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Program sensitivity, also known as Lipschitz continuity, describes how small changes in a program’s input
lead to bounded changes in the output. We propose an average notion of program sensitivity for probabilistic
programs—expected sensitivity—that averages a distance function over a probabilistic coupling of two output
distributions from two similar inputs. By varying the distance, expected sensitivity recovers useful notions
of probabilistic function sensitivity, including stability of machine learning algorithms and convergence of
Markov chains.

Furthermore, expected sensitivity satisfies clean compositional properties and is amenable to formal
verification. We develop a relational program logic called EpRHL for proving expected sensitivity properties.
Our logic features two key ideas. First, relational pre-conditions and post-conditions are expressed using
distances, a real-valued generalization of typical boolean-valued (relational) assertions. Second, judgments are
interpreted in terms of expectation coupling, a novel, quantitative generalization of probabilistic couplings
which supports compositional reasoning.

We demonstrate our logic on examples beyond the reach of prior relational logics. Our main example
formalizes uniform stability of the stochastic gradient method. Furthermore, we prove rapid mixing for
a probabilistic model of population dynamics. We also extend our logic with a transitivity principle for
expectation couplings to capture the path coupling proof technique by Bubley and Dyer [1997], and formalize
rapid mixing of the Glauber dynamics from statistical physics.
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1 INTRODUCTION

Sensitivity is a fundamental property in mathematics and computer science, describing how small
changes in inputs can affect outputs. Formally, the sensitivity of a function д : A→ B is defined
relative to two metrics dA and dB on A and B respectively. We say that f is α-sensitive if for every
two inputs x1 and x2, the outputs are a bounded distance apart: dB (д(x1),д(x2)) ≤ α · dA (x1,x2).
Bounded sensitivity plays a central role in many other fields, motivating broad range verification
methods for bounding program sensitivity.
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We consider expected (or average) sensitivity, a natural generalization of sensitivity for the
probabilistic setting, and develop a program logic for proving expected sensitivity of probabilistic
programs. We work with a mild generalization of sensitivity, called f -sensitivity. Formally, let
d : A ×A→ R+ and d′ : B × B → R+ be two distances, and let f be a non-negative affine function
of the form z 7→ α · z + β with α , β non-negative. We say that д : A → B is f -sensitive iff for
for every two inputs x1 and x2, dB (д(x1),д(x2)) ≤ f (dA (x1,x2)). Taking f to be affine will allow
f -sensitivity to compose cleanly in the probabilistic case, while still being expressive enough to
model multiplicative and additive bounds on the output distance in terms of the input distance.

1.1 Expected Sensitivity

Let us now consider the case where д is probabilistic, i.e., д : A → D(B). Since д produces
distributions over B rather than elements of B, we have a choice of what output distance to take.
One possibility is to allow arbitrary distances between distributions; however, such distances can
be complex and difficult to reason about. We consider an alternative approach: lifting a distance
dB on elements to a distance on distributions by averaging dB over some distribution µ on pairs
B × B. For any two nearby inputs of д leading to output distributions µ1 and µ2, we require this
distribution µ to model µ1 and µ2 in a probabilistic sense; namely, its first and second marginals
must be equal to µ1 and µ2. Such a distribution µ is known as a probabilistic coupling of µ1 and µ2
(we refer the reader to Lindvall [2002] and Thorisson [2000] for overviews of the rich theory of
probabilistic couplings).

Formally, a probabilistic function д is expected f -sensitive if for every two inputs x1 and x2, there
exists a coupling µ of д(x1) and д(x2), such that

E(y1,y2 )∼µ [dB (y1,y2)] ≤ f (dA (x1,x2)). (1)

The left-hand side is the expected value of the function dB over µ (the average distance between
pairs drawn from µ), inspired by theWasserstein metric, a well-studied distance on distributions
in the theory of optimal transport [Villani 2008]. Our notion of expected sensitivity has several
appealing features. First, it is quite general—we can capture many probabilistic notions of sensitivity
by varying the distance.

Example 1.1 (Average sensitivity). When the outputs (y1,y2) are numbers, a natural notion of
sensitivity bounds the difference between average outputs in terms of the distance between inputs
(x1,x2). Taking the distance dB (y1,y2) ≜ |y1 − y2 |, expected f -sensitivity implies

���Ey1∼µ1[y1] − Ey2∼µ2[y2]
��� ≤ f (dA (x1,x2)).

In other words, the two output distributions µ1 and µ2 have similar averages when the inputs
(x1,x2) are close. This type of bound can imply algorithmic stability, a useful property for machine
learning algorithms [Bousquet and Elisseeff 2002].

Example 1.2 (Probabilistic sensitivity). Suppose that the output distance dB is bounded away from
zero: dB (y1,y2) < 1 iff y1 = y2; for instance, dB could be an integer-valued metric. Then, expected
f -sensitivity implies

�����
Pr

y1∼µ1
[y1 ∈ E] − Pr

y2∼µ2
[y2 ∈ E]

�����
≤ f (dA (x1,x2))

for every subset of outputs E. This inequality shows that the distributions µ1 and µ2 are close in a
pointwise sense, and can imply that two sequences of distributions converge to one another.
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Another appealing feature of expected sensitivity is closure under composition: the sequential
(Kleisli) composition of an f -sensitive function with an f ′-sensitive function yields an f ′ ◦ f -
sensitive function. As we will see, this property makes expected sensitivity a good target for formal
verification.

1.2 Expected Sensitivity from Expectation Couplings

To bound expected distance, it suffices to find a coupling of the output distributions and show that
the expected distance is sufficiently small. In general, there are multiple probabilistic couplings
between any two distributions, leading to different expected distances.

To better reason about couplings and their expected distances, we develop a quantitative gener-
alization of probabilistic coupling that captures Eq. (1); namely, if a distribution µ on pairs satisfies
the bound for expected sensitivity, we call µ an expectation coupling of µ1 and µ2 with respect to
dB and δ , where δ = f (dA (x1,x2)). We show that expectation couplings satisfy several natural
properties, including closure under sequential composition and transitivity.

1.3 EpRHL: A Program Logic for Expected Sensitivity Bounds

By leveraging these principles, we can bound expected sensitivity by compositionally building an
expectation coupling between output distributions from pairs of nearby inputs. Concretely, we
develop a relational program logic EpRHL to construct expectation couplings between pairs of
programs. EpRHL judgments have the form

{Φ; d} s1 ∼f s2 {Ψ; d′},

where s1 and s2 are probabilistic imperative programs—often, the same program—the pre- and post-
conditionsΦ,Ψ :M×M → B are relational assertions over pairs of memories, d, d′ :M×M → R+

are non-negative distances on memories, and f (z) = α · z + β is a non-negative affine function with
α , β ≥ 0. EpRHL judgments state that for any pair of related input memories (m1,m2) satisfying
the pre-condition Φ, there exists an expectation coupling µ of the output distributions such that all
pairs of output memories (m′1,m

′
2) in the support of µ (i.e., with positive probability) satisfy the

post-condition Ψ, and the expected distance is bounded:

E(m′1,m
′
2 )∼µ [d

′(m′1,m
′
2)] ≤ f (d(m1,m2)) = α · d(m1,m2) + β .

We call f a distance transformer, as it bounds the (average) post-distance d′ in terms of the pre-
distance d. When s1 and s2 are the same program s , for instance, a EpRHL judgment establishes an
expected sensitivity bound for s .

We give a rich Hoare-style proof system for EpRHL, internalizing various composition properties
of expectation couplings. For instance, given two judgments

{Φ; d} s1 ∼f s2 {Ξ; d′} and {Ξ; d′} s ′1 ∼f ′ s
′
2 {Ψ; d

′′},

the sequential composition rule in EpRHL yields

{Φ; d} s1; s ′1 ∼f ′◦f s2; s
′
2 {Ψ; d

′′}.

Note that the pre- and post-conditions and the distances compose naturally, while the distance
transformers combine smoothly by function composition. As a result, we can reason about the
sequential composition of two programs by building an expectation coupling for each.

1.4 Applications

We illustrate the expressiveness of our proof system on several novel examples.
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Stability of Stochastic Gradient Method. In machine learning, stability [Bousquet and Elisseeff
2002; Elisseeff et al. 2005] measures how changes in the training set influence the quality of an
algorithm’s prediction. A stable algorithm does not depend too much on the particular training set,
so that its performance on the training set generalizes to new, unseen examples; in other words, it
does not overfit. Recently, Hardt et al. [2016] show a quantitative stability bound for the Stochastic
Gradient Method (SGM), a widely used optimization algorithm for training in machine learning.
We verify their result for several variants of SGM within our logic, contributing to the expanding
field of formal verification for machine learning algorithms [Huang et al. 2017; Katz et al. 2017;
Selsam et al. 2017].

Rapid Mixing for Population Dynamics. Randomized algorithms are a useful tool for modeling
biological and social phenomena (see, e.g., Jansen [2013]). They can be used to analyze population
dynamics, both in the infinite population setting where evolution is deterministic, and in the finite
population setting where evolution can be stochastic. We formally analyze a variant of the RSM
(Replication-Selection-Mutate) model, which captures the evolution of an unstructured, asexual
haploid population (see, e.g., Hartl and Clark [2006]). Recently, a series of papers prove rapid mixing
of the RSM model under mild conditions [Dixit et al. 2012; Panageas et al. 2016; Vishnoi 2015].
We formally verify rapid mixing in a simplified setting, where the evolution function is strictly
contractive. This example relies on an advanced proof rule internalizing the maximal coupling of
two multinomial distributions; in some sense, the coupling that minimizes the expected distance
between samples.

1.5 Extension: Path Coupling

Once we have set the core logic, we extend the rules to capture more advanced reasoning about
expectation couplings. We consider the path coupling method due to Bubley and Dyer [1997], a
theoretical tool for building couplings on Markov chains. Let Φ be a binary relation and suppose
that the state space of the Markov chain is equipped with a path metric dΦ, i.e., the distance between
two elements is the length of the shortest Φ-path between them. We say that two states are adjacent
if their distance is 1. The main idea of path coupling is that if we can give a coupling for the
distributions starting from neighboring states, then we can combine these pieces to give a coupling
for the distributions started from any two states. More concretely, if for every two initial states
at distance 1 under dΦ there is an expectation coupling of the output distributions with expected
distance at most γ , then for every two initial states at distance k under dΦ, path couplings gives an
expectation coupling with expected distance at most k · γ .
From a logical point of view, path coupling is a transitivity principle for expectation couplings:

given a coupling for inputs related by Φ, we get a coupling for inputs related by Φk . In EpRHL, we
internalize this principle by a structural transitivity rule, allowing a family of relational judgments
to be chained together. We formally prove rapid mixing for a classical example called the Glauber
dynamics, a Markov chain for drawing approximately uniform samplings from the proper colorings
of a graph [Bubley and Dyer 1997].

1.6 Outline and Core Contributions

After illustrating our approach on a simple example (§ 2) and reviewing mathematical preliminaries,
we present the following contributions.
• A novel abstraction called expectation couplings for reasoning about probabilistic sensitivity,
supporting natural composition properties (§ 3).
• A probabilistic relational program logic EpRHL for constructing expectation couplings, along
with a proof of soundness (§ 4).
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• A formal proof of uniform stability for two versions of the Stochastic Gradient Method,
relying on proof rules to perform probabilistic case analysis (§ 5).
• A formal proof of rapid mixing for a Markov chain simulating population evolution, relying
on a proof rule internalizing the maximal coupling of two multinomial distributions (§ 6).
• A formal proof of rapid mixing for the Glauber dynamics from statistical physics, relying on
an advanced proof rule internalizing the path coupling principle (§ 7).

We have implemented our logic in the EasyCrypt [Barthe et al. 2013], a general-purpose proof
assistant for reasoning about probabilistic programs, and machine-checked our main examples (§ 8).
We conclude by surveying related work (§ 9) and presenting promising future directions (§ 10).

2 STABILITY OF STOCHASTIC GRADIENT METHOD

To give a taste of our approach, let’s consider a property from machine learning. In a typical
learning setting, we have a space of possible examples Z , a parameter space Rd , and a loss function
ℓ : Z → Rd → [0, 1]. An algorithm A takes a finite set S ∈ Zn of training examples—assumed to
be drawn independently from some unknown distribution D—and produces parametersw ∈ Rd

aiming to minimize the expected loss of ℓ(−,w ) on a fresh sample from D. When the algorithm is
randomized, we think of A : Zn → D(Rd ) as mapping the training examples to a distribution over
parameters.

In order to minimize the loss on the true distribution D, a natural idea is to use parameters that
minimize the average error on the available training set. When the loss function ℓ is well-behaved
this optimization problem, known as empirical risk minimization, can be solved efficiently. However
there is no guarantee that these parameters generalize to the true distribution—even if they have
low loss on the training set, they may induce high loss on fresh samples from the true distribution.
Roughly speaking, the algorithmmay select parameters that are too specific to the inputs, overfitting
to the training set.
To combat overfitting, Bousquet and Elisseeff [2002] considered a technical property of the

learning algorithm: the algorithm should produce similar outputs when executed on any two
training sets that differ in a single example, so that the output does not depend too much on any
single training example.

Definition (Bousquet and Elisseeff [2002]). Let A : Zn → D(Rd ) be an algorithm for some loss
function ℓ : Z → Rd → [0, 1]. A is said to be ϵ-uniformly stable if for all input sets S, S ′ ∈ Zn that
differ in a single element,1 we have

Ew∼A(S )[ℓ(z,w )] − Ew∼A(S ′)[ℓ(z,w )] ≤ ϵ

for all z ∈ Z , where Ex∼µ [f (x )] denotes the expected value of f (x ) when x is sampled from µ.

By the following observation, ϵ-uniform stability follows from an expected sensitivity condition,
taking the distance on the input space Zn to be the number of differing elements in (S, S ′), and the
distance on output parameters to be the difference between losses ℓ on any single example.

Fact. For every pair of training sets S, S ′ ∈ Zn that differ in a single element, suppose there
exists a joint distribution µ (S, S ′) ∈ D(Rd ×Rd ) such that π1 (µ ) = A(S ) and π2 (µ ) = A(S ′), where
π1,π2 : D(Rd ×Rd ) → D(Rd ) give the first and second marginals. If

E(w,w ′)∼µ (S,S ′)[|ℓ(z,w ) − ℓ(z,w ′) |] ≤ ϵ

for every z ∈ Z , then A is ϵ-uniformly stable.

1In other words, S and S ′ have the same cardinality and their symmetric difference contains exactly two elements.
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The joint distribution µ (S, S ′) is an example of a expectation coupling of A(S ) and A(S ′), where
|ℓ(z,w ) − ℓ(z,w ′) | is viewed as a distance on pairs of parameters (w,w ′). If we take the distance on
training sets Zn to be the symmetric distance (the number of differing elements between training
sets), ϵ-uniform stability follows from expected sensitivity of the function A. To prove stability,
then, we will establish expected sensitivity by (i) finding an expectation coupling and (ii) reasoning
about the expected value of the distance function. Our logic EpRHL is designed to handle both
tasks.
To demonstrate, we will show ϵ-stability of the Stochastic Gradient Method (SGM), following

recent work by Hardt et al. [2016]. SGM is a simple and classical optimization algorithm commonly
used in machine learning. Typically, the parameter space is Rd (i.e., the algorithm learns d real
parameters). SGM maintains parameters w and iteratively updates w to reduce the loss. Each
iteration, SGM selects a uniformly random example z from the input training set S and computes
the gradient vector д of the function ℓ(z,−) : Rd → [0, 1] evaluated at w—this vector indicates
the direction to movew to decrease the loss. Then, SGM updatesw to step along д. After running
T iterations, the algorithm returns final parameters. We can implement SGM in an imperative
language as follows.

w ← w0;
t ← 0;
while t < T do
i $← [n];
д ← ∇ℓ(S[i],−) (w );
w ← w − αt · д;
t ← t + 1;

returnw
The program first initializes the parameters to some default valuew0. Then, it runsT iterations of the
main loop. The first step in the loop samples a uniformly random index i from [n] = {0, 1, . . . ,n−1},
while the second step computes the gradient д. We will model the gradient operator ∇ as a higher-
order function with type (Rd → [0, 1]) → (Rd → Rd ).2 The third step in the loop updatesw to try
to decrease the loss. The step size αt determines how far the algorithm moves; it is a real number
that may depend on the iteration t .
Our goal is to verify that this program is ϵ-uniformly stable. At a high level, suppose we have

two training sets S◁ and S▷ differing in a single example; we write Adj(S◁ , S▷ ). Viewing the sets as
lists, we suppose that the two lists have the same length and S[i]◁ = S[i]▷ for all indices i except
for a one index j ∈ [n]. We then construct an expectation coupling between the two distributions
on output parameters, bounding the expected distance between the outputsw◁ andw▷ . Assuming
that ℓ(z,−) is a Lipschitz function, i.e., |ℓ(z,w ) − ℓ(z,w ′) | ≤ L∥w −w ′∥ for allw,w ′ ∈ Rd where
∥ · ∥ is the usual Euclidean distance, bounding the expected distance between the parameters also
bounds the expected losses, implying uniform stability.

Now, let’s see how to carry out this verification in our logic. EpRHL is a relational program logic
with judgments of the form

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}.
Here, s1, s2 are two imperative programs, the formulas Φ and Ψ are assertions over pairs of memories
(m1,m2) ∈ M×M, the distances d, d′ are mapsM×M → R+, and f : R+ → R+ is a non-negative
affine function (i.e., of the form x 7→ ax + b for a,b ∈ R+). The judgment above states that for any
two initial memories (m1,m2) satisfying the pre-condition Φ, there is an expectation coupling µ of
2Strictly speaking, this operation is only well-defined if the input function is differentiable; this holds for many loss functions
considered in the machine learning literature.
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the output distributions from executing s1, s2 onm1,m2 respectively such that the expected value
of d′ on the coupling is at most f (d(m1,m2)) and all pairs of output memories in the support of µ
satisfy Ψ.
We focus on the loop. Let sa be the sampling command and let sb be the remainder of the loop

body. First, we can show

⊢ {Φ; ∥w◁ −w▷ ∥} sa ∼id sa {i◁ = i▷ ; ∥w◁ −w▷ ∥}. (2)

The pre-condition Φ is shorthand for simpler invariants, including t◁ = t▷ and Adj(S◁ , S▷ ). The
post-condition i◁ = i▷ indicates that the coupling assumes both executions sample the same index i .
Finally, the pre- and post-distances indicate that the expected value of ∥w◁−w▷ ∥ does not grow—this
is clear because sa does not modifyw .
Now, we know that the training sets S◁ and S▷ differ in a single example, say at index j. There

are two cases: either we have sampled i◁ = i▷ = j, or we have sampled i◁ = i▷ , j. In the first case,
we can apply properties of the loss function ℓ and gradient operator ∇ to prove:

⊢ {Φ ∧ S[i]◁ , S[i]▷ ; ∥w◁ −w▷ ∥} sb ∼+γ sb {Φ; ∥w◁ −w▷ ∥} (3)

where +γ is the function x 7→ x + γ for some constant γ that depends on L and the αt ’s—since the
algorithm selects different examples in the two executions, the resulting parameters may grow a
bit farther apart. In the second case, the chosen example S[i] is the same in both executions so we
can prove:

⊢ {Φ ∧ S[i]◁ = S[i]▷ ; ∥w◁ −w▷ ∥} sb ∼id sb {Φ; ∥w◁ −w▷ ∥}. (4)

The identity distance transformer id indicates that the expected distance does not increase. To
combine these two cases, we note that the first case happens with probability 1/n—this is the
probability of sampling index j—while the second case happens with probability 1 − 1/n. Our logic
allows us to blend the distance transformers when composing sa and sb , yielding

⊢ {Φ; ∥w◁ −w▷ ∥} sa ; sb ∼+γ /n sa ; sb {Φ; ∥w◁ −w▷ ∥}, (5)

since x 7→ (1/n) · (x + γ ) + (1 − 1/n) · id(x ) = x + γ/n.
Now that we have a bound on how the distance grows in the body, we can apply the loop rule.

Roughly speaking, for a loop runningT iterations, this rule simply takes theT -fold composition f T

of the bounding function f ; since f is the linear function +γ/n, f T is the linear function +Tγ/n,
and we have:

⊢ {Φ; ∥w◁ −w▷ ∥} sgm ∼+Tγ /n sgm {Φ; ∥w◁ −w▷ ∥}. (6)

Assuming that the loss function ℓ(−, z) is Lipschitz, |ℓ(w, z) − ℓ(w ′, z) | ≤ L∥w − w ′∥ for some
constant L and so

⊢ {Φ; ∥w◁ −w▷ ∥} sgm ∼+LTγ /n sgm {Φ; |ℓ(w◁ , z) − ℓ(w▷ , z) |} (7)

for every example z ∈ Z . Sincew◁ andw▷ are initialized to the same valuew0, the initial pre-distance
is zero so this judgment gives a coupling µ of the output distributions such that

Eµ [|ℓ(w◁ , z) − ℓ(w▷ , z) |] ≤ ∥w0 −w0∥ + LTγ/n = LTγ/n.

Since the left side is larger than

Eµ [ℓ(w◁ , z) − ℓ(w▷ , z)] = Eµ1[ℓ(w, z)] − Eµ2[ℓ(w, z)],

where µ1 and µ2 are the output distributions of sgm, SGM is LTγ/n-uniform stable.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 57. Publication date: January 2018.



57:8 Gilles Barthe, Thomas Espitau, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub

3 EXPECTED SENSITIVITY

Before we present our logic, we first review basic definitions and notations from probability theory
related to expected values and probabilistic couplings. Then, we introduce our notions of expected
sensitivity and expectation coupling.

3.1 Mathematical preliminaries

Linear and Affine Functions. We let A be the set of non-negative affine functions, mapping
z 7→ α · z + β where α , β ∈ R+; L ⊆ A be the set of non-negative linear functions, mapping
z 7→ α · z; L≥ ⊆ L be the set of non-contractive linear functions, mapping z 7→ α · z with α ≥ 1;
and C ⊆ A be the set of non-negative constant functions, mapping z 7→ β . We will use the
metavariables f for A and bolded letters (e.g., β) for C.

Non-negative affine functions can be combined in several ways. Let f , f ′ ∈ A map z to α · z + β
and α ′ · z + β ′ respectively, and let γ ∈ R+.
• sequential composition: the function f ′ ◦ f maps z to (αα ′) · z + (α ′β + β ′);
• addition: the function f + f ′ maps z to f (z) + f ′(z);
• scaling: the function (γ · f ) maps z to γ · f (z)
• translation: the function f + γ maps z to f (z) + γ .

We will use shorthand for particularly common functions. For scaling, we write •γ for the function
mapping z to γ · z. For translation, we write +γ for the function mapping z to z + γ . The identity
function will be simply id (equivalently, •1 or +0).

Distances. A distance d is a map A ×A→ R+. We use the term “distance” rather loosely—we do
not assume any axioms, like reflexivity, symmetry, triangle inequality, etc. Distances are partially
ordered by the pointwise order inherited from the reals: we write d ≤ d′ if d(a1,a2) ≤ d′(a1,a2) for
all (a1,a2) ∈ A ×A.

Distributions. Programs in our language will be interpreted in terms of sub-distributions. A
(discrete) sub-distribution over a set A is a map µ : A→ R+ such that its support

supp(µ ) ≜ {a ∈ A | µ (a) , 0}

is discrete and its weight |µ | ≜
∑

a∈supp(µ ) µ (a) is well-defined and satisfies |µ | ≤ 1. We let D(A)
denote the set of discrete sub-distributions over A. Note that D(A) is partially ordered using the
pointwise inequality inherited from reals. Similarly, equality of distributions is defined extensionally:
two distributions are equal if they assign the same value (i.e., probability) to each element in their
domain. Events are maps E : A→ B, where B denotes the set of booleans. The probability of an
event E w.r.t. a sub-distribution µ, written Prµ [E], is defined as

∑
x |E (x ) µ (x ).

The expectation of a function f : A→ R+ w.r.t. a sub-distribution µ ∈ D(A), written Ex∼µ [f (x )]
orEµ [f ] for short, is defined as

∑
x µ (x ) · f (x ) when this sum exists, and+∞ otherwise. Expectations

are linear: Eµ [f + д] = Eµ [f ] + Eµ [д] and Eµ [k · f ] = k · Eµ [f ], where addition and scaling of
functions are defined in the usual way.

Discrete sub-distributions support several useful constructions. First, they can be given a monadic
structure. Let x ∈ A, µ ∈ D(A) andM : A→ D(B). Then:

unit x ≜ a 7→ 1[x = a]
bind µ M ≜ b 7→

∑
a∈A µ (a) ·M (a) (b).

Intuitively, bind µ M is the distribution from first sampling from µ and applyingM to the sample; in
particular, it is a distribution over B. We will write δx for the Dirac distribution unit x , and abusing
notation, Ex∼µ [M] and Eµ [M] for bind µ M .
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Given a distribution µ over pairs inA×B, we can define the usual projections π1 : D(A×B) → D(A)
and π2 : D(A × B) → D(B) as

π1 (µ ) (a) ≜
∑
b ∈B

µ (a,b) and π2 (µ ) (b) ≜
∑
a∈A

µ (a,b).

A probabilistic coupling is a joint distribution over pairs, such that its first and second marginals
coincide with the first and second distributions. Formally, two sub-distributions µa ∈ D(A) and
µb ∈ D(B) are coupled by µ ∈ D(A × B), written µa ⟨µ⟩ µb , if π1 (µ ) = µa and π2 (µ ) = µb .

3.2 Expected f -sensitivity

The core concept in our system is a probabilistic version of sensitivity. Let f ∈ A, and let dA and
dB be distances on A and B.

Definition 3.1. A probabilistic function д : A→ D(B) is expected f -sensitive (with respect to dA
and dB ) if for every x1,x2 ∈ A, we have the bound

E(y1,y2 )∼µ [dB (y1,y2)] ≤ f (dA (x1,x2))

for some coupling д(x1) ⟨µ⟩ д(x2). When f maps z 7→ α · z + β , we sometimes say that д is expected
(α , β )-sensitive.

By carefully selecting the distances dA and dB on the input and output spaces, we can recover
different notions of probabilistic sensitivity as a consequence of expected f -sensitivity. We derive
two particularly useful results here, which we first saw in the introduction.

Proposition 3.2 (Average sensitivity). Suppose that д : A→ D(R) is expected f -sensitive with
respect to distances dA and | · |. Then for any two inputs a1,a2 ∈ A, we have

���Ey1∼д (a1 )[y1] − Ey2∼д (a2 )[y2]
��� ≤ f (dA (a1,a2)).

Proof. Let a1,a2 ∈ A be two inputs. Since д is expected f -sensitive, there exists a coupling
д(a1) ⟨µ⟩ д(a2) such that the expected distance over µ is at most f (dA (a1,a2)). We can bound:

���Ey1∼д (a1 )[y1] − Ey2∼д (a2 )[y2]
��� =

���E(y1,y2 )∼µ [y1] − E(y1,y2 )∼µ [y2]
��� (Coupling)

=
���E(y1,y2 )∼µ [y1 − y2]

��� (Linearity)
≤ E(y1,y2 )∼µ [��y1 − y2��] (Triangle ineq.)
≤ f (dA (a1,a2)) (f -sensitivity)

□

Proposition 3.3 (Probabilistic sensitivity). Suppose that д : A→ D(B) is expected f -sensitive
with respect to distances dA and dB , where dB (b1,b2) < β if and only if b1 = b2. Then for any two

inputs a1,a2 ∈ A, we have

TV(д(a1),д(a2)) ≤ f (dA (a1,a2))/β ,

where the total variation distance is defined as

TV(д(a1),д(a2)) ≜ max
E⊆B

�����
Pr

b1∼д (a1 )
[b1 ∈ E] − Pr

b2∼д (a2 )
[b2 ∈ E]

�����
.
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Proof. Let a1,a2 ∈ A be two inputs. Since д is expected f -sensitive, there exists a coupling
д(a1) ⟨µ⟩ д(a2) such that the expected distance dB over µ is at most f (dA (a1,a2)). We can bound:

Pr
(b1,b2 )∼µ

[b1 , b2] = E(b1,b2 )∼µ [1[b1 , b2]]

≤ E(b1,b2 )∼µ [dB (b1,b2)/β] (b1 , b2 → dB ≥ β)
≤ f (dA (a1,a2))/β . (Linearity, f -sensitivity)

By a classical theorem about couplings (see, e.g., Lindvall [2002]), the total-variation distance is at
most the probability on the first line. □

Expected f -sensitive functions are closed under sequential composition.

Proposition 3.4. Let f , f ′ ∈ A be non-negative affine functions, and let dA, dB and dC be distances

on A, B and C respectively. Assume that д : A→ D(B) is expected f -sensitive and h : B → D(C ) is
expected f ′-sensitive. Then the (monadic) composition of д and h is expected f ′ ◦ f -sensitive.

Proof. Let a1,a2 ∈ A be any pair of inputs. Since д is expected f -sensitive, there is a coupling
д(a1) ⟨µ⟩ д(a2) such that

Eµ [dB] ≤ f (dA (a1,a2)). (8)
Similarly for every b1,b2 ∈ B, there is a coupling h(b1) ⟨M (b1,b2)⟩ h(b2) such that

EM (b1,b2 )[dC ] ≤ f ′(dB (b1,b2)), (9)
since h is f ′-sensitive.
Define the distribution µ ′ ≜ Eµ [M]. It is straightforward to check the marginals π1 (µ ′) (a1) =

Eд (a1 )[h] and π2 (µ ′) (a2) = Eд (a2 )[h]. We can bound the expected distance:

Eµ′[dC ] =
∑
c1,c2

dC (c1, c2) ·
∑
b1,b2

µ (b1,b2) ·M (b1,b2) (c1, c2)

=
∑
b1,b2

µ (b1,b2)
∑
c1,c2

dC (c1, c2) ·M (b1,b2) (c1, c2)

≤
∑
b1,b2

µ (b1,b2) f
′(db (b1,b2)) (Eq. (9))

≤ f ′ *.
,

∑
b1,b2

µ (b1,b2) · db (b1,b2))
+/
-

(Linearity, f ′ affine)

≤ f ′ ( f (dA (a1,a2))) (Eq. (8), f ′ non-decreasing)
= f ′ ◦ f (dA (a1,a2)).

□

Taking the pre- and post-distances to be the same yields another useful consequence.

Proposition 3.5. Let d be a distance over A and let f ∈ A. Let д : A → D(A) be an expected

f -sensitive function. Then for every T ∈ N, the T -fold (monadic) composition дT of д is expected

f T -sensitive, i.e. for every x1,x2 ∈ A, there exists a coupling д
T (x1) ⟨µ⟩ д

T (x2) such that

Eµ [d] ≤ f T (d(x1,x2)).

This proposition can be seen as a variant of the Banach fixed point theorem. Informally, under
some reasonable conditions on d, contractive probabilistic maps д : A → D(A) have a unique
stationary distribution, where a probabilistic map is contractive if it is expected f -sensitive for a
map f of the form z 7→ α · z with α < 1.
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3.3 Continuity from Expectation Couplings

Expected f -sensitivity is a property of a probabilistic function. It will be useful to factor out the
condition on distributions. To this end, we introduce expectation couplings a quantitative extension
of probabilistic couplings where an average distance over the coupling is bounded.

Definition 3.6 (Expectation couplings). Let d : A × B → R+ be a distance and let δ ∈ R+ be a
constant. Moreover, let µa ∈ D(A), µb ∈ D(B) and µ ∈ D(A × B). Then µ is an (d,δ )-expectation
coupling (or simply, an expectation coupling) for µa and µb if µa ⟨µ⟩ µb and Eµ [d] ≤ δ .
We write µa ⟨µ⟩Φd≤δ µb when µ is an expectation coupling with support supp(µ ) contained in a

binary relation Φ ⊆ A × B. We omit Φ when it is the trivial (always true) relation.

Expectation couplings are closely linked to expected f -sensitivity.

Proposition 3.7. A probabilistic function д : A→ D(B) is expected f -sensitive (with respect to dA
and dB ) if for every x1,x2 ∈ A, there exists µ such that д(x1) ⟨µ⟩d≤δ д(x2), where δ = f (dA (x1,x2)).

Much like expected f -sensitive functions, expectation couplings are closed under sequential
composition: given an expectation coupling between two distributions µa and µb , two functions
Ma : A→ D(A′) andMb : B → D(B′) and a functionM mapping pairs of samples in (a,b) ∈ A × B
to an expectation coupling of Ma (a) and Mb (b), we have an expectation coupling of the two
distributions from sampling µa and µb and runningMa andMb , respectively.

Proposition 3.8 (Composition of expectation couplings). Let Φ ⊆ A × B, d : A × B → R+,

Ψ ⊆ A × B, d′ : A × B → R+, δ ∈ R+, and f ∈ A. Let µa ∈ D(A), Ma : A → D(A′), and let

µ ′a = Eµa [Ma]. Let µb ∈ D(B), Mb : B → D(B′), and set µ ′b = Eµb [Mb ]. Suppose we have functions
µ ∈ D(A × B) andM : (A × B) → D(A′ × B′) such that:

(1) µa ⟨µ⟩
Φ
d≤δ µb and

(2) Ma (a) ⟨M (a,b)⟩Ψ
d′≤f (d(a,b )) Mb (b) for every (a,b) ∈ Φ.

Then µ ′a ⟨µ
′⟩Ψ
d′≤f (δ ) µ

′
b , where µ

′
is the monadic composition E(a,b )∼µ [M (a,b)].

Proof sketch. By unfolding definitions and checking the support, marginal, and expected
distance properties. The support and marginal conditions follow by the support and marginal
conditions for the premises, while the expected distance condition follows by an argument similar
to Proposition 3.4. We defer the details to the appendix. □

4 PROGRAM LOGIC

As we have seen, expectation couplings can be composed together and the existence of an expec-
tation coupling implies expected sensitivity. Accordingly, we can give a program logic to reason
about expectation couplings in a structured way.

4.1 Programming Language

We base our development on pWhile, a core language with deterministic assignments, probabilistic
assignments, conditionals, and loops. The syntax of statements is defined by the grammar:

s ::= x ← e | x $← д | s; s | skip | if e then s else s | while e do s

where x , e , and д range over variablesV , expressions E and distribution expressionsD respectively.
E is defined inductively fromV and operators, while D consists of parametrized distributions—
for instance, the uniform distribution [n] over the set {0, . . . ,n − 1} or the Bernoulli distribution
Bern(p), where the numeric parameter p ∈ [0, 1] is the probability of returning true. We will write
if e then s as shorthand for if e then s else skip. We implicitly assume that programs are well-typed
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JskipKm = δm Jx $← дKm = Ev∼JдKm [δm[xBv]]
Jx ← eKm = δm[xBJeKm ] Jif e then s1 else s2Km = if JeKm then Js1Km else Js2Km
Js1; s2Km = Eξ∼Js1Km [Js2Kξ ] Jwhile b do sKm = lim

n→∞
J(if b then s )n

|¬bKm
(Note that E is the monadic bind.)

Fig. 1. Denotational semantics of programs

w.r.t. a standard typing discipline; for instance, the guard expressions of conditionals and loops are
booleans, operations on expressions are applied to arguments of the correct type, etc.
Following the seminal work of Kozen [1979], probabilistic programs can be given a monadic

denotational semantics, taking a memory as input and producing a sub-distribution on output
memories. To avoid measure-theoretic technicalities, we limit our focus to discrete sub-distributions.
Memories are type-preserving maps from variables to values—formally, we define an interpretation
for each type and require that a variable of type T is mapped to an element of the interpretation of
T . We letM denote the set of memories. Then, the semantics JeKm of a (well-typed) expression e is
defined in the usual way as an element of the interpretation of the type of e , and parametrized by a
memorym. The interpretation of distribution expressions is defined and denoted likewise.

Now, the semantics JsKm of a statement s w.r.t. to some initial memorym is the sub-distribution
over states defined by the clauses of Fig. 1. The most interesting case is for loops, where the
interpretation of a while loop is the limit of the interpretations of its finite unrollings. Formally, the
nth truncated iterate of the loop while b do s is defined as

n times︷                            ︸︸                            ︷
if b then s; . . . ; if b then s; if b then abort

which we represent using the shorthand (if b then s )n
|¬b . For any initial memorym, applying the

truncated iterates yields an pointwise-increasing and bounded sequence of sub-distributions. The
limit of this sequence is well-defined, and gives the semantics of the while loop.

4.2 Proof System

EpRHL is a Hoare-style logic augmented to consider two programs instead of one (a so-called
relational program logic). EpRHL judgments are of the form

{Φ; d} s1 ∼f s2 {Ψ; d′}

for programs s1, s2, assertions Φ,Ψ : M × M → B, distances d, d′ : M × M → R+, and a
non-negative affine function f ∈ A. We will refer to f as a distance transformer.

Definition 4.1. A judgment {Φ; d} s1 ∼f s2 {Ψ; d′} is valid if for every memories m1, m2 s.t.
(m1,m2) |= Φ, there exists µ such that

Js1Km1
⟨µ⟩Ψ
d′≤f (d(m1,m2 ))

Js2Km2

The notion of validity is closely tied to expected f -sensitivity. For instance, if the judgment

{⊤; d} s ∼f s {⊤; d′}

is valid, then the program s interpreted as a function JsK :M → D(M) is expected f -sensitive with
respect to distances d and d′. In fact, the pre- and post-conditions Φ and Ψ can also be interpreted as
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distances. If we map Φ to the pre-distance dΦ (m1,m2) ≜ 1[(m1,m2) < Φ], and Ψ to the post-distance
dΨ (m1,m2) ≜ 1[(m1,m2) < Ψ], then the judgment

{⊤; dΦ} s1 ∼id s2 {⊤; dΨ}

is equivalent to
{Φ;−} s1 ∼− s2 {Ψ;−}

where dashes stand for arbitrary distances and distance transformers.
Now, we introduce some notation and then present the rules of the logic. First, note that each

boolean expression e naturally yields two assertions e◁ and e▷ , resp. called its left and right injections:

m1 |= e ⇐⇒ m1,m2 |= e◁
m2 |= e ⇐⇒ m1,m2 |= e▷

The notation naturally extends to mappings from memories to booleans. Second, several rules use
substitutions. Given a memorym, variable x and expression e such that the types of x and e agree,
we letm[x B e] denote the unique memorym′ such thatm(y) =m′(y) if y , x andm′(x ) = JeKm .
Then, given a variable x (resp. x ′), an expression e (resp. e ′), and an assertion Φ, we define the
assertion Φ[x◁ ,x ′▷ B e◁ , e

′
▷
] by the clause

Φ[x◁ ,x
′

▷
B e◁ , e

′

▷
](m1,m2) ≜ Φ(m1[x B e],m2[x ′ B e ′]).

Substitution of distances is defined similarly. One can also define one-sided substitutions, for
instance Φ[x◁ B e◁].
We now turn to the rules of the proof system in Fig. 2. The rules can be divided into two

groups: two-sided rules relate programs with the same structure, while structural rules apply to two
programs of any shape. The full logic EpRHL also features one-sided rules for relating a program
with a fixed shape to a program of unknown shape; later we will show that many of these rules are
derivable. We briefly comment on each of the rules, starting with the two-sided rules.

The [Assg] rule is similar to the usual rule for assignments, and substitutes the assigned expres-
sions into the pre-condition and pre-distance.

The [Rand] rule is a bit more subtle. Informally, the rule selects a coupling, given as a bijection
between supports, between the two sampled distributions in the left and right program.

The [SeqCase] rule combines sequential composition with a case analysis on properties satisfied
by intermediate memories after executing s1 and s2. Informally, the rule considers events e1, . . . , en
such that Ψ entails

∨
i ei◁ . If for every i we can relate the programs s ′1 and s ′2 with distance

transformer fi , pre-condition Ψ ∧ ei◁ ; d
′ and post-condition Ψ′; d′′, we can conclude that s1; s ′1 and

s2; s ′2 are related under distance transformer f , where f upper bounds the functions fi weighted by
the probability of each case.
The [While] rule considers two loops synchronously, where the loop bodies preserve the

invariant Ψ. The rule additionally requires that both loops perform exactly n steps, and that there
exists a variant i initially set to n and decreasing by 1 at each iteration. Assuming that fk denotes
the distance transformer corresponding to the (n − k )th iteration, i.e., the iteration where the
variant i is equal to k , the distance transformer for the while loops is the function composition of
the distance transformers: f1 ◦ · · · ◦ fn .
The remaining rules are structural rules. The [Conseq] rule weakens the post-conditions,

strengthens the pre-conditions, and relaxes the distance bounds.
The [Struct] rule replaces programs by equivalent programs. Figure 4 gives rules for proving

two programs s, s ′ equivalent under some relational assertion Φ; the judgments are of the form
Φ ⊢ s ≡ s ′. We keep the notion of structural equivalence as simple as possible.
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[Assg]
⊢ {Ψ[x1◁ B e1,x2▷ B e2]; d′[x1◁ B e1,x2▷ B e2]} x1 ← e1 ∼id x2 ← e2 {Ψ; d′}

[Rand]

h : supp(д1) 1-1−→ supp(д2)
d ≜ Ev∼д1[d

′[x1◁ B v,x2▷ B h(v )]] ∀v ∈ supp(д1).д1 (v ) = д2 (h(v ))
⊢ {∀v ∈ supp(д1).Ψ[x1◁ B v,x2▷ B h(v )]; d} x1 $← д1 ∼id x2 $← д2 {Ψ; d′}

[SeqCase]

∀m1,m2 |= Φ. (
∑

i ∈I PrJs1Km1
[ei ] · fi ) ◦ f0 ≤ f |= Ψ =⇒

∨
i ∈Iei◁

⊢ {Φ; d} s1 ∼f0 s2 {Ψ; d
′} ∀i ∈ I . ⊢ {Ψ ∧ ei◁ ; d

′} s ′1 ∼fi s
′
2 {Ψ

′; d′′}
⊢ {Φ; d} s1; s ′1 ∼f s2; s

′
2 {Ψ

′; d′′}

[While]

|= Ψ =⇒ e◁ = e▷ ∧ (i◁ ≤ 0 ⇐⇒ ¬e◁ )
∀0 < k ≤ n. ⊢ {Ψ ∧ e1◁ ∧ i◁ = k ; dk } s1 ∼fk s2 {Ψ ∧ i◁ = k − 1; dk−1}
⊢ {Ψ ∧ i◁ = n; dn } while e1 do s1 ∼f1◦···◦fn while e2 do s2 {Ψ ∧ i◁ = 0; d0}

[Conseq]

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}
|= Φ′ =⇒ Φ |= Ψ =⇒ Ψ′ |= Φ′ =⇒ f (d) ≤ f ′(d′′) |= Ψ =⇒ d

′′′ ≤ d′

⊢ {Φ′; d′′} s1 ∼f ′ s2 {Ψ′; d′′′}

[Struct]

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}
Φ1 ⊢ s1 ≡ s ′1 Φ2 ⊢ s2 ≡ s ′2 ∀(m1,m2) |= Φ.Φ1 (m1) ∧ Φ2 (m2)

⊢ {Φ; d} s ′1 ∼f s
′
2 {Ψ; d

′}

[Frame-D]

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}
f ∈ L≥ d

′′#MV(s1),MV(s2) |= Φ =⇒ d
′′ ≤ f (d′′)

⊢ {Φ; d + d′′} s1 ∼f s2 {Ψ; d′ + d′′}

Fig. 2. Selected proof rules

The [Frame-D] rule generalizes the typical frame rule, to preserve distances. Assuming that
the distance d′′ is not modified by the statements of the judgments and f is a non-contractive
linear function (i.e., such that x ≤ f (x ) for all x), validity is preserved when adding d′′ to the
pre-and post-distances of the judgment. Formally, MV(s ) denotes the set of modified variables of
s and the notation d′′#MV(s1),MV(s2) states that for all memories m1 and m′1 that coincide on
the non-modified variables of s1, and all memoriesm2 andm′2 that coincide on the non-modified
variables of s2, we have d′′(m1,m2) = d

′′(m′1,m
′
2).

Theorem 4.2 (Soundness). For every derivable judgment ⊢ {Φ; d} s1 ∼f s2 {Ψ; d′} and initial

memoriesm1 andm2 such that (m1,m2) |= Φ, there exists µ such that

Js1Km1
⟨µ⟩Ψ
d′≤f (d(m1,m2 ))

Js2Km2
.

Proof. By induction on the derivation. We defer the details to the appendix. □
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[Seq]
⊢ {Φ; d} s1 ∼f s2 {Ξ; d′} ⊢ {Ξ; d′} s ′1 ∼f ′ s

′
2 {Ψ; d

′′}

⊢ {Φ; d} s1; s ′1 ∼f ′◦f s2; s
′
2 {Ψ; d

′′}

[Case]
⊢ {Φ ∧ e◁ ; d} s1 ∼f s2 {Ψ; d

′} ⊢ {Φ ∧ ¬e◁ ; d} s1 ∼f s2 {Ψ; d
′}

⊢ {Φ; d} s1 ∼f s2 {Ψ; d′}

[Cond]
|= Φ =⇒ e1◁ = e2▷ ⊢ {Φ ∧ e1◁ ; d} s1 ∼f s2 {Ψ; d

′} ⊢ {Φ ∧ ¬e1◁ ; d} s
′
1 ∼f s

′
2 {Ψ; d

′}

⊢ {Φ; d} if e1 then s1 else s ′1 ∼f if e2 then s2 else s ′2 {Ψ; d
′}

[Assg-L]
⊢ {Ψ[x1◁ B e1]; d′[x1◁ B e1]} x1 ← e1 ∼id skip {Ψ; d′}

Fig. 3. Selected derived rules

4.3 Derived Rules and Weakest Pre-condition

Figure 3 presents some useful derived rules of our logic, including rules for standard sequential
composition and conditionals, and one-sided rules.

The [Seq] rule for sequential composition simply composes the two product programs in sequence.
This rule reflects the compositional property of couplings. It can be derived from the rule [SeqCase]
by taking e1 to be true.
The [Cond] rule for conditional statements requires that the two guards of the left and right

programs are equivalent under the pre-condition, and that corresponding branches can be related.
The [Case] rule allows proving a judgment by case analysis; specifically, the validity of a judgment

can be established from the validity of two judgments, one where the boolean-valued pre-condition
is strengthened with e and the other where the pre-condition is strengthened with ¬e .
The [Assg-L] is the left one-sided rule for assignment; it can be derived from the assignment

rule using structural equivalence. The full version of the logic also has similar one-sided rules
for other constructs, notably random assignments and conditionals. Using one sided-rules, one
can also define a relational weakest pre-condition calculus wp, taking as inputs two loop-free
and deterministic programs, a post-condition, and a distance, and returning a pre-condition and a
distance.

Proposition 4.3. Let (Φ′′, d′′) = wp(s1, s2,Ψ, d′). AssumeΦ =⇒ Φ′′ and d(m1,m2) ≤ d
′′(m1,m2)

for every (m1,m2) |= Φ. Then ⊢ {Φ; d} s1 ∼id s2 {Ψ; d′}.

5 UNIFORM STABILITY OF STOCHASTIC GRADIENT METHOD, REVISITED

Now that we have described the logic, let’s return to the Stochastic Gradient Method we first saw
in § 2. Recall that the loss function has type ℓ : Z → Rd → [0, 1]. We consider two versions: one
where the loss function ℓ(z,−) is convex, and one where ℓ(z,−) may be non-convex. The algorithm
is the same in both cases, but the stability properties require different proofs. For convenience, we
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Φ ⊢ s ≡ s

Φ ⊢ s1 ≡ s2

Φ ⊢ s2 ≡ s1 Φ ⊢ x $← δx ≡ skip

|= Φ =⇒ x = e

Φ ⊢ x ← e ≡ skip Φ ⊢ s; skip ≡ s

Φ ⊢ skip; s ≡ s

Φ ⊢ s1 ≡ s ′1

Φ ⊢ s1; s2 ≡ s ′1; s2

⊤ ⊢ s2 ≡ s ′2

Φ ⊢ s1; s2 ≡ s1; s ′2

|= Φ =⇒ e

Φ ⊢ if e then s else s ′ ≡ s

|= Φ =⇒ ¬e

Φ ⊢ if e then s else s ′ ≡ s ′
Φ ∧ e ⊢ s1 ≡ s2 Φ ∧ ¬e ⊢ s ′1 ≡ s ′2

Φ ⊢ if e then s1 else s ′1 ≡ if e then s2 else s ′2

Fig. 4. Equivalence rules

reproduce the code sgm:
w ← w0;
t ← 0;
while t < T do
i $← [n];
д ← ∇ℓ(S[i],−) (w );
w ← w − αt · д;
t ← t + 1;

returnw

We will assume that ℓ(z,−) is L-Lipschitz for all z: for all w,w ′ ∈ Rd , we can bound |ℓ(z,w ) −
ℓ(z,w ′) | ≤ L∥w −w ′∥ where ∥ · ∥ is the usual Euclidean norm on Rd :

∥x ∥ ≜ *
,

d∑
i=1

x2i
+
-

1/2

Furthermore, we will assume that the loss function is β-smooth: the gradient ∇ℓ(z,−) : Rd → Rd

must be β-Lipschitz.

5.1 SGM with Convex Loss

Suppose that the loss ℓ(z,−) is a convex function for every z, i.e., we have: ⟨(∇ℓ(z,−)) (w ) −
(∇ℓ(z,−)) (w ′),w −w ′⟩ ≥ 0 where ⟨x ,y⟩ is the inner product between two vectors x ,y ∈ Rd :

⟨x ,y⟩ ≜
d∑
i=1

xi · yi .

When the step sizes satisfy 0 ≤ αt ≤ 2/β , we can prove uniform stability of SGM in this case by
following the strategy outlined in § 2. We refer back to the judgments there, briefly describing how
to apply the rules (for lack of space, we defer some details to the appendix). Let sa be the sampling
command, and sb be the rest of the loop body. We will prove the following judgment:

⊢ {Φ; ∥w◁ −w▷ ∥} sgm ∼+γ sgm {Φ; |ℓ(w◁ , z) − ℓ(w▷ , z) |},

where Φ ≜ Adj(S◁ , S▷ ) ∧ (w0)◁ = (w0)▷ ∧ t◁ = t▷ and

γ ≜
2L2

n

T−1∑
t=0

αt .

By soundness (Theorem 4.2), this will imply that SGM is γ -uniformly stable.
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As before, we will first establish a simpler judgment:

⊢ {Φ; ∥w◁ −w▷ ∥} sgm ∼+γ /L sgm {Φ; ∥w◁ −w▷ ∥}.

As we proceed through the proof, we will indicate the corresponding step from the outline in § 2.
Let j be the index such that the S[j]◁ , S[j]▷ ; this is the index of the differing example. First, we
couple the samplings in sa with the identity coupling, using rule [Rand] with h = id (Eq. (2)). Next,
we perform a case analysis on whether we sample the differing vertex or not. We can define guards
e= ≜ i = j and e, ≜ i , j, and then apply the probabilistic case rule [SeqCase]. In the case e=, we
use the Lipschitz property of ℓ(z,−) and some properties of the norm ∥ · ∥ to prove

⊢ {Φ ∧ e=; ∥w◁ −w▷ ∥} sb ∼+2αt L sb {Φ; ∥w◁ −w▷ ∥};

this corresponds to Eq. (3). In the case e,, we know that the examples are the same in both runs. So,
we use the Lipschitz property, smoothness, and convexity of ℓ(z,−) to prove:

⊢ {Φ ∧ e,; ∥w◁ −w▷ ∥} sb ∼id sb {Φ; ∥w◁ −w▷ ∥};

this corresponds to Eq. (4). Applying [SeqCase], noting that the probability of e, is 1 − 1/n and the
probability of e= is 1/n, we can bound the expected distance for the loop body (Eq. (5)). Applying the
rule [While], we can bound the distance for the whole loop (Eq. (6)). Finally, we use the Lipschitz
property of ℓ(z,−) and the rule [Conseq] to prove the desired judgment.

5.2 SGM with Non-Convex Loss

When the loss function is non-convex, the previous proof no longer goes through. However, we
can still verify the uniform stability bound by Hardt et al. [2016]. Technically, they prove uniform
stability by dividing the proof into two pieces. First they show that with sufficiently high probability,
the algorithm does not select the differing example before a carefully chosen time t0. In particular,
with high probability the parameters w◁ and w▷ are equal up to iteration t0. Then, they prove a
uniform stability bound for SGM started at iteration t0, assuming w◁ = w▷ ; if the step size αt is
taken to be rapidly decreasing, SGM will be already be contracting by iteration t0.
This proof can also be carried out in EpRHL, with some extensions. First, we split the SGM

program into two loops: iterations before t0, and iterations after t0. The probability ofw◁ , w▷ is
is precisely the expected value of the indicator function 1[w◁ , w▷], which is 1 if the parameters
are not equal and 0 otherwise. Thus, we can bound the probability for the first loop by bounding
this expected value in EpRHL. For the second loop, we can proceed much like we did for standard
SGM: assume that the parameters are initially equal, and then bound the expected distance on
parameters.

The most difficult part is gluing these two pieces together. Roughly, we want to perform a case
analysis on w◁ = w▷ but this event depends on both sides—the existing probabilistic case rule
[SeqCase] does not suffice. However, we can give an advanced probabilistic case rule [SeqCase-A]
that does the trick. We defer the details to the appendix.

6 POPULATION DYNAMICS

Our second example comes from the field of evolutionary biology. Consider an infinite population
separated intom ∈ N classes of organisms. The population at time t is described by a probability
vector x⃗t = (x1, . . . ,xm ), where xi represents the fraction of the population belonging to class i . In
the Replication-Selection-Mutate (RSM) model, the evolution is described by a function f —called
the step function—which updates the probability vectors. More precisely, the population at time t +1
is given as the average of N ∈ N samples according to the distribution f (x⃗t ). A central question is
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[Mult-Max]
⊢ {⊤; ∥p⃗◁ − p⃗▷ ∥1} x⃗◁ $← Mult(p⃗◁ ) ∼id x⃗▷ $← Mult(p⃗▷ ) {x⃗◁ , x⃗▷ ∈ {0, 1}

m ; ∥x⃗◁ − x⃗▷ ∥1}

Fig. 5. Maximal coupling rule for multinomial

whether this process mixes rapidly: starting from two possibly different population distributions,
how fast do the populations converge?
We will verify a probabilistic property that is the main result needed to show rapid mixing:

there is a coupling of the population distributions such that the expected distance between the two
populations decreases exponentially quickly. Concretely, we take the norm ∥x⃗ ∥1 ≜

∑m
i=1 |xi |. Let

the simplex ∆m be the set of non-negative vectors with norm 1:

∆m ≜ {x⃗ ∈ R
m | xi ≥ 0, ∥x⃗ ∥1 = 1}

Elements of ∆m can be viewed as probability distributions over the classes {1, . . . ,m}; this is how
we will encode the distribution of species.

In the RSMmodel, the population evolution is governed by two vectors: the true class frequencies,
and the current empirical frequencies. In each timesteps, we apply a function step : ∆m → ∆m to
the empirical frequencies to get the updated true frequencies; we will assume that the step function
is contractive, i.e., it is L-Lipschitz

∥step(x⃗ ) − step(y⃗)∥1 ≤ L · ∥x⃗ − y⃗∥1

for L < 1. Then, we draw N samples from the distribution given by the true frequencies and update
the empirical frequencies. We can model the evolutionary process as a simple probabilistic program
popdyn(T ) which repeats T iterations of the evolutionary step:

x⃗ ← x0; t ← 0;
while t < T do
p⃗ ← step(x⃗ );
x⃗ ← 0⃗; j ← 0;
while j < N do
z⃗ $← Mult(p⃗);
x⃗ ← x⃗ + (1/N ) · z⃗;
j ← j + 1;

t ← t + 1

The vector x⃗ stores the current empirical frequencies (the distribution of each class in our current
population), while the vector p⃗ represents the true frequencies for the current step.

In the sampling instruction, Mult(p⃗) represents the multinomial distribution with parameters p⃗;
this distribution can be thought of as generalizing a Bernoulli (biased coin toss) distribution tom
outcomes, where each outcome has some probability pi and

∑
i pi = 1. We represent samples from

the multinomial distribution as binary vectors in ∆m : with probability pi , the sampled vector has
the ith entry set to 1 and all other entries 0.
To analyze the sampling instruction, we introduce the rule [Mult-Max] in Fig. 5. This rule

encodes the maximal coupling—a standard coupling construction that minimizes the probability of
returning different samples—of two multinomial distributions; in the appendix, we show that this
rule is sound. The post-condition x⃗◁ , x⃗▷ ∈ {0, 1}m states that the samples are always binary vectors
of lengthm, while the distances indicate that the expected distance between the sampled vectors
∥x⃗◁ − x⃗▷ ∥1 is at most the distance between the parameters ∥p⃗◁ − p⃗▷ ∥1.
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Given two possibly different initial frequencies (x0)◁ , (x0)▷ ∈ ∆m , we want to show that the
resulting distributions on empirical frequencies from popdyn(T ) converge as T increases. We will
construct an expectation coupling where the expected distance between the empirical distributions
x◁ and x▷ decays exponentially in the number of steps T ; by Proposition 3.3, this implies that the
total-variation distance between the distributions of x◁ and x▷ decreases exponentially quickly.
Formally, we prove the following judgement:

⊢ {Φ; ∥ (x⃗0)◁ − (x⃗0)▷ ∥1} popdyn(T ) ∼•LT popdyn(T ) {Φ; ∥x⃗◁ − x⃗▷ ∥1} (10)

where
Φ ≜ ∥x⃗◁ − x⃗▷ ∥1 < 1/N =⇒ x⃗◁ = x⃗▷ .

Φ is an invariant throughout because every entry of x⃗◁ and x⃗▷ is an integer multiple of 1/N .
To prove the inner judgment, let sout and sin be the outer and inner loops, and letwout andwin be

their loop bodies. We proceed in two steps. In the inner loop, we want

⊢ {Φ; ∥p⃗◁ − p⃗▷ ∥1} sin ∼id sin {Φ; ∥x⃗◁ − x⃗▷ ∥1} (11)

hiding invariants asserting j and t are equal in both runs. By the loop rule [While], it suffices to
prove

⊢ {e◁ = k ∧ Φ; dk } win ∼id win {e◁ = k − 1 ∧ Φ; dk−1} (12)
for each 0 < k ≤ N , where dk ≜ ∥x◁ − x▷ ∥1 + (k/N ) · ∥p◁ − p▷ ∥1 and the decreasing variant is
e ≜ N − j. Let the sampling command be w ′

in
, and the remainder of the loop body be w ′′

in
. By

applying the multinomial rule [Mult-Max] and using the rule of consequence to scale the distances
by 1/N , we have

⊢ {Φ; (1/N ) · ∥p⃗◁ − p⃗▷ ∥1} w
′
in
∼id w

′
in
{Φ; (1/N ) · ∥z⃗◁ − z⃗▷ ∥1}.

Since the sampling command does not modify the vectors x⃗ , p⃗, we can add the distance dk−1 to the
pre-and the post-conditions by the frame rule [Frame-D] (noting that the distance transformer id
is non-contractive). Since dk = dk−1 + (1/N ) · ∥p⃗◁ − p⃗▷ ∥1 by definition, we have

⊢ {Φ; dk } w ′in ∼id w
′
in
{Φ; dk−1 + (1/N ) · ∥z⃗◁ − z⃗▷ ∥1}. (13)

For the deterministic commandsw ′′
in
, the assignment rule [Assg] gives

⊢ {Φ; dk−1[x⃗ B (x⃗ + (1/N ) · z⃗)]} w ′′
in
∼id w

′′
in
{Φ; dk−1}, (14)

where the substitution is made on the respective sides. Applying the rule of consequence with
the triangle inequality in the pre-condition, we can combine this judgment (Eq. (14)) with the
judgment for w ′

in
(Eq. (13)) to verify the inner loop body (Eq. (12)). The rule [While] gives the

desired judgment for the inner loop sin (Eq. (11)).
Turning to the outer loop, we first prove a judgment for the loop bodies:

⊢ {Φ; ∥x⃗◁ − x⃗▷ ∥1} wout ∼•L wout {Φ; ∥x⃗◁ − x⃗▷ ∥1}.

By the sequence and assignment rules and the judgment for the inner loop (Eq. (11)), we have

⊢ {Φ; ∥step(x⃗◁ ) − step(x⃗▷ )∥1} wout ∼id wout {Φ; ∥x⃗◁ − x⃗▷ ∥1}.

Applying the fact that step is L-Lipschitz, the rule of consequence gives

⊢ {Φ; ∥x⃗◁ − x⃗▷ ∥1} wout ∼•L wout {Φ; ∥x⃗◁ − x⃗▷ ∥1}

for the outer loop body. We can then apply the rule [While] to conclude the desired judgment for
the whole program (Eq. (10)).
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This judgment shows that the distributions of x⃗ in the two runs converge exponentially quickly.
More precisely, let ν◁ ,ν▷ be the distributions of x⃗ after two executions of popdyn(T ) from initial
frequencies (x0)◁ , (x0)▷ ∈ ∆m . Eq. (10) implies that there is an expectation coupling

ν◁ ⟨ν⟩
Φ
∥ · ∥1≤δ ν▷ ,

where δ = LT · ∥ (x0)◁ − (x0)▷ ∥1. All pairs of vectors (v1,v2) in the support of ν with v1 , v2 are at
distance at least 1/N by the support condition Φ, so Proposition 3.3 implies

TV(ν◁ ,ν▷ ) ≤ N · LT .

Since L < 1, the distributions converge exponentially fast as T increases.

7 PATH COUPLING AND GRAPH COLORING

Path coupling is a powerful method for proving rapid mixing of Markov chains [Bubley and Dyer
1997]. We review the central claim of path coupling from the perspective of expected sensitivity.
Then, we define an extension of our program logic that incorporates the central idea of path
coupling. Finally, we apply of our logic to verify a classical example using the path coupling
method.

7.1 Path Coupling and Local Expected Sensitivity

So far, we have assumed very little structure on our distances; essentially they may be arbitrary
non-negative functions from A ×A to the real numbers. Commonly used distances tend to have
more structure. For integer-valued distances, we can define a weakening of sensitivity that only
considers pairs of inputs at distance 1, rather than arbitrary pairs of inputs. We call the resulting
property local expected sensitivity.

Definition 7.1. Let dA be an integer-valued distance overA and dB be a distance over B. Moreover,
let f ∈ L. We say that a probabilistic function д : A→ D(B) is locally expected f -sensitive (with
respect to dA and dB ) if for every x1,x2 ∈ A such that dA (x1,x2) = 1, we have

E(y1,y2 )∼µ [dB (y1,y2)] ≤ f (dA (x1,x2)) = f (1)

for some coupling д(x1) ⟨µ⟩ д(x2).

In general, local expected f -sensitivity is weaker than expected f -sensitivity. However, both
notions coincide under some mild conditions on the distances. We introduce a pair of conditions:




∀x ,y. d(x ,y) = 0 =⇒ x = y

∀x ,y. d(x ,y) = n + 1 =⇒ ∃z. d(x , z) = 1 ∧ d(z,y) = n
(P)




∀x . d(x ,x ) = 0
∀x ,y, z. d(x , z) ≤ d(x ,y) + d(y, z)

(H)

In condition (P), d is an integer-valued distance. The first condition is standard for metrics. The
second condition is more interesting: if two points are at distance 2 or greater, we can find a strictly
intermediate point. We will soon see an important class of distances—path metrics—that satisfy
these conditions (Definition 7.3). Condition (H) is more standard: the distance d should assign
distance 0 to two equal points, and satisfy the triangle inequality. Every metric satisfies these
properties; in general, such a distance is called a hemimetric.

When the pre-distance satisfies (P) and the post-distance satisfies (H), local expected sensitivity
is equivalent to expected sensitivity for linear distance transformers.
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Proposition 7.2. Let dA be an integer-valued distance overA satisfying (P), and let dB be a distance

over B satisfying (H). Let f ∈ L and д : A → D(B). Then д is locally expected f -sensitive iff it is

expected f -sensitive (both with respect to dA and dB ).

Proof. The reverse direction is immediate. The forward implication is proved by induction
on dA (x1,x2). For the base case, where dA (x1,x2) = 0, we have x1 = x2 and hence д(x1) = д(x2).
Letting µ be the identity coupling for д(x1) and д(x2), we have Eµ [dB] =

∑
y∈B dB (y,y) = 0

since dB (y,y) = 0 for every y, establishing the base case. For the inductive step, assume that
dA (x1,x2) = n + 1. Then there exists x ′ such that dA (x1,x ′) = 1 and dA (x ′,x2) = n. By induction,
there exist two expectation couplings µ1 and µn satisfying the distance conditions

Eµ1[dB] ≤ f (dB (x1,x
′)) and Eµn [dB] ≤ f (dB (x

′,x2)).

Define µ as

µ (x ,y) ≜
∑
z∈A

µ1 (x , z) · µn (z,y)

д(x ′) (z)
,

wherewe treat termswith zero in the denominator as 0; note that since µ1 and µn satisfy themarginal
conditions, we have π2 (µ1) = π1 (µn ) = д(x ′), so д(x ′) (z) = 0 implies that µ1 (x , z) = µn (z,y) = 0,
so the numerator is also zero in these cases.
Now, the marginal conditions π1 (µ ) = д(x1) and π2 (µ ) = д(x2) follow from the marginal

conditions for µ1 and µn . The distance condition Eµ [dB] ≤ f (dA (x1,x2)) is a bit more involved:

Eµ [dB] =
∑
x,y

µ (x ,y) dB (x ,y)

=
∑
x,y

∑
z

(
µ1 (x , z) µn (z,y)

д(x ′) (z)

)
dB (x ,y)

≤
∑
x,y,z

(
µ1 (x , z) µn (z,y)

д(x ′) (z)

)
dB (x , z) +

∑
x,y,z

(
µ1 (x , z) µn (z,y)

д(x ′) (z)

)
dB (z,y) (triangle ineq.)

=
∑
y,z

*
,

∑
x

µ1 (x , z)

д(x ′) (z)
+
-
µn (z,y) dB (z,y) +

∑
x,z

*.
,

∑
y

µn (z,y)

д(x ′) (z)
+/
-
µ1 (x , z) dB (x , z)

=
∑
x,z

µ1 (x , z) dB (x , z) +
∑
y,z

µn (z,y) dB (z,y) (marginals)

= Eµ1[dB] + Eµn [dB]
≤ f (dA (x1,x

′)) + f (dA (x
′,x2)) (distances)

= f (dA (x1,x
′) + dA (x

′,x2)) (f linear)
= f (dA (x1,x2)).

Thus, we have an expectation coupling д(x1) ⟨µ⟩dB ≤δ д(x2) for δ = f (dA (x1,x2)). This completes
the inductive step, so д is expected f -sensitive. □

One important application of our result is for path metrics.
Definition 7.3 (Path metric). Let Φ be a binary relation over A, and let Φ∗ denote its transitive

closure and Φn denote the union of its n-fold compositions for n ≥ 1. Assume that for every
a,a′ ∈ A, we have (a,a′) ∈ Φ∗. The path metric of Φ is the distance

pdΦ (a,a
′) = min

n
{(a,a′) ∈ Φn }

Note that the set is non-empty by assumption, and hence the minimum is finite.
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[Trans]

f ∈ L d : N d
′ satisfies (H)

|= Φ =⇒ PathCompat(d,Φ) |= Ψ∗ =⇒ Ψ
⊢ {Φ ∧ d = 0;−} s ∼0 s {Ψ; d′} ⊢ {Φ ∧ d = 1;−} s ∼f (1) s {Ψ; d′}

⊢ {Φ; d} s ∼f s {Ψ; d′}

Fig. 6. Transitivity rule

Path metrics evidently satisfy condition (P). Since they are also metrics, they also satisfy condition
(H). The fundamental theorem of path coupling is then stated—in our terminology—as follows.

Corollary 7.4 (Bubley and Dyer [1997]). Let d = pdΦ for a binary relation Φ over A. Let
д : A → D(A) be a locally expected f -sensitive function, where f ∈ L. Then for every T ∈ N, the

T -fold (monadic) composition дT of д is expected f T -sensitive, i.e. for every x1,x2 ∈ A, there exists a
coupling дT (x1) ⟨µ⟩ д

T (x2) such that

Eµ [d] ≤ f T (d(x1,x2)).

Proof. The proof follows from the equivalence between local expected sensitivity and sensitivity,
and the composition theorem of expected sensitive functions. □

7.2 Program Logic

We formulate a proof rule inspired from local expected sensitivity, in Fig. 6. Let us first consider
the premises of the rule. The first three conditions are inherited from Proposition 7.2: the distance
transformer f is linear, the pre-distance d is N-valued, and the post-distance satisfies condition (H).
The new two conditions deal with the pre- and post-conditions, respectively. First, the pre-condition
Φ and the pre-distance d satisfy the following condition:

PathCompat(Φ, d) ≜ ∀m1,m2,n ∈ N.Φ(m1,m2) ∧ d(m1,m2) = n + 1
=⇒ ∃m′. d(m1,m

′) = 1 ∧ d(m′,m2) = n ∧ Φ(m1,m
′) ∧ Φ(m′,m2).

This condition implies that d satisfies condition (P) (needed for Proposition 7.2), but it is stronger:
when the distance d is at least 1, we can find some memorym′ such that the pre-condition can
also be split into Φ(m1,m

′) and Φ(m′,m2). We call this condition path compatibility; intuitively, it
states that the pre-condition is compatible with the path structure on the pre-distance. Likewise,
the post-condition Ψ must be transitively closed; the transitivity rule represents a finite sequence
of judgments with post-condition Ψ.
The main premises cover two cases: either the initial memories are at distance 0, or they are at

distance 1. Given these two judgments, the conclusion gives a judgment for two input memories at
any distance. In this way, the rule [Trans] models a transitivity principle for expectation couplings.

Theorem 7.5 (Soundness). The rule [Trans] is sound: for every instance of the rule concluding
{Φ; d} s1 ∼f s2 {Ψ; d′} and initial memories satisfying (m1,m2) |= Φ, there exists µ such that

Js1Km1
⟨µ⟩Ψ
d′≤f (d(m1,m2 ))

Js2Km2
.

Proof. By a similar argument as Proposition 7.2, with careful handling for the pre- and post-
conditions. We defer details to the appendix. □
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7.3 Example: Glauber Dynamics

The Glauber dynamics is a randomized algorithm for approximating uniform samples from the
valid colorings of a finite graph. It is a prime example of an algorithm where rapid mixing can be
established using the path coupling method [Bubley and Dyer 1997].

Before detailing this example, we recall some basic definitions and notations. Consider a graph
G with a finite set of vertices V and a symmetric relation E ⊆ V ×V representing the edges, and let
C be a finite set of colors. A coloring of G is a map w : V → C; a coloring is valid if neighboring
vertices receive different colors: if (a,b) ∈ E, thenw (a) , w (b). We writew (V ′) for the set of colors
at a set of vertices V ′ ⊆ V .

For a graph G and a fixed set of colors C , there may be multiple (or perhaps no) valid colorings.
Jerrum [1995] proposed a simpleMarkov chain for sampling a uniformly random coloring. Beginning
at any coloringw , it draws a uniform vertex v and a uniform color c , and then changes the color of
v to c inw if no neighbor of v is colored c . The Glauber dynamics repeats this process forT stepsT
and returns the final coloring. We can model this process with the following program glauber(T ):

i ← 0;
while i < T do
v $← V ;
c $← C;
if VG (w,v, c ) thenw ← w[v 7→ c];
i ← i + 1;

returnw

The guardVG (w,v, c ) is true when the vertexv in coloringw can be colored c . Jerrum [1995] proved
that the distribution over outputs for this process converges rapidly to the uniform distribution
on valid colorings of G as we take more and more steps, provided we start with a valid coloring.
While the original proof was quite technical, Bubley and Dyer [1997] gave a much simpler proof of
the convergence by path coupling.

Roughly, suppose that for every two colorings that differ in exactly one vertex coloring, we can
couple the distributions obtained by executing one step of the transition function of the Markov
process (i.e., the loop body above) such that the expected distance (how many vertices are colored
differently) is at most β . Then, the path coupling machinery gives a coupling of the processes
started from any two colorings, and concludes that after T steps the expected distance between
two executions started with colorings at distance k is upper bounded by βT · k .
In EpRHL, this final property corresponds to the following judgment:

⊢ {ΦG ; pdAdj} glauber(T ) ∼•βT glauber(T ) {⊤; pdAdj}

Above, Adj holds on two states iff the colorings (stored in the variablew) differ in the color of a
single vertex, and d′ ≜ pdAdj counts the number of vertices withw◁ (v ) , w▷ (v ). The pre-condition
ΦG captures properties of the graph; in particular, ΦG states that ∆ is the maximal degree in G, i.e.,
each vertex in G has at most ∆ neighbors. Finally, β is a constant determined by the graph and
the number of colors; in certain parameter ranges, β is strictly less than 1 and the Markov chain
converges quickly from any initial state.
Now, we present the proof. Since the graph G is not modified in the program, we keep ΦG as

an implicit invariant throughout. We begin with the loop body s . We apply the rule [Trans] with
pre- and post-condition Φ,Ψ ≜ i◁ = i▷ , distances d, d′ ≜ pdAdj, and f ≜ •β . The side-conditions
are clear: f is linear, the d′ satisfies condition (H), the pre-condition Φ is compatible with the path
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distance d, and the post-condition Ψ is transitively closed. The first main premise

⊢ {Φ ∧ pdAdj = 0;−} s ∼0 s {Ψ; pdAdj}

is easy to show: the initial states havew◁ = w▷ , so simply coupling using the identity bijection in
[Rand] preservesw◁ = w▷ and keeps the states at distance 0. The second main premise

⊢ {Φ ∧ pdAdj = 1;−} s ∼β s {Ψ; pdAdj},

is more complicated. Note that pdAdj = 1 is equivalent to Adj: the two initial coloringsw◁ andw▷
must differ in the color at a single vertex. So, Adj implies the invariant

Ξ(a,b,vδ ) ≜ ∀z ∈ V .



z = vδ =⇒ a = w◁ (z) ∧ b = w▷ (z)

z , vδ =⇒ w◁ (z) = w▷ (z)

for some differing vertex vδ , which is colored as a ≜ w◁ (vδ ) and b ≜ w▷ (vδ ) in the two respective
colorings. By the [Case] rule, it suffices to show

⊢ {Φ ∧ Ξ(a,b,vδ );−} s ∼β s {Ψ; pdAdj}

for every a,b ∈ C and vδ ∈ V .
We apply the [SeqCase] rule with ssamp, consisting of the two random samplings in the loop

body, and srest , consisting of the conditional statement and the updates. For the first judgment, we
first couple the vertex samplings with the identity coupling so that v◁ = v▷ , using the rule [Rand]
with h = id. This gives:

⊢ {Φ ∧ Ξ(a,b,vδ );−} v $← V ∼β v $← V {Φ ∧ Ξ(a,b,vδ ) ∧v◁ = v▷ ; pdAdj}.

Next, we can perform a case analysis on v◁ using the rule [Case]. If v◁ is not a neighbor of vδ , then
we couple samplings so that c◁ = c▷ with [Rand] with h = id. Otherwise, we couple c◁ = πab (c▷ ),
where πab swaps a and b and leaves all other colors unchanged. This gives

⊢ {Φ ∧ Ξ(a,b,vδ );−} ssamp ∼β ssamp {Θ; pdAdj},

where

Θ ≜ Φ ∧ Ξ(a,b,vδ ) ∧v◁ = v▷ ∧



v◁ ∈ NG (vδ ) =⇒ c◁ = πab (c▷ )

v◁ < NG (vδ ) =⇒ c◁ = c▷ .

Continuing with [SeqCase], we distinguish the following three mutually exclusive cases with
probabilities qb , qд , and qn , depending on how the distance changes under the coupling:
• In the bad case, the distance may grow to 2. Taking the guard

eb ≜ v ∈ NG (vδ ) ∧ c = b,

the assignment and consequence rules give

⊢ {Θ ∧ eb◁ ; pdAdj} srest ∼•2 srest {Ψ; pdAdj}.

(In fact, this judgment can be proved without the guard eb◁ in the pre-condition since the
path distance increases from 1 to at most 2, but we will need to bound the probability of the
guard being true in order to apply [SeqCase].) The probability of this case is at most ∆/|V | |C |
since we must select a neighbor of vδ and the color b in the first side, so qb ≤ ∆/|V | |C |.
• In the good case, the distance shrinks to zero. We take the guard

eд ≜ v = vδ ∧ c < w (NG (v )).

By applying the assignment and consequence rules, we can prove:

⊢ {Θ ∧ eд
◁
; pdAdj} srest ∼•0 srest {Ψ; pdAdj}.
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We will later need a lower bound on the probability of this case: since we must choose the
differing vertexvδ and a color different from its neighbors, and there are at most ∆ neighbors,
qд ≥ ( |C | − ∆)/|C | |V |.
• In the neutral case, we take the guard en ≜ ¬eb ∧ ¬eд . The assignment rule gives

⊢ {Θ ∧ en◁ ; pdAdj} srest ∼id srest {Ψ; pdAdj},

showing that the distance remains unchanged.
To put everything together, we need to bound the average change in distance. Since the cases are
mutually exclusive and at least one case holds, we know qn = 1 − qb − qд . Combining the three
cases, we need to bound the function x 7→ (qn + 2 · qb ) · x = (1 − qд + qb ) · x . By the upper bound
on qb and the lower bound on qд , [SeqCase] gives

⊢ {Φ ∧ Ξ(a,b,vδ );−} ssamp; srest ∼β ssamp; srest {Ψ; pdAdj},

for every a,b ∈ C and vδ ∈ V ,where

β ≜ 1 −
1
|V |
+

2∆
|C | |V |

.

So, we also have
⊢ {Φ ∧ pdAdj = 1;−} ssamp; srest ∼β ssamp; srest {Ψ; pdAdj}

and the rule [Trans] gives

⊢ {Φ; pdAdj} ssamp; srest ∼β ssamp; srest {Ψ; pdAdj}.

Finally, we apply the rule [While] with invariant Φ = Ψ and the assignment rule [Assg] to conclude
the desired judgment

⊢ {ΦG ; pdAdj} glauber(T ) ∼•βT glauber(T ) {⊤; pdAdj}.

When the number of colors |C | is strictly larger than 2∆, the constant β is strictly less than 1 and
the Glauber dynamics is rapidly mixing.

8 PROTOTYPE IMPLEMENTATION

We have developed a prototype implementation of our program logic on top of EasyCrypt, a
general-purpose proof assistant for reasoning about probabilistic programs, and formalized stability
of the convex version of Stochastic Gradient Method and convergence of population dynamics and
Glauber dynamics.
• For some rules, we implement stronger versions that are required for formalization of the
examples. For instance, our implementation of the [Conseq] rule supports scaling of distances.
• The ambient higher-order logic of EasyCrypt is used both for specifying distributions and for
reasoning about their properties. Likewise, the logic is used for defining distances, Lipschitz
continuity, and affine functions, and for proving their basic properties.
• We axiomatize the gradient operator and postulate its main properties. Defining gradients
from first principles and proving their properties is technically possible, but beyond the scope
of the paper. Similarly, we axiomatize norms and state relevant properties as axioms. A small
collection of standard facts are assumed.

The formalization of the examples is reasonably straightforward. The formalization of stability
for the Stochastic Gradient Method is about 400 lines; about one third is devoted to proving
mathematical facts. The formalization of convergence for the population dynamics about is 150
lines, while formalization of convergence for the Glauber dynamics is about 550 lines.
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We have not yet interfaced current the prototype with the rich set of program transformations
supported by EasyCrypt, e.g. code motion, loop unrolling, loop range splitting, which are required
for the non-convex version of Stochastic Gradient Method. Implementing these features should not
pose any difficulty, and is left for future work.

9 RELATEDWORK

Lipschitz continuity has also been considered extensively in the setting of program verification:
Chaudhuri et al. [2010] develop a SMT-based analysis for proving programs robust, in the setting
of a core imperative language; Reed and Pierce [2010] develop a linear type system for proving
sensitivity and differential privacy in a higher-order language [Azevedo de Amorim et al. 2014,
2017; Gaboardi et al. 2013; Winograd-Cort et al. 2017].
There is also a long tradition of verifying expectation properties of probabilistic programs;

seminal works include PPDL [Kozen 1985] and pGCL [Morgan et al. 1996]. Recently, Kaminski
et al. [2016] have developed a method to reason about the expected running time of probabilistic
programs. This line of work is focused on non-relational properties, such as proving upper bounds
on errors, whereas expected sensitivity is intrinsically relational.
There has also been a significant amount of work on the relational verification of probabilistic

programs. Barthe and collaborators develop relational program logics for reasoning about the
provable security of cryptographic constructions [Barthe et al. 2009] and differential privacy of
algorithms [Barthe et al. 2012]. EpRHL subsumes the relational program logic considered by Barthe
et al. [2009]; indeed, one can prove that the two-sided rules of pRHL are essentially equivalent to
the fragment of EpRHL where the pre-distance and post-distance are the zero function. In contrast,
the relational program logic apRHL considered by Barthe et al. [2012] and developed in subsequent
work [Barthe et al. 2017a, 2016b,d; Barthe and Olmedo 2013; Hsu 2017; Sato 2016] is not comparable
with EpRHL. apRHL uses a notion of approximate coupling targeting differential privacy, while
expectation couplings are designed for average versions of quantitative relational properties. In
particular, apRHL considers pointwise notions of distance between distributions without assuming a
distance on the sample space, while EpRHL works with distances on the underlying space, proving
fundamentally different properties.
There have been a few works on more specific relational expectation properties. For instance,

the standard target property in masking implementations in cryptography is a variant of proba-
bilistic non-interference, known as probing security. Recent work introduces quantitative masking
strength [Eldib et al. 2015], a quantitative generalization that measures average leakage of the pro-
grams. Similarly, the bounded moment model [Barthe et al. 2016a] is a qualitative, expectation-based
non-interference property for capturing security of parallel implementations against differential
power analyses. Current verification technology for the bounded moment model is based on a
meta-theorem which reduces security in the bounded moment model to probing security, and a
custom program logic for proving probing security. It would be interesting to develop a program
logic based on EpRHL to verify a broader class of parallel implementations.
For another example, there are formal verification techniques for verifying incentive properties

in mechanism design. These properties are relational, and when the underlying mechanism is
randomized (or when the inputs are randomized), incentive properties compare the expected payoff
of an agent in two executions. Barthe et al. [2015, 2016c] show how to use a relational type system
to verify these properties. While their approach is also based on couplings, they reason about
expectations only at the top level, as a consequence of a particular coupling. In particular, it is not
possible to compose reasoning about expected values like in EpRHL, and it is also not possible to
carry the analyses required for our examples.
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Lastly, Barthe et al. [2017b] use ×pRHL, a proof-relevant variant of pRHL, to extract a product
program for the Glauber dynamics. In a second step, they analyze the product program to prove
rapid mixing; their analysis is performed directly on the semantics of the product program. Our
system improves upon this two-step approach in two respects. First, we can internalize the path
coupling principle as a rule in our logic. Second, the probabilistic reasoning in our system is confined
to the side-condition in the [SeqCase] rule.

10 CONCLUSION

We have introduced the notion of expected f -sensitivity for reasoning about algorithmic stability
and convergence of probabilistic processes, and proved some of its basic properties. Moreover, we
have introduced expectation couplings for reasoning about a broader class of relational expectation
properties, and proposed a relational program logic for proving such properties. We have illustrated
the expressiveness of the logic with recent and challenging examples from machine learning,
evolutionary biology, and statistical physics.

There are several directions for future work. On the foundational side, it would be interesting to
develop semantic foundations for advanced fixed point-theorems and convergence criteria that
arise in probabilistic analysis. There are a wealth of results to consider, for instance, see the survey
by Bharucha-Reid et al. [1976]. On the practical side, it would be interesting to formalize more
advanced examples featuring relational and probabilistic analysis, like the recent result by Shamir
[2016] proving convergence of a practical variant of the Stochastic Gradient Method, or algorithms
for regret-minimization in learning theory and algorithmic game theory. Another goal would be to
verify more general results about population dynamics, including the general case from Panageas
et al. [2016].
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A SOUNDNESS

First, we can show that the equivalence judgment Φ ⊢ s1 ≡ s2 shows that programs s1, s2 have equal
denotation under any memory satisfying the (non-relation) pre-condition Φ.

Lemma A.1. If Φ ⊢ s1 ≡ s2, then for anym |= Φ, Js1Km = Js2Km .

Proof. Direct induction on Φ ⊢ s1 ≡ s2, using the semantics in Fig. 1 for the base cases. □

Next, we prove the key lemma showing composition of expectation couplings (Proposition 3.8).

Proof of composition of expectation couplings (Proposition 3.8). We check each of the
conditions in turn.
For the support condition, supp(µ ) ⊆ Φ by the first premise, and for every (a,b) ∈ Φ we have

supp(M (a,b)) ⊆ Ψ by the second premise, so

supp(µ ′) = supp(Eµ [M]) ⊆ Ψ.

For the marginal condition, we have π1 (µ ) = µa and π2 (µ ) = µb by the first premise, and for every
(a,b) ∈ Φ we have π1 (M (a,b)) = Ma (a) and π2 (M (a,b)) = Mb (b) by the second premise. We can
directly calculate the marginals of µ ′. For instance, for every a′ ∈ A the first marginal is

π1 (µ
′) (a′) = π1 (Eµ [M]) (a′)

=
∑
b′∈B

∑
(a,b )∈A×B

µ (a,b) ·M (a,b) (a′,b ′)

=
∑
b′∈B

∑
(a,b )∈Φ

µ (a,b) ·M (a,b) (a′,b ′) (Support of µ)

=
∑

(a,b )∈Φ

µ (a,b) · π1 (M (a,b)) (a′)

=
∑

(a,b )∈Φ

µ (a,b) ·Ma (a) (a
′) (Marginal ofM (a,b))

=
∑
a∈A

Ma (a) (a
′)

∑
b ∈B

µ (a,b) (Support of µ)

=
∑
a∈A

Ma (a) (a
′) · µa (a) (Marginal of µ)

= µa (a
′).

The second marginal π2 (µ ′) = µb is similar.
Finally, we check the distance condition. By the premises, we have

Eµ [d] ≤ δ

EM (a,b )[d′] ≤ f (d(a,b)) for every (a,b) ∈ Φ.

Then, we can bound

Eµ′[d′] =
∑

(a′,b′)∈A×B

d
′(a′,b ′) · µ ′(a′,b ′)

=
∑

(a′,b′)∈A×B

d
′(a′,b ′)

∑
(a,b )∈A×B

µ (a,b) ·M (a,b) (a′,b ′)

=
∑

(a,b )∈Φ

µ (a,b)EM (a,b )[d′] (Support of µ)
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≤
∑

(a,b )∈Φ

µ (a,b) · f (d(a,b)) (Expectation ofM (a,b))

= Eµ [f (d)] (Support of µ)
≤ f (Eµ [d]) (Linearity of expectation)
≤ f (δ ). (Monotonicity of f , expectation of µ)

□

We now move to the soundness of the logic.

Proof of the soundness of the logic. We prove that each rule is sound.
[Conseq] Letm1,m2 |= Φ′′. Hence,m1,m2 |= Φ, and there exists η such that Js1Km1

⟨η⟩Ψ
d′≤δ Js2Km2

.
We use η for the coupling of the conclusion. We already know that ∀i ∈ {1, 2}. πi (µ ) = JsiKmi
and that supp(µ ) ⊆ Ψ ⊆ Ψ′′. Finally,

Eµ [d′′′] ≤ Eµ [d′] (E monotone)
≤ f (d(m1,m2)) (µ coupling)
≤ f ′(d′′(m1,m2)) (premise).

[Struct] Immediate consequence of Lemma A.1.
[Assg] & [Assg-L] Immediate.
[Rand] Letm1,m2 |= ∀v ∈ supp(д1).Ψ[x1,x2 B v,h(v )] and µi ≜ Ev∼дi [δmi [xiBv]

] for i ∈ {1, 2}.
Since h is a one to one mapping from supp(д1) to supp(д2) that preserves the mass, we have
|µ1 | = |µ2 | and µ2 = Ev∼д1[δm2[x2Bh (v )]

]. Let

µ ≜ Ev∼д1[δ (m1[x1Bv],m2[x2Bh (v )])].

By construction, for i ∈ {1, 2}, we have πi (µ ) = µi . Letm ∈ supp(µ ). By definition, there
exists v ∈ supp(д1) s.t.m = (m1[x1 B v],m2[x2 B h(v )]). Hence,m |= Ψ and

Em∼µ [d′] = Ev∼д1[Em∼δ (m1[x1Bv ],m2[x2Bh (v )])
[d′]]

= Ev∼д1[d
′(m1[x1 B v],m2[x2 B h(v )])]

= Ev∼д1[d
′[(x1)◁ , (x2)▷ B v,h(v )]].

[Seq] Let (m1,m2) |= Φ and, for i ∈ {1, 2}, let µi ≜ JciKmi
and ηi (m) ≜ Jc ′i Km . From the first

premise, we know that there exists an η such that µ1 ⟨η⟩d′≤δ µ2 and supp(η) |= Ξ, where
δ ≜ f (d(m1,m2)). Likewise, from the second premise, form ≜ (m′1,m

′
2) |= Ξ, there exists an

ηm such that η1 (m) ⟨ηm⟩d′′≤δ ′ (m) η2 (m) and supp(ηm ) |= Ψ, where δ ′(m) ≜ f ′(d′(m)).

Let µ ≜ Em∼η[ηm | Ξ]. By Proposition 3.8, we already know that Eµ1[η1] ⟨µ⟩ Eµ2[η2] and that
supp(µ ) |= Ψ. We are left to prove that Eµ [d′′] ≤ ( f ′ ◦ f ) (d(m1,m2)):

Eµ [d′′] = Em∼η[Eηm [d
′′] | Ξ]

≤ Em∼η[f ′(d′(m))] (monotonicity of E)
≤ f ′(Eη[d′]) (Linearity of expectation)
≤ f ′( f (d(m1,m2))). (f ′ is increasing)

[Case] Letm1,m2 |= Φ. We do a case analysis on Je1Km1
and conclude from we one of the two

premises.
[Cond] Immediate consequence of [Case] and [Struct], using the synchronicity of both guards.
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[SeqCase] Form |= Ψ∧∃i . ei◁ , we denote by ι (m) an index i s.t.m |= ei◁ , and by ηm the coupling
from

⊢ {Ψ ∧ eι (m)
◁
; d′} s ′1 ∼fi s

′
2 {Ψ

′; d′′},

i.e. ηm is s.t. Js ′1Kπ1 (m) ⟨ηm⟩
Ψ′

d′′≤δm
Js ′2Kπ2 (m) , where δm ≜ fι (m) (d

′(m)). Letm1,m2 |= Φ and µ

s.t. Js1Km1
⟨µ⟩Ψ
d′≤δ Js2Km2

, where δ ≜ f0 (d(m1,m2))—such a coupling is obtained from the
premise ⊢ {Φ; d} s1 ∼f0 s2 {Ψ; d′}. Let η ≜ Em∼µ [ηm]. The distribution η is well-defined if for
anym ∈ supp(µ ),m |= Ψ ∧ ∃i . ei◁ . By definition of µ, we already know that supp(µ ) ⊆ Ψ.
Moreover, from the premise Ψ =⇒

∨
i ∈Iei , we obtain the existence of a ι ∈ I s.t. π1 (m) |= eι ,

i.e. such that m |= eι◁ . It is immediate that supp(η) ⊆ Ψ′ since for any m ∈ supp(µ ), by
definition of ηm , we know that ηm ⊆ Ψ′. Now, for i ∈ {1, 2}, we have:

πi (η) = πi (Em∼µ [ηm]) = Em∼µ [πi (ηm )︸ ︷︷ ︸
Js ′i Kπi (m )

]

= Em∼πi (µ )[Js
′
i Km] = Em∼Jsi Kmi

[Js ′i Km]

=m 7→ Jsi ; s ′i Km .

We are left to prove the bounding property of η. For i ∈ I , we denote by pi the quantity
Prm∼µ [ι (m) = i]. Then,

pi = Prm∼µ [ι (m) = i] ≤ Prm∼µ [JeiKπ1 (m)] = Prm∼π1 (µ )︸  ︷︷  ︸
m∼Js1Km1

[JeiKm].

Denote this last quantity by pi . By the law of total expectation:

Eµ [d′′] = Em∼µ [Eµm [d
′′]]

=
∑
i ∈I

pi · Em∼µ [Eµm [d
′′] | ι (m) = i]

≤
∑
i ∈I

pi · Em∼µ [Eµm [d
′′] | ι (m) = i].

Now, form ∈ supp(µ ) s.t. ι (m) = i , we have:

Eµm [d
′′] ≤ δm = fi (d

′(m)).

Hence,

Eµ [d′′] ≤
∑
i ∈I

pi · Em∼µ [fi (d′(m)) | ι (m) = i]

≤
∑
i ∈I

pi · Em∼µ [fi (d′(m))] =
∑
i ∈I

pi fi (Eµ [d′])

≤
∑
i ∈I

pi · fi ( f0 (d(m1,m2))) = f (d(m1,m2))

where the last step is by the premise.
[While] We proceed by induction on n. For i ∈ {1, 2}, let si ≜ while e do si . For n ∈ N, let Ψn ≜

Ψ ∧ (i◁ = n) and f n ≜ f1 ◦ · · · ◦ fn . If n = 0, underm1,m2 |= Ψ, we have JeKm1
= JeKm2

= ⊥.
Hence, for i ∈ {1, 2}, JsiKmi

= δmi
and we are in a case similar to [Skip]. Otherwise, assume

that the rule is valid for n. From the premises and the induction hypothesis, we have:

⊢ {Ψn+1 ∧ e1◁ ; d
′
n+1} s1 ∼fn+1 s2 {Ψn ; d

′
n }

⊢ {Ψn ; d′n } s1 ∼f n s2 {Ψ0; d′0}
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By reasoning similar to [Seq], we have ⊢ {Ψn+1; d′n+1} s1; s1 ∼f n+1 s2; s2 {Ψ0; d′0}. Now, under
m1,m2 |= Ψ, we have, for i ∈ {1, 2}, Jsi ; siKmi

= JsiKmi
. Hence, by reasoning similar to the one

of [Struct], we obtain ⊢ {Ψn+1 ∧ e1◁ ; d
′
n+1} s1 ∼f n+1

s2 {Ψ0; d′0}. By Ψn+1 ⇐⇒ (Ψn+1 ∧ e1◁ ),
we conclude that ⊢ {Ψn+1; d′n+1} s1 ∼f n+1 s2 {Ψ0; d′0}.

[Frame-D] Let m1,m2 |= Φ. From the premise, there is a coupling η s.t. Js1Km1
⟨η⟩Ψ
d′≤δ Js2Km2

,
where δ ≜ f (d(m1,m2)). Now, we have

Eη[d′ + d′′] = Eη[d′] + Eη[d′′] ≤ f (d(m1,m2)) + Eη[d′′].

Form1,m2 ∈ supp(η), from πi (η) = JsiKmi
and d′′#MV(s1),MV(s2), we have d′′(m1,m2) =

d′′(m1,m2). The last line is because f is a non-contractive linear function, f ∈ L≥ . Hence,
Eη[d′ + d′′] ≤ f (d(m1,m2)) + Em1,m2∼η[d

′′(m1,m2)]
= f (d(m1,m2)) + |η | · d

′′(m1,m2) ≤ f (d(m1,m2)) + d
′′(m1,m2)

≤ f (d(m1,m2)) + f (d′′(m1,m2)) = f (d(m1,m2) + d
′′(m1,m2)).

Hence, η is a coupling s.t. Js1Km1
⟨η⟩Ψ
d′+d′′≤δ ′ Js2Km2

, where δ ′ ≜ f ((d + d′′) (m1,m2)).
[Mult-Max] A basic result about couplings is that for any two distributions η1,η2 over the same

set, there exists a coupling η such that:
Pr

(a1,a2 )∼η
[a1 , a2] = TV(η1,η2).

This coupling is called the maximal or optimal coupling (see, e.g., Thorisson [2000]).
To show soundness of the rule, let (m1,m2) two memories and, for i ∈ {1, 2}, let µi ≜
Jx⃗ $← Mult(p⃗)Kmi

. Let νi be the distributions JMult(p⃗)Kmi
. Let µ be a coupling of µ1 and µ2

such that the projection of µ on the variables x◁ and x▷ is a maximal coupling of ν1 and ν2;
note that the projection of µ1 onto x◁ is ν1, and the projection of µ2 onto x▷ is ν2. Now, we
can prove the inequality on distances:

E(m′1,m
′
2 )∼µ [∥Jx⃗Km′1 − Jx⃗Km′2 ∥1] ≤ ∥Jp⃗Km1

− Jp⃗Km2
∥1.

By definition we have:

E(m′1,m
′
2 )∼µ [∥Jx⃗Km′1 − Jx⃗Km′2 ∥1] =

∑
m′1,m

′
2

µ (m′1,m
′
2) · ∥Jx⃗Km′1 − Jx⃗Km′2 ∥1

= 2
∑

m′1,m
′
2

∑
a,b

1[Jx⃗Km′1 = a]1[Jx⃗Km′2 = b]µ (m
′
1,m

′
2)

(distance is 0 or 2)

= 2
∑
a,b

∑
m′1,m

′
2

1[Jx⃗Km′1 = a]1[Jx⃗Km′2 = b]µ (m
′
1,m

′
2)

= 2
∑
a,b

Pr
(m′1,m

′
2 )∼µ

[Jx⃗Km′1 = a, Jx⃗Km′2 = b]

= 2 · Pr
(m′1,m

′
2 )∼µ

[Jx⃗Km′1 , Jx⃗Km′2]

= 2TV(ν1,ν2) (maximal coupling)
= ∥Jp⃗Km1

− Jp⃗Km2
∥1.

[Trans] We prove by induction on n ∈ N that for every two memories m1 and m2 such that
d(m1,m2) = n, there exists a coupling µ such that

JsKm1
⟨µ⟩Ψ
d′≤f (d(m1,m2 ))

JsKm2
.
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For the base case d(m1,m2) = 0, the inductive hypothesis on the premise

⊢ {Φ ∧ d = 0;−} s ∼0 s {Ψ; d′}

give the desired coupling.
For the inductive step d(m1,m2) = n+ 1, by path compatibility PathCompat(Φ, d) there exists
m′ with d(m1,m

′) = 1 and d(m′,m2) = n such that Φ(m1,m
′) and Φ(m′,m2). By induction on

n, there exists µn such that JsKm′ ⟨µn⟩
Ψ∗

d′≤δn
JsKm2

, where δn ≜ f (d(m′,m2)). By the inductive
hypothesis on premise

⊢ {Φ ∧ d = 1;−} s ∼f (1) s {Ψ; d′},

there exists µ1 such that JsKm1
⟨µ1⟩

Ψ
d′≤f (1) JsKm′ , Define the coupling

µ (m1,m2) ≜
∑
m

µ1 (m1,m) · µn (m,m2)

M (m)

whereM (m) ≜ π1 (µn ) (m) = π2 (µ1) (m) = JsKm′ and we drop terms withM = 0. By induction,
supp(µ ) |= Ψ2 ⊆ Ψ∗ ⊆ Ψ since Ψ is transitive. The marginal conditions are straightforward:
for anym1,

π1 (µ ) (m1) =
∑
m2

µ (m1,m2)

=
∑
m

*
,

µ1 (m1,m)

π1 (µn ) (m)
·
∑
m2

µn (m,m2)︸           ︷︷           ︸
π1 (µn ) (m)

+
-

=
∑
m

µ1 (m1,m) = π1 (µ1) (m1) = JsKm1
.

Similarly, π2 (µ ) = JsKm2
. Finally, we show the expected distance condition:

Eµ [d′] =
∑

m1,m2

µ (m1,m2) · d
′(m1,m2)

=
∑

m1,m2,m

µ1 (m1,m) · µn (m,m2)

M (m)
· d′(m1,m2)

≤
∑
m1,m

µ1 (m1,m) · d′(m1,m)
∑
m2

µn (m,m2)

M (m)

+
∑
m,m2

µn (m,m2) · d
′(m,m2)

∑
m1

µ1 (m1,m)

M (m)
(d′ satisfies (H))

= Eµ1[d
′] + Eµn [d

′]
≤ f (d(m1,m

′)) + f (d(m′,m2)) (induction hypotheses)
= f (d(m1,m2)). (f ∈ L)

□
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B DETAILS FOR EXAMPLES

B.1 Convex SGM (§ 5.1)

We detail the bounds in the two cases. In the first case, the selected samples S[i]◁ and S[i]▷ may be
different. We need to show:

∥ (w◁ − αt · (∇ℓ(S[i],−)) (w )◁ ) − (w▷ − αt · (∇ℓ(S[i],−)) (w )▷ )∥ ≤ ∥w◁ −w▷ ∥ + 2αtL.

We can directly bound:

∥ (w◁ − αt · (∇ℓ(S[i],−)) (w )◁ ) − (w▷ − αt · (∇ℓ(S[i],−)) (w )▷ )∥

≤ ∥w◁ −w▷ ∥ + αt ∥ (∇ℓ(S[i],−)) (w )◁ ∥ + αt ∥ (∇ℓ(S[i],−)) (w )▷ ∥

≤ ∥w◁ −w▷ ∥ + 2αtL

where the first inequality is by the triangle inequality, and the second follows since ℓ(z,−) is
L-Lipschitz. Thus, we can take f = +2αtL in the first case.

The second case boils down to showing

∥ (w◁ − αt · (∇ℓ(S[i],−)) (w )◁ ) − (w▷ − αt · (∇ℓ(S[i],−)) (w )▷ )∥ ≤ ∥w◁ −w▷ ∥.

when S[i]◁ = S[i]▷ . This follows from a calculation similar to the proof by Hardt et al. [2016, Lemma
3.7.2]:

∥ (w◁ − αt · (∇ℓ(S[i],−)) (w )◁ ) − (w▷ − αt · (∇ℓ(S[i],−)) (w )▷ )∥
2

= ∥w◁ −w▷ ∥
2 − 2αt ⟨(∇ℓ(S[i],−)) (w )◁ − (∇ℓ(S[i],−)) (w )▷ ,w◁ −w▷⟩

+ α2
t ∥ (∇ℓ(S[i],−)) (w )◁ ) − (∇ℓ(S[i],−)) (w )▷ ∥

2

≤ ∥w◁ −w▷ ∥
2 − (2αt/β − α2

t )∥ (∇ℓ(S[i],−)) (w )◁ ) − (∇ℓ(S[i],−)) (w )▷ ∥
2

≤ ∥w◁ −w▷ ∥
2.

The first inequality follows since convexity and Lipschitz gradient implies that

⟨(∇ℓ(S[i],−)) (w )◁ − (∇ℓ(S[i],−)) (w )▷ ,w◁ −w▷⟩ ≥
1
β
∥ (∇ℓ(S[i],−)) (w )◁ − (∇ℓ(S[i],−)) (w )▷ ∥

2.

The second inequality follows from 0 ≤ αt ≤ 2/β . Thus, we can take f = id in the second case.

B.2 Non-Convex SGM (§ 5.2)

Suppose that the loss function ℓ is bounded in [0, 1], possibly non-convex, but L-Lipschitz and
with β-Lipschitz gradient. Suppose that we take non-increasing step sizes 0 ≤ αt ≤ σ/t for some
constant σ ≥ 0. Then, we will prove the following judgment:

⊢ {Adj(S◁ , S▷ );−} sgm ∼ϵ sgm {⊤; |ℓ(w◁ , z) − ℓ(w▷ , z) |}

where

ϵ ≜ (2/n)


(
2L2

β (1 − 1/n)

)1/(q+1)
T q/(q+1)


.

This example uses an advanced analysis from Hardt et al. [2016, Lemma 3.11]. We can’t directly
express that result in our logic, but we can inline the proof. Roughly, the idea is that with large
probability, the first bunch of steps don’t see the differing example. By the time we hit the differing
example, the step size has already decayed enough. To model this kind of reasoning, we will use the
program transformation rules to split the loop into iterations before the critical step, and iterations
after the critical step. Then, we will perform a probabilistic case in between, casing on whether we
have seen the differing example or not.
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To begin, let the critical iteration be

t0 ≜


(
2L2

β (1 − 1/n)

)1/(q+1)
T q/(q+1)


where q ≜ βσ . We can split the loop in sgm into two:

t ← 0;
while t < T ∧ t < t0 do
i $← [n];
w ← w − αt · (∇ℓ(S[i],−)) (w );
t ← t + 1;

while t < T do
i $← [n];
w ← w − αt · (∇ℓ(S[i],−)) (w );
t ← t + 1;

returnw

Call the loops c< and c≥ , with loop bodiesw< andw≥ . In the first loop, we will bound the probability
of ∥w◁ −w▷ ∥ > 0. We want to prove the judgment

{t◁ = t▷ ; 1[w◁ , w▷]} w< ∼+1/n w< {t◁ = t▷ ; 1[w◁ , w▷]}.
Again, we use the identity coupling when sampling i . Then, we case on whether we hit the differing
example or not. In the first case, we hit the differing example and we need to prove

{t◁ = t▷ ; 1[w◁ , w▷]} w< ∼+1 w< {t◁ = t▷ ; 1[w◁ , w▷]}.
This boils down to showing:

1[w − αt · (∇ℓ(S[i],−)) (w )◁ , w − αt · (∇ℓ(S[i],−)) (w )▷] ≤ 1[w◁ , w▷] + 1
but this is clear since the indicator is in {0, 1}.

In the second case, we hit the same example and need to prove:
{t◁ = t▷ ∧ S[i]◁ = S[i]▷ ; 1[w◁ , w▷]} w< ∼id w< {t◁ = t▷ ; 1[w◁ , w▷]}.

This boils down to showing:
1[w − αt · (∇ℓ(S[i],−)) (w )◁ , w − αt · (∇ℓ(S[i],−)) (w )▷] ≤ 1[w◁ , w▷]

assuming that S[i]◁ = S[i]▷ . But this is clear also—if w◁ , w▷ then there is nothing to prove,
otherwise ifw◁ = w▷ then the projections are equal.
Putting these two cases together (noting that they happen with probability 1/n and 1 − 1/n

respectively) and applying the loop rule, we have:
{t◁ = t▷ ; 1[w◁ , w▷]} w< ∼+t0/n w< {t◁ = t▷ ; 1[w◁ , w▷]}

as desired.
Now, we perform a probabilistic case onw◁ = w▷ . Supposew◁ = w▷ . In the second loop, we know

that t◁ = t▷ ≥ t0. By similar reasoning to the previous sections, we have:
{t◁ = t▷ ∧ t◁ ≥ t0; ∥w◁ −w▷ ∥} w≥ ∼fc w≥ {t◁ = t▷ ∧ t◁ ≥ t0; ∥w◁ −w▷ ∥}

where
fc (x ) ≜ (1/n + (1 − 1/n) (1 + αt β ))x + 2αtL/n

≤ (1 + (1 − 1/n)σβ/t )x + 2σL/tn
≤ exp((1 − 1/n)σβ/t )x + 2σL/tn.
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In the last step, we use 1 + x ≤ exp(x ).
We can then apply the loop rule to show:

{t◁ = t▷ ∧ t◁ ≥ t0 ∧w◁ = w▷ ; ∥w◁ −w▷ ∥} c≥ ∼f c≥ {t◁ = t▷ ∧ t◁ ≥ t0; ∥w◁ −w▷ ∥}
where

f (x ) ≜ x ·
T∏

r=t0+1
exp

(
(1 − 1/n)

σβ

r

)
+

T∑
s=t0+1

2σL
sn

T∏
r=s+1

exp
(
(1 − 1/n)

σβ

r

)

= x · exp *.
,
σβ (1 − 1/n)

T∑
r=t0+1

1
r

+/
-
+

T∑
s=t0+1

2σL
sn

exp *
,
σβ (1 − 1/n)

T∑
r=s+1

1
r

+
-

≤ x · exp (σβ (1 − 1/n) log(T /t0)) +
T∑

s=t0+1

2σL
sn

exp (σβ (1 − 1/n) log(T /s ))

= x · exp (σβ (1 − 1/n) log(T /t0)) +
2σL
n

T βσ (1−1/n)
T∑

s=t0+1
s−βσ (1−1/n)−1

≤ x · exp (σβ (1 − 1/n) log(T /t0)) +
2σL
n

T βσ (1−1/n) ·
1

βσ (1 − 1/n)
t
−βσ (1−1/n)
0

= x · exp (σβ (1 − 1/n) log(T /t0)) +
2L

β (n − 1)

(
T

t0

)βσ (1−1/n)

≤ x · exp (σβ (1 − 1/n) log(T /t0)) +
2L

β (n − 1)

(
T

t0

)βσ
.

Let the last term be ρ. The first inequality uses
∑b

t=a+1 1/t ≤ log(b/a) and the second inequality
uses

∑b
t=a+1 1/tc ≤ a1−c/(c − 1) for c > 1; both facts follow from bounding the sum by an integral.

By applying the Lipschitz assumption on ℓ and the [Conseq] rule, we have:
{t◁ = t▷ ∧ t◁ ≥ t0 ∧w◁ = w▷ ;−} c≥ ∼Lρ c≥ {t◁ = t▷ ∧ t◁ ≥ t0; |ℓ(w, z)◁ − ℓ(w, z)▷ |}

for every example z ∈ Z .
In the other case, supposew◁ , w▷ . Applying the rule of consequence using the fact that the loss

function is bounded in [0, 1], we have:
{t◁ = t▷ ∧ t◁ ≥ t0 ∧w◁ , w▷ ;−} c≥ ∼1 c≥ {t◁ = t▷ ∧ t◁ ≥ t0; |ℓ(w, z)◁ − ℓ(w, z)▷ |}.

Applying the rule [SeqCase-A] to link the two loops, we have:
{Adj(S◁ , S▷ );−} sgm ∼t 0/n+Lρ sgm {⊤; |ℓ(w, z)◁ − ℓ(w, z)▷ |}.

Note that setting

t0 ≥ δ ≜

(
2L2

β (1 − 1/n)

)1/(q+1)
T q/(q+1)

gives t0/n + Lρ ≤ 2t0/n since δ balances the two terms, so we can conclude.
The proof uses an advanced sequential composition rule [SeqCase-A], shown in Fig. 7. This

rule combines sequential composition with a case analysis on an event that may depend on both
memories.
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[SeqCase-A]

⊢ {Φ;−} s1 ∼γ s2 {Θ; 1[e]}
⊢ {Θ ∧ e;−} s ′1 ∼f s

′
2 {Ψ; d} ⊢ {Θ ∧ ¬e;−} s ′1 ∼f¬ s

′
2 {Ψ; d}

⊢ {Φ;−} s1; s ′1 ∼γ ·f +f¬ s2; s
′
2 {Ψ; d}

Fig. 7. Advanced sequential case rule
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