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This paper deals with the problem of interpolating partial functions over finite distributive lattices by lattice polynomial functions. More precisely, this problem can be formulated as follows: Given a finite distributive lattice L and a partial function f from D ⊆ L n to L, find all the lattice polynomial functions that interpolate f on D. If the set of lattice polynomials interpolating a function f is not empty, then it has a unique upper bound and a unique lower bound. This paper presents a new description of these bounds and proposes an algorithm for computing them that runs in polynomial time, thus improving existing methods. Furthermore, we present an empirical study on randomly generated datasets that illustrates our theoretical results.

Introduction

Lattice polynomial functions (LPFs) constitute a noteworthy class of functions that enable meaningful aggregation of qualitative data [START_REF] Grabisch | Aggregation Functions, volume 127 of Encyclopedia of Mathematics and Its Applications[END_REF]. Informally, they are functions on lattices that can be expressed by formulas involving only variables, constants, and the lattice operators of supremum ∨ and infimum ∧. This paper focuses on finite distributive lattices and considers the problem of interpolating partial functions by LPFs. More precisely, we consider the following problem.

Interpolation Problem. Let L be a finite distributive lattice, and n a positive integer. Given an arbitrary set D ⊆ L n and a partial function f : D → L, decide whether f can be interpolated by an LPF p : L n → L (that is, p(x) = f (x), for all x ∈ D) and, if this is the case, then describe all such interpolating LPFs.

Throughout this paper, we denote the set of all LPFs that interpolate a function f by IP(f ). If IP(f ) is nonempty, then we say that f is a partial LPF. It was shown in [START_REF] Rico | Preference modeling on totally ordered sets by the Sugeno integral[END_REF] that IP(f ) has a unique upper bound and a unique lower bound when L is totally ordered. The authors also provided a method for constructing these bounds. In fact [START_REF] Couceiro | General interpolation by polynomial functions of distributive lattices[END_REF], the set IP(f ) has uniques upper and lower bounds even in the case where L is a distributive lattice. However, to the best of our knowledge, no polynomial time method existed for computing these bounds.

In this paper we present a polynomial time algorithm that computes the bounds of IP(f ) and checks whether they specify a nonempty set. As a by-product, we provide a characterization of partial LFPs.

This paper is organized as follows. In Section 2 we recall the basic background on distributive lattices and LPFs, and in Section 3 we explain how the interpolation problem for LPFs is related to Multiple Criteria Decision Aid. More precisely, we show that LPFs can help handling problems involving unknown values by enabling the use of distributive lattices as intermediary scales. In Section 4 we extend previous results [START_REF] Couceiro | Interpolation by polynomial functions of distributive lattices: a generalization of a theorem of R. L. Goodstein[END_REF][START_REF] Prade | Elicitating Sugeno integrals: Methodology and a case study[END_REF][START_REF] Rico | Preference modeling on totally ordered sets by the Sugeno integral[END_REF] by showing that the upper and lower bounds of IP(f ) can be described by a polynomial number of constraints. In Section 5 we make use of the latter result to characterize the class of partial LPFs through the notion of semi-congruence. In Section 6 we provide the algorithms for computing the set of constraints describing IP(f ) and for checking whether IP(f ) is nonempty. We also present the worst case complexity of these algorithms, which is attested empirically in Section 7 through an application to randomly generated datasets of various dimensions. Some conclusions and directions for future research are then discussed in the last section.

Preliminaries

In this section we recall basic concepts and preliminary results that will be needed throughout the paper. For further background see, e.g., [START_REF] Davey | Introduction to Lattices and Order[END_REF][START_REF] Grätzer | General Lattice Theory[END_REF].

Basic background on distributive lattices

For any positive integer n, let [n] = {1, . . . , n}. For any finite set X, we will denote by 2 X the set of all subsets of X. Note that 2 X is ordered by inclusion and constitutes a partially ordered set (or a poset for short).

A lattice is a poset (L, ≤) in which any two elements a, b ∈ L have exactly one least upper bound, called the supremum of a and b and denoted by a ∨ b, and exactly one greatest lower bound, called the infimum of a and b and denoted by a ∧ b. Hence, a lattice (L, ≤) can also be regarded as the algebraic structure (L, ∨, ∧). When there is no danger of ambiguity, we will denote a lattice simply by its universe L. Also, if L is a finite lattice, then it is necessarily bounded, that is, it has a greatest element and a least element that are denoted by ⊤ L and ⊥ L , respectively. For example, for any set X, the poset 2 X is a lattice where ⊥ L = ∅, ⊤ L = X, and the operations ∨ and ∧ correspond respectively to the set union and the set intersection.

A lattice

(L 1 , ∨ 1 , ∧ 1 ) is said to be a sublattice of (L 2 , ∨ 2 , ∧ 2 ) if L 1 ⊆ L 2 and for any a, b ∈ L 1 , a ∨ 1 b = a ∨ 2 b and a ∧ 1 b = a ∧ 2 b.
In this paper, we will only consider finite distributive lattices. A lattice is said to be distributive if the following condition holds: for every a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or, equivalently, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
Equivalently, distributive lattices can be characterized as lattices that do not have any of the two lattices shown in Figure 1 as a sublattice [START_REF] Birkhoff | Lattice Theory[END_REF].

• • • • • • • • • • Figure 1:
The two forbidden substructures in a distributive lattice.

Two partially ordered sets (X 1 , ≤ 1 ) and (X 2 , ≤ 2 ) are said to be isomorphic if there is an order isomorphism between (X 1 , ≤ 1 ) and (X 2 , ≤ 2 ), i.e., if there is a bijection h : X 1 → X 2 such that, for every a, b ∈ X 1 , a ≤ 1 b if and only if h(a) ≤ 2 h(b). In the case of lattices, this relation becomes more stringent. Two lattices (L 1 , ∨ 1 , ∧ 1 ) and (L 2 , ∨ 2 , ∧ 2 ) are said to be isomorphic (as lattices) if there exists a bijection h :

L 1 → L 2 such that, for all a, b ∈ L 1 , h(a ∨ 1 b) = h(a) ∨ 2 h(b) and h(a ∧ 1 b) = h(a) ∧ 2 h(b).
An element x ∈ L is said to be join-irreducible if x ̸ = ⊥ L and if it is not the supremum of two other elements of L. In a lattice, any element is equal to the supremum of all join-irreducible elements lower than or equal to it. The set of join-irreducible elements of L is denoted by J (L). Note that J (L) is a poset whose order is inherited from L. Each distributive lattice is characterized by the poset of its join-irreducible elements. Therefore, two distributive lattices L 1 and L 2 are isomorphic if and only if the posets J (L 1 ) and J (L 2 ) are isomorphic [START_REF] Davey | Introduction to Lattices and Order[END_REF].

Moreover, every finite poset X gives rise to a distributive lattice. Let (X, ≤) denote a finite poset and let x ∈ X. The downset of x in X is denoted by ↓ x and defined by ↓

x = {y ∈ X | y ≤ x}. Consider the set O(X) = { ∪ x∈A ↓ x A ⊆ X }
of unions of downsets of X. The set O(X) ordered by inclusion is a distributive lattice whose poset of join-irreducible elements is

J (O(X)) = { ↓ x x ∈ X } .
It is easy to see that J (O(X)) is (order-)isomorphic to X.

Similarly, any finite distributive lattice L is isomorphic to O(J (L)). This establishes a two way correspondence between distributive lattices and posets that culminated in Birkhoff's representation theorem for finite distributive lattices, from which it follows that every finite distributive lattice L can be thought of as a sublattice of 2 J (L) .

Thus, each element a of L can be seen as a subset of J (L), namely, as the set of join-irreducible elements that are lower than or equal to a, or as a binary tuple of size k, where k = |J (L)|. Let J (L) = {a 1 , . . . , a k }, and let h denote the bijection from O(J (L)) to {0, 1} k that associates each element of O(J (L)) to a binary representation. Formally, for each A ∈ O(J (L)), let

h(A) = (b 1 , . . . , b k ), where b i = { 1 if a i ∈ A, 0 otherwise.
We consider the component-wise order on {0, 1} k defined by

(b 1 , . . . , b k ) ≤ (b ′ 1 , . . . , b ′ k ) if ∀i ∈ [k], b i ≤ b ′ i , for all (b 1 , . . . , b k ), (b ′ 1 , . . . , b ′ k ) ∈ {0, 1} k .
It is then easy to verify that h is in fact an isomorphism. Figure 2 given by h. The poset J (L) ∪ {1} of join-irreducibles elements in L.

(

The lattice

C 1 × C 2 .
The image of L by the embedding is marked out. Alternatively, L can always be seen as a sublattice of a product of chains [START_REF] Larson | Embeddings of Finite Distributive Lattices into Products of Chains[END_REF]. Let k be a positive integer and C 1 , . . . , C k be totally ordered sets such that

C 1 ∪ • • • ∪ C k = J (L) ∪ {⊥ L } and such that ∀i, j ∈ [k] : i ̸ = j =⇒ C i ∩ C j = {⊥ L }.
For each x ∈ L and i ∈ [k], we define

c x i = ∨ { y ∈ C i y ≤ x } .
The function γ :

L → ∏ k i=1 C i defined by γ(x) = (c x 1 , . . . , c x k
) is called a Dilworth's embedding. It associates the greatest and least elements of L to the greatest and least elements of ∏ k i=1 C i , respectively. Note that, since any element of a distributive lattice equals the supremum of the join-irreducible elements lower than or equal to it, we have that

x = ∨ { y ∈ J (L) y ≤ x} = ∨ i∈[k] ∨ { y ∈ C i y ≤ x } = c x 1 ∨ • • • ∨ c x k .
Any distributive lattice has at least one Dilworth's embedding. In this paper, any distributive lattice L will be associated to its image by some Dilworth's embedding γ : L → ∏ k i=1 C i . For any x ∈ L, we will denote by x | i the i th component of γ(x). Note that, for any a, b ∈ L we have that

a ≤ b if and only if ∀i ∈ [k] : a | i ≤ b | i . ( 1 
)
and that

γ(a ∧ b) = ( a | 1 ∧ b | 1 , . . . , a | k ∧ b | k ) , γ(a ∨ b) = ( a | 1 ∨ b | 1 , . . . , a | k ∨ b | k ) . ( 2 
)
Remark 1. Any finite chain is isomorphic to an interval of natural numbers. Thus, the Dilworth's embedding of L in ∏ k i=1 C i can be seen as a way to represent each element of L by a k-tuple of integer values. Also note that in the case where k = |J (L)|, each chain C i (where i ∈ [k]) contains only two elements: one joinirreducible element and ⊥ L . In this case, we say that the Dilworth's embedding of L in ∏ k i=1 C i is trivial. This is essentially the Birkhoff's representation of L as a sublattice of 2 J (L) or of {0, 1} |J (L)| .

Basic background on LPFs

Let L denote a distributive lattice and let n denote a positive integer. The class of lattice polynomial functions (LPFs) from L n to L will be denoted by P n L , and it can be defined recursively by finitely many applications of the following rules:

1. For any k ∈ [n], the projection (x 1 , . . . , x n ) → x k is an LPF from L n to L. 2. For any c ∈ L, the constant function (x 1 , . . . , x n ) → c is an LPF from L n to L. 3. If p, q ∈ P n L , then f : L n → L such that f (x) = p(x) ∨ q(x) for all x ∈ L n or such that f (x) = p(x) ∧ q(x) for all x ∈ L n is an LPF from L n to L.
It is well-known that any LPF over a distributive lattice can be represented by a disjunctive normal form (DNF) [START_REF] Goodstein | The solution of equations in a lattice[END_REF]:

p(x) = ∨ I⊆[n] ( α p (I) ∧ ∧ i∈I x i ) , ( 3 
)
where α p is a mapping from 2 [n] to L. In fact, α p can be canonically defined by α p (I) = p(e I ), for every

I ⊆ [n]
, where e I is the element of L n whose i th component is ⊤ L if i ∈ I and ⊥ L otherwise. Clearly, α p thus defined is order-preserving, i.e., α p (I) ≤ α p (J), whenever I ⊆ J.

Remark 2. Note that the canonical DNF representation of an LPF p, i.e., given in terms of α p as defined above, may include redundant terms. To avoid redundancy, we may consider instead the mapping α * : 2

[n] → L defined by α * (I) = α p (I) if α p (I) > ∨ J⊊I α p (J)
, and ⊥ L otherwise. The mapping α * , introduced in [START_REF] Marichal | Aggregation Operators for Multicriteria Decision Aid[END_REF][START_REF] Mesiar | k-order pan-additive discrete fuzzy measures[END_REF], is sometimes called the ordinal Möbius transform of α p . It is not difficult to see that

p(x) = ∨ I⊆[n] ( α * (I) ∧ ∧ i∈I x i ) .
In fact, any function in the interval [α * , α p ] gives rise to a DNF representation of p, and any DNF representation

p(x) = ∨ I⊆[n] ( α(I) ∧ ∧ i∈I x i ) ,
of p implies that α ∈ [α * , α p ]; see [START_REF] Couceiro | Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices[END_REF].

Remark 3. The Sugeno integral can be thought as being a particular type of LPF, namely, those defined with respect to a capacity (i.e., a set-function µ : 2 [n] → L that is order-preserving and that satisfies the boundary conditions µ(∅) = ⊥ L and µ([n]) = ⊤ L ). Even though it was originally introduced over the real unit interval L = [0, 1] [28], the Sugeno integral was later extended to bounded distributive lattices in [START_REF] Marichal | Weighted lattice polynomials[END_REF], where the Sugeno integral S µ w.r.t. a capacity µ is defined by:

S µ (x) = ∨ I⊆[n] ( µ(I) ∧ ∧ i∈I x i
) .

It follows from this definition that Sugeno integrals coincide exactly with idempotent LPFs, i.e., LPFs that preserve constant tuples.

We now recall the notion of partial LPF that will play a key role in what follows.

Definition 1. Let D ⊆ L n . A function f : D → L is a partial LPF if there exists p ∈ P n L such that p(x) = f (x) for all x ∈ D.
From a computational point of view, the space required to encode a mapping α : 2

[n] → L is exponential w.r.t. n. As hinted in Remark 2, it is sometimes possible to avoid redundancies. A subset I ⊆ [n] is said to be a focal set of α if α(I) = α * (I), that is, if α(I) > ∨ J⊊I α(J).
Note that, since for any non-focal set I ⊆ [n] we have α(I) = ∨ J⊂I α(J), α is entirely specified by its values on focal sets.

LPFs in Multiple Criteria Decision Aid

Multiple Criteria Decision Aid (MCDA) is a field of operations research concerned with decision problems involving several criteria. Problem settings of that field typically consider a set of alternatives that are evaluated according to each criterion.

The range of a criterion is the set of possible evaluations of an alternative with respect to that criterion. Let X be a set of alternatives, n be the number of considered criteria and X 1 , . . . , X n the ranges of those criteria. Each alternative x ∈ X can then be described by a tuple (x 1 , . .

. , x n ) ∈ X 1 × • • • × X n . The values x 1 , . . . , x n are called the local evaluations of x.
One problem in MCDA is to find a model that assigns, to each instance, an overall evaluation (that we call the utility value of the instance) depending on its local evaluations. In the rest of this section, we discuss an example where this model has to be chosen in a supervised setting.

We consider students that obtained grades in several courses. The possible grades are: "very bad", "bad", "average", "good", "very good". For a matter of simplicity, they are denoted by 1, 2, 3, 4, and 5 respectively. Moreover let T = {1, 2, 3, 4, 5} be a totally ordered set where 1 < 2 < 3 < 4 < 5. Each student also gets an overall grade, which is decided by a committee according to his/her grades in each course. The grades of the students are displayed in Table We will make use of an intermediary scale T in which partial information about grades is handled in a meaningful way. This scale T will be defined as a distributive lattice, and an LPF on T will then be used as a model for aggregating local evaluations into a utility value. We now detail how T and the LPF are chosen.

We can see T as an interval [START_REF] Birkhoff | Lattice Theory[END_REF][START_REF] Choquet | Theory of capacities[END_REF]. Let T be the lattice whose elements are all sub-intervals of [START_REF] Birkhoff | Lattice Theory[END_REF][START_REF] Choquet | Theory of capacities[END_REF], and where the supremum and infimum are defined by

[a, b] ∨ [c, d] = [a ∨ c, b ∨ d] and [a, b] ∧ [c, d] = [a ∧ c, b ∧ d],
for all [a, b], [c, d] ∈ T. The lattice T (depicted in Figure 4) is indeed distributive. Moreover, for any

x ∈ [a, b] and y ∈ [c, d], the intervals [a, b] ∨ [c, d] and [a, b] ∧ [c, d]
are in fact the intervals of possible values for x ∨ y and for x ∧ y, respectively. We identify each grade a ∈ T to the interval [a, a] and each missing value to the interval [START_REF] Birkhoff | Lattice Theory[END_REF][START_REF] Choquet | Theory of capacities[END_REF]. We now want to chose an LPF on T that generalizes the examples given in Table 1. To do so, we regard Table 1 as a partial function f from T 4 to T, we compute the set IP(f ) (i.e., we solve the interpolation problem) and we pick an LPF from this set if it is not empty.

One of the motivations for using LPFs it that they can be seen as rule-based models. Indeed, any LPF can be translated into several single-threshold rules [START_REF] Dubois | The logical encoding of Sugeno integrals[END_REF][START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF]. More precisely, for any distributive lattice L, any LPF p : L n → L and all x ∈ L n , p(x) is the smallest value allowed by all rules of the form

if ∀i ∈ A, x i ≥ δ then p(x) ≥ δ,
where A ⊆ [n] is a focal set of α p , and δ ≤ α p (A). One advantage of rule-based models is to be easier to interpret by humans (each prediction of the model can be justified by one or several simple rules). However, it is easy to see that some datasets cannot be modeled by an LPF, even if they can be modeled by a nondecreasing function. One way to deal with some of those datasets can be to divide them into subsets that can be interpolated by an LPF (see, e.g., [START_REF] Prade | Elicitating Sugeno integrals: Methodology and a case study[END_REF]).

However, in many cases, the ranges of the criteria differ from the set of utility values. To overcome these limitations, the authors of [START_REF] Couceiro | Decision-Making with sugeno integrals -bridging the gap between multicriteria evaluation and decision under uncertainty[END_REF][START_REF] Couceiro | Computing version spaces in the qualitative approach to multicriteria decision aid[END_REF] introduced generalizations of Sugeno integrals, such as Sugeno Utility Functionals (SUF) or maxima of SUFs. These models allow to merge local evaluations when the ranges of criteria differ from each other. Moreover, a SUF or a maximum of SUFs f : X 1 ו • •×X n → L can always be represented by multi-threshold rules, of the form

if ∀i ∈ A, x i ≥ δ i then f (x) ≥ δ,
where A ⊆ [n], δ ∈ L, and each δ i is a threshold belonging to the range of the i th criterion. Note that certain sets of multi-threshold rules do not correspond to any SUF (see [START_REF] Bouyssou | A Conjoint Measurement Approach to the Discrete Sugeno Integral[END_REF] and [START_REF] Greco | Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules[END_REF]), but always correspond to at least one maximum of SUFs [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]. Moreover, it was shown [START_REF] Couceiro | Enhancing the Expressive Power of Sugeno Integrals for Qualitative Data Analysis[END_REF] that maxima of SUFs can be used for extracting rules from data. The rules thus obtained were shown to have a predictive accuracy that is competitive with rules extracted via state of the art methods for rule extraction.

Constraint stacking

In this section we show that the upper and lower bounds of IP(f ) can always be characterized by a set of constraints, thus generalizing the result of [START_REF] Rico | Preference modeling on totally ordered sets by the Sugeno integral[END_REF] where L is assumed to be totally ordered, and providing an alternative description to that of [START_REF] Couceiro | General interpolation by polynomial functions of distributive lattices[END_REF]. More precisely, all LPFs p ∈ IP(f ) are characterized by upper and lower constraints, which are respectively of the form α p (I) ≤ y and α p (I) ≥ y, where I ⊆ [n] and y ∈ L.

We first consider the particular case when the domain of f only has one element. where

s + y,t = ∨ { a ∈ L a | t ≤ y | t } , s - y,t = ∧ { a ∈ L a | t ≥ y | t } , G x,y,t = { i x i| t > y | t } G ′ x,y,t = { i x i| t ≥ y | t } .
Proof. First observe that ∨

I⊆[n] α p (I) ∧ ∧ i∈I x i = y holds if and only if for all t ∈ [k] we have ∨ I⊆[n] α p (I) | t ∧ ∧ i∈I x i| t = y | t . ( 4 
)
Notice that the left-hand side of ( 4) is the DNF of an LPF from (C t ) n to C t (recall that we consider a Dilworth embedding of 4) is equivalent to

L in C 1 × • • • × C k ).
α p ( G x,y,t ) | t ≤ y | t , ( 5 
)
α p ( G ′
x,y,t

) | t ≥ y | t . ( 6 
)
Since s + y,t is the greatest element of L whose t th component is lower than or equal to y | t , ( 5) is equivalent to α p (G x,y,t ) ≤ s + y,t . By duality, since s - y,t is the least element of L whose t th component is greater than or equal to y | t , ( 6) is equivalent to α p (G ′

x,y,t ) ≥ s - y,t . Using the notation of Lemma 1, we introduce the two following sets:

C + x,y = { ( G x,y,t , s + y,t ) t ∈ [k] } and C - x,y = { ( G ′ x,y,t , s - y,t ) t ∈ [k]
} .

for any given x ∈ L n and y ∈ L. From Lemma 1 it follows that for any LPF p we have that p(x) = y if and only if Recall that each grade a ∈ T is represented by the interval [a, a] and that a missing grade is represented by the interval [START_REF] Birkhoff | Lattice Theory[END_REF][START_REF] Choquet | Theory of capacities[END_REF]. We denote the tuple of local evaluations of a student by x i where i is the number of its row in Table 1. Thus, for the first student we must have p(x 1 ) = [START_REF] Brass | Advanced Data Structures[END_REF][START_REF] Brass | Advanced Data Structures[END_REF] where x 1 = ( [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF], [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF], [START_REF] Birkhoff | Lattice Theory[END_REF][START_REF] Choquet | Theory of capacities[END_REF], [START_REF] Brass | Advanced Data Structures[END_REF][START_REF] Brass | Advanced Data Structures[END_REF]).

∀ ( G x,y,t , s + y,t ) ∈ C + x,y : α p ( G x,y,t ) ≤ s + y,t and ∀ ( G ′ x,y,t , s - y,t ) ∈ C - x,y : α p ( G ′ x,y,t ) ≥ s - y,t . Example 1. Recall Table 1 in
Applying Lemma 1, we get

s + [4,4],1 = [4, 5] s - [4,4],1 = [4, 4] G x 1 ,[4,4],1 = {1, 2} G ′ x 1 ,[4,4],1 = {1, 2, 4} s + [4,4],2 = [4, 4] s - [4,4],2 = [1, 4] G x 1 ,[4,4],2 = {1, 2, 3} G ′ x 1 ,[4,4],2 = {1, 2, 3, 4}
and the corresponding constraints α p ({1, 2, 3}) ≤ [START_REF] Brass | Advanced Data Structures[END_REF][START_REF] Brass | Advanced Data Structures[END_REF] and α p ({1, 2, 4}) ≥ [START_REF] Brass | Advanced Data Structures[END_REF][START_REF] Brass | Advanced Data Structures[END_REF].

For the second student we must have p(x 2 ) = [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF] where x 2 = ([3, 3], [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF], [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF], [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]).

We get

s + [3,3],1 = [3, 5] s - [3,3],1 = [3, 3] G x 2 ,[3,3],1 = ∅ G ′ x 2 ,[3,3],1 = {1, 2, 3, 4} s + [3,3],2 = [3, 3] s - [3,3],2 = [1, 3] G x 2 ,[3,3],2 = ∅ G ′ x 2 ,[3,3],2 = {1, 2, 3, 4}
and the corresponding constraints:

α p (∅) ≤ [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF] and α p ({1, 2, 3, 4}) ≥ [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF].

For the third student we must have p(x 3 ) = [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF] where x 3 = ([5, 5], [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF], [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF], [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF]).

We get

s + [5,5],1 = [5, 5] s - [5,5],1 = [5, 5] G x 3 ,[5,5],1 = ∅ G ′ x 3 ,[5,5],1 = {1, 4} s + [5,5],2 = [5, 5] s - [5,5],2 = [1, 5] G x 3 ,[5,5],2 = ∅ G ′ x 3 ,[5,5],2 = {1, 4}
and the corresponding constraints:

α p (∅) ≤ [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF] and α p ({1, 4}) ≥ [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF].

For the fourth student we must have p(x 4 ) = [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF] where [START_REF] Brass | Advanced Data Structures[END_REF][START_REF] Brass | Advanced Data Structures[END_REF]).

x 4 = ([1, 5], [1, 1], [2, 2],
We get

s + [3,3],1 = [3, 5] s - [3,3],1 = [3, 3] G x 4 ,[3,3],1 = {4} G ′ x 4 ,[3,3],1 = {4} s + [3,3],2 = [3, 3] s - [3,3],2 = [1, 3] G x 4 ,[3,3],2 = {1, 4} G ′ x 4 ,[3,3],2 = {1, 4}
and the corresponding constraints:

α p ({1, 4}) ≤ [3, 3] and α p ({4}) ≥ [3, 3].
For a given f : D → L, the constraints that characterize the upper and lower bounds of IP(f ) are obtained by the union of the constraints given in Lemma 1 for each x ∈ D. This leads us to the following proposition. x,y,t

) ≥ s - y,t ,
where y = f (x) and

s + y,t = ∨ { a ∈ L a | t ≤ f (x) | t } , s - y,t = ∧ { a ∈ L a | t ≥ f (x) | t } , G x,y,t = { i x i| t > f (x) | t } , G ′ x,y,t = { i x i| t ≥ f (x) | t } .
The constraints given in Proposition 1 completely describe the upper and lower bounds of IP(f ), whenever IP(f ) is nonempty. Let C + f and C - f denote the sets upper and lower constraints, respectively. That is,

C + f = { ( G x,f (x),t , s + y,t ) t ∈ [k], x ∈ D } = ∪ x∈D C + x,f (x) , (7) 
C - f = { ( G ′ x,f (x),t , s - y,t ) t ∈ [k], x ∈ D } = ∪ x∈D C - x,f (x) . ( 8 
)
The natural question is then how to check whether there is an LPF satisfying the conditions presented in Proposition 1, i.e., whether IP(f ) is nonempty. The following proposition provides necessary and sufficient conditions for IP(f ) to be nonempty.

Proposition 2. Let D ⊆ L n and f : D → L. The three following assertions are equivalent.

2.a. There exists p ∈ P n L such that p(x) = f (x) for all x ∈ D.

2.b.

There exists an order-preserving α : 2

[n] → L such that ∀(G, s + ) ∈ C + f , α(G) ≤ s + and ∀(G ′ , s -) ∈ C - f , α(G ′ ) ≥ s -. 2.c. For every (G, s + ) ∈ C + f and (G ′ , s -) ∈ C - f , if G ′ ⊆ G, then s -≤ s + .
Proof. The fact that 2.b is equivalent to 2.a follows immediately from Proposition 1 and from the definitions of C + f and C - f . To prove that 2.c and 2.b are also equivalent, we first show that if 2.c does not hold, then neither does 2.b. Suppose that there is (G, s

+ ) ∈ C + f and (G ′ , s -) ∈ C - f such that G ′ ⊆ G and s -̸ ≤ s + . In this case, for any α : 2 [n] → L verifying α(G) ≤ s + and α(G ′ ) ≥ s -,
we have α(G ′ ) ̸ ≤ α(G) and thus α is not order preserving. We now show that 2.c implies 2.b. So suppose that 2.c holds. Take α : 2 [n] → L such that for all I ⊆ [n],

α(I) = ∨ { s -(G ′ , s -) ∈ C - f , G ′ ⊆ I } . ( 9 
)
It is not difficult to verify that α is order-preserving, and that for every

(G ′ , s -) ∈ C - f , we have that α(G ′ ) ≥ s -. Let (G, s + ) ∈ C + f . From (9) it follows that α(G) = ∨ { s -(G ′ , s -) ∈ C - f , G ′ ⊆ G } ,
and since for all (G ′ , s -) ∈ C - f such that G ′ ⊆ G we have s -≤ s + , we have α(G) ≤ s + . Therefore, 2.c implies 2.b.

While Proposition 1 defines the constraints that characterize all LPFs interpolating a given partial function, Proposition 2 provides a way of checking if there exists an LPF satisfying these constraints. Even though equivalent to the description provided in [START_REF] Couceiro | General interpolation by polynomial functions of distributive lattices[END_REF], this new description enables algorithms to solve the interpolation problem in polynomial time, as we will see in Subsection 6.1.

Example 2. The four students described in Table 1 yield the following sets of constraints. [START_REF] Brass | Advanced Data Structures[END_REF][START_REF] Brass | Advanced Data Structures[END_REF]), (∅, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]), ({1, 2, 3, 4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]), (∅, [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF]), ({1, 4}, [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF]), ({1, 4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF])} ({4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF])}.

C + f = {({1, 2, 3}, [4, 4]), C - f = {({1, 2, 4},
These two sets contain a few redundancies. For example, in C + f , the couple ({1, 4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]) represents a stronger constraint than (∅, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]) and than (∅, [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF]). In C - f , the couple ({1, 4}, [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF]) represents a stronger constraint than ({1, 2, 4}, [START_REF] Brass | Advanced Data Structures[END_REF][START_REF] Brass | Advanced Data Structures[END_REF]) and than ({1, 2, 3, 4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]).

Moreover, notice that no LPF can satisfy both ({1, 4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]) in C + f and ({1, 4}, [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF]) in C - f , since {1, 4} ⊆ {1, 4} and [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF] > [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]. This can also be seen from the fact that no monotonic function α : 2 [n] → L can verify µ({1, 4}) ≤ [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF] and µ({1, 4}) ≥ [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF].

In other words, there exists no FLP that models exactly the data of Table 1, because the third row is incompatible with the fourth row.

If we decide to remove the last row from the table, then we have that ({1, 4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]) ̸ ∈ C + f and ({4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]) ̸ ∈ C - f , and the set of interpolating LPFs becomes nonempty. A straightforward model is then the smallest LPF p that satisfies the remaining lower constraints, given by the couples ({1, 2, 4}, [START_REF] Brass | Advanced Data Structures[END_REF][START_REF] Brass | Advanced Data Structures[END_REF]), ({1, 2, 3, 4}, [START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF][START_REF] Brabant | Extracting Decision Rules from Qualitative Data via Sugeno Utility Functionals[END_REF]), and ({1, 4}, [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Choquet | Theory of capacities[END_REF]) in C - f . This LPF is defined by

α p (I) = { [5, 5] if I = {1, 4}, ∨ J⊂I α(J) otherwise.

Characterization of partial LPFs

Recall that a partial function f : D → L for D ⊆ L n is said to be a partial LPF if there exists an LPF p ∈ P n L that interpolates f . In this section we provide several theoretical results that will culminate in a characterization of partial LPFs in terms of so-called semi-congruences.

The first result essentially states that we can check whether IP(f ) is nonempty simply by looking at pairs (x, f (x)), (x', f (x')) for each x, x' ∈ D. Lemma 2. Let D ⊆ L n and f : D → L. There exists p ∈ P n L such that p(x) = f (x) for all x ∈ D, if and only if, for all x, x' ∈ D, there exists p ∈ P n L such that p(x) = f (x) and p(x') = f (x').

Proof. Clearly, the condition is necessary. To show that it is sufficient, suppose that, for all x, x' ∈ D, there exists p ∈ P n L such that p(x) = f (x) and p(x') = f (x'). From Proposition 2 it follows that for all x, x' 7) and ( 8) it follows that for all (G, s

∈ D, if (G, s + ) ∈ C + x,f (x) ∪ C + x',f (x') and (G ′ , s -) ∈ C - x,f (x) ∪ C - x',f (x') , we have that G ′ ⊆ G implies s -≤ s + . From (
+ ) ∈ C + f and all (G ′ , s -) ∈ C - f , G ′ ⊆ G implies s -≤ s + ,
and by Proposition 2, we then conclude that there is p ∈ P n L such that p(x) = f (x) for all x ∈ D.

Let Θ denote an equivalence relation on L. The relation Θ is said to be a congruence [START_REF] Birkhoff | Lattice Theory[END_REF] on L if it is compatible with the lattice operations ∨ and ∧, i. It is well-known that the LPFs are congruence preserving functions (see for example [START_REF] Kaarli | Polynomial Completeness in Algebraic Systems[END_REF]). Moreover, it is shown in [START_REF] Halaš | Congruences and the discrete Sugeno integrals on bounded distributive lattices[END_REF] that Sugeno integrals correspond exactly to congruence-preserving aggregation functions. Since any partial LPF coincides with at least one LPF on each point of its domain, it follows that any partial LPF is congruence-preserving. However, there are partial congruence-preserving functions that are not partial LPF, as illustrated in the following example.

Example 3. Let L denote the lattice depicted in Figure 5, and consider the partial function f : {a, b} → L defined by f (a) = b and f (b) = a. It is easy to verify that f is congruence-preserving, but that there is no LPF interpolating it.

In order to characterize partial LPFs, we introduce the following generalization of the notion of congruence. Definition 2. We say that a binary relation R ⊆ L 2 is a semi-congruence if it is reflexive and compatible with ∨ and ∧.

We say that a partial function f : D → L, D ⊆ L n , is semi-congruencepreserving if for any semi-congruence R on L and any

(a 1 , . . . , a n ), (b 1 , . . . , b n ) ∈ D such that (a 1 , b 1 ), . . . , (a n , b n ) ∈ R we have that (f (a 1 , . . . , a n ), f (b 1 , . . . , b n )) ∈ R. For any x, x' ∈ L n , we define R (x,x') as the intersection of all semi-congruences R such that ∀i ∈ [n] : (x i , x ′ i ) ∈ R. ( 10 
)
In other words, R (x,x') is the smallest semi-congruence that satisfies [START_REF] Couceiro | Computing version spaces in the qualitative approach to multicriteria decision aid[END_REF]. Note that the elements of R (x,x') can be obtained by finitely many applications of the following rules:

1. (a, a) ∈ R (x,x') for all a ∈ L, and (

x i , x ′ i ) ∈ R (x,x') for all i ∈ [n], 2. if (a, b), (c, d) ∈ R (x,x') , then (a ∨ c, b ∨ d) ∈ R (x,x') , 3. if (a, b), (c, d) ∈ R (x,x') , then (a ∧ c, b ∧ d) ∈ R (x,x') .
From this observation we immediately have the following auxiliary lemma.

Lemma 3. Let x, x' ∈ L n and y, y ′ ∈ L. The following assertions are equivalent.

3.a. There is an LPF p : L n → L such that p(x) = y and p(x') = y ′ .

3.b. For every semi-congruence R :

[ ∀i ∈ [n] : (x i , x ′ i ) ∈ R ] ⇒ (y, y ′ ) ∈ R. ( 11 
) 3.c. (y, y ′ ) ∈ R (x,x') .
Lemmas 2 and 3 together yield the characterization of partial LPFs as semicongruence preserving functions. 

[ ∀i ∈ [n] : (x i , x ′ i ) ∈ R ] ⇒ (f (x), f (x')) ∈ R. ( 12 
)
4.c. For every x, x' ∈ D, (f (x), f (x')) ∈ R (x,x') .

Computing the set of solutions

In this section we propose a novel approach for solving the interpolation problem and we make some theoretical observations concerning its computational complexity.

Algorithms

This subsection is devoted to the algorithms that solve the interpolation problem for any given D ⊆ L n and f : D → L. Algorithm 1 computes the sets of constraints that define the upper and lower bounds of IP(f ), whereas Algorithm 3 checks whether the induced set is empty. The function f is specified by a set

D = {d 1 , . . . , d m } ⊆ L n × L,
where each d j is of the form (x j , y j ), for j ∈ {1, . . . , m}, and specifies the value f (x j ) = y j of f . initalize C + as an empty map 3:

initalize C -as an empty map 4:

for (x, y) ∈ D do 5:

for t ∈ {1, . . . , k} do 6:

G ← {i | x i| t > y | t } 7: G ′ ← {i | x i| t ≥ y | t } 8: s + ← ∨ {a ∈ L | a | t ≤ y | t } 9: s -← ∧ {a ∈ L | a | t ≥ y | t } 10: update + (C + , G, s + ) 11:
update

-(C -, G ′ , s -) 12:
end for if G is a key in C + then 3: for (G, s + ) ∈ C + do 3:

C + [G] ← C + [G] ∧ s + 4: else 5: C + [G] ← s + 6: end if 7: end function 1: function update -(C -, G ′ , s -) 2: if G ′ is a key in C -then 3: C -[G ′ ] ← C -[G ′ ] ∨ s - 4:
for (G ′ , s -) ∈ C -do 4:
if G ′ ⊆ G and s -̸ ≤ s + then return true 10: end function

Computational complexity

In this section we regard L as a sublattice of a product of chains

C 1 × • • • × C k . Recall that k ≤ |J (L)|.
Here the objective is to provide an upper bound on the worst case complexity of Algorithms 1 and 3 w.r.t. the dimensions of the input, i.e., the arity n of f , the size m of D, and the parameter k.

We start by looking at the worst case complexity of evaluating any of the following expressions: a ∨ b, a ∧ b, a ≤ b, and a < b (we regard a ≤ b and a < b as predicates that can be either 0 or 1 depending on whether they are true or false). By ( 1) and ( 2) in Section 2, any of these four expressions can be computed in O(k). However, since these expressions are evaluated many times in our algorithms, it is convenient to precompute their values for each couple (a, b) ∈ L × L. After indexing each element of L by an integer, the precomputed values can be stored in four two-dimensional arrays of size |L| 2 . Since each of these arrays contains at most |L| 2 values, O(|L| 2 ) values have to be computed. Hence, the overall worst time complexity of these precomputations is O(|L| 2 k). Once the arrays are created and filled, any value can be retrieved in O [START_REF] Birkhoff | Lattice Theory[END_REF].

Observe [START_REF] Birkhoff | Lattice Theory[END_REF].To implement the maps C + and C -we can make use of tries (see, e.g., [START_REF] Brass | Advanced Data Structures[END_REF], Section 8.1). Through tries, finding and inserting an item in C + or C -can be performed with a complexity O(n). Consequently, the functions UPDATE + and UPDATE -run in O(n).

Now consider Algorithm 1. The code from lines 6 to 11 will not be executed more than mk times. Moreover, G and G ′ can be computed in O(n). Therefore, Algorithm 1 runs in O(mkn).

The number of loops performed in Algorithm 3 depends on |C + | and |C -|. From Algorithm 1, it can be seen that this number is at most mk. Thus, line 4 will be executed at most m 2 k 2 times. Since G ′ ⊆ G can be checked in O(n), Algorithm 3 runs in O(m 2 k 2 n). This is, to the best of our knowledge, the only algorithm that computes IP(f ) in polynomial time, for any partial function from D ⊆ L n to L. Remark 4. Corollary 2 of [START_REF] Couceiro | General interpolation by polynomial functions of distributive lattices[END_REF] also allows to compute the greatest and the least LPFs that interpolate a set of data instances. However, any naive implementation of this theoretical result would lead to an algorithm running in Ω(2 n mn). This exponential complexity is due to the fact that the values of the capacities have to be computed explicitly for each subset of [n].

Empirical study

In this section we perform an empirical study to see the behaviour of our algorithms with respect to the dimensions of datasets and compare the results with the the-oretical complexity results obtained in the previous section. We will conduct our study on randomly generated data as described below.

Note that our empirical study relies on an implementation of algorithms that makes use of the trivial Dilworth's embedding, i.e., Birkhoff's representation where the elements of the lattice are represented by binary tuples of size |J (L)|. Therefore, in this section we assume that k = |J (L)|.

Random generation of instances

In order to get an idea of how the running time of our algorithm varies w.r.t. different parameters, we randomly generated datasets of different sizes. The main steps of the data generation can be summarized as follows:

1. Randomly generate a distributive lattice L, 2. Randomly generate an LPF p : L n → L, 3. Randomly generate a set of input-output instances. Each input is a randomly generated element x ∈ L n , and the corresponding output is given by p(x).

When generating the data in this way, it is ensured that there will always be at least one LPF that will coincide with all input-output instances. Each step depends on several parameters and is detailed in what follows.

Random generation of distributive lattices

Each distributive lattice is characterized by the ordering of its join-irreducible elements (see [START_REF] Davey | Introduction to Lattices and Order[END_REF]). Therefore, when the number of join-irreducible elements is given, we can reformulate the problem of randomly generating a distributive lattice as the one of randomly generating a partial order over a set. This is not a trivial problem, and several solutions have been proposed in the literature, see, e.g., [START_REF] Gehrlein | On methods for generating random partial orders[END_REF]. Each of them induces a different probability distribution over the space of outcomes, i.e., orders.

The method that we consider in this paper can be decomposed into three main steps 1. Randomly generating an acyclic relation over the set of joint-irreducible elements. For this we assign an arbitrary index i ∈ [k] to each join-irreducible element of L, so that J (L) = {a 1 , . . . , a k }. Then for each i, j ∈ [k] such that i < j, we set a i < a j with probability ρ.

2. Taking the transitive closure of the relation.

3. Building the lattice from the poset of join-irreducible elements.

Summing up, the generation of each lattice considers two parameters, namely, the number k of join-irreducible elements, and the probability ρ. 

Random generation of LPFs

Given a distributive lattice L, and a positive integer n, we randomly generate an LPF p : L n → L. We introduce a third parameter, which is the maximal number g of focal sets (see Section 2). The generation process can then be decomposed as follows.

1. Pick g different sets I 1 , . . . , I g in 2 [n] , with uniform probability. Let F = {I 1 , . . . , I g }. The function α p will be defined is such a way that all its focal sets are in F .

For

i from 1 to g, randomly pick a i ∈ L such that ∨ j<i, I j ⊂I i a j ≤ a i ≤ ∧ j<i, I i ⊂I j a j and set α p (I i ) = a i . Note that a 1 is picked such that ⊥ L ≤ a 1 ≤ ⊤ L . For every J ∈ 2 [n] \F , we set α p (J) = ∨ I i ∈F, I i ⊆J α p (I i ).
Thus J is not a focal set of α p . These choices guarantee that α p is orderpreserving. Note that, by making use of the ordinal Möbius transform of α p (see Section 2), we can avoid to set explicitly the values of each J ∈ 2 [n] \F .

We then return the LPF p defined by p = ∨ I∈F α p (I) ∧ ∧ i∈I x i . The generation of p thus depends on two parameters, namely the arity n of p and the number of focal sets g.

Random generation of a dataset

In order to randomly generate a dataset of m instances, m elements of L n are chosen randomly (with uniform probability). Let

D = { x 1 , . . . , x m } ⊆ L n ,
be the set of these randomly chosen elements. The dataset is then defined as

D = {( x i , p ( x i )) x i ∈ D } .
Maximal 

Test procedure

We aim at observing how the running time of our algorithms varies depending on the five parameters used in the generation of a dataset, namely: the number k of joint-irreducible elements of L, the probability ρ used in the generation of L, the arity n of p, the maximal number g of focal sets in α p , and the number m of instances in D.

To conduct this empirical study, we run several tests. Each test consists in the random generation of D, followed by the execution of Algorithms 1 and 3 on D. A test was run for different parameter values. The result of one test is the time of execution of Algorithms 1 and 3. The algorithms were implemented in Java and their implementation is available in https://github.com/QGBrabant/javaggregation. The tests were run on an Intel Core i7-4600U CPU. Times displayed in Tables 2 and 3 are an average result of 10 tests.

Table 2 displays the times obtained, for varying values of ρ and g. We see that these two parameters have a minor impact on the running time. Table 3 describes the running times for fixed values of ρ and g, and varying arity, dataset size, and lattice dimension. The running times presented in Table 3 seem to be in line with the worst case complexity O(m 2 k 2 n) given in Subsection 6.2. It shows that the set of interpolating LPFs can be found in reasonable time for data with substantial dimensionality. Moreover, we see that the reported running times do not increase as fast with the dimensions of the data as their worst case complexity would have suggested. A rough approximation would be that the running time increases linearly on k, and slightly more than linearly on m and n, while being almost constant on ρ and g.

Future work

In this paper we provided theoretical results regarding the interpolation of functions by an LPF. These results show that the interpolation problem is tractable even in the case of distributive lattices, and we proposed an algorithm that solves it in polynomial time. However, it is common that empirical data contain errors; these errors can prevent from finding any interpolating LPF. As future research, we aim to adapt the current algorithms to make them robust and capable of dealing with noise.

Furthermore we intend to extend our interpolation framework to SUFs (see Section 3). In fact a solution to the interpolation problem generalized to a certain class of restricted SUFs was already proposed in [START_REF] Couceiro | Computing version spaces in the qualitative approach to multicriteria decision aid[END_REF]. However it was shown that the interpolation problem in that case is NP-complete. On the other hand, it is still unknown whether the interpolation problem is tractable in the case of unrestricted SUFs. Finally, the interpolation of a function by a minimal number of SUFs in a max-SUF is a problem that remains open and constitutes a topic of ongoing research.
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 4 Figure 4: The distributive lattice T of subintervals of [1, 5].

  Section 3, where we considered students and their grades in several courses. Local evaluations and utility values are elements from the lattice T. Thus, we are searching for an LPF p : T 4 → T that predicts exactly the utility value of each student. First, let us define a suitable Dilworth's embedding of T. Notice that the lattice T is isomorphic to the sublattice of T 2 whose universe is the order simplex {(a, b) ∈ T 2 | a ≤ b}. Thus, let C 1 = C 2 = T , and consider the Dilworth's embedding of T in C 1 × C 2 defined by [a, b] | 1 = a and [a, b] | 2 = b, for all [a, b] ∈ T.

Proposition 1 .

 1 Let D ⊆ L n , f : D → L, and p ∈ P n L . The following two conditions are equivalent 1.a For all x = (x 1 , . . . , x n ) ∈ D: p(x) = f (x).

1. b

 b For all t ∈ [k] and all x ∈
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 15 Figure 5: Lattice of Example 3.

Theorem 4 .

 4 Let f : D → L with D ⊆ L n . The following assertions are equivalent. 4.a. The function f is a partial LPF. 4.b. For every x, x' ∈ D and every semi-congruence R :

Algorithm 1 :

 1 Computation of constraints sets C -and C + 1: function compute constraints(D) 2:

Algorithm 2 :

 2 return C -, C + 15: end function The sets C + f and C - f introduced in Section 4, are thought of as maps C + : 2 [n] → L and C -: 2 [n] → L, and their respective values on a key I ⊆ [n] are denoted by C + [I] and C -[I]. The role of the functions update + and update -is to add new constraints to C + and to C -, respectively. Update of maps 1: function update + (C + , G, s + ) 2:

else 5 :Algorithm 3 :

 53 C -[G ′ ] ← s - 6: end if 7: end function The function check consistency returns a Boolean value indicating whether the set of solutions specified by C + and C -is empty. Checking constraint consistency 1: function check consistency(C + ,C -) 2:

Figure 6 :

 6 Figure 6: Sample of randomly generated distributive lattices (k = 5, p = 0.6).

Table 1 :

 1 Toy example: grades attributed to several students. grades were lost before the overall grade of each student was decided. These missing values are indicated in the table by question marks.We want to find a model that, for each student, aggregates the grades in each course (i.e., the local evaluations) into an overall grade (i.e. the utility value), according to the examples given in the table. Aggregation functions involving numerical operations, such as a weighted sum or a Choquet integral[START_REF] Choquet | Theory of capacities[END_REF][START_REF] Grabisch | A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid[END_REF], cannot aggregate non-numerical values. Moreover, our model has to handle the missing values. We propose to use an LPF as a model. Note that, since some values are missing, Table1cannot be regarded as a partial function from T 4 to T , and thus the model cannot be inferred directly from the table by solving the interpolation problem. Instead, we propose to proceed as follows.

	1. A few

Lemma 1 .

 1 Let x 1 , . . . , x n , y ∈ L, and let p be an LPF. We have p(x 1 , . . . , x n ) = y if and only if, for every t ∈[k] 

	α p	( G x,y,t	)	≤ s + y,t	and α p	(	G ′ x,y,t	)	≥ s -y,t

  that the values of the variables s + and s -(which are set, respectively to s + y,t and s - y,t during each loop) are determined by the value of y | t . Since y | t ∈ J (L) ∪ {⊥ L }, both s + and s -can take |J (L)| + 1 different values. Again, these values can be precomputed and stored in arrays. For a given y | t ∈ J (L)∪{⊥ L }, s + can be computed in O(|L|). Thus, computing all possible values of s + or s - can be done in O(|L||J (L)|). In what follows, it is assumed that the values s + y,t and s - y,t are computed and stored for each y | t ∈ J (L) ∪ {⊥ L }, and thus that the values of s + and s -can be be retrieved in O

	y,t
	and s -y,t

Table 2 :

 2 Running time of Algorithms 1 and 3 (in milliseconds) depending on the maximal number g of focal sets and probability ρ ( with n = 30, m = 10000, k = 10, p = 0.6).

				number of focal sets (g)
		10	50	100 200 500 1000
		0.0 151.0 159.6 147.0 171.5 142.3 147.8
		0.2 153.2 149.1 132.3 135.5 132.9 146.8
	ρ	0.4 134.1 139.7 161.2 139.4 136.7 136.3 0.6 147.3 140.2 131.3 154.2 138.5 132.2
		0.8 130.2 135.0 140.4 132.5 132.4 132.9
		1.0 133.6 137.8 125.8 127.1 137.1 139.3
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A Detailed running times