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Extending classical surrogate modelling to ultrahigh dimensional

problems through supervised dimensionality reduction: a

data-driven approach

C. Lataniotis, S. Marelli, B. Sudret

Abstract

Thanks to their versatility, ease of deployment and high-performance, surrogate mod-

els have become staple tools in the arsenal of uncertainty quantification (UQ). From local

interpolants to global spectral decompositions, surrogates are characterised by their ability

to efficiently emulate complex computational models based on a small set of model runs

used for training. An inherent limitation of many surrogate models is their susceptibility to

the curse of dimensionality, which traditionally limits their applicability to a maximum of

O(102) input dimensions. We present a novel approach at high-dimensional surrogate mod-

elling that is model-, dimensionality reduction- and surrogate model- agnostic (black box),

and can enable the solution of high dimensional (i.e. up to O(104)) problems. After in-

troducing the general algorithm, we demonstrate its performance by combining Kriging and

polynomial chaos expansions surrogates and kernel principal component analysis. In partic-

ular, we compare the generalisation performance that the resulting surrogates achieve to the

classical sequential application of dimensionality reduction followed by surrogate modelling

on several benchmark applications, comprising an analytical function and two engineering

applications of increasing dimensionality and complexity.

Keywords: Dimensionality reduction – surrogate modeling – data-driven – Kriging –

polynomial chaos expansion – kernel principal component analysis

1 Introduction

It is nowadays a common practice to study the behaviour of physical and engineering sys-

tems through computer simulation. In a real-world setting, such systems are driven by input

parameters, the values of which can be uncertain or even unknown. Uncertainty quantifi-

cation (UQ) aims at identifying and quantifying the sources of uncertainty in the input

parameters to assess the uncertainty they cause in the model predictions. In the context
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of Monte Carlo simulation, such workflow typically entails the repeated evaluation of the

computational model. However, it may become intractable when a single simulation is com-

putationally demanding, as is often the case with modern computer codes. A remedy to

this problem is to substitute the model with a surrogate that accurately mimics the model

response within the chosen parameter bounds, but is computationally inexpensive. An addi-

tional benefit of surrogate models is that they are often non-intrusive, i.e. their construction

only depends on a training set of model evaluations, without access to the model itself. This

includes the case when the model is not available, but only a pre-existent data set is, as is

typical in machine learning applications. The latter setting is the focus of this paper. Popu-

lar surrogate modelling techniques (SM) include Gaussian process modelling and regression

(Sacks et al., 1989; Rasmussen and Williams, 2006), polynomial chaos expansions (Ghanem

and Spanos, 1991; Xiu and Karniadakis, 2002; Xiu, 2010), low-rank tensor approximations

(Chevreuil et al., 2015; Konakli and Sudret, 2016b), and support vector regression (Vapnik,

1995). Parametrising and training a surrogate model, however, can become harder or even

intractable as the number of input parameters increases, a well known problem often referred

to as curse of dimensionality (see e.g. Verleysen and François (2005)).

For the sake of clarity, in the following we will classify high-dimensional inputs in two

broad categories, depending on their characteristics: unstructured or structured. Unstruc-

tured inputs are characterised by the lack of an intrinsic ordering, and they are commonly

identified with the so-called “model parameters”, e.g. point loads on mechanical models,

or resistance values in electrical circuit models. Structured inputs, on the other hand, are

characterised by the existence of a natural ordering and/or a distance function (i.e. they

show strong correlation across some physically meaningful set of coordinates), as it is typi-

cal for time-series or space-variant quantities represented by maps. Boundary conditions in

complex simulations that rely on discretisation grids, e.g. time-dependent excitations at grid

nodes, often belong to this second class. In most practical applications, unstructured inputs

range in dimension in the order O(100−2), while structured inputs tend to be in the order

O(102−6).

Several strategies have been explored in the literature to deal with high dimensional

problems for surrogate modelling. A common approach in dealing with unstructured inputs is

input variable selection, which consists in identifying the “most important” inputs according

to some importance measure, see e.g. Saltelli et al. (2008); Iooss and Lemâıtre (2015), and

simply ignoring the others (e.g. by setting them to their nominal value).

In the context of kernel-based emulators (e.g. Gaussian process modelling or support

vector machines), some attention has been devoted to the use of simple isotropic kernels

(Djolonga et al., 2013), or to the design of specific kernels for high-dimensional input vectors,

sometimes including deep-learning techniques (e.g., Lawrence (2005); Durrande et al. (2012);

Wilson et al. (2016)).
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In more complex scenarios, the more general concept of dimensionality reduction (DR) is

applied, which essentially consists in mapping the input space to a suitable lower dimensional

space using an appropriate transformation prior to the surrogate modelling stage. The latter

approach is considered in this work due to its applicability to cases for which variable selection

seems inadequate or insufficient (e.g. in the presence of structured inputs).

In the current literature, a two-step approach is often followed for dealing with such

problems: first, the input dimension is reduced; then, the surrogate model is constructed

directly in the reduced (feature-) space. The dimensionality reduction step is based on an

unsupervised objective, i.e. an objective that only takes into account the input observations.

Examples of unsupervised objectives include the minimisation of the input reconstruction

error (Vincent et al., 2008), maximisation of the sample variance (Pearson, 1901), max-

imisation of statistical independence (Hyvärinen and Oja, 1997), and preservation of the

distances between the observations (Tenenbaum et al., 2000; Roweis and Saul, 2000; Hinton

and Roweis, 2003). While in principle attractive due to their straightforward implemen-

tation, unsupervised approaches for dimensionality reduction may be suboptimal in this

context, because the input-output map of the reduced representation may exhibit a complex

topology unsuitable for surrogate modelling (Wahlström et al., 2015; Calandra et al., 2016).

To deal with this issue, various supervised techniques have been proposed, in the sense that

the objective of the input compression takes into account the model outputs. One such ap-

proach that has received attention recently is based on the so-called active subspaces concept

(Constantine et al., 2014). Various methods that belong to this category, provide a linear

transformation of the high dimensional input space into a reduced space that is characterised

by maximal variability w.r.t. the model output. However, active subspace methods often

require the availability of the model gradient w.r.t. the input parameters, a limiting factor

in data-driven scenarios where such information is not available and needs to be approxi-

mated (Fornasier et al., 2012). Moreover, the numerical computation of the gradient may

be infeasible in problems that involve structured inputs such as time series or 2D maps with

O(102−6) components.

Other data-driven supervised DR techniques have been proposed in the literature, that

are dependent on the properties of a specific combination of either DR or SM techniques.

Hinton and Salakhutdinov (2006) employ multi-layer neural networks for both the DR and

the SM steps. Specifically, an unsupervised objective based on the reconstruction error is

followed by a generalisation performance objective that aims at fine tuning the network

weights with respect to a measure of the surrogate modelling error. Similar approaches have

been proposed with other combinations of methods. In Damianou and Lawrence (2013),

the same idea is extended by using stacked Gaussian processes instead of multilayer neural

networks. In Huang et al. (2015); Calandra et al. (2016) this approach is extended by

combining neural networks with Gaussian processes within a Bayesian framework.
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All of these methods demonstrate that supervised methods yield a significant accuracy

advantage over the unsupervised ones, as the final goal of the supervised learner (i.e. surro-

gate model accuracy) matches the final goal of high-dimensional surrogate modelling in the

first place. However, this increased accuracy comes at the cost of restricting the applicability

of such methods to specific combinations of DR and SM techniques.

In this paper, we propose a novel method of performing dimensionality reduction for

surrogate modelling in a data-driven setting, which we name (perhaps with a lack of creative

flair) DRSM. The aim of this method is to capitalise on the performance gains of supervised

DR, while maintaining maximum flexibility in terms of both DR and SM methodologies.

Recognising that different communities, applications and researchers have in general access

to one or two preferred techniques for either DR or SM, the proposed approach is fully

non-intrusive, i.e. both the DR and the SM stages are considered as black boxes under very

general conditions. The novelty lies in the way the two stages are coupled into a single

problem, for which dedicated solvers are proposed.

This paper is structured as follows: Section 2 introduces the main ingredients required

by DRSM, namely dimensionality reduction and surrogate modelling. For the sake of clarity,

some of the techniques that will be specifically used in the applications section are also intro-

duced, i.e. kernel principal component analysis (KPCA) for DR, Gaussian process modelling,

a.k.a. Kriging, and polynomial chaos expansions (PCE) for SM. The core framework under-

lying DRSM is then introduced. Finally, the effectiveness of DRSM is analysed on several

benchmark applications including both unstructured and structured inputs, ranging from

low-dimensional analytical functions to a complex engineering 2-dimensional heat-transfer

problem.

2 Ingredients for surrogate modelling in high dimension

As the name implies, DRSM consists in the combination of two families of computational

tools: dimensionality reduction and surrogate modelling. This section aims at highlighting

the main features of each, and how they can be exploited without resorting to intrusive,

dedicated algorithms.

2.1 Dimensionality reduction

Consider a set of high-dimensional samples X =
{
x(i) ∈ RM , i = 1, . . . , N

}
. In an abstract

sense, dimensionality reduction (DR) refers to the parametric mapping g : X ∈ RM 7→ Z ∈
Rm of the form:

z = g(x; w) (1)
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where z ∈ Z, x ∈ X , and w is the set of parameters associated with the mapping. Di-

mensionality reduction occurs if m � M , i.e. if m = O
(
100−1

)
whereas M = O

(
102−4

)
.

The nature and number of the parameters w depends on the specific DR method under

consideration.

Such transformations are motivated by the assumption that the samples in X lie on some

manifold with dimensionality m that is embedded within the M -dimensional space. This

specific value of m is in some applications referred to as the “intrinsic dimension” of X
(Fukunaga, 2013). From an information theory perspective, the intrinsic dimension refers to

the minimum number of scalars that is required to represent X without any loss w.r.t. an

appropriate information measure. In practice it is a-priory unknown. In such cases DR is an

ill-posed problem that can only be solved by assuming certain properties of X , such as its

intrinsic dimension. Alternatively the later may be approximated and/or inferred from the

available data by various approaches (see e.g. Camastra (2003) for a comparative overview).

An important aspect of all parametric DR methods, regardless of their specificity, is that

for each choice of dimension m the remaining parameters w are estimated by minimising a

suitable error measure (sometimes referred to as loss function):

ŵ = arg min
Dw

J(w;X ), (2)

where ŵ denotes the estimated parameters, Dw the feasible domain of w, J(·) the error

measure and X the available data. The choice of the error measure depends on the specific

application DR is used for. When the goal is direct compression of a high dimensional input

without information loss (a common situation in telecommunication-related applications), a

typical choice of J(·) is the so-called mean-squared reconstruction error, that reads:

J(w;X ) =
1

N

N∑

i=1

∥∥∥x(i) − x̃(i)
∥∥∥
2

, (3)

where x̃ = g−1(z,w) denotes the reconstruction of the sample x, calculated through the

inverse transform g−1 : Z ∈ Rm 7→ X ∈ RM . In the general case, additional parameters

may be introduced in g−1, or the inverse transform may not exist at all (see e.g. Kwok and

Tsang (2003)).

For a detailed description of the specific DR methods used in this paper to showcase the

proposed methodology, namely principal component analysis (PCA) and kernel PCA, the

reader is referred to Section 4.

2.2 Surrogate Modelling

In the context of UQ, the physical or computational model of a system can be seen as a

black-box that performs the mapping:

Y =M(X), (4)
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where X is a random vector that parametrises the variability of the input parameters (e.g.

through a joint probability density function) and Y is the corresponding random vector of

model responses. One of the main applications of UQ is to propagate the uncertainties from

X to Y through the modelM. Direct methods based on Monte-Carlo simulation may require

that the computational model is run several thousands of times for different realisations x

of the input random vector X. However, most models that are used in applied sciences and

engineering (e.g. high-resolution finite element models) can have high computational costs

per model run. As a consequence, they cannot be used directly. To alleviate the associated

computational burden, surrogate models have become a staple tool in all types of uncertainty

quantification applications.

A surrogate model M̂ is a computationally inexpensive approximation of the true model

of the form:

M(X) = M̂(X;θ) + ε, (5)

where θ is a set of parameters that characterise the surrogate model and ε refers to an error

term. The parameters θ are inferred (typically through some form of optimisation process)

from a limited set of runs of the original model X =
{
x(1), . . . ,x(N)

}
, called the experimental

design. As an example, θ denotes the set of coefficients in the case of a truncated polynomial

chaos expansion, or the set of parameters of both the trend and the covariance kernel in case

of Gaussian process modelling. Throughout the rest of the paper, the output of the model

M is considered scalar, i.e. y =M(x) ∈ R.

Arguably the most well-known accuracy measure for most surrogates is the relative gen-

eralisation error εgen that reads:

εgen = E
[(
Y − M̂(X;θ)

)2]
/Var [Y ] . (6)

This error measure (or, more precisely, one of its estimators) is also the ideal objective

function for the optimisation process involved in the calibration of the surrogate parameters

θ. In practical situations, however, it is not possible to calculate εgen analytically. An

estimator ε̂gen of this error can be computed by comparing the true and surrogate model

responses evaluated at a sufficiently large validation set Xv =
{
x(1), . . . ,x(Nv)

}
of size Nv:

ε̂gen =

∑Nv

i=1

(
M(x(i))− M̂(x(i))

)2

∑Nv

i=1

(
M(x(i))− µ̂y

)2 , (7)

where µ̂y = 1
N

∑Nv

i=1M(x(i)) is the sample mean of the validation set responses and

M̂(x(i)) is used in place of M̂(x(i);θ) to simplify the notation.

In data-driven applications, or when the computational model is expensive to evaluate,

only a single set S def
= {X ,Y} is available. The entire set is therefore used for calculating

the surrogate parameters. Estimating the generalisation error by means of Eq. (7) on the

same set, however, corresponds to computing the so-called empirical error, which is prone to
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underestimate drastically the true generalisation error, due to the overfitting phenomenon.

In such cases, a fair approximation of ε̂gen can be obtained by means of cross-validation

(CV) techniques (see e.g. Hastie et al. (2001)). In k-fold CV, S is randomly partitioned into

k mutually exclusive and collectively exhaustive sets Si of approximately equal size:

Si ∩ Sj = ∅ , ∀(i, j) ∈ {1, . . . , k}2 and
k⋃

i=1

Si = S. (8)

The k-fold cross-validation error εCV reads:

εCV =

∑k
i=1

∑
x∈Si

(
M(x)− M̂S\Si(x)

)2

∑
x∈S (M(x)− µ̂y)

2 , (9)

where M̂S
S\Si denotes the surrogate model that is calculated using S excluding Si. The

bias of the generalisation error estimator is expected to be minimal in the extreme case of

leave-one-out (LOO) cross-validation (Arlot and Celisse, 2010), which corresponds toN−fold

cross validation. The LOO error εLOO is calculated as in Eq. (9) after substituting the set

Si by the singleton
{
x(i)
}

(i.e. k = N):

εLOO =

∑N
i=1

(
M(x(i))− M̂\i(x(i))

)2

∑N
i=1

(
M(x(i))− µ̂y

)2 , (10)

where the termM\i(x(i)), denotes the surrogate built from the set S\
{
x(i)
}

, evaluated at

x(i). The calculation of εLOO can be computationally expensive, because it requires the eval-

uation of N surrogates, but it does not require any additional run of the full computational

model. For Gaussian process modelling and polynomial chaos expansions, computational

shortcuts are available to alleviate such costs (e.g. Dubrule (1983); Blatman and Sudret

(2011)), in the sense that εLOO in Eq. (10) is evaluated from a single surrogate model M̂
calculated from the full data set S.

As a final step in the surrogate modelling procedure, the set of parameters θ of the

surrogate model are optimised w.r.t. to one of the generalisation error measures in Eq. (9)

or Eq. (10) directly, based on the available samples in S, i.e.:

θ̂ = arg min
Dθ

ε̂gen(θ;S), (11)

where θ̂ denotes the optimal set of parameters, Dθ the feasible domain of parameters

and ε̂gen refers to the chosen estimator of εgen. An important aspect of this optimisation

step for many types of recent surrogates is that the number of parameters θ scales with the

number of input variables. Therefore, surrogates tend to suffer from the curse of dimension-

ality in two distinct ways: higher dimensional optimisation and underdetermination. Higher

dimensional optimisation is linked to a complex objective-function topology, and is therefore

prone to convergence to low-performing local minima. In general it requires global optimi-

sation algorithms, such as genetic algorithms, covariance matrix adaptation, or differential
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evolution (Goldberg, 1989; Hansen et al., 2003; Yang et al., 2007). Underdetermination leads

the solutions to the minimisation problem to be non-unique due to the lack of constraining

data. In other words, surrogate models with more parameters require in general a larger

experimental design or sparse minimisation techniques to avoid overfitting.

3 The proposed DRSM approach

3.1 Introduction

Consider now the experimental design S = {X ,Y} introduced above, and assume that it

is the only available information about the problem under investigation. Moreover, the

dimensionality of the input space is high, i.e. x(i) ∈ RM , i = 1, . . . , N where M is large,

say O
(
102−4

)
. The goal is to calculate a surrogate model that serves as an approximation of

the real model solely based on the available samples. This is a key ingredient for subsequent

analyses in the context of uncertainty quantification.

To distinguish between various computational schemes, we denote from now on by M̂|X ,Y
a surrogate model whose parameters θ are calculated from the experimental design X and

associated model response Y. Due to the high input dimensionality, a surrogate M̂|X ,Y may

lead to poor generalisation performance or it may not even be computationally tractable.

To reduce the dimensionality, the class of DR methods was introduced in Section 2.1. A DR

transformation, expressed by Z = g(X ; w), can provide a compressed experimental design,

i.e. z(i) ∈ Rm , i = 1, . . . , N with m � M . The surrogate M̂|Z,Y becomes tractable if m

is sufficiently small. The potential of M̂|Z,Y to achieve satisfactory generalisation perfor-

mance depends on (i) the learning capacity of the surrogate itself and (ii) the assumption

that the input-output map x 7→ y can be sufficiently well approximated by a smaller set

of features via the transformation g(·). This discussion focuses on the latter and assumes

that the learning capacity of the surrogate is adequate. In case of unstructured inputs, the

importance of each input variable may vary depending on the output of interest. In case of

structured inputs, there is typically high correlation between the input components. Hence,

in both families of problems a low-dimensional representation may often approximate well

the input-output map.

Traditional DR approaches are focused on the discovery of the input manifold and not

the input-output manifold. Performing an input compression without taking into account

the associated output values may lead to a highly complex input-output map that is difficult

to surrogate. In the DRSM (dimensionality reduction for surrogate modelling) approach pro-

posed in this paper, we capitalise on this claim to try and find an optimal input compression

scheme w.r.t. the generalisation performance of M̂|Z,Y.
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3.2 A nested optimisation problem

The goal of DRSM is to optimise the parameters w of the compression scheme so that the

auxiliary variables z = g(x; w) are suitable to achieve an overall accurate surrogate. The

general formulation of this problem reads:

{
ŵ, θ̂

}
= arg min

w∈Dw, θ∈Dθ

`
(
M(·),M̂ (g(·; w),θ)

)
, (12)

where ` denotes the objective function (a.k.a. loss function) that quantifies the generali-

sation performance of the surrogate. In practice, if a validation set is available, ` corresponds

to a generalisation error estimator like the one in Eq. (7). In the absence of a validation set,

then either the LOO estimator in Eq. (10) or its k-fold CV counterpart in Eq. (9) are used

instead. In the following, it is assumed that a validation set is not available and the gener-

alisation error is estimated by the LOO error, hence ` is substituted by the εLOO expression

in Eq. (10).

The proposed approach for solving Eq. (12), is related to the concept of block-coordinate

descent (Bertsekas, 1999). During optimisation, the parameters w and θ are updated in an

alternating fashion. One of the main reasons for this choice is that the optimisation steps of

both DR and SM techniques are often tuned ad-hoc to optimise their performance. Examples

include sparse linear regression for polynomial chaos expansions (Blatman and Sudret, 2011),

or quadratic programming for support vector machines for regression (Vapnik, 1995). A single

joint optimisation, albeit potentially yielding accurate results, would require the definition of

complex constraints on the different sets of parameters w and θ. Therefore, the problem in

Eq. (12) is expressed as a nested-optimisation problem. The outer loop optimisation reads:

ŵ = arg min
w∈Dw

εLOO(w; θ̂(w),X ,Y), (13)

where εLOO denotes the LOO error (Eq. (10)) of the surrogate M̂(z; w,X ,Y) evaluated at

{X ,Y} and θ̂(w) denotes the optimal parameters of M̂ for that particular w value. The

term θ̂(w) is calculated by solving the inner loop optimisation problem:

θ̂ = arg min
θ∈Dθ

εLOO(θ; w,X ,Y). (14)

The nested optimisation approach to DRSM comes with costs and benefits. On the one

hand, each objective function evaluation of the outer-loop optimisation becomes increasingly

costly w.r.t. the number of samples in the experimental design and the complexity of the

surrogate model. On the other hand, the search space in each optimisation step can be

significantly smaller, compared to the joint approach, due to the reduced number of optimi-

sation variables. Moreover, this nested optimisation approach enables DRSM to be entirely

non-intrusive. Off-the-shelf well-known surrogate modelling methods can be used to solve

Eq. (14).
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3.3 Proxy surrogate models for the inner optimisation

Albeit non-intrusive and having a relatively low dimension, the inner optimisation in Eq. (14)

is in general the driving cost of DRSM. Indeed, calculating the parameters of a single high-

resolution modern surrogate may require anywhere between a few seconds and several min-

utes. To reduce the related computational cost, it is often possible to solve proxy surrogate

problems, i.e. using simplified surrogates that, while not being as accurate as their full

counterparts, are easier to parametrise. A simple example would be to prematurely stop the

optimisation in the inner loop in Eq. (14), or to use isotropic kernels for kernel-based surro-

gates such as Kriging or support vector machines instead of their more accurate, but costly

to train, anisotropic counterparts. Once the outer loop optimisation completes on the proxy

surrogate, thus identifying the quasi-optimal DR parameters ŵ, a single high-accuracy sur-

rogate is then computed on the compressed experimental design {Z = g(X ; ŵ),Y}. Further

discussion on this topic can be found in Sections 4.3 and 4.3.1.

4 Selected compression and surrogate modelling tech-

niques used in this paper

Due to the non-intrusiveness in the design of the DRSM method proposed in Section 3,

no specific dimensionality reduction or surrogate modelling technique has been introduced

yet. In the following section, two well-known dimensionality reduction (namely principal

component analysis and kernel-principal component analysis) and two surrogate modelling

techniques (Kriging and polynomial chaos expansions) are introduced to showcase the DRSM

methodology on several example applications in Section 5. Only the main concept and

notation is reminded so that the paper is self-consistent.

4.1 Principal component analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique that aims

at calculating a linear basis of X with reduced dimensionality that preserves the sample

variance (Pearson, 1901). Given a sample of the input random vector X =
{
x(1), . . . ,x(N)

}
,

the PCA algorithm is based on the eigen-decomposition of the sample covariance matrix C:

C =
1

N
X̄>X̄ , (15)

of the form:

Cv(i) = λ(i)v(i) , i = 1, . . . ,M (16)

where X̄ denotes the centred (zero mean) experimental design, λ(i) denotes each eigenvalue

of C and v(i) the corresponding eigenvector. The dimensionality reduction transformation
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reads:

Z = X̄ V (17)

where V is the M×m collection of the m eigenvectors of C with maximal eigenvalues. Those

eigenvectors are called the principal components because they correspond to the reduced

basis of X with maximal variance. Based on the general DR perspective that was presented

in Section 2.1, PCA is a linear transformation of the form Z = g(X ;w), where the only

parameter to be selected is the dimension m of the reduced space, i.e. w = m.

4.2 Kernel principal component analysis

Kernel PCA (KPCA) is the reformulation of PCA in a high-dimensional space that is con-

structed using a kernel function (Schölkopf et al., 1998). A kernel function applied on two

elements x(i),x(j) ∈ Dx has the following form:

κ
(
x(i),x(j)

)
= Φ

(
x(i)
)
· Φ
(
x(j)

)
(18)

where Φ(·) is a function that performs the mapping Φ : Dx → H and H is known as the

feature space. Based on Eq. (18), the so-called kernel trick is applied, which refers to the

observation that, if the access to H only takes place through inner products, then there is no

need to explicitly define Φ(·). The result of the inner product can be directly calculated using

κ(·, ·). Kernel PCA is a non-linear extension of PCA where the kernel trick is used to perform

PCA in H. The principal components in H are obtained from the eigen-decomposition of

the sample covariance matrix CH, analogously to the PCA case in Eq. (15).

However, in KPCA the eigen-decomposition problem:

CHv
(i) = λiv

(i) , i = 1, . . . , N (19)

is intractable, since CH cannot in general be computed (H might even be infinitely dimen-

sional). This problem is by-passed by observing that each eigenvector belongs to the span

of the samples Φ
(
x(1)

)
, . . . ,Φ

(
x(N)

)
, therefore scalar coefficients α

(i)
k exist, such that each

eigenvector v(i) can be expressed as the following linear combination (Schölkopf et al., 1998):

v(i) =

N∑

k=1

α
(i)
k Φ

(
x(k)

)
, i = 1, . . . , N. (20)

Based on Eq. (20) it can be shown that the eigen-decomposition problem in Eq. (19) can be

cast as:

Kα(i) = λ(i)α(i) , i = 1, . . . , N (21)

where K is the kernel matrix with elements:

Kij = κ
(
x(i),x(j)

)
. (22)

As for the case of PCA, Z is calculated by projecting X on them principal axes
{
v(i) , i = 1, . . . ,m

}

corresponding to the m largest eigenvalues. Schölkopf et al. (1998) showed that Z can be

11



directly computed based only on the values of the eigenvector expansion coefficients α
(i)
k and

the kernel matrix K. The k-th component of the i-th sample of Z, denoted by z
(i)
k is given

by;

z
(i)
k = Φ

(
x(i)
)T
v(k) =

N∑

j=1

α
(j)
k κ

(
x(i),x(j)

)
(23)

The key ingredient of KPCA is arguably the kernel function κ. In this paper two kernels

are considered, namely the polynomial kernel:

κ(x,x′; w) =
(
w1x

Tx′ + w2

)w3
, w1 > 0, w2 ≥ 0, w3 ∈ N, (24)

and the Gaussian kernel:

κ(x,x′; w) = exp

(
−1

2

M∑

k=1

1

w2
k

(xk − x′k)
2

)
, wk > 0 , k = 1, . . . ,M. (25)

A special case of the Gaussian kernel is the isotropic Gaussian kernel (also known as radial

basis function) that simply assumes the same parameter value wk for all components of x.

Note that KPCA using a polynomial kernel with parameters w1 = 1, w2 = 0 and w3 = 1 is

identical to PCA, since Φ(x) = x. A discussion on the equivalence between PCA and KPCA

with linear kernel (w3 = 1) for arbitrary values of w1, w2 can be found in Appendix A. From

Eq. (23) it follows that Z can be expressed as Z = g(X ; w) where w encompasses both the

kernel parameters and the reduced space dimension m.

In the context of unsupervised learning, two methods to infer the values of w from X are

considered. The distance preservation method aims at optimising w in such a way that the

Euclidean distances between the samples are preserved between the original and the feature

space (Weinberger et al., 2004). This is expressed by the following objective function:

Jdist(w;X ) =
N∑

i,j=1

(dij − δij)2 (26)

where

dij =
∥∥∥x(i) − x(j)

∥∥∥ (27)

and

δij =
∥∥∥Φ(x(i),w)− Φ(x(j),w)

∥∥∥ . (28)

By expanding the norm expression in Eq. (28) it is straightforward to show that:

δij =
√
Kii +Kjj − 2Kij , (29)

hence the value of δij is readily available from the kernel matrix K.

The reconstruction error -based method aims at optimising w in such a way that the so-

called pre-image, x̃ = g−1(z,w′), of z = g(x,w) approximates x as close as possible (Alam

and Fukumizu, 2014). This is expressed by the following objective function:

Jrecon(w;X ) =
1

N

N∑

i=1

∥∥∥x(i) − x̃(i)
∥∥∥
2

(30)
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In contrast to PCA, calculating x̃ is non-trivial, an issue that is known as the pre-image

problem (see e.g.Kwok and Tsang (2003)). The approach for dealing with this problem is

the one adopted by the popular python package scikit-learn (Pedregosa et al., 2011),

which is based on Weston et al. (2004). After performing the KPCA transform X 7→ Z, the

(non-unique) pre-image of a new point z is computed by kernel-ridge regression using a new

kernel function κpre:

x̃ = βTl(z), (31)

where:

`(z) =
{
κpre(z, z(j)), j = 1, . . . , N

}
, (32)

and β are the kernel-ridge regression coefficients. They are calculated as follows:

β = (L+ rIN )
−1 X Lij =

{
κpre

(
z(i), z(j)

)
, i, j = 1, . . . , N

}
(33)

where r is a regularisation parameter and IN is the N -dimensional identity matrix. In

Pedregosa et al. (2011) and in this paper, we use for simplicity the same kernel for the

pre-image problem as for KPCA, i.e. κpre (·, ·) is chosen equal to κ (·, ·).
Note that, in the unsupervised learning literature, the reduced space dimension, m, is

typically not part of w, i.e. only the kernel parameters are considered when minimising the

objective function in Eq. (26) or Eq. (30).

4.3 Kriging

Kriging, a.k.a. Gaussian process modelling, is a surrogate modelling technique which assumes

that the true model response is a realisation of a Gaussian process described by the following

equation (Santner et al., 2003):

M̂(x) = β>f(x) + σ2Z(x) (34)

where β>f(x) is the mean value of the Gaussian process, also called trend, σ2 is the Gaussian

process variance and Z(x) is a zero-mean, unit-variance Gaussian process. This process is

fully characterised by the auto-correlation function between two sample points R(x,x′;θ).

The hyperparameters θ associated with the correlation functionR(·;θ) are typically unknown

and need to be estimated from the available observations. Various correlation functions can

be found in the literature (Rasmussen and Williams, 2006; Santner et al., 2003), including

the linear, exponential, Gaussian (a.k.a. squared exponential) and Matérn functions. In this

paper the separable Matérn correlation family is chosen:

R (|x− x′| ; l, ν) =
M∏

i=1

1

2ν−1Γ(ν)

(√
2ν
|xi − x′i|

li

)ν
κν

(√
2ν
|xi − x′i|

li

)
, (35)

where x, x′ are two samples in the input space Dx, l = {li > 0, i = 1, . . . ,M} are the scale

parameters (also called correlation lengths), ν ≥ 1/2 is the shape parameter, Γ(·) is the
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Euler Gamma function and κν(·) is the modified Bessel function of the second kind (a.k.a.

Bessel function of the third kind). The values ν = 3/2 and ν = 5/2 of the shape parameter

are commonly used in the literature. The isotropic variant of the Matérn correlation family

assumes a fixed correlation length value l in Eq. (35) over all M input variables.

Regarding the trend part β>f(x) in Eq. (34), the general formulation of universal Kriging

is adopted, which assumes that the trend is composed of a linear combination of P pre-

selected functions {fi(x), i = 1, . . . , P}, i.e.:

β>f(x) =

P∑

i=1

βifi(x), (36)

where βi is the trend coefficient of each function.

The Gaussian assumption states that the vector formed by the true model responses, y

and the prediction, Ŷ (x), at a new point x, has a joint Gaussian distribution defined by:


Ŷ (x)

y


 ∼ NN+1




f
>(x)β

Fβ


 , σ2


 1 r>(x)

r(x) R




 (37)

where F is the information matrix of generic terms:

Fij = fj(x
(i)) , i = 1, . . . , N, j = 1, . . . , P, (38)

r(x) is the vector of cross-correlations between the prediction point x and each one of the

observations whose terms read:

ri(x) = R(x,x(i);θ), i = 1, . . . , N. (39)

R is the correlation matrix given by:

Rij = R(x(i),x(j);θ), i, j = 1, . . . , N. (40)

The mean and variance of the Gaussian random variate Ŷ (x) (a.k.a. mean and variance of

the Kriging predictor) can be calculated based on the best linear unbiased predictor (BLUP)

from Santner et al. (2003):

µŶ (x) = f(x)>β + r(x)>R−1 (y − Fβ) , (41)

σ2
Ŷ

(x) = σ2
(
1− r>(x)R−1r(x) + u>(x)(F>R−1F )−1u(x)

)
(42)

where:

β =
(
F>R−1F

)−1
F>R−1y (43)

is the generalised least-squares estimate of the underlying regression problem and

u(x) = F>R−1r(x)− f(x). (44)
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The mean response in Eq. (41) is considered as the output of a Kriging surrogate, i.e.

M̂(x) = µŶ (x). It is important to note that the Kriging model interpolates the data, i.e.:

µŶ (x) =M(x), σ2
Ŷ

(x) = 0, ∀x ∈ X (45)

The equations that were derived for the best linear unbiased Kriging predictor assumed

that the covariance function σ2R(·;θ) is known. In practice however, the family and other

properties of the correlation function need to be selected a priori. The hyperparameters θ,

the regression coefficients β and the variance σ2 need to be estimated based on the available

experimental design.

The optimal estimates of the correlation parameters θ̂ are determined by minimising

the generalisation error of the Kriging surrogate, based on the leave-one-out cross-validation

error (Santner et al., 2003; Bachoc, 2013):

θCV = arg min
Dθ

K∑

i=1

(
M(x(i))− µŶ ,(−i)(x(i))

)2
, (46)

where µŶ ,(−i)(x
(i)) corresponds to the mean value of a Kriging predictor that was built

from the samples X \
{
x(i), y(i)

}
, evaluated at x(i). The computational cost for calculating

the terms µŶ ,(−i)(x
(i)) can be significantly reduced as shown in Dubrule (1983). First, the

following matrix inversion is performed:

B =


σ

2R F

F T 0



−1

. (47)

Then µŶ ,(−i) is calculated as follows:

µŶ ,(−i) = −
N∑

j=1,j 6=i

Bij

Bii
y(j). (48)

In this work we use cross-validation for estimating the correlation parameters instead of the

maximum likelihood method (Santner et al., 2003)). This is motivated by the comparative

study in Bachoc (2013) between maximum likelihood (ML) and CV estimation methods.

The CV method is expected to perform better in cases that the correlation family of the

Kriging surrogate is not identical to the one of the true model. This is typically the case in

practice and in the application examples in Section 5.

Determining the optimal parameters θCV in Eq. (46) leads to a complex multi-dimensional

optimisation problem. Common optimisation algorithms employed to solve Eq. (46) can be

cast into two categories: local and global. Local methods are usually gradient-based, such as

the BFGS algorithm (Bazaraa et al., 2013), and search locally in the vicinity of the starting

point. This makes them prone to get stuck at local minima, although they can be compu-

tationally efficient due to the use of gradients. Global methods such as genetic algorithms

(Goldberg, 1989) do not rely on local information such as the gradient. They seek the global

minimum by various adaptive resampling strategies within a bounded domain. This often

leads to considerably more objective function evaluations compared to local methods.

15



As mentioned in Section 3.3, to alleviate the computational costs in the inner loop opti-

misation in Eq. (14), an inexpensive-to-calibrate Kriging surrogate is built. To this end, the

isotropic version of the Matérn correlation family is used, combined with low computational

budget optimisation of the correlation parameters. For calculating the final, high-accuracy,

Kriging surrogate an optimisation with high-computational budget is performed instead,

combined with the use of an anisotropic correlation family. The introduction of anisotropy

is expected to improve the generalisation performance the metamodel, as shown for instance

in the study by Moustapha et al. (2018).

4.3.1 Polynomial chaos expansions

Polynomial chaos expansions represent a different class of surrogate models that has seen

widespread use in the context of uncertainty quantification due to their flexibility and effi-

ciency. Consider that X ∈ RM is a random vector with independent components described

by the joint PDF fX and that the model output Y in Eq. (4) has finite variance. Then the

polynomial chaos expansion of M(X) is given by:

Y =M(X) =
∑

α∈NM

θαΨα(X) (49)

where the Ψα(X) are multivariate polynomials orthonormal with respect to fX , α ∈ NM

is a multi-index that identifies the components of the multivariate polynomials Ψα and the

θα ∈ R are the corresponding coefficients.

In practice, the series in Eq. (49) is truncated to a finite sum, by introducing the truncated

polynomial chaos expansion:

M(X) ≈ M̂(X) =
∑

α∈A
θαΨα(X) ≡ θ>Ψ(x) (50)

where A ⊂ NM is the set of selected multi-indices of multivariate polynomials. A typical

truncation scheme consists in selecting multivariate polynomials up to a total degree p, i.e.

A =
{
α ∈ NM : ‖α‖1 ≤ p

}
, with ‖α‖1 =

∑M
i=1 αi. The corresponding number of terms in

the truncated series rapidly increases with M , giving rise to the “curse of dimensionality”.

Other truncation strategies effective in higher dimension are discussed, e.g., in Blatman and

Sudret (2010); Jakeman et al. (2015).

The polynomial basis Ψα(X) in Eq. (50) is traditionally built starting from a set of

univariate orthonormal polynomials φ
(i)
k (xi) which satisfy:

〈
φ
(i)
j (xi), φ

(i)
k (xi)

〉
def
=

∫

DXi

φ
(i)
j (xi)φ

(i)
k (xi)fXi

(xi)dxi = δjk (51)

where i identifies the input variable w.r.t. which they are orthogonal, as well as the cor-

responding polynomial family, j and k the corresponding polynomial degree, fXi
(xi) is the

ith-input marginal distribution and δjk is the Kronecker symbol. Note that this definition
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of inner product can be interpreted as the expectation value of the product of the multipli-

cands. The multivariate polynomials Ψα(X) are then assembled as the tensor product of

their univariate counterparts:

Ψα(x)
def
=

M∏

i=1

φ(i)αi
(xi) (52)

For standard distributions, such as uniform, Gaussian, gamma, beta, the associated families

of orthogonal polynomials are well-known (Xiu and Karniadakis, 2002). Orthogonal polyno-

mials can be constructed numerically w.r.t. any distribution (including non-parametric ones

like those obtained by kernel density smoothing) by means of Gram-Schmidt orthonormali-

sation (a.k.a. Stieltjes procedure for polynomials (Gautschi, 2004)).

The expansion coefficients θ =
{
θα, α ∈ A ⊂ NM

}
in Eq. (50) are calculated by min-

imising the expectation of least-squares residual (Berveiller et al., 2006):

θ̂ = arg minE
[(
θTΨ(X)−M(X)

)2]
. (53)

In the context of DRSM, the set of input parameters w for a PCE surrogate consists in w =

{p,θ}, i.e. the maximal degree of the truncated expansion and the associated coefficients.

Due to the quadratic programming nature of the minimisation in Eq. (53) and the linearity

of PCE (see Eq. (50)), we adopt the adaptive sparse-linear regression based on least angle

regression first introduced by Blatman and Sudret (2011).

As for the case of Kriging, the LOO error (see Eq. (10)) is analytically available from the

expansion coefficients (Blatman and Sudret, 2011):

εLOO =
N∑

i=1

(
M(x(i))− M̂PC(x(i))

1− hi

)2/ N∑

i=1

(
M(x(i))− µ̂Y

)2
, (54)

where hi is the ith component of the vector given by:

h = diag
(
A(ATA)−1AT

)
, (55)

and A is the experimental matrix with entries Aij = Ψj

(
x(i))

)
.

To calculate the proxy PCE surrogates used during the DRSM optimisation phase (see

Section 3.3), the input variables in z, are assumed uniformly distributed and independent.

The PCE coefficients are computed by solving Eq. (53) using the ordinary least squares

method (Berveiller et al., 2006). To calculate the PCE coefficients of the final, high-

accuracy, surrogate M̂(g(x; ŵ)), the distributions of the input variables are fitted using

kernel-smoothing, while retaining the independence assumption, motivated by the results

in Torre et al. (2018). In addition, a sparse solution is obtained by solving the optimisa-

tion problem in Eq. (53) using least angle regression (Blatman and Sudret, 2011) instead of

ordinary least squares.
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5 Applications

The performance of DRSM is evaluated on the following applications: (i) an artificial analytic

function with 20 unstructured inputs and approximately known intrinsic dimension, (ii) a

realistic electrical engineering model with 80 unstructured inputs and unknown intrinsic

dimension and, (iii) a heat diffusion model with 16, 000 structured inputs and unknown

intrinsic dimension.

For each example, DRSM is applied using KPCA for compression together with Krig-

ing or polynomial chaos expansions for surrogate modelling. The surrogate performance

is then compared, in terms of generalisation error, to the sequential application of unsu-

pervised dimensionality reduction followed by surrogate modelling. To improve readability,

various details regarding the implementation of the optimisation algorithms and the surro-

gate models calibration are omitted from the main text and given in Appendix B instead.

All the surrogate modelling techniques were deployed with the Matlab-based uncertainty

quantification software UQLab (Marelli and Sudret, 2014, 2018; Lataniotis et al., 2018).

5.1 Sobol’ function

The Sobol’ function (also known as g-function) is a commonly used benchmark function in

the context of uncertainty quantification. It reads:

Y =
M∏

i=1

|4Xi − 2|+ ci
1 + ci

, (56)

where X = {X1, . . . , XM} are independent random variables uniformly distributed in the

interval [0, 1] and c = {c1, . . . , cM}T are non-negative constants. In this application, we

chose M = 20 and the constants c given by Konakli and Sudret (2016a); Kersaudy et al.

(2015):

c = {1, 2, 5, 10, 20, 50, 100, 500, 500, . . . , 500}T. (57)

It is straightforward to see that the effect of each input variable Xi to the output Y is

inversely proportional to the value of ci. In other words, a small (resp. large) value of ci

results in a high (resp. low) contribution of Xi to the value of Yi. For the given values

of the constants c, one would expect that, roughly, the first 4 to 6 variables can provide a

compressed representation of X with minimal information loss regarding the input-output

relationship.

To showcase the performance of DRSM, an experimental design X , consisting of 800

samples, is generated by Latin Hypercube sampling of the input distribution (McKay et al.,

1979). Based on the samples in X and the corresponding model responses Y, several combi-

nations of KPCA, Kriging and PCE are tested within the DRSM framework. An additional
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set of 105 validation samples {Xv,Yv} is generated for evaluating the performance of the

final surrogates.

The first analysis consists in comparing the generalisation performance as a function of

the compressed input dimension m for Kriging and PCE models combined with KPCA with

different kernels. Because of the availability of a validation set, the performance of the LOO

error estimator in Eq. (10) is also assessed by comparing it with the true validation error in

Eq. (6). Figures 1a and 1b show the LOO error estimator of the final surrogate model when

using Kriging and PCE, respectively. In each panel the different curves correspond to dif-

ferent KPCA kernels, namely polynomial kernel (Eq. (24)) and isotropic (resp. anisotropic)

Gaussian (Eq. (25)). Figures 1c and 1d show the corresponding validation error on the vali-

dation set for the same scenarios. At a first glance, it is clear that the top and bottom figures

are remarkably similar, both in their trends and in absolute value. Therefore, it is concluded

that on this example εLOO is a good measure of the generalisation error εgen. This is an

important observation, because in the general case a validation set is not available, while

εLOO can always be calculated. Moreover, the intrinsic dimension identified by all the best

DR-SM combinations is equal to m̂ = 6, which is a reasonable estimate based on the values

of the constants ci in Eq. (57).

The DRSM algorithm identifies the anisotropic Gaussian kernel as the best KPCA kernel

to be used in conjunction with both Kriging and PCE. However, the performance of PCE

is significantly better in terms of generalisation error. The optimal parameters for each case

(Kriging and PCE) are highlighted by a black dot in Figure 1, and their numerical values

are reported in Table 1.

Table 1: Sobol’ function: optimal DRSM configurations for Kriging- and PCE-based surrogate models

SM method KPCA kernel m̂ εLOO ε̂gen

Kriging Anisotropic Gaussian 6 0.0704 0.0830

PCE Anisotropic Gaussian 6 0.0096 0.0083

Subsequently, the performance of DRSM is compared against an unsupervised approach,

in which dimensionality reduction is carried out first, before applying surrogate modelling.

To facilitate a meaningful comparison between the various methods, the reduced dimension

and the optimal KPCA kernel as determined by the first analysis (see Table 1) is used. The

results are summarised in Figure 2, while the corresponding list of tested configurations for

both DRSM and the sequential DR-SM is given in Table 2.

The experimental design consists of 800 samples. The performance of each method is

evaluated in terms of the generalisation error of the final surrogate M̂(z) evaluated on

a validation set {Xv,Yv =M(Xv)} with 105 samples. To evaluate the robustness of the

results, this process is repeated 10 times, each corresponding to a different set X , drawn
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(a) Kriging - LOO error (b) PCE - LOO error

(c) Kriging - Validation error (d) PCE - Validation error

Figure 1: Error estimates of the DRSM surrogate as a function of the reduced space dimension. Kernel PCA is

used with isotropic (resp.anisotropic) Gaussian as well as polynomial kernels.

Table 2: Different setups considered for evaluating the final surrogate model performance after using each of them

for dimensionality reduction.

Dim. reduction Parameter tuning objective Abbreviation

Kernel PCA εLOO of Kriging (KG) or PCE surrogate

(Eq. (13))

DRSM

Kernel PCA Reconstruction error (Eq. (30)) KPCA-RECON

Kernel PCA Pairwise distance preservation (Eq. (26)) KPCA-DIST

PCA - PCA

at random using the Latin Hypercube sampling method. On the left (resp. right) panel, a

Kriging (resp. PCE) surrogate is calculated using one of the methods in Table 2. Each box

20



plot in Figure 2 provides summary statistics of the generalisation error that was achieved by

each configuration over the 10 repetitions. The central mark indicates the median, and the

bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The

whiskers extend to the most extreme data points up to 1.5 times the inter-quartile range

above or below the box edges. Any sample beyond that range is considered an outlier and

plotted as a single point.

(a) Kriging (b) Polynomial chaos expansions

Figure 2: Sobol’ function: estimates of the generalisation error.

The DRSM approach consistently shows superior performance compared to the unsu-

pervised approaches. This performance improvement becomes more apparent in the case

of PCE surrogate modelling, where the average validation error over the 10 repetitions is

reduced by almost two orders of magnitude compared to the other methods.

Due to the analytical nature of the model under consideration, we further evaluate the

DRSM-based input compression by means of how the most important input variables are

mapped to the reduced space. We adopt the total Sobol’ sensitivity indices as a rigorous

measure of the importance of each input variable. Sobol’ sensitivity analysis is a form

of global sensitivity analysis based on decomposing the variance of the model output into

contributions that can be directly attributed to inputs or sets of inputs (Sobol’, 1993). The

total Sobol’ sensitivity index of an input variable Xi, denoted by SToti ∈ [0, 1], quantifies the

total effect of Xi on the variance of Y . In this particular example, the total Sobol’ indices

can be analytically derived (Saltelli et al., 2000). Their values are shown for reference in

Figure 3a.

It is clear from Eq. (56) and Eq. (57) that all 20 input variables contribute to the output

variability, i.e. the intrinsic dimension of the problem is 20. However, the contribution of

each input component quickly diminishes with larger values of ci (see Figure 3a in which

the values of the 20 total Sobol’ indices are plotted, in logarithmic scale, as horizontal bars).

Compressing the inputs in this problem is expected to lead to a mapping where those first
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(a) Total Sobol’ indices (b) m = 3 (c) m = 4 (d) m = 5 (e) m = 6

Figure 3: Sobol’ function: visualisation of the sample-based Spearman correlation coefficient (absolute value)

between the model inputs X and the reduced space inputs Z.

few input components have the largest contribution.

In Figure 3 the features in the reduced space Z are compared against the original in-

puts X. The rationale behind this heuristic analysis is simple: if the features obtained by

DRSM are correctly identified, they should depend mostly on the same variables identified

as important in the Sobol’ analysis in Figure 3a. A simple measure of dependence between

the reduced space components {zi , i = 1, . . . ,m} and the initial input space components

{xi , i = 1, . . . ,M} is provided by the metric |ρ (zi, xi)|, where ρ denotes the Spearman cor-

relation coefficient. Figures 3b - 3e represent graphically the quantity |ρ (zi, xi)| for the best

surrogate identified in Table 1, namely a PCE coupled with KPCA using an anisotropic

Gaussian kernel, evaluated on the validation set {Xv,Yv}. Each figure corresponds to a

different selection of reduced space dimension m. Figure 3 clearly shows that (i) each zi

correlates strongly with a specific xi, (ii) the zi’s correlate with the m “most important”

xi’s, and, (iii) the larger m value leads to the discovery of a new input zi that correlates with

the next “most important” component of x.

5.2 Electrical resistor network

Figure 4: The resistor networks application example
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(a) Kriging - LOO error (b) PCE - LOO error

(c) Kriging - Validation error (d) PCE - Validation error

Figure 5: Electrical resistor networks: error estimates of the DRSM surrogate as a function of the reduced

dimension. Kernel PCA is used with anisotropic (resp. isotropic) Gaussian as well as polynomial kernels.

The electrical resistor network in Figure 4 (Jakeman et al., 2015) is considered next. It

contains 80 resistances of uncertain ohmage (model inputs) and it is driven by a voltage

source providing a known potential V0. The output of interest is the voltage V at the node

shown in Figure 4. A single set of 1, 000 experimental design samples and model responses

is available, courtesy of J. Jakeman.

As in the previous section, the goal of the first analysis is to determine the generalisation

performance of the DRSM surrogate as a function of the reduced space dimension m when

KPCA is combined with either Kriging or PCE. In addition, the accuracy of the LOO error

in Eq. (10) is compared to the validation error in Eq. (7). The samples are randomly split

into 500 pairs {X ,Y} used during the DRSM calibration and 500 pairs {Xv,Yv} used for

validation.

Figures 5a and 5b show the LOO error estimator of the final surrogate model (Kriging
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(a) Kriging (b) Polynomial chaos expansions

Figure 6: Electrical resistor networks: estimates of the generalisation error.

or PCE), evaluated on {X ,Y}, whereas Figures 5c and 5d show the validation error of the

surrogate, evaluated on {Xv,Yv}. In each panel, each curve corresponds to a different KPCA

kernel, namely anisotropic or isotropic Gaussian, and polynomial. Finally, the optimal con-

figuration for each SM method is illustrated by a black dot. Similarly to the Sobol’ function,

the use of an anisotropic kernel in KPCA results in significantly reduced generalisation error.

Indeed this is expected from a physical standpoint. The effect of the resistors on the voltage

V will decay with distance (in terms of the number of preceding resistors) from V , which

implies anisotropy in terms of the effect of each input variable to the output. As in the pre-

vious application example, the LOO error in Figures 5a and 5b provides a reliable proxy of

the generalisation error in Figures 5c and 5d and the same optimal parameters are identified

w.r.t. the two error measures. The optimal DRSM configuration for each surrogate model

is given in Table 3.

Table 3: Resistor networks: optimal DRSM configurations for Kriging and PCE surrogate models

SM method KPCA kernel m̂ εLOO ε̂gen

Kriging Anisotropic Gaussian 24 2.000e-04 2.402e-04

PCE Anisotropic Gaussian 32 3.621e-05 3.249e-05

Next, the performance of DRSM is compared to unsupervised approaches considering

the setups in Table 2. The results of this comparative study are given in Figure 6 using

box plots. They are obtained by the repeated random selection of 500 samples from the

available 1, 000, leading to 10 separate surrogate models for each case. The performance

of each method is determined by means of the ε̂gen of the final surrogate M̂(z) evaluated

on the validation set {Xv,Yv =M(Xv)}, that corresponds to the remaining 500 samples of
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each split. Hence, each box-plot provides summary statistics of the validation error over the

different splits. Each of the setups is tested both for Kriging (Figure 6a) and PCE surrogates

(Figure 6b). In this application example the DRSM-based surrogates outperform the others

by several orders of magnitude in both cases (Kriging, PCE). This highlights the difference

between the unsupervised and supervised compression: compressing the input using only the

information in X appears inefficient when followed by surrogate modelling.

5.3 2D heat diffusion

This last application consists in a 2-dimensional stationary heat diffusion problem. The

problem is defined in a square domain, D = [−0.5, 0.5]× [−0.5, 0.5], where the temperature

field T (v), v ∈ D is the solution of the elliptic partial differential equation:

−∇ · (d(v)∇T (v)) = 500 IA(v), (58)

with boundary conditions T = 0 on the top boundary and ∇T · n = 0 on the left, right

and bottom boundaries, where n denotes the vector normal to the boundary. In Eq. (58),

A corresponds to a square domain (see Figure 7) and IA is the indicator function equal to 1

if v ∈ A and 0 otherwise. The diffusion coefficient d(v) is a lognormal random field defined

by:

d(v) = exp (ad + bd g(v)) , (59)

where g(v) is a Gaussian random field and the parameters ad, bd are such that the mean

and standard deviation of d are µd = 1 and σd = 0.3 respectively. The random field is

characterised by a Gaussian correlation function R(v,v′) = exp
(
−‖v− v′‖2 /`2

)
, with

` = 0.2. The output of interest is the average temperature in the square domain B within

D (see Figure 7).

To solve Eq. (58), the Gaussian random field g(v) is first discretised using the expansion

optimal linear estimation (EOLE) method (Li and Der Kiureghian, 1993). Consider a grid

in D with nodes {v1, . . . ,vn}. By retaining the first p terms in the EOLE series, g(v) is

approximated by:

ĝ(v) =

p∑

i=1

ξi√
l(i)

(
φ(i)

)>
Cvv(v), (60)

where {ξ1, . . . , ξp} are independent standard normal random variables, Cvv is a vector

with elements C
(k)
vv = R(v,vk) for k = 1, . . . , n and {

(
l(i),φ(i)

)
, i = 1, . . . , n} are the

eigenvalues and eigenvectors of the correlation matrix Cvv with elements C
(i,j)
vv = R(vi,vj)

for i, j = 1, . . . , n. In the following analysis the Gaussian random field realisations are

computed using p = 30 terms in the EOLE series in Eq. (60), which allows to represent

93.69% of the variance of the original field.

The underlying deterministic problem is solved with an in-house finite-element analysis

code developed in Matlab. The mesh shown in Figure 7a consists of 16, 000 triangular
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(a) Finite element mesh (b) Input random field realisation (c) Corresponding temperature dis-

tribution

Figure 7: 2D heat diffusion problem: illustration of the model input and output.

T3 elements. Figure 7b shows a realisation of the diffusion coefficient random field which

corresponds to the input of the model. The corresponding model output, shown in Figure 7c,

is the mean temperature in the highlighted square region B. Each realisation of the diffusion

coefficient random field is discretised over the mesh in Figure 7a. In the following analysis,

the system is treated as a black-box, with the discretised heat diffusion coefficient as a

high-dimensional input (M = 16, 000) and the average temperature in square B as the

scalar model output. A single set of 500 experimental design samples and model responses

is available. This example mimics a realistic scenario in which various maps of spatially

varying parameters measured on a regular grid, are input to a computational model that

analyses some performance of the system.

Table 4: 2D diffusion: optimal DRSM configurations for Kriging- and PCE-based surrogate models

SM method KPCA kernel m̂ ŵ (Eq. (24)) εLOO ε̂gen

ŵ1 ŵ2 ŵ3

Kriging Polynomial 20 131.3681 112.0040 1 0.0205 0.0216

PCE Polynomial 20 17.5225 15.1853 1 0.0340 0.0356

As in the previous application examples, the goal of the first analysis is to determine the

optimal DRSM configuration in terms of the KPCA kernel and the reduced space dimension,

as well as test the effectiveness of the LOO error as a proxy of the validation error. In this

analysis, the available samples are randomly split into 300 pairs to be used during the DRSM

optimisation and 200 pairs to be used for validation. The results are shown in Figure 8.

Figures 8a and 8b show the LOO error estimator of the final Kriging (resp. PCE) surrogate,

evaluated on {X ,Y}, whereas Figures 8c and 8d show the validation error of the surrogate

evaluated on {Xv,Yv}. Each curve corresponds to a specific type of KPCA kernel, namely

isotropic Gaussian and polynomial, and a specific surrogate, namely Kriging and PCE. We

omitted the anisotropic Gaussian kernel for KPCA which is intractable due to the large input
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(a) Kriging - LOO error (b) PCE - LOO error

(c) Kriging - Validation error (d) PCE - Validation error

Figure 8: 2D heat diffusion problem: Error estimates of the DRSM surrogate as a function of the reduced space

dimension. Kernel PCA is used with isotropic Gaussian and polynomial kernels.

dimensionality.

A similar convergence behaviour is observed between Kriging- and PCE- based DRSM.

The corresponding optimal parameter values are highlighted in Figure 8 and their numerical

values are reported in Table 4. The linear polynomial kernel performs best in both cases and

leads to the same reduced space dimension m̂ = 20. This significantly low dimension can be

interpreted by Eq. (60). The heat diffusion coefficient, although 16, 000- dimensional, is a

non-linear combination of p independent standard normal random variables. Moreover, the

LOO and validation error curves show similar behaviour both in terms of their trend and

their absolute value. Hence, the LOO error served as a reliable proxy of the validation error,

as was observed in the previous application examples too.

In the subsequent analysis we compare the performance of the DRSM approach against

other sequential approaches listed in Table 2. To test each setup, we repeat the calculation
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(a) Kriging (b) Polynomial chaos expansions

Figure 9: 2D heat diffusion problem: estimates of the generalisation error.

process 10 times. In each case the 500 available samples are split randomly into 300 samples

for calculating the surrogate and 200 samples for validation. The optimal KPCA kernel that

was determined by DRSM is used in all methods that involve KPCA. Also, for the sake of

comparison, the same reduced space dimension m̂ = 20 is assumed for all methods.

The results of this comparative study are given in Figure 9 using box plots to provide

summary statistics of the validation error over the different splits of the samples. In case

of Kriging surrogate modelling, DRSM consistently provides superior results compared to

the other methods. Notice that KPCA with linear kernel is equivalent to PCA on a scaled

version of the experimental design with scaling factor
√
w1 (see Appendix A for more details).

The Kriging surrogates, in contrast to the PCE ones, are affected by this scaling. This also

explains the performance improvement compared to the case of PCA-based DR. In case

of PCE surrogate modelling, the performance improvement gained by DRSM is marginal

compared to PCA and KPCA with distance preservation- based tuning of w.

Overall, DRSM consistently provides more accurate or at least comparable results com-

pared to the other approaches. The main difference with a standard UQ setting in which the

thermal conductivity is supposed to be sampled from a random field with known properties,

is that the proposed DRSM methodology is purely data-driven, i.e. it would be applied

identically in a case when the input maps are given without knowing the underlying random

process.

6 Summary and Conclusions

Surrogate modelling is a key ingredient of modern uncertainty quantification. Due to the

detrimental effects of high input dimensionality on most recent surrogate modelling tech-

niques, the input space needs to be compressed to make such problems tractable. We pro-
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posed a novel approach for effectively combining dimensionality reduction with surrogate

modelling, called DRSM. DRSM consists of three steps: (i) the DR and SM parameters are

calculated by solving a nested optimisation problem, where only low-accuracy surrogates

are considered to reduce the associated computational cost, (ii) the optimal configuration

parameters, including the dimension of the reduced space, are empirically estimated based

on the surrogate model performance, and, (iii) a final high-accuracy surrogate is calculated

using the optimal values of all the aforementioned parameters.

The performance of DRSM was compared on three different benchmark problems of vary-

ing complexity against the classical approach of tuning the dimensionality reduction and sur-

rogate modelling parameters sequentially. DRSM consistently showed superior performance

compared to the others in all the benchmark applications.

The novelty of the proposed methodology lies in its non-intrusive way of combining

dimensionality reduction and surrogate modelling. This allows for the combination of various

techniques without the need of tweaking the dedicated optimisation algorithms on which

each of them capitalises. A practical implication of the non-intrusiveness of DRSM is that

off-the-shelf surrogate modelling methods (or even software) with sophisticated calibration

algorithms can be directly used within this framework.

The focus was given to data-driven scenarios where only a limited set of observations and

model responses is available. We demonstrated that the leave-one-out cross-validation error

of the surrogate models can serve as a reliable proxy for estimating the generalisation error

in order to tune the DR parameters, but also to assess the overall accuracy of the resulting

surrogate.

It is noteworthy to mention that in application-driven scenarios where the goal is to obtain

a surrogate with optimal performance (regardless of its type) for that specific problem, the

proposed approach could be extended in a way that the surrogate type itself is included as

one of the parameters that DRSM needs to optimise. However, special care would need to

be given to the error metric used during the DRSM optimisation in this case, because the

LOO error estimations by different surrogates may have widely varied levels of bias (see e.g.

Tibshirani and Tibshirani (2009)).

In future extensions of this work, focus will be given to capitalising on available HPC re-

sources to optimise for different combinations of surrogate models and dimensionality reduc-

tion methods. In addition, the cost of training surrogate models increases with the number

of available experimental design samples. Therefore, research efforts will also be directed

towards dealing with large experimental designs, possibly within a big data framework.
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A Relationship between PCA and KPCA with linear

kernel

Consider the PCA-based dimensionality reduction x ∈ RM 7→ z ∈ Rm. As discussed in

Section 4.1, z is calculated as follows:

z = x>V , (61)

where V ∈ RM×m is the collection of the m eigenvectors of C = cov [X ] and X ∈ RN×M

is the experimental design.

Next, consider the kernel PCA mapping x ∈ RM 7→ q ∈ Rm using the linear kernel

function:

κ (x,x′) = ax>x′ + b. (62)

It is straightforward to show that the following transformation is equivalent to the linear

kernel in Eq. (62):

Φ(x) =
{√

b,
√
a x1, . . . ,

√
a xM

}>
, (63)

because κ (x,x′) = Φ(x)>Φ(x′). A sample q in the reduced space is calculated as follows

(see Section 4.2):

q = Φ(x)TVH, (64)
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where VH is the collection of the m eigenvectors of CH = cov [Φ(X )] with maximal

eigenvalues. Notice that in case of a = 1 and b = 0, from Eqs. (61), (64) follows that z = q.

The covariance matrix CH can be expressed as:

CH =




0 . . . 0
...

aC
0


 . (65)

Hence, excluding the eigenvector that corresponds to the zero eigenvalue, it is straight-

forward to show that

VH =


0 . . . 0

V


 . (66)

Based on Eqs. (63) and (66), Eq. (64) can be written as follows:

q =
[√

b
√
ax>

]

0 . . . 0

V


 (67)

=
√
ax>V (68)

=
√
a z (from Eq. (61)) (69)

Therefore, the dimensionality reduction using kernel PCA with a linear kernel provides

a scaled version of standard PCA and the constant b has no effect.

B Implementation details

This section provides an extensive list of the configuration parameter values that were used

to produce the results in Section 5. Table 5 (resp. Table 6)lists the configuration parameters

of Kriging (resp. polynomial chaos expansions) surrogate models. For each surrogate method

a distinction is made, in terms of the parameters used, between the proxy (i.e. low computa-

tional cost) surrogate and the high-accuracy one. The proxy surrogates were used for solving

the nested optimisation problem of DRSM in Eqs. (13), (14). The same configuration was

used to calculate the high-accuracy surrogates regardless of the input compression method

(DRSM or disjoint PCA/KPCA).

The parameters of the DRSM-based optimisation are listed in Table 7. Note that the

exact same optimisation algorithm and parameters were used for optimising w w.r.t. the

KPCA reconstruction and point-wise distance error in the box-plots used to compare the

various approaches. The optimisation constraints differ from the ones reported in Table 7

when a polynomial kernel is used in KPCA, as in Eq. (24), for improved numerical stability

of the solver. On top of the bound constraints reported in the table, that still apply for w1
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Table 5: The configuration of the Kriging surrogates that were calculated during the various steps of DRSM for

each application example.

Application Sobol’ function Resistor networks 2D diffusion

1. Proxy surrogate configuration

Trend constant (P = 0) linear (P = 1) linear (P = 1)

Correlation family isotropic Matérn (Eq. (35)) with ν = 5/2

Estimation method Cross-validation (Eq. (46))

Optim. method Genetic algorithm (GA) with BFGS (gradient based) refine-

ment of final solution

Optim. constraints θ ∈ [0.01, 100]

Population size (GA) 10

Max. iterations: 20 for both GA and BFGS

2. High-accuracy surrogate configuration. Only the parameters that differ from the

proxy surrogate configuration are listed

Correlation family anisotropic Matérn with ν = 5/2

Population size (GA) 20

Max. iterations: 50 for both GA and BFGS

and w2, the variable w3 (degree) is constrained to integer values 1 ≤ w3 ≤ 4 instead. In

addition, the following non-linear constraint is included:

w1x
Tx′ + w2 > 1. (70)
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Table 6: The configuration of the PCE surrogates that were calculated during the various steps of DRSM for each

application example

Application Sobol’ function Resistor networks 2D diffusion

1. Proxy surrogate configuration

Coeff. calculation

method

Ordinary least squares (Berveiller et al., 2006)

Univariate polynomials

family

Legendre

Hyperbolic truncation q

(Blatman and Sudret,

2010)

0.75 0.50 0.65

Polynomial degree

(adaptive search range)

[1, 10] [1, 10] [1, 5]

2. High-accuracy surrogate configuration. Only the parameters that differ from the

proxy surrogate configuration are listed

Coeff. calculation

method

Hybrid least angle regression (Blatman and Sudret, 2011)

Univariate polynomials

family

Orthogonal to the probability density function of the input vari-

ables that is estimated by kernel-smoothing, using the Stieltjes

procedure (Gautschi, 2004)

Hyperbolic truncation q

(Blatman and Sudret,

2010)

0.75

Polynomial degree

(adaptive search range)

[1, 15]
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Table 7: Parameters of the DRSM optimisation algorithm

Application Sobol’ function Resistor networks 2D diffusion

Optim. method Genetic algorithm with BFGS (gradient based) refinement of

final solution

Optim. constraints w ∈ [0.1, 300]

Population size(GA): 20 for isotropic

KPCA kernels, 80

for anisotropic

20 for isotropic

KPCA kernels, 100

for anisotropic

20 (only isotropic

KPCA kernels were

considered)

Max. iterations: 80 for both GA and

BFGS

150 for both GA and

BFGS

80 for both GA and

BFGS
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