
HAL Id: hal-01959122
https://hal.science/hal-01959122v1

Submitted on 18 Dec 2018 (v1), last revised 30 Mar 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model Driven Approach for Automated Generation of
Service-Oriented Holonic Manufacturing Systems

Mohammed El Amin Tebib, Pascal Andre, Olivier Cardin

To cite this version:
Mohammed El Amin Tebib, Pascal Andre, Olivier Cardin. A Model Driven Approach for Automated
Generation of Service-Oriented Holonic Manufacturing Systems. SOHOMA 2018 - International Work-
shop on Service Orientation in Holonic and Multi-Agent Manufacturing, Jun 2018, Bergamo, Italy.
pp.183-196, �10.1007/978-3-030-03003-2_14�. �hal-01959122v1�

https://hal.science/hal-01959122v1
https://hal.archives-ouvertes.fr


A Model Driven Approach for automated
generation of Service-oriented Holonic
Manufacturing Systems

Mohammed El Amin Tebib, Pascal André, and Olivier Cardin

Abstract In the context of manufacturing in Industry 4.0, software systems be-
come of prime importance. Efficient, adaptable and trusted software services are re-
quired. Several approaches succeeded in creating a Service-oriented Holonic Man-
ufacturing System that combines the advantages of Service-oriented Architectures
and Holonic Manufacturing Systems. However these systems until now suffer from
many shortcomings, among which genericity, lack of proof of the functional be-
haviour correctness, architecture modularity, etc. These systems are often manually
implemented and become hardly adaptable and reconfigurable to different contexts
(resources, workshop...). In this paper, we investigate a Model Driven Engineering
approach to represent these systems in order to automate the generation of the ser-
vices logic code from an abstract models and construct a new software chain that
deals with all the shortcomings cited above.

Key words: Service-Oriented Architecture, Holonic Manufacturing Systems, Model-
Driven Engineering, Verification

1 Introduction

Industry 4.0 increases the influence of software in the field of cyber-physical sys-
tems (CPS) where the service paradigm becomes pregnant. Cyber-Physical Pro-
duction Systems (CPPS) relies on the latest and foreseeable further developments
of computer science (CS), information and communication technologies (ICT), and

André. Pascal, Mohammed El Amin. Tebib
LUNAM Université, Université de Nantes, LS2N UMR CNRS 6004 2, rue de la Houssinière F-
44322 Nantes Cedex, France, e-mail: pascal.andre@univ-nantes.fr

Cardin. Olivier
LUNAM Université, IUT de Nantes – Université de Nantes, LS2N UMR CNRS 6004 2 avenue du
Prof. Jean Rouxel – 44475 Carquefou Cedex, France, e-mail: olivier.cardin@univ-nantes.fr

1



manufacturing science and technology (MST). CPPS consist of autonomous and co-
operative elements and subsystems that are connected based on the context within
and across all levels of production, from processes through machines up to pro-
duction and logistics networks [?]. Business processes can be connected to manu-
facturing processes. Cyber manufacturing is a transformative concept that involves
the translation of data from interconnected systems into predictive and prescriptive
operations to achieve resilient performance [?].

The unifying paradigm between processes and systems is the concept of ser-
vice, including the cloud stack XaaS and the Service Oriented Architectures (SOA).
The service paradigms supports scalability from (high level) business processes in
enterprise architecture frameworks to (low level) hardware operations. The coordi-
nation and control of such complex systems by the way of actors or components
requires methods and techniques to design, verify and deploy the services, possi-
bly on the fly, making service engineering an unavoidable approach to develop new
generation cyber-manufacturing systems. This is part of requirements of CPS men-
tioned by Wang et al. in the category ’design methodology’ [?]. As mentioned by
Bauer et al., the traditional automation pyramid is dissolving and manufacturing
IT is moving towards service-orientation and app-orientation [?]. As an example,
in cloud manufacturing, SoA was identified to meet the requirements of all higher
level manufacturing CPS layers due to the reduced time constraints present [?].

However "servicizing" is not sufficient to get software product with good-enough
quality as defined by Meyer [?]. First, we need software development techniques to
improve both the quality of the resulting applications (correctness and robustness)
but also its maintenance (extendibility, reusability). Second, we need analysis tools
to check the service model properties on various aspects (structure, dynamics, func-
tional and non-functional), and model transformations to compute new models or to
generate code in the spirit of Model Driven Engineering (MDE).

In a previous article [?], we advocated for a new vision of CPPSs construction
with an emphasis on trusted service based component systems to represent the soft-
ware part of CPPSs. The main idea was to incorporate a broad set of software de-
sign techniques and practices to improve the quality of the delivered CPPSs. In
this article, we follow this position when revisiting a legacy SOA oriented CPPSs
application and showing by practice our vision. We mainly address the software
construction process and maintenance issues (modularity, extendibility, reconfig-
urability, evolution) than the correctness and robustness issues which details will
be postponed to future contributions. Legacy applications miss abstraction, generic-
ity and modularity which make harder the evolution or reuse of such applications.
Thanks to model driven engineering and software development best practice, we
propose a software construction process that improves abstraction and separates the
concerns to face the above drawbacks. Abstraction enables to reason at the good
level e.g. verification of model properties before implementation. The separation of
concerns enables to separate the problem domain from the implementation issues
(simulation, real workshop, user interface, interoperability and communications...)

We present the problem statement in section 2 and sketch an overview of our pro-
posal in section 3. Thanks to MDE, building the manufacturing software becomes it-



self a Software Product Line where we intend to rationalize the software production
and maintenance, including features and variability, shared aspects are separated
from specific aspects. The approach is illustrated by on-going experimentation on
a benchmark workshop in section 4. The application of this work is discussed in
section 5. In conclusion, we draw the open perspectives and expected advantages.

2 Problem Statement

The starting point is a double finding, from literature review and current practice.
Related works mention that service engineering in the context of CPPSs is still

a craft activity, usually at the implementation level [?, ?]. Two main levers are still
required to go further. First, we need service models that can fit to various semantics
and various granularity levels. Indeed, the concept of CPPS covers many classes of
(physical) systems, from the manufacturing workshop to the whole supply chain.
Taking the example of HMS, the control of such systems is often recursive, if not
fractal, in order to aggregate the available resources and enable a heterarchic control
architecture. Therefore, services that might be used at various levels of the architec-
ture need to fit various granularity and the portability of services between different
applications with their own semantic requires an adaptability of the services to be
effective.

In practice, we started from the work of [?] who proposed a new vision for
the conception of agile HMS by coupling HMS architectures with Service-oriented
ones, which gave birth to the concept of Service-oriented Holonic Manufacturing
Systems (SoHMS) [?]. They implemented a manufacturing software in Java to con-
trol an assembly line as illustrated by Figure 1. The current implementation consists

Fig. 1 Gamboa manufacturing software [?]



of two applications which exchange informations through sockets. Both applica-
tions can be associated either to an emulation on Arena or to the real workshop via
its logic controller [?]. Both are intimately coupled with the actual workshop con-
tents so that any workshop modification implies a software review and maintenance.
The programs includes 160 classes, 1240 methods and 14802 lines of code.

A study of the software architecture seen of Figure 1 pointed out several limits
from a software quality point of view, including major trends such as maintenance
and evolution, verification, adaptability and reconfiguration, etc.

• Abstraction: Except some limited UML documentation, the application is mainly
java code which means that (i) the evolutions must be performed by experimented
software developers, (ii) each workshop modification implies a serious develop-
ment and verification work, (iii) during verification, business problem issues are
melt with implementation issues (iv) the general mechanisms are not distinct
from those specific to the workshop and lead to no simple reuse, no capitaliza-
tion, no simple reconfiguration...

• Maintenance and Evolution: Agility is widespread now, users requires new re-
quirements quickly. As the current manufacturing systems are highly diverse ac-
cording to a mechanical or physical requirements, e.g., adding, modifying or
deleting a mechanical component from the production workshop, any change can
have a negative influence on the control software, which makes its maintenance
and evolution a very delicate task.

• Verification: As the complexity of control software for manufacturing systems
shall increase in the next decade, proving the correctness of such properties be-
fore deploying the application in a real production cell becomes a critical task.
The current framework does not offer a model in which we can apply the verifi-
cation techniques and ensure the requirements fulfillment such as : correctness,
QoS, consistency, etc.

• Adaptability and Reuse Return on invest (ROI) applies not only when building
workshops but also for the control software. The models and applications should
be reused in different contexts. The current software architecture has not been
implemented with an explicit and modular way that facilitates to reuse (parts of)
the existing platform in different (rather similar) contexts.

The new vision intends to contribute to reduce these limitations.

3 Proposed approach

The proposal targets two goals: improve the quality of the software architecture
(modularity, extendibility, variability) and improve the software construction pro-
cess (abstraction, reuse, testability, reconfigurability).



3.1 Application Architecture

Instead of monolithic, nested and specific applications (left part of Figure 2) we
target modular, independent and parametric applications (right part of Figure 2).
The goal is to be as modular as possible in order to reduce the coupling between the
different components, and reduce the specificity criteria of a production software to
a precise context (layout, orders, resources, etc.).

Fig. 2 SoHMS Software Architecture

The main and first issue is to separate the generic part, that stands for any kind
of workshop, from the specific part which depends on the workshop resources and
organization to put in place. The second issue is to separate the workshop features
(resources and flows) from the manufacturing features (orders and products). The
primer are rather static (even when considering reconfigurable manufacturing sys-
tems) while the latter are merely dynamic, time depending and subject to quality
of service constraints. The GUI layer is separated in three applications: the system
definition, configuration and monitoring. It is set up for constructing all interactions
that an expert user can perform on a given manufacturing system, such as defin-
ing the various scenarios (Manufacturing editor), monitoring the running scenarios
and define the layout on which each scenario will unfold. Technically, a web GUI
layer enables not only to be independent from the operating systems and physical
devices, but also a compliant property for connecting the applications to service-



oriented cloud or IoT and Scada platforms. The running SoHMS application drives
the production system under the given constraints of the manufacturing process. The
process engine, that includes the HMS definition, scheduling algorithms and proper-
ties, is generic while the orders, products and key indicators are specific. Finally the
physical layer corresponds to different needs: emulation with Arena for example,
management blackboards and of course the real workshop. The communication net-
work between the layers should be compliant with different implementations (sock-
ets, messages, shared memories...) according to the target infrastructure.

3.2 Software Construction Process

Basically, the existing SoHMS application (left part of Figure 3) consists of a collec-
tion of Java programs and workshop description which have been manually written
and tested for a specific workshop case study.

Fig. 3 Software Construction Architecture

The new vision (right part of Figure 3) installs a kind of software product line
where people reason about the workshop to put in place before implementing it.
HMS libraries are defined through components and services with related implemen-
tations, such that building manufacturing systems is rather an assembly and integra-



tion activity rather than a programming activity. Handling models enables to work
with abstract concepts and to verify the expected properties without taking into ac-
count useless implementation details. These are qualified as platform independent
models (PIM) in the MDA spirit while the current programs are really platform spe-
cific models (PSM). Figure 3 illustrates the proposed approach using three layers:

• Modelling layer: Working with abstract models enables to address the problem
complexity and to formalize the system’s structure, behaviour and requirements.
Following the principle of “separation of concerns”, building orthogonal models
enforces consistency and reduces the software complexity. As an example, we
have separated the development of workshop models that specify the structure of
the production cells and the paths supporting the product transportation from the
manufacturing models that specify the product recipes, the orders management
and the orchestration of the process.

• Engineering layer: Model driven engineering means considering the model as a
first class element in the development process. In this context, we aim to use the
abstract models that we have defined in the modelling layer to apply : (i) formal
verification, to get a high level of insurance about the correctness in early phase
of the software development life cycle, (ii) models refinement, to automatically
reduce the abstraction level until generate a concrete model that represents the
application code, which increases the automation level in our approach. In addi-
tion we aim to construct standard and generic libraries and frameworks that can
be integrated during the refinement process.

• Implementation layer: Various implementation targets but also various goals can
be motivated. The implementation layer will support the automation process to
generate the logic code for each concern designed in the modelling stage (GUI
code, Emulation testbed, Manager blackboard and reporting, etc.).

Abstraction and separation of concerns are key issues for quality software design.

4 Experimentation

This section will briefly introduce the application context, an illustrative example
and will include various references on previous works and experimentation. A very
basic software production chain version is implemented to illustrate the process of
Figure 3. In this section we will present the resulted manufacturing software and the
different choices of technologies to implement it.

4.1 Case Study and Methodology

We could restart from the case study of [?] and refactor the existing programs.
However the reverse engineering and refactoring process of this proof of concept



(POC) application would take a long time because the specific and generic aspects
of the solution are interleaved. This POC is still a resource for reverse-engineering
but not the target system. So, the starting point for our case study was chosen as
the Bench4Star [?] manufacturing system. It is composed of seven workstations
placed around a flexible transportation system. Workstations can have specific or
concurrent capabilities. The production program consists of assembling components
on a plate.

From a methodological point of view, we follow an agile perspective and will fo-
cus on the transportation issues for the first iterations. In parallel to this engineering
stage, a reverse engineering process is applied to the current [?] application in order
to extract the main components and separate the generic and specific abstractions.
This work provides fruitful components to build the generic SoHMS framework of
Figure 3.

4.2 Workshop and Manufacturing Editor

The manufacturing editor, located in the GUI layer of Figure 3, aims to describe
the workshop features (resources, layouts, products and orders). In its first version,
a simple web-based textual editor has been developed to define the manufacturing
scenarios to play later on (Figure 4).

Fig. 4 Web GUI first implementation for CPPS control software

Scenarios are defined using JSON data format, a widespread data exchange
language, easy to read or write for humans and simple to be parsed by differ-
ent programming languages. The text editor is implemented using different web
technologies such as Vue.js, Bootstrap 4, HTML5, CodeMirror, WebScoket
and PHP7. Details on this editor can be found in [?]. The future versions will in-
clude GUI editors with menus and input forms equipped with drag and drop visual
facilities to build workshops and manufacturing models.



4.3 Model Engineering (UML models)

For the modeling layer, the workshop and manufacturing models will be described
using standard or domain specific languages (DSL) like UML, OCL, SysML,
AADL, Kmelia as mentioned in [?]. In the MDE spirit, the idea is to use a collection
of languages, each of them enabling to capture a part of the system’s semantics, say
a point of view, that could serve as a support to reason about the system and to refine
into implementable solutions.

Currently, we used UML diagramsto model elements of the manufacturing work-
shop and its behaviour. To find these elements, we got inspired by the application
of [?] and Bench4Star [?]. For example, the class diagram of Figure 5 illustrates a
simplified structural representation for the workshop (red part) and the production
orders and scenarios (blue part).

Fig. 5 SoHMS UML Models

To specify the behaviour of the system, we used UML sequence diagrams to ex-
press the interactions and statecharts to represent the component dynamic evolution.
Details on the current modeling activity can be found in [?].



4.4 Model Transformation and Code Generation

The goal is to reduce the complexity of the development (programming and test-
ing) by an iterative process made of simple processing task (modelling, verification,
generation) i.e. small steps instead of big steps. Model transformation and code gen-
eration help to automate the refinement from high level abstract models to low level
models (programs) that are specific to the target implementations. As an example,
the JSON files of section 4.2 are used to generate the SoHMS specific elements.
To generate the SoHMS code from the defined UML diagrams, we found that Pa-
pyrus1, a graphical Modeling tool for UML with model transformation facilities, is
a suitable tool to generate the corresponding code of our defined models basing on
Model driven Engineering approach and using the model transformation concepts.

4.5 Toward Generic Frameworks and Libraries

We started a reverse-engineering activity that separate in [?] application those
classes that are generic, i.e. that are independent from the workshop to put in place,
from those that are specific. The generic parts will be included in the SoHMS frame-
work and the WebGUI framework: component libraries, HMS engine, default or-
dering policies, communication support (WebSocket technology), etc. The goal is
to provide a generic and flexible communication support that can be extended to
various platforms for developing such control systems.

5 Discussion

The use of MDE was already demonstrated on classical manufacturing control sys-
tems to improve productivity of over 50% compared to a hand-made code generation
[?], in flexibility and reconfigurability for SMEs [?] and in the application of prod-
ucts customization principles [?]. On the other hand, numerous issues in innovative
CPPS control systems can be pointed out, among which:

• Lack of performance analysis and guarantees, due to the emergent behaviour
targeted by the application of multi-agent concepts. It is then necessary to imple-
ment trustable validation and verifications techniques [?] in order to guarantee
the respect of the design constraints in the final code;

• Lack of a repeatable methodology, in order to stabilize the code generation pro-
cess and increase the trust in the final behaviour of the system. This question is
of major matter considering ethical questions, such as responsibility in case of
major damages caused by the system [?];

1 https://www.eclipse.org/papyrus/



• Lack of stability of the underlying algorithms: in a Industry 4.0 context where
service-oriented control systems are among the main objectives, the current de-
velopments need a major and constant rewriting of the code which prevent any
reuse of codes or algorithms;

• Difficulty in migrating from and managing legacy environments: the control sys-
tem’s evolution is of a great concern when implementing innovative control sys-
tems to existing workshops. Indeed, the investment costs makes it quite impos-
sible to change the resources accordingly with the software. Therefore, the soft-
ware needs to adapt without rewriting code to a frequent reconfiguration of re-
sources along the evolutions of the workshop layout and the customers’ demand.

Considering this context, the objectives of this proposal are in two ways:

• Building an prototype software production chain in the context of next genera-
tion manufacturing control systems using MDE as a POC. By doing so, generic
models and libraries are to be developed and constructed that will constitute a
step beyond current literature in terms of genericity of CPPS control systems
development.

• Develop the advantages of the application of MDE in this POC, in order to be
able to demonstrate the Validation and Verification possibilities of such an ap-
proach and its benefits on the global process of control systems development:
this objective is directly bound to the richness of the models used for generation.

6 Conclusion and Perspectives

Introducing the service orientation into CPPS control software was a first step to
build scalable, modular and integrated control software. The next step is to intro-
duce model driven engineering to build modular software systems that are easier to
reconfigure, to maintain, but also to reuse parts into new other systems. We intro-
duce the new construction systems and experimented parts to show its feasibility.

Future work will instrument the full software product line that implements our
vision. At first, we will build the application engines i.e. the generic frameworks.
Second, thanks to model transformation, we can generate the plugable software el-
ements that are specific to the workshop to control. Third, we will write the code
generators that enable to target different physical systems. Last, but not least, we will
investigate the verification issues in order to implement trusty software systems.

References

[Aleksic et al., 2012] Aleksic, D. S., Jankovic, D. S., and Stoimenov, L. V. (2012). A case study on
the object-oriented framework for modeling product families with the dominant variation of the
topology in the one-of-a-kind production. The International Journal of Advanced Manufacturing
Technology, 59(1-4):397–412.



[André and Cardin, 2018] André, P. and Cardin, O. (2018). Trusted Services for Cyber Manufac-
turing Systems, pages 359–370. Springer International Publishing, Cham.

[Bauer et al., 2017] Bauer, D., Stock, D., and Bauernhansl, T. (2017). Movement towards service-
orientation and app-orientation in manufacturing {IT}. Procedia {CIRP}, 62:199 – 204. 10th
{CIRP} Conference on Intelligent Computation in Manufacturing Engineering.

[Carat et al., 2018] Carat, A., Cherrueau, M., Courtoison, T., Girard, L., Grondin, M., Jain, E.,
Lemetayer, P., and Quémard, M. (2018). Contribution au logiciel de contrôle d’une flotte
d’AGVs. Technical report, University of Nantes. (in french.

[Cuadrado et al., 2014] Cuadrado, J. S., Canovas Izquierdo, J. L., and Molina, J. G. (2014). Ap-
plying model-driven engineering in small software enterprises. Science of Computer Program-
ming, 89, Part B:176–198.

[Gamboa Quintanilla et al., 2016] Gamboa Quintanilla, F., Cardin, O., L’Anton, A., and Castagna,
P. (2016). Virtual Commissioning-Based Development and Implementation of a Service-
Oriented Holonic Control for Retrofit Manufacturing Systems. In Borangiu, T., Trentesaux,
D., Thomas, A., and McFarlane, D., editors, Service Orientation in Holonic and Multi-Agent
Manufacturing, number 640 in Studies in Computational Intelligence, pages 233–242. Springer.

[Lee et al., 2016] Lee, J., Bagheri, B., and Jin, C. (2016). Introduction to cyber manufacturing.
Manufacturing Letters, 8:11 – 15.

[Masood et al., 2013] Masood, T., Weston, R., and Rahimifard, A. (2013). A model-driven ap-
proach to enabling change capability in SMEs. The International Journal of Advanced Manu-
facturing Technology, 69(1-4):805–821.

[Meyer, 1988] Meyer, B. (1988). Object-Oriented Software Construction. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1st edition.

[Monostori et al., 2016] Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Rein-
hart, G., Sauer, O., Schuh, G., Sihn, W., and Ueda, K. (2016). Cyber-physical systems in manu-
facturing. CIRP Annals - Manufacturing Technology, 65(2):621 – 641.

[Morariu et al., 2013] Morariu, C., Morariu, O., and Borangiu, T. (2013). Customer order man-
agement in service oriented holonic manufacturing. Computers in Industry, 64(8):1061 – 1072.

[Morgan and O’Donnell, 2015] Morgan, J. and O’Donnell, G. E. (2015). The cyber physical im-
plementation of cloud manufactuirng monitoring systems. Procedia CIRP, 33:29 – 34. 9th CIRP
Conference on Intelligent Computation in Manufacturing Engineering - CIRP ICME ’14.

[Nastov et al., 2017] Nastov, B., Chapurlat, V., Pfister, F., and Dony, C. (2017). Mbse and v&v: a
tool-equipped method for combining various v&v strategies. IFAC-PapersOnLine, 50(1):10538
– 10543. 20th IFAC World Congress.

[Quintanilla, 2015] Quintanilla, F. G. (2015). Couplage des Architectures Holonique et Orientée-
Services pour la Conception de Systèmes de Production Agiles. PhD thesis, University of Nantes
Angers-Le Mans-COMUE. PhD Thesis (in french.

[Quintanilla et al., 2016] Quintanilla, F. G., Cardin, O., L’anton, A., and Castagna, P. (2016). A
modeling framework for manufacturing services in service-oriented holonic manufacturing sys-
tems. Engineering Applications of Artificial Intelligence, 55:26–36.

[Rodrigues et al., 2015] Rodrigues, N., Leitão, P., and Oliveira, E. C. (2015). Self-interested
service-oriented agents based on trust and qos for dynamic reconfiguration. In Borangiu, T.,
Thomas, A., and Trentesaux, D., editors, Service Orientation in Holonic and Multi-agent Manu-
facturing, volume 594 of Studies in Computational Intelligence, pages 209–218. Springer.

[Trentesaux et al., 2013] Trentesaux, D., Pach, C., Bekrar, A., Sallez, Y., Berger, T., Bonte, T.,
Leitão, P., and Barbosa, J. (2013). Benchmarking flexible job-shop scheduling and control sys-
tems. Control Engineering Practice, 21(9):1204–1225.

[Trentesaux and Rault, 2017] Trentesaux, D. and Rault, R. (2017). Designing ethical cyber-
physical industrial systems. IFAC-PapersOnLine, 50(1):14934 – 14939. 20th IFAC World
Congress.

[Wang et al., 2015] Wang, L., Törngren, M., and Onori, M. (2015). Current status and advance-
ment of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37:517 –
527.


