and gives good results. Moreover, this is a non-iterative method, and so it requires only one pass over the model.

(a) Noisy mesh (σ2

n
= 10) (b) Noisy mesh (σ2

n
= 25) (c) Noisy mesh (σ2

n
= 50)

(d) Denoised mesh (σ2

n
= 10) (e) Denoised mesh (σ2

n
= 25) (f) Denoised mesh (σ2

n
= 50)

Figure 7. An example of multiresolution mesh denoising using soft thresholding.



5.3 Visualization

Multiresolution meshes offer an intrinsec hierarchical structure that can be used to developp fast, adaptive level-
of-detail visualization applications.35,47 By using the detail coefficient magnitude as a vertex selection criterion,
it is possible to build a view-dependent visualization with important feature preservation. Figure 8 shows an
example of view-dependent visualization of a 3D multiresolution mesh. Vertices out of the viewpoint are removed
using visibility criteria. Important geometrical features are preserved by thresholding the detail coefficients. If
the detail coefficient length of a vertex is below a given threshold, the vertex is declared as irrelevant and thus
is removed from the mesh. Moreover, different methods manage appearance attributes such as vertex colors and
normal vectors.30,35

(a) τ=0 (102 246 vertices) (b) τ=0.0001
(31 848 vertices)

(c) τ=0.0004
(9 293 vertices)

(d) τ=0.0004 (viewpoint)

Figure 8. View-dependent visualization of a 3D multiresolution mesh. Important geometrical features are preserved by
thresholding the detail coefficients. The initial mesh is rendered from the viewpoint in (d) with different values of the
threshold τ in (a)-(c).

5.4 Editing

One of the first proposed applications of multiresolution meshes was modeling and editing. The idea is to edit
the mesh at a lower resolution, and use the reconstruction algorithm to retrieve the high resolution mesh through
its edited version. The main advantage of these methods is the ability to edit very large meshes. Applications
such as industrial and engineering design require creation and manipulation of detailed geometric models. Such
models are often created with 3D range sensing devices such as laser scanners, and like real world geometry,
these models can carry details at many scales. Usually, multiresolution editing algorithms use local coordinate
frames to parametrize the details to avoid artefacts through the different resolutions after the editing. Here, we
refer to the following papers7,16,31,48–50 for more informations about multiresolution mesh modeling and editing.

5.5 Compression

Compression and transmission are popular applications of multiresolution meshes. Generally, mesh sequences
obtained by 3D scanners or mesh design tools require huge capacity or enormous bandwidth to be stored or
transmitted. For that reason, it has become an important issue to develop efficient compression methods for
3D mesh sequences. In multiresolution mesh compression techniques, wavelet coefficients of the analysed mesh
are encoded using zerotree and entropy coding. It is also possible to used multiresolution mesh for progres-
sive transmission over networks. Here, we refer to the following papers19,25,51–54 for more informations about
multiresolution mesh compression and transmission.



5.6 Watermarking

Watermarking is a recent application of multiresolution meshes.55 Digital watermarking has been considered as
a potential efficient solution for copyright protection of various multimedia contents. This technique carefully
hides some secret information in the cover content. Cho et al.56 proposed a fragile algorithm in the wavelet
domain to authenticate semi-regular meshes. They first apply several wavelet decompositions on the original
triangular mesh and then consider the facets in the obtained coarser mesh as authentication primitives. The
basic idea is to slightly modify each facet so that the values of two predefined functions are the same, in order
to make all these facets valid for authentication.

Recently, Wang et al.57,58 have described a fragile watermarking technique for authenticating semi-regular
meshes that is both robust to vertex reordering and similarity transformations, and capable of precisely locating
the endured attacks. In their method, after one wavelet decomposition, the norm and the orientation of each
obtained wavelet coefficient vector are independently modified so as to make them both imply a same watermark
symbol, serving for authentication.

6. CONCLUSION

3D meshes being used in a wide range of fields, it is crucial to have good representation structures and efficient
processing algorithms. Multiresolution analysis provides all of these in an elegant framework. In this paper, we
surveyed the main methods of multiresolution analysis dedicated to triangle meshes. It is important to distinguish
methods for semi-regular meshes, and methods for irregular meshes. The former requires a subdivision framework
over the mesh, while the latter try to deal with irregular connectivity.

Many applications of multiresolution meshes have been proposed, such as feature extraction, denoising, edit-
ing, rendering, compression, etc. All of these applications try to give good performances using the multiresolution
framework. These applications show the ability of the multiresolution analysis to efficiently represent and process
heterogeneous data sets.

There is still room to research on multiresolution analysis for meshes. No mathematical framework has
been created to unify them all. Moreover, many mathematical properties have yet to be highlighted or even
demonstrated. But the wide number of applications show that it is still an active topic of research.
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